
 

 
Abstract – Clock and data recovery CDR is an important 

subsystem of every communication device since the receiver must 
recover the exact transmitter’s clock information usually coded 
into the incoming stream. Some analogue techniques for CDR 
have been developed based on PLL theory employing an external 
VCO. However, sometimes external components could be 
cumbersome when interfacing them with the digital core (FPGA, 
DSP) already present in the device. Thus, the digital core is also 
used to carry out the timing recovery task by all-digital 
techniques i.e. without an external VCO. This article will describe 
an all digital timing recovery subsystem using digital techniques 
implemented on a FPGA 

 

 
Index Terms – Clock and Data Recovery CDR, FPGA, DSP, 

Synchronization, Timing Recovery. 

I.  INTRODUCTION 
Clock and Data Recovery is a key element of a 

communication’s receiver. Depending on the characteristics of 
the transceiver and the whole communication system, different 
approaches can be taken in order to recover the right clock and 
data information from the incoming data. For digital systems, 
the “traditional” approach uses an analog Voltage Controlled 
Oscillator (VCO) who drives the receiver’s sampler. Another 
approach uses digital signal processing in order to recover the 
right data information, thus no VCO is needed. This article 
will briefly describe the latter one and will show, as an 
example, a hardware implementation on a Field Programmable 
Gate Array.  

II.  TIMING RECOVERY DESCRIPTION 
Figure 1 shows a typical baseband PAM communication 

system where information bits bk are applied to a line encoder 
which converts them into a sequence of symbols ak. This 
sequence enters the transmit filter GT(ω) and then is sent 
through the channel C(ω) which distorts the transmitted signal 
and adds noise. At the receiver, the signal is filtered by GR(ω) 
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in order to reject the noise components outside the signal 
bandwidth and reduced the effect of the ISI. The signal at the 
output of the receiver filter is 

 

∑ +−−=
m

m tnTmTtgaty )()();( εε
 

Equation 1 
  

where g(t) is the baseband pulse given by the overall transfer 
function G(ω) (Equation 2), n(t) is the additive noise, T is the 
symbol period (transmitter) and εT is the fractional time delay 
(unknown) between the transmitter and the receiver, |ε| < ½. 
The symbols âk are estimated based upon these samples. They 
are finally decoded to give the sequence of bits bk. 
 

G(ω)= GT(ω)C(ω)GR(ω) 
 

Equation 2. Overall transfer function 
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Fig. 1. Basic Communication System for baseband PAM 

 
The receiver does not know a priori the optimum sampling 

instants {kT+ εT}. Therefore, the receiver must incorporate a 
timing recovery circuit or clock or symbol synchronizer which 
estimates the fractional delay ε from the received signal. 

Two main categories of clock synchronizers are then 
distinguished depending on their operating principle: error 
tracking (feedback) and feedforward synchronizers [1].  

A.  Feedforward Synchronizer 
Figure 2 shows the basic architecture of the feedforward 

synchronizer. Its main component is the timing detector which 
computes directly the instantaneous value of the fractional 
delay ε from the incoming data. The noisy measurements are 
averaged to yield the estimate and sent as control signal to a 
reference signal generator. The generated clock is finally used 
by the data sampler [1, 2]. 
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Fig. 2. Feedforward (open-loop) Synchronizer 

 

B.  Feedback Synchronizer 
The main component of the feedback synchronizer is the 

timing error detector, which compares the incoming PAM data 
with the reference signal, as shown in Figure 3. Its output gives 
the sign and magnitude of the timing error εε ˆ−=e .  The 
filtered timing error is used to control the data sampler. Hence, 
feedback synchronizers use the same principle than a classical 
PLL [1, 2]. 

 
Fig. 3. Feedback (closed loop) Synchronizer 

 
The main difference between these two synchronizer 

implementations is now evident. The feedback synchronizer 
minimizes the timing error signal, the reference signal is used 
to correct itself thanks to the closed loop; the feedforward 
synchronizer estimates directly the timing from the incoming 
data and generates directly the reference signal, no feedback is 
needed. 

Besides the previous classification, some others can be 
made. If the synchronizer uses the receiver’s decisions about 
the transmitted data symbols to estimate the timing, the 
synchronizer is said to be decision directed, otherwise is non-
data aided. The synchronizer can also work in continuous or 
discrete time. 

 

III.  CDR HARDWARE ARCHITECTURES 
We analyzed two approaches: the hybrid synchronizer, 

which is partially implemented on the digital domain and 
partially on the analogue domain; and the digital synchronizer, 
which fully operates in discrete time. Even if their hardware 
implementation is different, both have an equivalent 
architecture of a feedback synchronizer; therefore, the theory 
for computing the loop parameters is exactly the same. 

In the following we describe the digital synchronizer, please 
refer to the article “Clock and Data Recovery for a High Speed 

Transceiver” in these proceedings for an analysis of a hybrid 
synchronizer. 

 

A.  All-digital architecture 
Figure 4 shows the architecture of an all-digital timing 

recovery. The A/D converter operates with a free running 
oscillator that has a nominal frequency identical to the D/A 
used at the transmitter. However, the ratio between the real-
world symbol rate and the independent (fixed rate) sampling 
clock is never rational (and it will change in time) i.e. 
sampling frequency and baud rate are incommensurate; 
therefore, sampling is asynchronous with the incoming data. 

 

 
Fig. 4 Digital Architecture 

 
Since the sampling clock is a free running clock, data 

synchronization occurs by means of time-varying data 
interpolation in order to “create the samples” that would have 
been obtained if the original sampling had been synchronized 
with the symbols.  

After the interpolator, data are sent to the timing error 
detector and then to the loop filter. The filtered error signal 
controls a NCO which closes the loop. The NCO’s outputs 
give the correct parameters for interpolation. 

This architecture will be described in more detail in the 
following section.  

IV.  DIGITAL TIMING RECOVERY ARCHITECTURE 
The digital timing recovery architecture is better depicted in 

Figure 5. Let Ts be the asynchronous sampling period of the 
A/D converter incommensurate with the incoming symbol 
period T. We might note that even the slightest difference 
between the transmitter and receiver clocks might result in 
cycle slips after some time. 
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Figure 5 Digital Timing Recovery – feedback synchronizer 



 

We must obtain samples y(nT+ ε̂ T) , with n integer, at 
symbol rate 1/T from samples taken at 1/Ts. Therefore, the 
transmitter time scale (defined by T) must be expressed in 
terms of the receiver time scale (defined by Ts). Estimation of 
the fractional time delay ε is the first important operation in 
all-digital timing recovery. 
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Equation 3 
 
where mn = Lint(x) returns the largest integer less than or 

equal to x, and ûn is the difference between one sampling 
instant at the receiver and the corresponding optimum sample 
in transmission; the index mn is called basepoint and the value 
ûn is the estimation of the fractional delay. These concepts are 
better illustrated in Figure 6. 
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Figure 6 Time Scale of the a) Transmitter and b) Receiver 

 
Figure 6 and Equation 3 show that the correct sample at 

instant nT+εT can be interpolated from a set of samples 
defined by the basepoint mn TS and the estimated fractional 
difference ûnTS between that basepoint and the new sample to 
be computed. Note that the time shift ûnTS is time variable 
despite εT is constant. 

Equation 3 is the most important one in all-digital timing 
recovery. The timing parameters (ûn,mn) are calculated once 
the fractional time delay ε has been estimated. The second 
most important function in all-digital timing recovery 
comprises two operations: decimation, given by the basepoint 
index, and interpolation given by the fractional delay; the 
values of the basepoint and the fractional delay are computed 
by the timing estimator block in Figure 5. The time-varying 
interpolator uses these values to compute the optimum sample. 
The following sections will explain in more detail the 

interpolation, decimation control and fractional delay 
estimation as well as their adopted implementation.  

A.  Timing Error Detector (TED) 
The timing error detector TED resembles the operation of a 

Phase Detector in an analogue PLL, i.e. it gives the error 
information based on the phase difference between the 
incoming signal and the reference clock at its input. 

There are several algorithms to implement digitally a timing 
error detector depending on the oversampling factor or 
modulation format [1, 3, 4]. The available hardware for this 
prototype, specifically the ADC, allows to have at most two 
samples/symbol; moreover, it would be better if its 
implementation has a good trade-off between complexity and 
performance, hence, we selected the error detector from 
Gardner [5, 6]. For a description of this TED and others please 
refer to the article “Clock and Data Recovery for a High Speed 
Transceiver” in these proceedings. 

  

B.  Digital Interpolator 
The task of the interpolator is to compute the optimum 

samples y(nT+ ε̂ T) from a set of received samples x(mTS) as 
stated before by Equation 3. Figure 7 shows that the 
interpolation is basically a time varying filtering process since 
T and Ts are incommensurate. 

 

 
Fig. 7. Digital interpolator filter 

 
The interpolating filter has an ideal impulse response of the 

form of the sampled si(x) given by Equation 4. It can be 
thought as a FIR filter with infinite taps whose values depend 
on the fractional delay μ. Figure 8 shows the response of the 
digital filter when μ=0.2, note how the response varies from 
the underlying continuous response centered at zero.  
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Equation 4. Impulse response of the ideal interpolator 
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Fig. 8. Impulse response of the ideal interpolating filter 

 
For a practical implementation, the interpolator can be 

approximated by a finite order FIR filter (equation 5). 
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Equation 5 

 
where I1 and I2 define respectively the lowest and the 

highest samples of the discrete impulse response around the 
central point. 

The output of the filter is given by a linear combination of 
the (I2 + I1 +1) signal samples taken around the basepoint mk. 
This leads to Equation 6, which is the fundamental equation in 
digital interpolation. In order to obtain a unique basepoint set, 
there must be an even number of samples and interpolation 
should be performed in the center interval. 
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Equation 6. Digital interpolation 
 

As mentioned before, the coefficients hn(μ) of the filter are 
not fixed and they vary accordingly to μ. This requires limiting 
the possible values of μ and, for each of them one should pre-
compute and store in memory the respective coefficients. The 
problems arise from the discretization error in μ, and from the 
large complexity in a real implementation in hardware. A 
common solution is to approximate each coefficient by a 
polynomial in μ.  

 

C.  Interpolator Control and NCO 
The interpolator control block computes the basepoint mn 

and the fractional delay ûn based on the filtered timing error.  
Error detectors produce an error signal at 1/T using samples 

kTI = kT/MI with MI integer (MI = 2 samples/symbol in this 
case). Therefore, for every sample, the basepoint mk and the 

fractional delay μk have to be computed in order to obtain the 
interpolated sample y. Equation 3 becomes now: 

 
y(kTI + εTI ) = y( Lint [kTI + εITI]TS +μkTS ) = y( mkTS + μkTS) 

 
Equation 7 

 
Figure 9 shows a detailed diagram of the full architecture of 

digital timing recovery. Note that the loop filter decimates the 
output of the TED (at Ts) before the filtering process, so that 
the filtered error signal is updated at symbol rate. This is a 
controlled decimation by MI basepoint mk (k=nMI), slaved to 
the first one at the interpolator. Apart from that, since the 
interpolator works with MI samples per incoming symbol 
(nominally), only one of them should be passed to the rest of 
the subsystem as valid recovered data; this means another 
decimation process (by MI) also slaved to the one of the 
interpolator. Therefore, the output of the digital timing 
recovery block is then updated at symbol rate. 
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Fig. 9. Detailed architecture of the all-digital timing recovery 

 
The filtered error signal w constitutes the control word of 

the timing processor which computes the basepoint and the 
fractional delay.  

As seen, the timing processor controls every block in the 
digital timing recovery subsystem at every cycle kTs.  Its tasks 
are summarized in the following. 

• It computes the basepoint mk or decimation, this 
involves that the timing processor selects the correct 
samples that go through the interpolator. If the receiver 
clock is faster than the incoming sample rate, at some 
point one “extra sample” is taken by the ADC; the 
timing processor does not pass the “extra” sample to 
the interpolator since it is not useful. Note that also the 
rest if the blocks in the subsystem must not operate with 
this sample either. On the other hand, if the receiver 



 

clock is slower than the incoming data rate, at some 
point one sample is lost; in this case, there’s no 
decimation for the interpolator, all the samples are 
valid. Since the system works with Mx oversampling 
(M samples/symbol), the slaved decimations are not 
affected, they are always taking just one every M 
samples.  

• The timing processor computes also the fractional 
delay μk, so it selects the correct impulse response of 
the interpolator. 

 
The timing processor can be carried out by a NCO [7]. The 

NCO register is computed iteratively as: 
 

n (mk) = [ n (mk -1) +  w (mk -1) ] mod 1 
 

Equation 8 
 
And the fractional delay is estimated by: 
 

μk ≈ TI/TS n(mk) 
 

Equation 9 
 
The prototype works with two samples/symbol at the 

transmitter and also at the receiver, so nominally TI/TS = 1. 
Therefore, the content of the NCO is the fractional delay. 

Instead of explicitly computing mk, overflow and underflow 
of the NCO register indicate if the receiver clock is faster or 
slower, respectively. 

 

D.  Loop Filter 
The timing processor based in a NCO allows considering 

the digital timing recovery as an equivalent PLL operating at 
symbol frequency. Therefore, the loop analysis can be carried 
out using classical PLL theory [8]. The same consideration 
applies for the hybrid CDR design described in the article 
“Clock and Data Recovery for a High Speed Transceiver” in 
these proceedings, please refer to it for a better theoretical 
description. 

 The analogue loop filter F(s) must be transformed to the 
digital domain F(z) in order to be implemented in the FPGA. 

The design considers the bilinear transformation, which 
maps the entire left side of the s-plane into the entire unit 
circle of the z-plane. So, any stable transform in the continuous 
domain s is mapped into a stable z-transform in the discrete 
time. The bilinear transformation is achieved by the following 
equation. 
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Equation 10 

where Ts is the sample period.  
 

V.  FPGA IMPLEMENTATION AND RESULTS 
Figure 10 depicts the all-digital solution implemented. The 

system has successfully simulated and a (first) stand-alone test 
has been carried out. 
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Fig. 10. All digital timing recovery architecture 

 
Note that the interfacing of this all-digital module with the 

rest of the subsystems means handling the controlled 
decimation of interpolated samples. The all-digital timing 
recovery block works with two samples per symbol at the input 
and, as the theory says, it should perform decimation by 2 in 
order to output data at symbol rate. In this case however, the 
equalizer that follows at its output requires also two samples 
(it acts at sample rate); therefore, no slaved decimation by 2 
shall be done. A problem arises when the receiver clock is 
slower than the transmitted one; usually the only sample 
obtained is passed to the output, but in this case two samples 
should be “created” and passed to the next stage in a single 
clock cycle.  

The all digital timing recovery was successfully tested in 
simulations with finite arithmetic and a similar result was 
observed in the first stand-alone tests that have been carried 
out in the FPGA.  

Figure 11 illustrates the situation when the receiver clock is 
faster than the transmitted one; in this case a flag (FLAG RX 
FAST) indicates this situation and control the rest of the 
blocks in the structure in order to not consider it for the 
computations. The lower part of the figure shows the 
increment of the fractional delay in time. It shows that the flag 
is activated when the fractional delay recycles from the 
maximum (1) to the minimum value (0). 



 

360.01 384.02 408.02 432.02 456.02 480.02
0

1

B
oo

le
an

 o
ut

pu
t

Flag RX FAST

360.01 384.02 408.02 432.02 456.02 480.02
0

1

Time scale at receiver [µs]

Fractional delay (u)

 
Fig. 11. All digital timing recovery, receiver clock is faster than 

transmitter clock, flag indicates that one sample should not be considered. 
Nominal receiver clock frequency= 83.33 MHz. 

 
Even though a simulation display is shown here, the same 

behaviour has been observed in a digital oscilloscope in a real 
test with the first hardware version of the system. 
Nevertheless, the interfacing of this block with the rest of the 
subsystems of the receiver is still under design.  
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