ESCUELA POLITÉCNICA NACIONAL

FACULTAD DE INGENIERÍA MECÁNICA

DISEÑO DE UNA MÁQUINA PARA ELABORAR HELADOS DE PAILA CON CAPACIDAD DE CARGA DE 60 I/h PARA LA MICROEMPRESA RIKKOS HELADOS.

PROYECTO DE TITULACIÓN PREVIO A LA OBTENCIÓN DEL TÍTULO DE INGENIERO MECÁNICO

DIEGO PAÚL MORENO BUNGACHO

dpol_8611@hotmail.com

JORGE ANDRÉS ORTEGA ANDRADE

andriux_121@hotmail.com

DIRECTOR: ING. ÁNGEL PORTILLA angel.portilla@epn.edu.ec

Quito, Abril 2012

DECLARACIÓN

Nosotros, DIEGO PAÚL MORENO BUNGACHO y JORGE ANDRÉS ORTEGA ANDRADE, declaramos bajo juramento que el trabajo aquí descrito es de nuestra autoría; que no ha sido previamente presentado para ningún grado o calificación profesional; y, que hemos consultado las referencias bibliográficas que se incluyen en este documento.

A través de la presente declaración cedemos nuestros derechos de propiedad intelectual correspondientes a este trabajo a la Escuela Politécnica Nacional, según lo establecido por la Ley de Propiedad Intelectual, por su Reglamento y por la normativa institucional vigente.

Jorge Andrés Ortega Andrade Diego Paúl Moreno Bungacho

CERTIFICACIÓN

Certifico que el presente trabajo fue desarrollado por DIEGO PAÚL MORENO BUNGACHO y JORGE ANDRÉS ORTEGA ANDRADE, bajo mi supervisión.

ING. ÁNGEL PORTILLA
DIRECTOR DE PROYECTO

AGRADECIMIENTO

Un agradecimiento muy especial al Ing. Ángel Portilla por su excelente dirección durante la ejecución del proyecto de titulación.

Al Ing. Roberto Bahamonde por su guía y colaboración prestada para el desarrollo del trabajo.

A la microempresa RIKKOS HELADOS, por la información brindada.

A la prestigiosa Facultad de Ingeniería Mecánica por la formación y conocimientos impartidos a lo largo de la carrera.

A Lorenita Vargas por su apoyo y confianza en todo momento de manera incondicional.

Y a las personas que sin ser mencionadas contribuyeron de alguna forma para la realización del proyecto.

DEDICATORIA

Este trabajo es fruto del esfuerzo y del apoyo incondicional de mis padres, hermanas y familia, ya que gracias a sus sabios consejos supieron encaminarme en la senda del éxito. A pesar de no haber sido la persona ejemplar que ellos hubiesen deseado, este gran logro en mi vida se lo debo a ellos por lo que se lo dedico con mucho cariño y gratitud.

DEDICATORIA

Dedico éste proyecto de titulación a familia y a mis padres.

A mi madre por su comprensión y apoyo incondicional que me brindó, durante el camino del éxito y que hoy por hoy es un orgullo de mi vida.

A mi padre que en paz descanse, por los valores y principios inculcados que siempre perdurarán en el tiempo.

ÍNDICE DE CONTENIDOS

DECLARAC	CIÓN	II
CERTIFICA	CIÓN	III
AGRADECI	MIENTO	IV
DEDICATO	RIA	V
DEDICATO	RIA	VI
ÍNDICE DE	CONTENIDOS	VII
ÍNDICE DE	FIGURAS	XIV
ÍNDICE DE	TABLAS	.XVII
ÍNDICE DE	ANEXOS	XIX
NOMENCL	ATURA	XXI
	ACIÓN	
CAPÍTULO	L	28
CARACTER	RÍSTICAS DE LOS HELADOS	28
1.1. PR	OCESO GENERAL DE ELABORACIÓN DE HELADOS	
1.1.1.	DIAGRAMA DE FLUJO	28
1.1.2.	RECEPCIÓN Y ALMACENAMIENTO DE LA MATERIA PRIMA.	
1.1.3.	FORMULACIÓN DE LA MEZCLA	29
1.1.4.	PESAJE Y DOSIFICACIÓN DE LOS INGREDIENTES	
1.1.5.	HOMOGENIZACIÓN DE DE LA MEZCLA	29
1.1.6.	PASTEURIZACIÓN DE LA MEZCLA	29
1.1.7.	MADURACIÓN DE LA MEZCLA	30
1.1.8.	BATIDO DE LA MEZCLA	30
1.1.9.	ENVASADO Y ENDURECIMIENTO DEL HELADO	30
1.1.10.	CONSERVACIÓN DEL HELADO	30
1.2. CL	ASIFICACIÓN DEL HELADO	30
1.2.1.	DE ACUERDO A LAS CARACTERÍSTICAS E INGREDIENTES EMPLEADOS EN SU ELABORACIÓN.	
1.2.2.	DE ACUERDO A LA PRESENTACIÓN, COMPOSICIÓN Y PRECIO DEL HELADO	31
	DMPOSICIÓN, VALOR CALÓRICO Y VALOR NUTRITIVO DEL ELADO	32
	COMPOSICIÓN	

1.3.2. VAI	LOR CALÓRICO Y NUTRITIVO	33
CAPÍTULO II		34
REFRIGERACIO	ÓN Y TRANSFERENCIA DE CALOR	34
	IDEAL DE REFRIGERACIÓN POR COMPRESIÓN DE	34
	MPONENTES DE UN SISTEMA DE REFRIGERACION R COMPRESION DE VAPOR	36
2.1.1.1.	Unidad condensadora	36
2.1.1.2.	Evaporador	38
2.1.1.3.	Dispositivos de control del flujo del refrigerante	38
2.1.1.4.	Carga de refrigeración	40
2.1.1.5.	Capacidad del sistema.	41
2.2. TRANS	SFERENCIA DE CALOR	42
2.2.1. CO	NDUCCION	42
2.2.2. CO	NVECCION	43
2.2.2.1.	Relaciones para convección forzada en tuberías	45
2.2.2.2.	Correlaciones empíricas de flujos externos de convección libre	46
2.2.2.3.	Coeficiente global de transferencia de calor	47
2.2.2.4.	Correlaciones para sistemas homogéneos con agitación	48
2.2.3. INT	ERCAMBIO DE CALOR EN ESTADO TRANSITORIO	48
	ANSFERENCIA DE CALOR CON CAMBIO DE FASE BULLICIÓN)	49
2.3. MECÁN	NICA DE FLUIDOS	50
2.3.1. FLU	JIDOS NEWTONIANOS	50
2.3.2. FLU	JIDOS NO NEWTONIANOS	50
2.3.2.1.	Fluidos independientes del tiempo	51
2.3.2.2.	Fluidos dependientes del tiempo	51
2.4. REFRIC	GERANTES	51
2.4.1. PO	R GRUPOS DE SEGURIDAD	51
2.4.2. EN	FUNCIÓN DE LA COMPOSICIÓN	52
2.4.2.1.	Refrigerantes CFC	52
2.4.2.2.	Refrigerantes HCFC	52
2.4.2.3	Refrigerantes HFC	52

2.7.0. DE AGULINDO AL NUMENO DE IDEN	ITIFICACIÓN 52
2.4.3.1. Refrigerante R 134A	53
2.4.3.2. Refrigerante R 404A	53
2.4.3.3. Refrigerante R 507	53
2.5. AGITADOR MECÁNICO	54
2.5.1. AGITADORES DE FLUJO AXIAL	54
2.5.1.1. Agitadores de hélice	54
2.5.1.2. Agitadores de paletas	54
2.5.1.3. Agitadores de turbina	55
2.5.2. AGITADORES DE FLUJO RADIAL	55
2.5.3. PATRONES DE FLUJO	55
CAPÍTULO III	57
DISEÑO TÉRMICO DEL EQUIPO	57
3.1. LUGAR Y UBICACIÓN DE LA MÁQUINA	DE HELADOS57
3.2. DESCRIPCIÓN DEL EQUIPO	58
3.3. RESTRICCIONES DEL EQUIPO	59
3.3.1. CAPACIDAD DE LA MÁQUINA	59
3.3.2. MATERIALES	59
3.3.2.1. Recipiente preenfriador y congelache	
0000 8 44	
3.3.2.2. Batidor mecánico	59
	59
3.3.2.3. Cubierta del equipo	59 59
3.3.2.3. Cubierta del equipo	
3.3.2.3. Cubierta del equipo3.3.2.4. Bastidor3.3.2.5. Serpentín del evaporador y tubería	
3.3.2.3. Cubierta del equipo	59 de conexión 59 60
3.3.2.3. Cubierta del equipo	59 de conexión 59 60 60
3.3.2.3. Cubierta del equipo	59 de conexión 59 60 60 60
3.3.2.3. Cubierta del equipo	59 de conexión 59 60 60 60 60 60 60
3.3.2.3. Cubierta del equipo	59 de conexión 59 60 60 60 60 60 61
3.3.2.3. Cubierta del equipo	59 de conexión 59 60 60 60 60 61 61
3.3.2.3. Cubierta del equipo	59 de conexión 59 60 60 60 60 61 61 62

	3.5.5	.1.	Alternativa 1	. 63
	3.5.5	2.	Alternativa 2	. 64
3.6			IS TERMICO DEL CICLO DE REFRIGERACIÓN DEL	. 64
3	.6.1.		LO DE REFRIGERACIÓN POR COMPRESIÓN DE VAPOR N DOS EVAPORADORES	. 64
3.	6.2.		CULO DE LA TEMPERATURA DE EVAPORACIÓN EN EL CIPIENTE PREENFRIADOR	. 66
3.	6.3		MPRETURA DE EVAPORACIÓN EN EL RECIPIENTE NGELADOR	. 67
3.	6.4	CÁI	CULO DE LA TEMPERATURA DE CONDENSACIÓN	. 68
3.	6.5		OPIEDADES TERMODINÁMICAS DEL REFRIGERANTE 04A	. 68
3.	6.6	CÁI	CULO DE LAS CARGAS DE ENFRIAMIENTO	. 70
	3.6.6	2.	Cargas en el recipiente congelador	. 71
	3.6.6	.3.	Carga total de enfriamiento.	. 72
	3.6.6	.4	Cálculo del calor ganado por superficie	. 72
3	.6.7.	CÁI	_CULO DEL FLUJO DE CALOR	. 78
3	.6.8.	CÁL	CULO DEL FLUJO MÁSICO DEL REFRIGERANTE	. 79
3.	6.9.		CULO DEL COEFICIENTE DE RENDIMIENTO DEL LO DE REFRIGERACIÓN	. 79
3.	6.10.		CULO DEL COEFICIENTE DE TRANSFERENCIA DE LOR DEL REFRIGERANTE	. 80
	3.6.10	0.1.	Cálculo del coeficiente de transferencia de calor en el recipiente preenfriador.	
	3.6.10).2.	Cálculo del coeficiente de transferencia de calor en el recipiente congelador	. 82
	3.6.10	0.3	Corrección del coeficiente de transferencia de calor del refrigerante, para flujo interno en serpentines helicoidales	. 83
	3.6.10	0.4.	Corrección del coeficiente de transferencia de calor del refrigerante, por convección forzada y evaporación en el interior de tuberías	. 84
3.	6.11.		CULO DEL ÁREA DE TRANSFERENCIA DE CALOR DEL CIPIENTE PREENFRIADOR	. 84
3.	6.11.1		Cálculo del número de espiras del serpentín en el recipiente preenfriador.	. 86
3.	6.12.	CÁL	CULO DEL COEFICIENTE CONVECTIVO DE MEZCLA	. 87

	ALCULO DEL AREA DE TRANSFERENCIA DE CALOR I EL RECIPIENTE CONGELADOR	87
3.6.13.1.	Cálculo del número de espiras del serpentín en el recipiente congelador	91
	CIÓN DE EQUIPOS Y ACCESORIOS PARA EL SISTEMA FRIGERACIÓN	
3.7.1. SE	LECCIÓN DE LA UNIDAD CONDENSADORA	92
3.7.2. SE	LECCIÓN DE LAS VÁLVULAS	93
3.7.3.1.	Válvula reguladora de presión y válvula de retención	93
3.7.3.2.	Válvulas de expansión termostáticas.	94
3.7.3.3.	Válvulas solenoides	95
3.7.3.4.	Filtro secador	96
3.7.3.5.	Visor	96
3.7.3.6.	Tubería de cobre	97
3.7.3.7.	Tubería de acero inoxidable	98
3.7.3.8.	Contactor y relé térmico.	98
3.7.3.9.	Válvula de dosificación	99
	RMINACIÓN DE LAS DIMENSIONES DE LA MÁQUINA	
CAPÍTULO IV		100
DISEÑO MECÁ	NICO DEL EQUIPO	100
4.1. CALC	JLO DE LA POTENCIA CONSUMIDA POR EL AGITADOR	100
4.2. SELEC	CCIÓN DEL MOTOREDUCTOR	101
4.3. CALC	JLO DEL DIAMETRO DEL EJE	102
4.3.1. AN	IÁLISIS ESTÁTICO	102
4.3.2. AN	IÁLISIS DINÁMICO	103
4.4. DISEÑ	O DEL BATIDOR	104
4.4.1. DII	MENSIONAMIENTO DEL AGITADOR MECÁNICO	105
	ETERMINACIÓN DEL ESPESOR DE LAS PALETAS DEL GITADOR.	106
4.4.2.1.	Análisis a fatiga.	108
4.5. DIMEN	ISIONAMIENTO Y ANALISIS DEL SOPORTE DEL REDUCTOR.	
MÉTO	SIS DEL BASTIDOR DE LA MÁQUINA POR EL DO DE ELEMENTOS FINITOS MEDIANTE EL	
SOFTV	VARE INVENTOR 2012	111

4.6.	1. CO	NSIDERACIONES PARA EL ANÁLISIS	112
4.6.	2. CÁI	_CULO DEL BASTIDOR DE LA MÁQUINA	112
4.	6.2.1.	Diseño del travesaño del bastidor.	112
4.	6.2.2.	Diseño de la columna del bastidor	116
4.6.	3. PR	OCEDIMIENTO PARA EL ANÁLISIS	119
4.	6.3.1.	Restricciones en los apoyos.	119
4.	6.3.2.	Colocación de las cargas sobre los perfiles correspondientes	119
4.6.	4. JUN	NTAS SOLDADAS	124
4.	6.4.1.	Condiciones de la soldadura	124
4.6.	5. DIM	MENSIONAMIENTO Y SELECCIÓN DE PERNOS	124
4.	6.5.1.	Pernos para el anclaje de la estructura	124
4.	6.5.2.	Pernos para el montaje del motoreductor	126
4.7.	DISEÑO	D DE LA CHAVETA	126
4.7.	1. DIS	EÑO POR ESFUERZOS CORTANTES	126
4.7.	2. DIS	EÑO POR APLASTAMIENTO	127
4.8.	DISEÑO	D DE LA CUÑA	127
4.8.	1. DIS	EÑO POR ESFUERZOS CORTANTES	127
4.8.2		EÑO POR APLASTAMIENTO	
4.9.	DISEÑO	D DEL SISTEMA DE DOSIFICACIÓN	128
4.9.		TIMACIÓN DEL TIEMPO DE DOSIFICACIÓN	
4.10.	MECA	NISMO DE DESCARGA	130
4.11.	MECA	NISMO DE COMPUERTA	131
4.12.	SELLO	D MECÁNICO ENTRE EL SERPENTÍN Y EL TANQUE	132
CAPÍTUI	LO V		125
MONTA	JE DEL	EQUIPO	125
5.1.	MONTA	AJE DE LA ESTRUCTURA METÁLICA SOPORTE	133
5.2.	MONTA	AJE DEL SISTEMA DE REFRIGERACIÓN	133
5.3.	MONTA	AJE DEL SISTEMA DE TRANSMISIÓN DE MOVIMIENTO	134
5.4.	MONTA	AJE DEL MECANISMO DE DESCARGA	134
5.5.	MONTA	AJE DEL MECANISMO DE COMPUERTA	135
5.6.	MONTA	AJE DEL SISTEMA ELÉCTRICO	135
5.7.	MONTA	AJE DE LA CARACASA DE LA MÁQUINA	136

CAPÍTU	ILO VI	129
ANÁLIS	IS DE COSTOS	129
6.1.	COSTOS DIRECTOS DE FABRICACIÓN.	137
6.2.	MATERIA PRIMA.	137
6.3.	COSTOS DE ELEMENTOS NORMALIZADOS	140
6.4.	MECANIZADO	140
6.4	.1. COSTOS DE MONTAJE	142
6.5.	COSTOS INDIRECTOS DE FABRICACIÓN	143
6.6.	COSTOS TOTALES.	143
6.7.	ANÁLISIS FINANCIERO.	144
6.7	.1. CONSUMO ENERGÉTICO	144
CAPÍTU	ILO VII	149
CONCL	USIONES Y RECOMENDACIONES	149
7.1	CONCLUSIONES	149
7.2 I	RECOMENDACIONES	150
CAPÍTU	ILO VIII	151
REFER	ENCIAS BIBLIOGRÁFICAS	151
ANEXO	S	153

ÍNDICE DE FIGURAS

	,		
CAP	TII	$\boldsymbol{\Gamma}$	4
CAP	HU	டப	

Figura 1.1 Diagrama de flujo	28
Figura 1.2 Composición porcentual de una mezcla, a) Sin adición de ab) con adición de aire, durante el proceso de batido	
CAPÍTULO 2	
Figura 2.1 Esquema y diagrama T-s para el ciclo de refrigeración por compresión de vapor	34
Figura 2.2 Unidad condensadora	36
Figura 2.3 Condensadores de aire forzado	37
Figura 2.4 Compresor alternativo hermético	37
Figura 2.5 Evaporador tubular	38
Figura 2.6 Tubo capilar	39
Figura 2.7 Válvula de expansión termostática	39
Figura 2.8 Conducción a través de una pared plana	42
Figura 2.9 Conducción a través de una superficie cilíndrica	43
Figura 2.10 Cilindro expuesto a conducción y convección	47
Figura 2.11 Variación de la temperatura en función del tiempo	48
Figura 2.12. Agitadores de hélice (a) Normal de tres patas. (b) De cuc (c) Protegida	
Figura 2.13. Agitadores de paletas: (a) Paletas planas. (b) Paletas inclinadas. (c) Agitador de ancla	55
Figura 2.14. Agitadores de turbina: (a) Abierto de palas verticales. (b) De disco con álabes. (c) De paletas verticales curvas. (d) cerrado de paletas curvas con un anillo difusor	
Figura 2.15. Patron de flujo con agitador no centrado	
CAPÍTULO 3	
Figura 3.1 Mapa de ubicación de la ciudad de Ibarra	57
Figura 3.2 Esquema del equipo	58
Figura 3.3 Alternativa 1	
Figura 3.4 Alternativa 2	
Figura 3.5 Alternativa 3	62
Figura 3.6 Ciclo de refrigeración con dos evaporador	65
Figura 3.7 Diagrama p-h del ciclo de refrigeración con dos evaporado	res 65

Figura 3.8 Trazo del ciclo termodinámico en el diagrama P-h de Mollier	69
Figura 3.9 Porcentaje de agua congelada en la mezcla a diversas	
temperaturas	71
Figura 3.10 Resistencias térmicas en la pared del equipo	72
Figura 3.11 Variación de la temperatura en función del tiempo	89
Figura 3.12 Unidad condensadora OPTYMA	92
Figura 3.13 Válvula reguladora de presión	93
Figura 3.14 Válvula de retención NRV12	94
Figura 3.15 Válvula de expansión termostática	95
Figura 3.16 Válvula solenoide	96
Figura 3.17 Filtro secador	96
Figura 3.18 Visor	97
Figura 3.19 Tubería de cobre tipo L	97
Figura 3.20 Contactor y relé térmico	98
Figura 3.21 Válvula solenoide 6013	99
CAPÍTULO 4	
Figura 4.1 Número de Reynolds en función del número de potencia	101
Figura 4.2 Dimensiones del agitador tipo ancla	105
Figura 4.3 C _D en función del cociente de ancho entre la altura	105
Figura 4.4 Sección del agitador tipo ancla	107
Figura 4.5 Esfuerzos sobre el perfil soporte del motoreductor	109
Figura 4.6 Sistema equivalente	110
Figura 4.7 Propiedades determinadas en Inventor	111
Figura 4.8 Diagrama de cuerpo libre del travesaño del bastidor	113
Figura 4.9 Diagrama de fuerza cortante	114
Figura 4.10 Diagrama de momento flector	114
Figura 4.11 Diagrama de cuerpo libre de la columna del bastidor	116
Figura 4.12 Determinación de la longitud efectiva k	118
Figura 4.13 Estructura en análisis	119
Figura 4.14 Restricciones en los apoyos	119
Figura 4.15 Fuerza y torque producido por el peso del motoreductor	120
Figura 4.16 Cargas distribuidas producidas por el aislante y planchas de	
acero	120

Figura 4.17 Carga	puntual sobre los nodos	121
•	s distribuidas producidas por el aislante y planchas ero bajo los contenedores de la mezcla	121
Figura 4.19 Carga	s distribuidas por la unidad condensadora	122
Figura 4.20 Condi	ciones previas a la simulación	122
Figura 4.21 Anális	s de deformaciones	123
Figura 4.22 Anális	s de esfuerzos	123
Figura 4.23 Distrib	ución de las cargas aplicada sobre el perfil	124
Figura 4.24 Distrib	ución de las cargas aplicadas al perno	125
Figura 4.25 Secció	on del recipiente preenfriador	128
Figura 4.26 Dispos	sición los eslabones del mecanismo de descarga	130
Figura 4.27 Despla	azamientos de los eslabones	131
Figura 4.28 Mecar	iismo de descarga	131
Figura 4.29 Dispos	sición y desplazamiento de los eslabones	132
•	necánico en el fondo del recipiente preenfriador y ador	132
CAPÍTULO 5		
Figura 5.1 Conexid	ones de los componentes del sistema de refrigeración	134
Figura 5.2 Esquen	na de conexión de la fuente de alimentación	135
Figura 5.3 Ubicaci	ón de las cubiertas de la máquina	136

ÍNDICE DE TABLAS

CAPÍTULO 1

Tabla 1.1 Clasificación del helado de acuerdo a los ingredientes empleados
Tabla 1.2 Clasificación del helado de acuerdo a la presentación 31
Tabla 1.3 Composición porcentual de ingredientes para los helados
CAPÍTULO 2
Tabla 2.1 Clasificación de los refrigerantes por el número de identificación 52 CAPÍTULO 3
Tabla 3.1 Ponderación de alternativas
Tabla 3.2 Parámetros de selección del refrigerante
Tabla 3.3 Tabla de valores aproximados de diferencia de temperatura de evaporación
Tabla 3.4 Presiones de evaporación y condensación
Tabla 3.5 Entalpías del refrigerante R404A en los puntos de análisis del ciclo termodinámico
Tabla 3.6 Propiedades físicas del helado
Tabla 3.7 Propiedades de la mezcla líquida71
Tabla 3.8 Propiedades de la mezcla sólida71
Tabla 3.9 Propiedades de los materiales
Tabla 3.10 Cálculo del área de transferencia de calor por superficie
Tabla 3.11 Determinación del coeficiente global de transferencia de calor 76
Tabla 3.12 Temperaturas de los recipientes preenfriador y congelador
Tabla 3.13 Cálculo del calor ganado por superficie en función del área de transferencia de calor
Tabla 3.14 Propiedades del refrigerante
Tabla 3.15 Cálculo del área de transferencia de calor en función del tiempo 91
CAPÍTULO 4
Tabla 4.1 Determinación de factores a y b
Tabla 4.2 Cálculo de las dimensiones del agitador
Tabla 4.3 Dimensiones del agitador tipo ancla
Tabla 4.4 Cargas distribuidas y/o puntual sobre cada uno de los componentes de la máquina

CAPÍTULO 6

Tabla 6.1 Costo de materiales para el bastidor y carcasa de la máquina	. 137
Tabla 6.2 Costo de materiales para el sistema de refrigeración	. 138
Tabla 6.3 Costos de materiales para el sistema de transmisión de movimiento	. 138
Tabla 6.4 Costos de materiales para el mecanismo de descarga	. 139
Tabla 6.5 Costos de materiales para el mecanismo de compuerta	. 139
Tabla 6.6 Costos de materiales para el sistema eléctrico	. 139
Tabla 6.7 Costos de elementos normalizados	. 140
Tabla 6.8 Costos de maquinado para el bastidor y carcasa	. 141
Tabla 6.9 Costos de maquinado para los serpentines helicoidales	. 141
Tabla 6.10 Costos de maquinado para la tubería de cobre, acoples y accesorios	. 141
Tabla 6.11 Costos de maquinado para el recipiente preenfriador y congelador	. 141
Tabla 6.12 Costos de maquinado para el sistema de transmisión de movimiento	. 142
Tabla 6.13 Costos de maquinado para el mecanismo de descarga	. 142
Tabla 6.14 Costos de maquinado para el mecanismo de compuerta	. 142
Tabla 6.15 Costos de maquinado para el sistema eléctrico	. 143
Tabla 6.16 Costos indirectos generales	. 143
Tabla 6.17 Costos de diseño e ingeniería	. 143
Tabla 6.18 Costos totales	. 143
Tabla 6.19 Costos anuales por producción artesanal	. 145
Tabla 6.20 Costos anuales por producción con máquina	. 146
Tabla 6.21 Costos anuales de fabricación artesanal	. 147
Tabla 6.22 Costos anuales de fabricación con máquina	. 147

ÍNDICE DE ANEXOS

ANEXOS
ANEXO A
PROPIEDADES DE LOS ACERO UTILIZADOS EN EL DISEÑO DE LA MÁQUINA
PROPIEDADES TERMODINÁMICAS DEL REFRIGERANTE R404A 157 ANEXO C
PROPIEDADES TERMOFÍSICAS
CARACTERÍSTICAS TÉCNICAS DE LA UNIDAD CONDENSADORA OPTYMA OP-HGZD0400U162 ANEXO E
DATOS TÉCNICOS DE LA VÁLVULA KVP 12 SERIE 034L0023 168 ANEXO F
CARACTERÍSTICAS TÉCNICAS DE LAS VÁLVULA DE RETENCIÓN NRV 1228163171 ANEXO G
CARACTERÍSTICAS TÉCNICAS DE LAS VÁLVULAS DE EXPANSIÓN TE2 Nº00 Y TE2 Nº02
CARACTERÍSTICAS TÉCNICAS DE LA VÁLVULA SOLENOIDE EVR 6 178
CARACTERÍSTICAS TÉCNICAS DEL FILTRO SECADOR DML 084 181 ANEXO J
CARACTERÍSTICAS TÉCNICAS DEL VISOR SGI 12s 014-0036 184 ANEXO K
ESPECIFICACIONES TÉCNICAS DE LA TUBERÍA DE COBRE TIPO "L" Y ACERO INOXIDABLE AISI 304186

ANEXO L
ESPECIFICACIONES TÉCNICAS DEL CONTACTOR GMC9, GMC12 Y RELÉ TÉRMICO GTK22
ANEXO M
ESPECIFICACIONES TÉCNICAS DE LA VÁLVULA SOLENOIDE 6013 TIPO G3/8
ANEXO N
MOTOREDUCTOR ROSSI
ESPECIFICACIONES TÉCNICAS DE LOS PERFILES, PLANCHAS Y EJES UTILIZADOS
ANEXO P
CATÁLOGO DE LAS PLANCHAS DE POLIURETANO
CATÁLOGO DE CHAVETAS Y CUÑAS
ANEXO R
CATÁLOGO DE RODAMIENTOS FAG RÍGIDOS DE BOLAS
ESPECIFICACIONES DEL O'RING
ACOPLES Y UNIONES DE TUBERÍAS
CÁLCULO DE LA DENSIDAD DE LA MEZCLA EN ESTADO SÓLIDO 217 ANEXO V
DETERMICACIÓN DE kL/r EN FUNCIÓN DEL ESFUERZO DE
FLUENCIA Sy
PLANOS

NOMENCLATURA

Símbolo	Descripción	Unidades
Α	Área	$[m^2]$
Ai	Área interior	$[m^2]$
Ao	Área exterior	$[m^2]$
A_s , A_t	Área de transferencia de calor	$[m^2]$
A_1	Área del recipiente preenfriador	$[m^2]$
A_2	Área del orificio a la salida del preenfriador	$[m^2]$
b	Dimensión de la chaveta	[m]
Bi	Número de Biot	
С	Distancia al centroide del perfil	[mm]
С	Altura entre el ancla y el fondo del recipiente	[m]
C_p	Calor específico	$[kJ/kg^{\circ}C]$
Cp_l	Calor específico encima del punto de congelación	$[kJ/kg^{\circ}C]$
$C_{v,l}$	Calor específico volumétrico encima del punto de congelación	$[kJ/m^3$ ° $C]$
$C_{v,s}$	Calor específico volumétrico debajo del punto de congelación	$[kJ/m^3$ ° $C]$
C_D	Coeficiente de arrastre	
d	Diámetro del eje	[m]
$d_{\scriptscriptstyle S}$	Diámetro nominal del serpentín	[m]
D	Diámetro	[m]
Da	Diámetro del agitador	[m]
Di	Diámetro interior	[m]
Do	Diámetro exterior	[m]
D_s	Diámetro de la hélice del serpentín helicoidal	[m]
D_t	Diámetro interior del tanque	[m]

		XXII
e_{304}	Espesor del acero inoxidable 304	[m]
e_{pol}	Espesor del poliuretano	[m]
F_D	Fuerza que ejerce el fluido sobre las paletas	[<i>N</i>]
g	Fuerza gravitacional	$[m/s^2]$
g_c	Constante dimensional	$[kg.m/Ns^2]$
h	Coeficiente de Transferencia de Calor por convección	$[W/m^2C]$
h_a	Coeficiente convectivo del aire	$[W/m^2K]$
h_i	Coeficiente de transferencia de calor en el interior de serpentines helicoidales	$[W/m^2$ °C]
h_{fg}	Calor latente de fusión	[kJ/kg°C]
h_m	Coeficiente convectivo de la mezcla	$[W/m^2$ °C]
h_r	Coeficiente convectivo del refrigerante	$[W/m^2K]$
h_s	Coeficiente de transferencia por convección forzada y evaporación en el interior de tuberías	$[W/m^2$ °C]
h_1	Entalpía de trabajo	[kJ/kg]
h_2	Entalpía de vapor sobrecalentado a la salida del compresor y a la entrada del condensador	[kJ/kg]
h ₃	Entalpía de líquido saturado a la salida del condensador y a la entrada del dispositivo de expansión	[kJ/kg]
1	Momento de inercia del perfil	$[mm^4]$
k	Conductividad térmica del material	$[W/m^{\circ}K]$
k_{304}	Conductividad térmica del acero	$[W/m^{\circ}K]$
k_{pol}	Conductividad térmica del poliuretano	$[W/m^{\circ}K]$
k_s	Conductividad térmica de la mezcla solida	$[W/m^{\circ}C]$
K_t	Factor de concentración de esfuerzos	
L	Espesor, longitud, altura	[m]

L_f	Calor latente de fusión o congelación	[kJ/kg]
L_s	Longitud del serpentín	[m]
m	Masa	[Kg/s]
\dot{m}_r	Flujo másico	[Kg/s]
m_h	Masa de la mezcla a congelar	[Kg]
\dot{m}_1 , \dot{m}_2	Flujo másico del refrigerante cada evaporador	[kg/s]
N	Número de revoluciones	[rps]
N_s	Número de vueltas del serpentín	[vueltas]
Nu_D	Número de Nusselt	
n	Factor de seguridad	
P	Potencia	[<i>W</i>]
Pr	Número de prandtl	
P_{atm}	Presión atmosférica	$[N/m^2]$
P_1	Presión inicial del fluido	$[N/m^2]$
P_2	Presión final del fluido	$[N/m^2]$
q_g	Cantidad de calor transferido	[kJ/s]
\dot{Q}	Caudal volumétrico	$[m^3/s]$
Q_{cf}	Calor a extraer por cambio de fase	[kJ]
q_{e}	Efecto refrigerante	[kJ/Kg]
Q_e	Calor sensible por encima del punto de congelación	[k <i>J</i>]
q_x	Flujo de calor	[<i>W</i>]
q_1, q_2	Carga de refrigeración de cada evaporador	[kW]
Re_D	Número de Reynolds	
Ra_L	Número de Rayleigh	
St	Número de Stanton	
S_{sy}	Resistencia al cortante	[MPa]

S_y	Resistencia a la fluencia del material	[MPa]
t	Tiempo de enfriamiento	[°C]
T	Torque transmitido por el eje	[Nm]
Та	Temperatura del fluido o del ambiente	[°C]
T_c	Temperatura del centro del producto	[°C]
T_{e2}	Temperatura de evaporación del recipiente preenfriador	[°C]
T_{e1}	Temperatura de evaporación del recipiente congelador	[°C]
Tf	Temperatura de película	[°C]
T_{fm}	Temperatura supuesta de enfriamiento	[°C]
$T_{l,in}$	Temperatura de entrada de la mezcla líquida	[°C]
$T_{l,out}$	Temperatura de congelación de la mezcla líquida	[°C]
T_s	Temperatura de la superficie	[°C]
$T_{s,in}$	Temperatura inicial de la mezcla líquida de helado	[°C]
$T_{s,out}$	Temperatura final del helado	[°C]
$T_{s,1}$	Temperatura de la pared en el lado caliente	[°C]
$T_{s,2}$	Temperatura de la pared en el lado frio	[°C]
T_r	Temperatura del refrigerante	[°C]
U	Coeficiente global de transferencia de calor	$[kJ/s m^2 °C]$
V	Volumen de la mezcla de helado	$[m^3]$
W	Ancho de las paletas	[m]
W_{Comp}	Trabajo del compresor suministrado por unidad de masa	[kJ/Kg]
\dot{w}_{Comp}	Potencia del compresor	[<i>kW</i>]

Letras griegas

β	Propiedad termodinámica	$[K^{-1}]$
ΔT	Diferencia de temperatura	[°C]
ρ	Densidad del fluido	$[kg/m^3]$
$ ho_l$	Densidad de líquido del refrigerante	$[kg/m^3]$
$ ho_v$	Densidad de vapor del refrigerante	$[kg/m^3]$
σ	Tensión superficial del refrigerante R404a a temperatura de evaporación	
$\Delta H_1, \Delta H_2, \Delta H_3$	Cambio de entalpía volumétrico	$[kJ/m^3]$
μ	Viscosidad dinámica del fluido	[Pa.s]
μ_l	Viscosidad del líquido	[Pa.s]
v_v	Volumen específico de la fase de vapor evaluado a temperatura de evaporación	
v_L	Volumen específico de la fase líquida evaluado a temperatura de evaporación	

RESUMEN

El presente proyecto comprende el diseño de una máquina para elaborar helados de paila para la microempresa "Rikkos Helados" de la ciudad de Ibarra, para alcanzar este fin se requiere realizar una evaluación de las condiciones de operación del equipo.

El desarrollo incluye un estudio teórico del proceso de elaboración de helados, seguido por un análisis termodinámico y de transferencia de calor que permite determinar las ecuaciones necesarias para el diseño térmico y establecer los parámetros y variables que engloban las ecuaciones de estado estable y transitorio del equipo. Utilizando catálogos y software de refrigeración, se seleccionan los equipos y accesorios de la máquina en base a los parámetros y criterios de diseño. Posteriormente se realiza el análisis mecánico para determinar las dimensiones de la estructura soporte, ejes, acoples, chavetas y demás complementos, además del análisis de simulación de esfuerzos por el método de elementos finitos. En base a los resultados térmicos y mecánicos se diseña el sistema de dosificación y se realiza un análisis de mecanismos según lo requerido.

Finalmente luego del desarrollo térmico y mecánico se describe el montaje, los costos de fabricación incurridos en la máquina, conclusiones y recomendaciones, anexos y planos.

PRESENTACIÓN

El diseño de la máquina descrito a continuación se desarrolla en forma sistemática estableciendo un modelo secuencial estructurado en 8 capítulos de la siguiente forma:

En el primer capítulo se presenta las principales características del helado como: proceso general de elaboración de helados, clasificación, composición, valor calórico y nutritivo del helado.

En el segundo capítulo se describen los conceptos básicos de refrigeración y transferencia de calor, como son: ciclos de refrigeración por compresión de vapor; se define los dos modos de transferencia de calor, conducción y convección, además se incluye el intercambio en estado transitorio, y transferencia con cambio de fase. También se presenta una breve descripción de los tipos de fluidos, refrigerantes y agitadores.

En el tercer capítulo se analiza las alternativas propuestas para el diseño de la máquina, se selecciona la más conveniente por criterio ingenieril. Con el cálculo del flujo de calor por pared y el coeficiente de Transferencia de Calor del refrigerante, se determina el área de transferencia mediante un análisis de aproximación iterativo partiendo de un valor asumido hasta obtener un valor que se ajuste al requerimiento teórico. Utilizando catálogos y el software de Danfoss se selecciona los componentes utilizados en la máquina.

En el cuarto capítulo se determina el diseño del agitador, diámetro del eje, selección del motoreductor, análisis y dimensionamiento del bastidor, simulación de esfuerzos por el método de los elementos finitos mediante el software Inventor 2012, dimensionamiento y selección de pernos. A continuación se Diseña las juntas soldadas, chavetas, cuñas y sistema de dosificación. Luego se analiza los mecanismos de compuerta y descarga.

En el capítulo quinto se indica el proceso de montaje de los diferentes componentes, accesorios y equipos de la máquina, ubicación y orden de montaje.

En el capítulo sexto se realiza un análisis de los costos de fabricación y montaje que se toman en consideración para el diseño y posterior ejecución del proyecto.

En el capítulo séptimo se redacta las conclusiones y recomendaciones respecto al diseño, costos y montaje de la máquina.

Finalmente se detalla la bibliografía consultada y los anexos de catálogos, propiedades y tablas utilizadas.

CAPÍTULO 1

CARACTERÍSTICAS DE LOS HELADOS.

El proceso manual de elaboración de helados de paila consiste en la preparación de una mezcla ya sea en agua o leche, derivados de leche, y otros productos alimenticios previamente homogenizados, sobre un recipiente base utilizado durante el proceso de batido y congelación del helado. La congelación del helado se produce por transferencia de calor entre la superficie del recipiente de bronce y la mezcla de hielo y sal.

La demanda actual de la industria alimenticia dedicada a la producción de helados ha aumentado considerablemente en los últimos años, es por esta razón que las fábricas han visto la necesidad de la implementación de equipos tecnológicos que optimicen las condiciones de trabajo y reduzcan la intervención humana.¹

1.1. PROCESO GENERAL DE ELABORACIÓN DE HELADOS.²

El proceso productivo de fabricación de helado comprende varias etapas, las cuales están detalladas en el siguiente diagrama de flujo:

1.1.1. DIAGRAMA DE FLUJO.

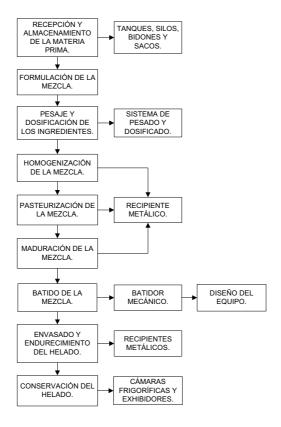


Figura 1.1 Diagrama de flujo.

¹ http://www.fcecon.unr.edu.ar/investigacion/jornadas/archivos/martinezyliendohelado.PDF.

² Evaluación de los ingredientes funcionales (crema y estabilizante), en la elaboración de helados de crema tipo paleta; Ulcuango, W; Ibarra; 2007.

1.1.2. RECEPCIÓN Y ALMACENAMIENTO DE LA MATERIA PRIMA.

El almacenamiento de la materia prima es realizado en tanques, silos, bidones, o sacos dependiendo de su forma física. Los productos sólidos, tales como fruta, pulpa de fruta, lácteos se almacenan en recipientes metálicos bajo condiciones apropiadas de temperatura, mientras que la recepción de productos como canela, maicena, cacao en polvo etc., se la realiza en sacos.

1.1.3. FORMULACIÓN DE LA MEZCLA.

Para que la mezcla esté bien equilibrada es necesario obtener el porcentaje en peso y/o volumen de todos y cada uno de los componentes de la misma como son: grasas, azúcares, aditivos, sólidos no grasos y agua.

La cantidad de sólidos no grasos (SNG) se calcula con la siguiente fórmula:

$$SNG = (100 - porcentaje de sólidos)x0,15$$
 (1-1)

Con el porcentaje de sólidos no grasos, más las grasas, azúcares y aditivos se puede estimar la cantidad de agua presente en la mezcla.

1.1.4. PESAJE Y DOSIFICACIÓN DE LOS INGREDIENTES.

Esta etapa del proceso de elaboración del helado es fundamental, ya que se selecciona la materia prima para luego homogenizar y pasteurizar la mezcla. Para ello se utiliza instrumentos de medición precisos.

El pesaje de los productos sólidos que componen el helado se realiza mediante medidores de masa mientras que la dosificación de los líquidos se lo hace con medidores volumétricos.

1.1.5. HOMOGENIZACIÓN DE LA MEZCLA.

Luego del pesaje y dosificación, se mezcla y homogeniza los ingredientes, sobre un recipiente de acero inoxidable donde mediante agitadores manuales o mecánicos se mezclan hasta homogenizarlos completamente.

El propósito de la homogenización es desintegrar y dividir finalmente los glóbulos de grasa presentes en la mezcla que puedan separarse del resto de los componentes y ascender hacia la superficie.³

1.1.6. PASTEURIZACIÓN DE LA MEZCLA.

La pasteurización es el tratamiento térmico de la mezcla en condiciones tales que las temperaturas alcanzadas y el tiempo de exposición a las mismas permitan eliminar de las mezclas preparadas, los microorganismos considerados peligrosos para la salud del ser humano.

³ Helados: elaboración, análisis y control de calidad; Madrid, A; Cenzano, I, España; 2003.

1.1.7. MADURACIÓN DE LA MEZCLA.⁴

El proceso de maduración de la mezcla se realiza luego de la homogenización y pasteurización durante un tiempo de 3 a 24 horas a temperatura de 4 - 5 °C. Durante este tiempo se consigue cambios beneficiosos en la mezcla, como:

- Cristalización de la grasa.
- Consistencia del helado.
- Mejor incorporación de aire en el proceso de batido.
- Mayor resistencia al derretido.

Los tanques de maduración están equipados con agitadores especiales lo que mejora el proceso.

1.1.8. BATIDO DE LA MEZCLA.

El batido es el proceso de congelación inicial que va acompañado con la incorporación continua de aire en la mezcla (overrun), mediante un agitador manual o mecánico.

El overrun está definido como la cantidad de aire agregado a la mezcla o índice de aireación. La fórmula utilizada es la siguiente:

$$\text{Indice de aireación (overrun)} = \frac{\text{Volumen del helado-Volumen de la mezcla}}{\text{Volumen de la mezcla}} x 100\%

 (1-2)$$

Es importante que la incorporación de aire se realiza a baja temperatura entre -2 a -3 °C, ya que en este punto se produce la mayor incorporación de aire en la mezcla.

1.1.9. ENVASADO Y ENDURECIMIENTO DEL HELADO.

El helado al salir del batidor todavía está muy blando y debe ser envasado y endurecido para que se conserve sin deformaciones ni pérdidas de volumen. Para el proceso de envasado se requiere de recipientes de acero inoxidable que mantengan las condiciones apropiadas de temperatura.

Dependiendo del tipo de helado para el endurecimiento se hace pasar el recipiente a través de unos túneles cuya misión es bajar lo más rápidamente posible la temperatura, con lo cual se puede conservar y transportar sin problemas.

1.1.10. CONSERVACIÓN DEL HELADO.

Finalmente luego de que el helado se endurece completamente se debe mantenerlo bajo condiciones de temperatura en cámaras frigoríficas o exhibidores de helado.

1.2. CLASIFICACIÓN DEL HELADO.⁵

Los helados se pueden clasificar de dos formas diferentes:

⁴ Helados: elaboración, análisis y control de calidad; Madrid, A; Cenzano, I, España; 2003.

⁵ Formulación de helados aptos para diabéticos; Villacís, E; EPN; Quito; 2010.

1.2.1. DE ACUERDO A LAS CARACTERÍSTICAS E INGREDIENTES EMPLEADOS EN SU ELABORACIÓN.

- Helados de agua
- Helados de leche
- Helados de crema
- Helados de mantecado

TABLA 1.1 Clasificación del helado de acuerdo a los ingredientes empleados.

Tipo de Helado	Grasa (%)	Sólidos no grasos (%)	Azúcares (%)	Agua (%)	Componentes
De agua o sorbetes	0,00	0,00	13,00(mín)	67,00	Agua, azúcar, zumos naturales, concentrados. Máximo 1,5% en total de espesantes, emulgentes y estabilizadores. Los sorbetes contienen 5% en cítricos o zumos naturales y 10% de frutas.
De leche	2,50(mín)	6,00(mín)	13,00(mín)	54,00	Leche, azúcar, espesantes, saborizantes.
De crema	6,00(mín)	6,00(mín)	13,00(mín)	54,00	Leche, crema de leche, azúcar, espesantes,
Mantecado	2,00-7,00	12,00-15,00	2,00-7,00	54,00	Contienen yema de huevo en cantidad de 1,5%, nata, leche, espesantes y azúcar.

1.2.2. DE ACUERDO A LA PRESENTACIÓN, COMPOSICIÓN Y PRECIO DEL HELADO.

- Helados premium
- Helados superpremium

TABLA 1.2 Clasificación del helado de acuerdo a la presentación.

Tipo de helado	Grasa (%)	Sólidos no grasos (%)	Azúcares (%)	Agua (%)	Overrun (%)	Calorías en 100 gramos de helado
Helado	8,00-14,00	7,00-10,00	13,00-	48,00-	90,00-100,00	140,00-
normal			15,00	64,00		210,00
Helado	14,00-	7,00-12,00	14,00-	40,00-	20,00-50,00	220,00-
Premiun	17,00		18,00	58,00		250,00
Helado	15,00-	8,00-12,00	15,00-	40,00-	15,00-30,00	240,00-
Superpremiun	18,50		18,50	56,00		290,00

1.3. COMPOSICIÓN, VALOR CALÓRICO Y VALOR NUTRITIVO DEL HELADO.

Aunque el helado no es considerado como una fuente primaria de vitaminas y minerales, cabe destacar que su aporte calórico proviene de su alto contenido de azucares y su valor nutritivo proviene de la leche y productos lácteos que contiene.

1.3.1. COMPOSICIÓN.

El helado está formado por una mezcla de varios componentes: agua, leche, derivados lácteos, azúcares, grasas vegetales, frutas, huevos, almendras, frutos secos, chocolate, café, cacao y aditivos. La combinación, mezcla y homogenización de estos componentes da como resultado el producto terminado (helado).

A continuación en la figura 1.1 parte a) se muestra la composición porcentual de una mezcla para hacer helado, en la que el 36% corresponde a sólidos mientras que el 64% constituye agua. Además en la figura 1.1 parte b) se muestra la composición de una mezcla durante el proceso de batido, donde el volumen de los sólidos y agua presentes disminuye a la mitad por la introducción de aire.

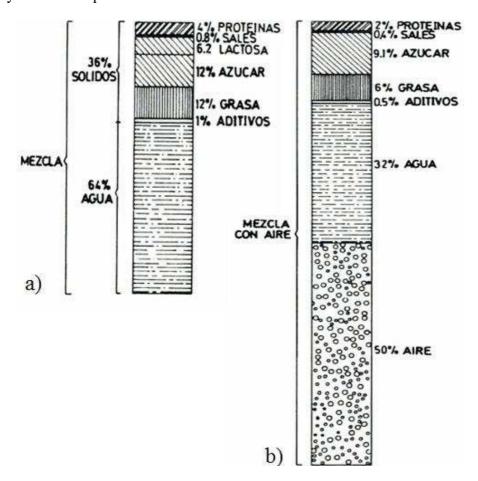


Figura 1.2 Composición porcentual de una mezcla, a) Sin adición de aire b) con adición de aire, durante el proceso de batido.⁶

_

⁶ Helados: elaboración, análisis y control de calidad; Madrid, A; Cenzano, I, España; 2003.

1.3.2. VALOR CALÓRICO Y NUTRITIVO.⁷

El aporte energético en 100 [g] de helado oscila entre el 150 [Kcal] a 250 [Kcal] y es inferior al valor umbral de 300 [Kcal] considerado para productos altamente calóricos. Además de calorías el helado constituye una fuente significativa de calcio, proteínas, vitamina B2 y minerales.

En la siguiente tabla se muestra la cantidad porcentual, de algunos nutrientes utilizados en la elaboración de helados.

Tabla 1.3 Composición porcentual de ingredientes para los helados.⁸

Producto	Proteína %	Grasa %	Hidratos de carbono %
Leche	3,50	4,00	4,50
Crema de leche	3,10	30,00	4,00
Leche en polvo entera	28,00	26,00	36,00
Grasa vegetal	0,00	100,00	0,00
Huevos	12,50	12,00	0,60
Almendras	20,00	54,00	17,00
Cacao en polvo	21,00	20,00	38,00

⁷ http://medinia.com.ar/catalogo/concepto-de-calidad-6.html.

⁸ Helados: elaboración, análisis y control de calidad; Madrid, A; Cenzano, I, España; 2003.

CAPÍTULO 2

REFRIGERACIÓN Y TRANSFERENCIA DE CALOR.

El sistema de refrigeración se utiliza para mantener una región a una temperatura inferior con respecto a los alrededores. El fluido de trabajo puede permanecer en una sola fase (refrigeración por gas) o puede cambiar de fase (refrigeración por compresión de vapor)

2.1. CICLO IDEAL DE REFRIGERACIÓN POR COMPRESIÓN DE VAPOR.⁹

El ciclo de refrigeración es un ciclo cerrado, en el cual el fluido refrigerante regresa a su estado inicial al final del mismo para su posterior recirculación. A medida que el refrigerante circula a través del sistema, este pasa por un número de cambios en su estado o condición, cada uno de los cuales es llamado un proceso. El ciclo de refrigeración simple vapor-compresor consta de cuatro procesos fundamentales:

- Expansión.
- Vaporización.
- Compresión.
- Condensación.

Para entender el ciclo de refrigeración es necesario considerar por separado cada proceso en relación al ciclo completo. Cualquier cambio en alguno de los procesos del ciclo influye en los demás.

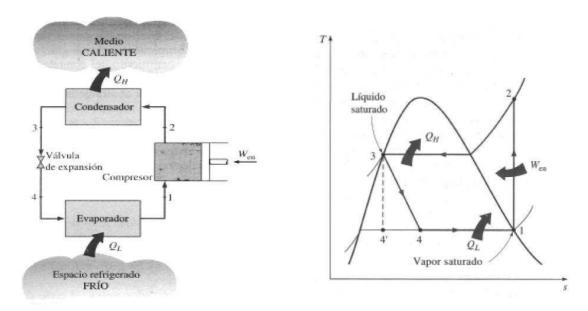


Figura 2.1 Esquema y diagrama T-s para el ciclo de refrigeración por compresión de vapor.

⁹ Termodinámica; Cengel, Y; Boles, M; 5ta edición; McGraw Hill; México; 2006.

Proceso 1-2. Compresión isentrópica en un compresor.

El refrigerante en estado de vapor saturado a baja presión y temperatura se comprime en un proceso isentrópico y sale como vapor sobrecalentado a alta presión y temperatura.

$$w_{Comp} = (h_2 - h_1) {(2-1)}$$

Donde:

 w_{Comp} = trabajo del compresor suministrado por unidad de masa, [kJ/Kg]

 h_1 = entalpía de trabajo, $\lceil kJ/Kg \rceil$

 h_2 = entalpía de vapor sobrecalentado a la salida del compresor y a la entrada del condensador, $\lceil kI/Kg \rceil$

La potencia que se suministra al flujo másico de refrigerante, que circula por el compresor es:

$$\dot{w}_{Comp} = \dot{m}_r (h_2 - h_1) \tag{2-2}$$

Donde:

 \dot{w}_{Comp} = potencia del compresor, [kW] \dot{m}_r = flujo másico, [Kg/s]

Proceso 2-3. Rechazo de calor a presión constante en un condensador.

El refrigerante en estado de vapor sobrecalentado entra al condensador a alta presión y temperatura y sale como líquido saturado a alta presión y temperatura, mediante un proceso isobárico.

El flujo térmico que cede el gasto de refrigerante, circulando por el condensador, hacia el medio condensante es:

$$\dot{Q}_{Cond} = \dot{m}_r (h_2 - h_3) \tag{2-3}$$

Donde:

 \dot{Q}_{Cond} = flujo térmico, [kW]

 \dot{m}_r = gasto de refrigerante [Kg/s]

 h_3 = entalpía de líquido saturado a la salida del condensador y a la entrada del dispositivo de expansión, $\lceil kJ/Kg \rceil$

Proceso 3-4. Estrangulamiento a entalpía constante en un dispositivo de expansión.

El refrigerante que sale del condensador entra al dispositivo de expansión en donde disminuye su presión, pasando de un estado de líquido saturado a alta presión y temperatura, a un estado de mezcla liquido vapor, a baja presión y temperatura.

Proceso 4-1. Absorción de calor a presión constante en un evaporador.

Él refrigerante pasa del estado de vapor líquido al de vapor saturado, por medio de un proceso isobárico. El flujo de calor suministrado al flujo másico de refrigerante (\dot{m}_r) , que circula por el evaporador:

$$\dot{Q}_{evap} = \dot{m}_r (h_1 - h_4) \tag{2-4}$$

 $(h_1 - h_4)$ = diferencia de entalpía denominada efecto refrigerante, [kJ/Kg]

2.1.1. COMPONENTES DE UN SISTEMA DE REFRIGERACION POR COMPRESION DE VAPOR.

En un sistema de refrigeración por compresión de vapor es necesario el uso de ciertos componentes que cumplan determinados procesos del ciclo. Estos componentes serán seleccionados dependiendo de la presión a la cual se trabaja y de la cantidad de calor a ser removido.

2.1.1.1. Unidad condensadora.¹⁰

El compresor, el tubo de gas caliente, el condensador y el tanque receptor, junto con el impulsor del compresor (por lo general un motor eléctrico) son a menudo combinados en una unidad compacta. Tal arreglo es conocido como unidad condensadora porque su función en el sistema es recibir el vapor y condensarlo pasándolo a su estado liquido.

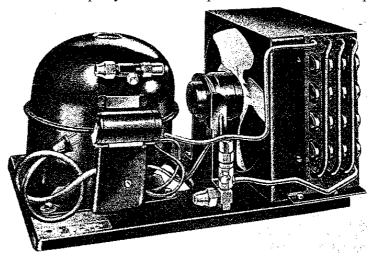


Figura 2.2 Unidad condensadora.

La unidad consta de un motor-compresor herméticamente sellado ensamblado a un compresor impulsado directamente, el cual está instalado en el mismo eje del motor dentro de una cubierta soldada de acero. En este tipo de ensamble el condensador se encuentra en medio de una corriente de aire forzado, producida por un ventilador que mejora la remoción de calor del fluido refrigerante, el mismo que se encuentra en estado de vapor y de esta manera se logra su licuefacción.

¹⁰ Principios de refrigeración; Dossat, R; 2da edición; Continental; México; 1999.

Condensador. ¹¹

Es un intercambiador de calor cuya función es transmitir el calor del vapor de un refrigerante a un medio externo, sea este aire o agua. Los condensadores se dividen en: condensadores enfriados por agua y condensadores enfriados por aire. Para aplicaciones de refrigeración se utiliza condensadores enfriados por aire de tubos con aletas o de tiro forzado, ya que la superficie de intercambio de calor es mayor que en el otro tipo de condensadores.

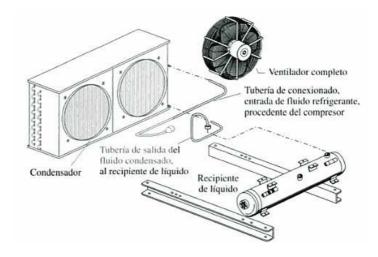


Figura 2.3 Condensadores de aire forzado.

• Compresor. 12

La unidad condensadora consta de un compresor alternativo, formado por un cilindro, dos válvulas y un émbolo que se mueve en su interior. Las válvulas, una de admisión y otra de escape, son válvulas antirretorno. El funcionamiento de estos compresores radica en la transformación del movimiento circular en un movimiento lineal a través del mecanismo biela-manivela transmitido hacia un pistón que se desliza en el interior del cilindro.

Figura 2.4 Compresor alternativo hermético.

¹¹ http://senacondensadores.blogspot.com/2007/11/condensadores-enfriados-por-aire.html

¹² Bombas, ventiladores y compresores; Jutglar, L; Barcelona; 2005.

Evaporador. 13 2.1.1.2.

El evaporador es un dispositivo donde se vaporiza por completo el fluido refrigerante que llega al mismo, al absorber el calor del espacio circundante, que se debe refrigerar y mantener a una temperatura establecida. En refrigeración domestica y comercial, se emplean por lo general dos tipos de evaporadores: los evaporadores inundados y los secos.

Los evaporadores secos tienen todo el espacio interno ocupado por refrigerante en estado gaseoso, ya sea vapor húmedo o de vapor saturado, sin que haya en su interior fluido refrigerante en estado líquido. Para lograr esto se utiliza una válvula de expansión instalada en la entrada del líquido al evaporador, la cual produce una rápida evaporación del refrigerante, después completa su vaporización total en el interior de los tubos del evaporador.

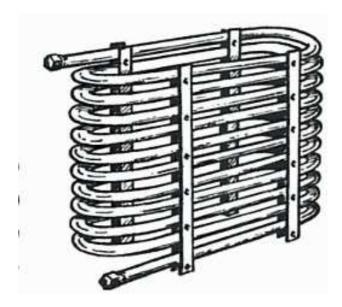
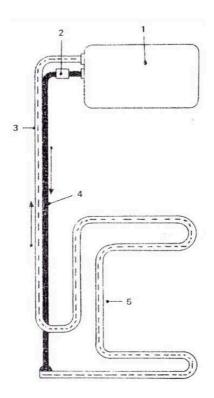


Figura 2.5 Evaporador tubular.¹⁴

Dispositivos de control del flujo del refrigerante. 15 2.1.1.3.

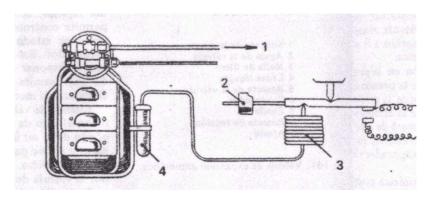

La función es regular la entrada del fluido refrigerante en el evaporador y mantener la diferencia de presiones entre los lados de alta y baja presión del sistema.

Tubo capilar.

El tubo capilar es un restrictor, es decir, el control del flujo se logra mediante la instalación de un tubo de diámetro reducido ubicado a la entrada del evaporador con el objeto de disminuir la presión del refrigerante líquido, ver figura 2.6. La cantidad de refrigerante que se provea al evaporador, es proporcional a la diferencia de presiones que exista entre la succión y la compresión.

Manual de refrigeración; Franco, J; Editorial Reverté S.A; España; 2006.
 Tratado práctico de refrigeración automática; Alarcón J; 12va Edición; España; 1998.

¹⁵ Tratado General de Refrigeración; Álvarez O; Bell; Argentina; 1973.



- 1. Unidad condensadora.
- 2. Filtro.
- 3. Línea de succión.
- 4. Tubo capilar.
- 5. Evaporador.

Figura 2.6 Tubo capilar.

• Válvula de expansión termostática.

Las válvulas de expansión termostática es una válvula que regula el sobrecalentamiento en el evaporador, su accionamiento es por la variación de la temperatura del elemento termostático que tienen en el interior. La apertura y cierre de la válvula se produce por el aumento y disminución de la presión, por los cambios de temperatura que afectan al refrigerante.

1. Línea de succión.

3. Fuelle del elemento termostático.

2. Contrapeso.

4. Bulbo termostático

Figura 2.7 Válvula de expansión termostática.

2.1.1.4. Carga de refrigeración.

La velocidad a la cual el calor debe ser eliminado de un espacio o material refrigerado a fin de producir y mantener las condiciones deseadas de temperatura, se le denomina carga de refrigeración o carga de enfriamiento. La carga de enfriamiento está constituida por las distintas fuentes de calor:

• Calor ganado por la superficie. 16

Calor que pasa del exterior al espacio refrigerado por conducción a través de las paredes no aisladas. La ecuación es:

$$q_g = UA \Delta T \tag{2-5}$$

Donde:

 q_g = cantidad de calor transferido, [kJ/s]

A = área de la superficie externa de la pared, $[m^2]$

 $U = \text{coeficiente global de transferencia de calor}, [k]/s m^2 ° C]$

 ΔT = diferencia de temperatura entre el ambiente externo y la temperatura interna que se desea mantener, [°C]

Calor cedido por encima del punto de congelación del helado.

Calor sensible a extraer, para enfriar la mezcla líquida, desde su temperatura inicial hasta la de congelación.

$$Q_{e} = m_{h} * Cp_{l} * (T_{lin} - T_{lout})$$
 (2-6)

Donde:

 Q_e = calor sensible por encima del punto de congelación, [kJ]

 m_h = masa de la mezcla a congelar, [Kg]

 Cp_I = calor específico encima del punto de congelación, $[kJ/kg^{\circ}C]$

 $T_{l.in}$ = temperatura de entrada de la mezcla líquida, [°C]

 $T_{l,out}$ = temperatura de congelación de la mezcla líquida, [°C]

Calor latente a extraer por cambio de fase.¹⁷

$$Q_{cf} = m_h * h_{fg} ag{2-7}$$

¹⁶ Principios de refrigeración; Dossat, R; 2da edición; Continental; México; 1999.

¹⁷ http://www.slideshare.net/martorque/calculo-carga-refrigeracion.

Donde:

 Q_{cf} = calor a extraer por cambio de fase, [kJ]

 h_{fg} = calor latente de fusión, $[kJ/kg^{\circ}C]$

Calor cedido por debajo del punto de congelación del helado.

Calor sensible a extraer, para enfriar el producto desde su temperatura de congelación hasta la temperatura final deseada.

$$Q_b = m_h * Cp_s * (T_{s.in} - T_{s.out})$$
 (2-8)

Donde:

 Q_b = calor sensible por debajo del punto de congelación, [kJ]

 Cp_s = calor específico debajo del punto de congelación, $[kJ/kg^{\circ}C]$

 $T_{s,in} = T_{l,out} =$ temperatura de congelación de la mezcla líquida, [°C]

 $T_{s,out}$ = temperatura final de la mezcla sólida, helado, [°C]

• Carga total de enfriamiento.

$$Q_T = Q_e + Q_{cf} + Q_h (2-9)$$

2.1.1.5. Capacidad del sistema.

La capacidad de cualquier sistema de refrigeración es la velocidad a la cual se puede efectuar la eliminación de calor del espacio refrigerado, se expresa en [Btu/h]. Para un sistema que tenga una capacidad de 1 tonelada es el equivalente a una capacidad de enfriamiento de 12000 [Btu/h] o 200 [Btu/min]. En el sistema métrico, 1 tonelada de capacidad de enfriamiento son 3,517 [kJ/s] o [kW].

La expresión para calcular la capacidad del sistema, está dado por la siguiente expresión:

$$Q_e = m * q_e \tag{2-9}$$

Donde:

 Q_e = capacidad de refrigeración, [kJ/s]

m = masa en circulación, [Kg/s]

 q_e = efecto refrigerante, [kJ/Kg]

2.2. TRANSFERENCIA DE CALOR.

Se define a la transferencia de calor como la energía calórica en movimiento, debido a un gradiente de temperatura existente en un cuerpo o cuerpos. Existen diferentes tipos de transferencia de calor, los mismos que son denominados modos. Según la forma en la que el calor sea transmitido existen tres principales modos: conducción, convección y radiación.

2.2.1. CONDUCCION.¹⁸

Se produce cuando existe un gradiente de temperatura en un sólido o en un fluido estacionario. En una pared plana el flujo de calor es constante y fluye desde el fluido caliente hacia el de menor temperatura, se calcula a partir de la siguiente ecuación:

$$q_x = -kA \frac{dT}{dx} = \frac{kA}{L} (T_{s,1} - T_{s,2})$$
 (2-10)

Donde:

 q_x = flujo de calor, [W]

k = conductividad térmica del material de la pared, [W/m °K]

A = area de las paredes normales al flujo, [m²]

L =espesor de la pared, [m]

 $T_{s,1}$ = temperatura de la pared en el lado caliente, [°C]

 $T_{s,2}$ = temperatura de la pared en el lado frio, [°C]

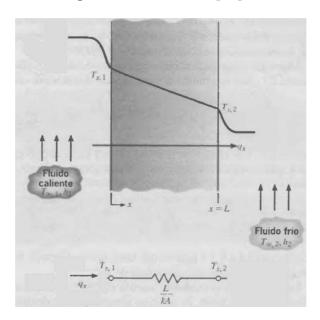


Figura 2.8 Conducción a través de una pared plana.

¹⁸ Fundamentos de transferencia de calor; Incropera, F; 4ta edición; Prentice Hall; México; 1999.

Para la conducción a través de una superficie cilíndrica, la ecuación es la siguiente:

$$q_r = -kA \frac{dT}{dr} = \frac{kA}{\ln(\frac{r_2}{r_1})} (T_{s,1} - T_{s,2})$$
 (2-11)

Donde:

 q_r = flujo de calor en dirección radial, [W]

 $A = 2\pi Lr$ = área de las paredes normales al flujo, [m²]

L =longitud del cilindro, [m]

 r_1 = radio interior, [m]

 r_2 = radio exterior, [m]

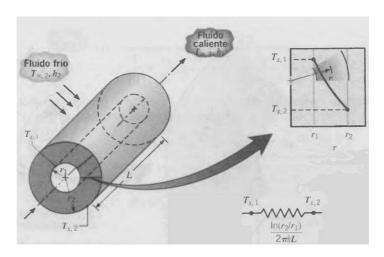


Figura 2.9 Conducción a través de una superficie cilíndrica. 19

2.2.2. CONVECCION.²⁰

Este modo de transferencia de calor ocurre entre una superficie y un fluido que se encuentra a su alrededor. Debe hacerse una distinción entre convección forzada, en la cual el flujo del fluido adyacente es producido por medios exteriores como: ventiladores o bombas y la convección natural, en la que el fluido más caliente (o mas frio), que se encuentra próximo a la frontera solida, ocasiona la circulación a causa de la diferencia de densidades que resulta de la variación de temperatura en una región de fluido.

En problemas de ingeniería por lo general lo que se busca es determinar el coeficiente de transferencia de calor convectivo, el mismo que es función de la geometría del sistema, del flujo, de las propiedades del fluido y de la magnitud del gradiente de temperatura. Tomando en cuenta todos estos aspectos varios autores han formulado correlaciones empíricas para determinar dicho factor.

¹⁹ Fundamentos de transferencia de calor; Incropera, F; 4ta edición; Prentice Hall; México; 1999.

²⁰ Transferencia de calor aplicada a la ingeniería; Welty, J; 1ra edición; México; 1978.

Los grupos adimensionales que se utilizan en la transferencia de calor por convección son:

$$Re_D = \frac{\rho * V * D}{\mu} \tag{2-12}$$

$$Pr = \frac{Cp * \mu}{k} \tag{2-13}$$

$$Nu_D = \frac{h*D}{k} \tag{2-14}$$

$$Gr = \frac{g * \beta * (T_S - T_\alpha)D^3}{(\mu \gamma)^2}$$
 (2-15)

$$St = \frac{Nu}{RePr}$$
 (2-16)

$$Tf = \frac{1}{2}(Tp + Ta)$$
 (2-17)

 Re_D = número de Reynolds.

Pr = número de Prandtl.

 Nu_D = número de Nusselt.

St = número de Stanton

 ρ = densidad del fluido, $[kg/m^3]$

V = velocidad media del fluido, [m/s]

 μ = viscosidad dinámica del fluido, [Pa. s]

 $Cp = \text{calor específico del fluido}, [k]/kg^{\circ}C$

 $k = \text{conductividad térmica, } [W/m^{\circ}C]$

h = coeficiente de Transferencia de Calor por convección, $[W/m^2 * {}^{\circ}C]$

D = diámetro de tubería, [m]

L = longitud, [m]

 β = coeficiente de dilatación térmica del fluido, $[m/s^2 * {}^{\circ}C]$

Tf = temperatura de película, [°C]

Tp = temperatura de la pared o superficie, [°C]

 $Ta = \text{temperatura del fluido o ambiente, } [^{\circ}C]$

2.2.2.1. Relaciones para convección forzada en tuberías.²¹

• Flujo Laminar.

Se tiene flujo laminar cuando el número de Reynolds es menor a 2100. Por lo tanto para la determinación del número de Nusselt existen dos formas de análisis:

Flujo de calor superficial constante, para flujo laminar totalmente desarrollado en la tubería $(L/D \gg 60)$ el número de Nusselt es constante e igual a:

$$Nu_D = 4{,}364$$
 (2-18)

Temperatura superficial constante, la ecuación de Nusselt luego de realizar el desarrollo matemático de la ecuación del perfil de temperaturas completamente desarrollado y por medios iterativos se tiene:

$$si \qquad \frac{L/_D}{RePr} < 0.05$$

$$Nu_D = 3,66$$
 (2-19)

$$si \frac{L/D}{RePr} > 0.05$$

$$Nu_D = 1.86 \left(\frac{Re_D Pr}{L/D}\right)^{1/3} \left(\frac{\mu}{\mu_s}\right)^{0.14}$$
 (2-20)

$$0.0044 < \frac{\mu}{\mu_s} < 9.75$$

$$Re < 10^4$$

Donde:

$$L =$$
longitud de la tubería, [m]

Todas las propiedades son evaluadas a la temperatura de película, excepto μ_s que se evalúa a la temperatura de la pared del tubo.

• Flujo turbulento.

La expresión para el flujo turbulento en tuberías.

• Dittus & Boelter:

$$Nu_D = 0.023 * Re_D^{0.8} * Pr^n {(2-21)}$$

²¹ Theory and problems of heat transfer; Donald, R; Leighton, E; 2da edición; McGraw-Hill; 1998.

$$0.7 < Pr < 100;$$
 $L/D > 60$

n = 0,3 si se está enfriando el fluido

n = 0.4 si se está calentando el fluido.

Propiedades evaluadas a la temperatura global del fluido $T\infty$

Colburn

$$St = 0.023(Re_D)^{-0.2}(Pr)^{-2/3}$$
 (2-22)

 Re_D y Pr son evaluados a la temperatura de película

$$Re > 10^4$$

$$\frac{L}{D} > 60$$

2.2.2.2. Correlaciones empíricas de flujos externos de convección libre.

Las correlaciones empíricas desarrolladas para geometrías comunes inmersas en flujo externo utilizadas para la mayoría de cálculos de ingeniería son:

$$Ra_D = Gr_D Pr (2-23)$$

Donde:

 Ra_L = número de Rayleigh

g= gravedad, $[m/s^2]$

 β = propiedad termodinámica, $[K^{-1}]$

 T_s = temperatura de la superficie, [°C]

 T_{α} = temperatura del medio, [°C]

 μ = viscosidad del fluido, [Ns/m²]

k= conductividad del fluido, $[W/m^{\circ}K]$

Para el caso de cilindros largos horizontales Churchill y Chu recomiendan una correlación simple para un amplio número de Rayleigh:

$$Nu_D = \left\{ 0.60 + \frac{0.387 Ra_D^{1/6}}{\left[1 + (0.559/Pr)^{9/16}\right]^{8/27}} \right\}^2 \qquad Ra_D \le 10^{12}$$
 (2-24)

2.2.2.3. Coeficiente global de transferencia de calor. 22

La determinación del coeficiente global de transferencia de calor (U) está dada en términos de la resistencia térmica total para transferencia de calor entre dos fluidos y una pared plana:

$$q_x = UA\Delta T \tag{2-25}$$

Donde:

U = coeficiente global de Transferencia de Calor, $[W/m^2 * {}^{\circ}K]$

A = área de transferencia de calor entre las superficies, $[m^2]$

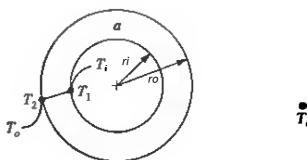
 ΔT = differencia total de temperatura, [°C]

Para el caso de superficies cilíndricas el coeficiente global de transferencia de calor se expresa de la siguiente manera.

$$UA = \frac{1}{\left[\left(\frac{1}{hiAi}\right) + \left(\frac{\ln\left(\frac{Do}{Di}\right)}{2\pi kL}\right) + \left(\frac{1}{hoAo}\right)\right]}$$
(2-26)

$$A_i = \pi DiL \tag{2-27}$$

$$A_o = \pi DoL \tag{2-28}$$


Donde:

Do = diámetro exterior del cilindro, [m]

Di = diámetro interior del cilindro, [m]

Ai =área interior del cilindro, [m²]

Ao =área exterior del cilindro, [m²]

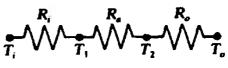


Figura 2.10 Cilindro expuesto a conducción y convección.²³

²² Fundamentos de transferencia de calor; Incropera, F; 4ta edición; Prentice Hall; México; 1999.

²³ Theory and problems of heat transfer; Donald, R; Leighton, E; 2da edición; McGraw-Hill; 1998.

2.2.2.3. Correlaciones para sistemas homogéneos con agitación.²⁴

En recipientes cilíndricos sometidos a enfriamiento es necesario el uso de agitadores mecánicos que faciliten la remoción de calor, así como la homogenización de la mezcla. Para lo cual se establece las correlaciones correspondientes para fluidos no newtonianos (fluido que varía su viscosidad dependiendo de la temperatura y del esfuerzo cortante que se le aplica).

$$\frac{hD_t}{k} = 0.36 \left(\frac{Da^2N\rho}{\mu}\right)^{2/3} \left(\frac{Cp\mu}{k}\right)^{1/3} {\mu/\mu_w}^{0.21}$$
 (2-29)

Donde:

 D_t = diámetro interior del tanque, [m]

Da = diámetro del agitador, [m]

 ρ = densidad de la mezcla, [kg/m³]

N = número de revoluciones, [rps]

k = coeficiente de conductividad de la pared del recipiente, [W/m°C]

Las propiedades son evaluadas a la temperatura global del fluido, excepto μ_w que es evaluada a la temperatura de la pared del recipiente.

2.2.3. INTERCAMBIO DE CALOR EN ESTADO TRANSITORIO.

El intercambio de calor en sistemas de refrigeración varia con el tiempo, es decir la temperatura de los fluidos del sistema cambian hasta que después de transcurrido un tiempo se vuelven constantes. Para el intercambio de calor donde la temperatura del refrigerante permanece constante, mientras que la temperatura de la mezcla líquida de helado disminuye con el tiempo, se tiene el siguiente modelo físico.

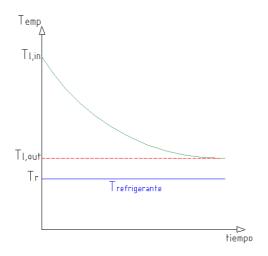


Figura 2.11 Variación de la temperatura en función del tiempo.

-

²⁴ Proceso de transporte y operaciones unitarias; Geankopolis, C; 3ra edición; México; 1998.

Partiendo del concepto de que el flujo de calor es constante se tiene que:

$$m_h C p_l \frac{dT}{dt} = U A \Delta T \tag{2-30}$$

$$\Delta T = (T - T_r) \tag{2-31}$$

$$\frac{UA}{m_h C_p} \int_0^t dt = \int_{T_{s,out}}^{T_{s,in}} \frac{1}{T - T_r} dT$$
 (2-32)

$$\frac{UA}{m_h C_p} t = ln \left(\frac{T_{l,in} - T_r}{T_{l,out} - T_r} \right)$$
 (2-33)

$$A = \frac{m_h * C_p}{U * t} ln \left(\frac{T_{l,in} - T_r}{T_{l,out} - T_r} \right)$$
 (2-34)

Donde:

 m_h = masa de la mezcla líquida de helado, $\lceil kg/s \rceil$

 Cp_l = calor específico de la mezcla líquida de helado, $\lceil kg/s \rceil$

T = temperatura de la mezcla líquida de helado, [°C]

 $T_{l,in}$ = temperatura de entrada de la mezcla líquida, [°C]

 $T_{l,out}$ = temperatura de salida de la mezcla líquida, [°C]

 T_r = temperatura del refrigerante, [°C]

2.2.4. TRANSFERENCIA DE CALOR CON CAMBIO DE FASE (EBULLICIÓN).²⁵

Para el cálculo del coeficiente de transferencia de calor con cambio de fase en serpentines helicoidales se utiliza las correlaciones de flujo interno de tuberías multiplicado por un factor de corrección:

$$h_i = h_s (1 + 3.5 * (D_i/D_s)$$
 (2-35)²⁶

Donde:

 h_i = coeficiente de transferencia de calor en el interior de serpentines helicoidales, $[W/m^2$ °C]

 h_s = coeficiente de transferencia por convección forzada y evaporación en el interior de tuberías, $[W/m^2$ °C]

 D_i = diámetro interno del tubo, [m]

 D_s = diámetro de la hélice del serpentín helicoidal, [m]

²⁵ Theory and problems of heat transfer; Donald, R; Leighton, E; 2da edición; McGraw-Hill; 1998.

²⁶ Handbook of evaporation technology; Minton, P; EEUU; 1986.

Para el cálculo del coeficiente de transferencia de calor por convección forzada y evaporación en el interior de tuberías se obtiene multiplicando por un factor de corrección dado por Mikielewicz:

$$\frac{h_s}{h_i} = R^{0,4} \tag{2-36}^{27}$$

Donde:

R = coeficiente de fricción entre las fases líquido y vapor.

$$R = 1 + \frac{v_v - v_L}{v_L} \tag{2-37}^{28}$$

Donde:

 v_v = volumen específico de la fase de vapor evaluado a la temperatura de evaporación.

 v_L = volumen específico de la fase líquida evaluado a la temperatura de evaporación.

2.3. MECÁNICA DE FLUIDOS.²⁹

La mecánica de fluidos es una ciencia dedicada el estudio del comportamiento de los fluidos, ya sean en reposo o en movimiento. Los fluidos están sometidos a esfuerzos y su clasificación es en función de la viscosidad de Newton:

2.3.1. FLUIDOS NEWTONIANOS.

En estos fluidos existe una relación lineal entre el esfuerzo cortante τ_{yx} , y el gradiente de velocidad dv/dy (velocidad de corte). Esto significa que la viscosidad μ es constante e independiente de la velocidad cortante. Los fluidos newtonianos más comunes son: el agua, el aire y la gasolina.

2.3.2. FLUIDOS NO NEWTONIANOS.

En este tipo de fluidos la relación entre el esfuerzo cortante τ_{xy} y el gradiente de velocidad dv/dy no es lineal, es decir que la viscosidad μ no permanece constante, sino que está en función de la velocidad cortante. Algunos líquidos no obedecen a la ley de Newton como: la leche, polímeros, helados, etc.

Estos fluidos a su vez se diferencian en dependientes e independientes del tiempo.

_

²⁷ Semi empirical method of determining the heat transfer coefficient for subcooled, satured boiling in a cannel; Mikielewicz, J; International Journal of heat and mass transfer; vol 17.

²⁸ Diseño y construcción de un tanque refrigerado para leche; Vinueza, R; Quito; 1992.

²⁹ Introducción a la reología de alimentos; Ramírez, J; Colombia; 2006.

2.3.2.1. Fluidos independientes del tiempo.

Como su nombre lo indica no dependen del tiempo de aplicación y se dividen en:

• Pseudoplásticos.

Se caracterizan por una disminución de su viscosidad, y de su esfuerzo cortante, con la velocidad de deformación.

• Fluido dilatante.

En este tipo de fluidos se produce un aumento de la viscosidad con la velocidad de deformación, es decir, un aumento del esfuerzo cortante con la velocidad.

• Fluidos visco-elásticos.

Se caracterizan por presentar a la vez tanto propiedades viscosas como elásticas. Esta mezcla de propiedades se debe a la existencia en el líquido de moléculas muy largas y flexibles o también a la presencia de partículas líquidas o sólidos dispersos, ejemplo de esto son los helados, gelatina, etc.

2.3.2.2. Fluidos dependientes del tiempo.

Se caracteriza por que su viscosidad varía al aumentar el tiempo de aplicación del esfuerzo cortante y vuelven a su estado anterior tras un tiempo de reposo.

2.4. REFRIGERANTES.

El refrigerante es un fluido de trabajo o substancia capaz de absorber calor de calor vaporizado de una fuente fría a baja presión y temperatura, cediendo calor condensado a una fuente caliente a alta presión y temperatura. Esto se da con cambio de estado de líquido a vapor.³⁰

Existen diferentes maneras de agrupar a los refrigerantes:

- Por grupos de seguridad.
- En función de la composición.
- De acuerdo al número de identificación.

2.4.1. POR GRUPOS DE SEGURIDAD.

Por grupos de seguridad los refrigerantes se clasifican:

- Según la toxicidad.
- Por la inflamabilidad.
- Mezclas.

³⁰ Tratado práctico de refrigeración automática; Alarcón, J; 12va edición; Barcelona; 1998.

2.4.2. EN FUNCIÓN DE LA COMPOSICIÓN.

2.4.2.1. Refrigerantes CFC.

Son conocidos como fluorcarbonados ya que en su molécula continen dos átomos de cloro, flúor y carbono. Actualmente se prohibe su venta debido a restricciónes ambientales.

2.4.2.2. Refrigerantes HCFC.

Llamados hidroclorofluorcarbonados por que contienen un átomo de hidrógeno, cloro, fluor y carbono. Su uso es restringido y solo están vigentes hasta el 2015 por ser perjudiciales para la capa de ozono.

2.4.2.3. Refrigerantes HFC.

Estos refrigerantes no contienen cloro, pero si hidrógeno, flúor y carbono en su estructura. No destruyen la capa de ozono y su ODP es 0 (Coeficiente destructivo del refrigerante frente a la capa de ozono).

2.4.3. DE ACUERDO AL NÚMERO DE IDENTIFICACIÓN.

Los refrigerantes pueden identificarse por un código adoptado internacionalmente, el número de identificación es asignado a cada refrigerante mediante un prefijo compuesto de letras y un sufijo compuesto de dígitos.

El prefijo se compone de la letra "R" (para refrigerantes) y el sufijo corresponde al tipo de compuesto utilizado.

A continuación se muestra una tabla con la clasificación de los refrigerantes de acuerdo al número de identificación:

Tabla 2.1 Clasificación de los refrigerantes por el número de identificación.³¹

REFRIGERANTE	COMPONENTES	PUNTO EBULLICION EN °C a 1013 BAR	ACEITE	AZEOTROPICO	DESLIZAMIENTO
R 22	GAS PURO	-40,7	MINERAL ALQUIBENCENICO	Si	0 (1)
R 417A	R134a+R125+R600	-41,8	MINERAL POE	NO	5,5 (2)
R 407C	R32+R125+R134a	-43,4	POE	NO	7,3 (2)
R 410A	R32+R125	-51,5	POE PVE	CASI	0,1 (3)
R 404A	R143a+R125+R134a	-45,6	POE	CASI	0,9 (2)
R 507	R43a+R125	-47,1	POE	SI	0 (1)
R 134a	GAS PURO	-26,4	POE	SI	0 (1)
R 413A	R134a+R218+R600a	-35	MINERAL ALQUIBENCENICO POE	NO	6,9 (2)

³¹ Refrigerantes para aire acondicionado y refrigeración; Villanueva, R; España; 2004.

- (1) Se puede cargar tanto en fase líquida como gas. En caso de fuga puede recargarse el equipo sea cual sea la pérdida que haya tenido.
- (2) Se debe cargar siempre en fase líquida. En caso de fuga, si es más del 30% de la carga, se debe recuperar lo que queda y realizar una carga nueva y completa.
- (3) Aunque se puede cargar en fase gas, se recomienda hacerlo en fase líquida. En caso de fuga puede recargarse el equipo sea cuál sea la pérdia que haya tenido.

Entre los refrigerantes utilizados en aplicaciones industriales de refrigeración están:

2.4.3.1. Refrigerante R 134a.

Gas puro no dañino para la capa de ozono, compatible con la mayor parte de materiales por su baja toxicidad, y no es inflamable.

Su uso en la industria está enfocado en aplicaciones de aire acondicionado y refrigeración debido a que trabaja en un rango de temperatura media. Al ser un gas puro su eficiencia es superior a la de cualquier mezcla de refrigerantes.

2.4.3.2. Refrigerante R 404A. ³²

Es una mezcla pseudo-azeotrópica cuya composición casi no varía durante los cambios de estado incluso en caso de fugas, sin embargo es necesario que la carga se realice en estado líquido, ya que la composición dentro de la botella de refrigerante cambia ligeramente entre el estado líquido y el gaseoso.

Este refrigerante se caracteriza por:

- Está compuesto por una mezcla de 3 componentes R-125 (44%), R-134a (4%) y R143a (52%).
- Se utiliza con lubricantes sintéticos tipo poliéster.
- Refrigerante tipo HFC.
- Tiene un deslizamiento mínimo de temperatura (glide 0,5°C).
- Compatible con la mayor parte de materiales.
- Trabaja en media y baja temperatura.
- Tiene baja toxicidad.
- No es inflamable.

2.4.3.3. Refrigerante R 507.³³

Es una mezcla azeotrópica que se comporta como un compuesto puro, esto es una gran ventaja en caso de fugas y a la hora de carga del refrigerante ya que se lo puede realizar en fase líquida o gaseosa.

Entre sus principales características están:

³² http://www.gas-servei.com/docs/tecnicas/ref/R404A.pdf

³³ http://www.gas-servei.com/docs/tecnicas/ref/R507.pdf.

- Está formado por una mezcla de 2 componentes R-125 (50%) y R-143A (50%).
- Es compatible con lubricantes sintéticos tipo poliéster.
- Trabaja en media y baja temperatura.
- Refrigerante tipo HFC.
- Tiene toxicidad mínima.
- No es inflamable.

2.5. AGITADOR MECÁNICO.³⁴

El equipo consta de de un tanque o recipiente donde se realiza la operación y del elemento de agitación propiamente dicho. El tanque puede estar abierto o cerrado en la parte superior mientras que el fondo del tanque suele ser redondeado, no plano, para eliminar las esquinas o espacios muertos y así evitar la acumulación de residuos a falta de circulación de las corrientes de fluido.

Los agitadores se dividen en dos grupos:

- Agitadores de flujo axial.
- Agitadores de flujo radial.

2.5.1. AGITADORES DE FLUJO AXIAL.

Generan corrientes paralelas al eje del agitador y se dividen en tres tipos:

2.5.1.1. Agitadores de hélice.

Es un impulsor de flujo axial y alta velocidad que se utiliza para líquidos de baja viscosidad. Los agitadores de hélice más pequeños giran a 1150 o 1750 rpm, los de hélice mas grandes giran de 400 a 800 rpm. Este tipo de agitadores son eficaces en tanques muy grandes.

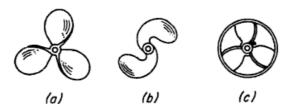


Figura 2.12. Agitadores de hélice (a) Normal de tres patas. (b) De cuchilla. (c) Protegida.

2.5.1.2. Agitadores de paletas.

Están formados por una paleta plana, que gira sobre un eje vertical, pudiendo estar en posición inclinada. Las paletas giran a velocidades bajas o moderadas en el centro del tanque, impulsando al líquido radial y tangencialmente, sin que exista movimiento

³⁴ Operaciones unitarias de ingeniería química; McCabe, J; Volumen 1; 1973.

vertical respecto al agitador. Dentro de este grupo se encuentran los agitadores tipo ancla, permiten evitar el depósito de sólidos sobre una superficie de transmisión de calor, generalmente trabajan conjuntamente con un agitador de paletas, que se mueve con velocidad elevada y que normalmente gira en sentido opuesto, los agitadores industriales de paletas giran a una velocidad comprendida entre 20 y 200 rpm.

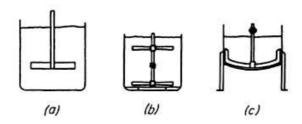


Figura 2.13. Agitadores de paletas: (a) Paletas planas. (b) Paletas inclinadas. (c) Agitador de ancla.

2.5.1.3. Agitadores de turbina.

Los agitadores de turbina giran con velocidades elevadas sobre un eje que va montado centralmente dentro del tanque, las paletas pueden ser rectas o curvas, inclindas o verticales. El rodete puede ser abierto, semiabierto o cerrado. Los agitadores son eficaces para un amplio rango de viscocidades.

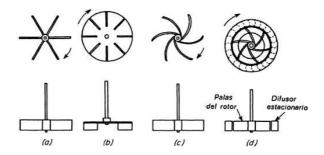


Figura 2.14. Agitadores de turbina: (a) Abierto de palas verticales. (b) De disco con álabes. (c) De paletas verticales curvas. (d) Cerrado de paletas curvas con un anillo difusor.

2.5.2. AGITADORES DE FLUJO RADIAL.

Este tipo de agitadores dan origen a corrientes en dirección tangencial y radial.

2.5.3. PATRONES DE FLUJO.

Durante el proceso de agitación la velocidad del líquido en cualquier punto tiene tres componentes, radial (actúa en dirección perpendicular al eje del impulsor), longitudinal (actúa en dirección paralela al eje) y tangencial (actúa en dirección tangente a la trayectoria circular alrededor del eje). Las componente radial y longitudinal proveen el flujo necesario para la acción de mezclado, mientras que el flujo tangencial genera vórtices en el líquido. La agitación de partículas sólidas presenten en el líquido tienden

a concentrarse en el fondo del tanque debido a las fuerzas centrífugas. Por esta razón es necesario prevenir los vórtices mediante los tres metódos que se detallan a continuación:

2.5.3.1. Desplazamiento del eje.

En tanque de pequeño tamaño se mueve el impulsor alejado de la línea central del tanque, mientras que en tanques de mayor tamaño el agitador es instalado formando un cierto ángulo con el eje.

2.5.3.2. Instalación de deflectores.

Son placas deflectoras verticales perpendiculares a la pared del tanque, se instalan de dos a cuatro placas dependiendo del tamaño del tanque.

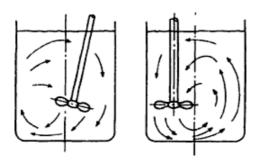


Figura 2.15. Patron de flujo con agitador no centrado.

CAPÍTULO 3

DISEÑO TÉRMICO DEL EQUIPO

En el presente capítulo se realizará un estudio del lugar donde se pretende instalar el diseño del equipo, los requerimientos, limitaciones y consideraciones que se dispondrán para la selección y análisis térmico del ciclo de refrigeración por compresión de vapor.

Luego mediante cálculos se determinará las cargas de refrigeración, coeficientes de transferencia de calor, temperaturas, etc.; se definirá la capacidad y especificaciones para el dimensionamiento de la máquina.

3.1. LUGAR Y UBICACIÓN DE LA MÁQUINA DE HELADOS.

La máquina para hacer helados de paila se localizará en la ciudad de Ibarra, ubicada en la región andina al norte del Ecuador, a 120 [km] de la ciudad de Quito, con una altitud de 2225 metros sobre el nivel del mar.

El clima de Ibarra es del tipo cálido seco, con un promedio de temperatura de 18 [°C], una mínima de 8[°C] en invierno y una máxima de 28 [°C] en verano. Al ser una zona seca los valores de la humedad relativa promedio oscilan entre 70% al 80% anual. 35

Figura 3.1 Mapa de ubicación de la ciudad de Ibarra.³⁶

En la figura anterior se muestra la localización de la ciudad de Ibarra (punto A), en el mapa del Ecuador.

³⁵ http://espanol.wunderground.com/global/stations/84043.html.

³⁶ http://maps.google.com/maps?ct=reset.

3.2. DESCRIPCIÓN DEL EQUIPO.

A continuación en la figura 3.2, se muestra el esquema del equipo.

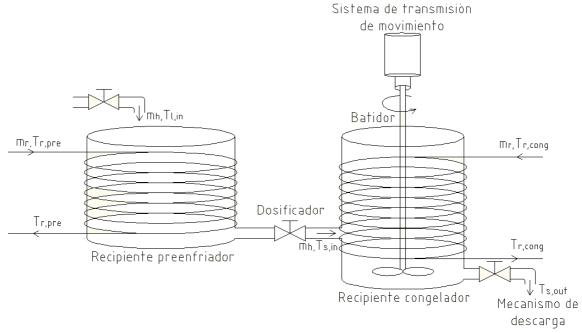


Figura 3.2 Esquema del equipo.

El equipo está constituido por:

- Unidad condensadora, consta de un compresor hermético, ventiladores, condensador de aire, válvulas de servicio, recipiente de almacenamiento del líquido refrigerante y cableado eléctrico.
- Sistema de fluido frío, que lo conforman dos evaporadores, un recipiente preenfriador de la mezcla y un recipiente congelador de la mezcla, formados por un tanque vertical, rodeado por tuberías de serpentín helicoidal.
- Sistema de fluido caliente, se abastece manualmente mediante un recipiente que contiene la mezcla preparada.
- Batidor, permite la agitación continua de la mezcla de helado durante el proceso de congelación.
- Mecanismo de transmisión de movimiento, transmite el movimiento generado por un motor hacia el batidor mecánico, mediante dispositivos transmisores de potencia; como son bandas, engranajes, poleas, etc.
- Mecanismo de descarga, tiene una válvula de apertura y cierre que permite la salida de la mezcla de helado.
- Bastidor, estructura soporte donde se monta todas y cada una de las partes que componen el equipo.

3.3. RESTRICCIONES DEL EQUIPO.

3.3.1. CAPACIDAD DE LA MÁQUINA.

La capacidad de la máquina está restringida a un caudal volumétrico de 60 [l/ h], por lo que los posteriores cálculos y dimensionamiento se realizará tomando en cuenta esta restricción.

3.3.2. MATERIALES

El uso de materiales en la industria alimenticia es restringido, ya que las normativas vigentes en el ecuador, limitan la utilización de acero inoxidable de alta resistencia a la corrosión, elevada resistencia y ductilidad. El material que cumple con estas características es el acero inoxidable austenítico tipo 304 (anexo A), utilizado para la fabricación de los siguientes elementos:

- Recipiente preenfriador de la mezcla de helado.
- Recipiente congelador de la mezcla de helado.
- Batidor mecánico.
- Cubierta del equipo.

3.3.2.1. Recipiente preenfriador y congelador de la mezcla de helado.

Tanto el preenfriador como el recipiente congelador de helado constituyen las partes principales de la máquina, ya que aquí se realiza todo el proceso de enfriamiento de la mezcla hasta la obtención del helado, se lo debe fabricar de acero inoxidable.

3.3.2.2. Batidor mecánico.

El eje-batidor al igual que las aletas del mismo, están expuestas a condiciones similares a las del recipiente evaporador, por lo tanto necesariamente tienen que ser construidos de acero inoxidable.

3.3.2.3. Cubierta del equipo

Para las cubiertas exteriores, frontal, posterior, lateral izquierda y derecha, se requiere un material resistente a la corrosión.

3.3.2.4. Bastidor.

El bastidor constituye la estructura del equipo, la misma que debe garantizar rigidez a la maquina, ya que sobre esta estructura se montara la mayor parte de los componentes.

3.3.2.5. Serpentín del evaporador y tubería de conexión.

En sistemas de refrigeración es común el uso de tubería de cobre, para el diseño del evaporador, ya que este tipo de material tiene la ventaja de ser ligero, resistente a la

corrosión y de fácil montaje al no reaccionar con el ambiente y al trabajar a bajas temperaturas.

3.3.3. REFRIGERANTE.

Las actuales restricciones ambientales impiden el uso de refrigerantes, cuyo contenido este presente cloro, CFC y HCFC, estas sustancias son contaminantes ya que destruyen la capa de ozono, por lo tanto se utilizan sustitutos que no contienen bromo ni cloro y no causan un agotamiento considerable de ozono, refrigerantes tipo HFC y PFC.

3.4. PARÁMETROS DE DISEÑO.

3.4.1. PARÁMETROS FUNCIONALES.³⁷

Los parámetros funcionales son valores tomados a conveniencia para el diseño.

- Temperatura de entrada de la mezcla líquida de helado al preenfriador, $T_{l.in} = 17[°C]$
- Temperatura de salida de la mezcla líquida de helado al preenfriador o temperatura de entrada al recipiente congelador, $T_{l,out} = 5[^{\circ}C]$
- Temperatura de salida del helado del recipiente congelador, $T_{s.out} = -5.5[^{\circ}C]$
- Caudal volumétrico por hora, del helado a la salida del recipiente preenfriador, $\dot{V} = 60[l/h]$

3.4.2. PARÁMETROS GEOMÉTRICOS.

3.4.2.1.Recipiente preenfriador.

• Material: Acero inoxidable 304.

Espesor: 0,003 mm.Diámetro: 0,36m.

3.4.2.2.Recipiente congelador.

• Material: Acero inoxidable 304.

Espesor: 0,003 mm.Diámetro: 0,3m.

3.4.2.3. Serpentín helicoidal.

• Material: Acero inoxidable 304.

• Diámetro: 12,7 mm.

³⁷ Air conditioning refrigerating data book; The american society of refrigerating engineers; New York; 1956.

3.4.2.4. Aislante térmico.

• Material: Aislamiento de poliuretano.

Espesor: 0,04 mm.Espesor: 0,08 mm.

3.4.2.5.Estructura soporte.

• Material: Acero A36.

• Perfil: tipo L.

3.5. ALTERNATIVAS DE DISEÑO.

Tomando en cuenta la funcionalidad del equipo, así como su fácil montaje y la limitación del espacio a utilizar, la selección de las alternativas de diseño se enfocaran en los siguientes aspectos:

- Disposición del eje batidor.
- Sistema de transmisión del movimiento.
- Método de enfriamiento del recipiente.

3.5.1. ALTERNATIVA 1

Como primera opción de diseño es la ubicación del eje batidor en posición vertical con la utilización de un serpentín helicoidal en el interior del recipiente contenedor de la mezcla, en esta alternativa se planea la utilización de bandas y poleas para la transmisión de la potencia del motor hacia el eje batidor.

Figura 3.3 Alternativa 1

3.5.2. ALTERNATIVA 2

Una segunda opción para el diseño del equipo, es la ubicación del eje batidor en posición vertical, con un serpentín helicoidal en el interior del recipiente, además de la utilización de un motoreductor para la transmisión de la potencia.

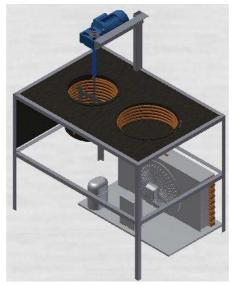


Figura 3.4 Alternativa 2

3.5.3. ALTERNATIVA 3

Una tercera opción para el diseño del equipo, es la ubicación del eje batidor en posición vertical, utilizando chaqueta de enfriamiento en el exterior del recipiente y además un motoreductor para la transmisión de la potencia.

Figura 3.5 Alternativa 3

3.5.4. SELECCIÓN DE LA ALTERNATIVA

Con el fin de establecer cuál de las alternativas mostradas es la mejor opción para el diseño, se realiza un cuadro comparativo donde se evalua las características de cada una de las alternativas, las mismas que serán calificadas cuantitativamente para determinar cuál de ellas es la más viable.

Tabla 3.1 Ponderación de alternativas

Condiciones	Alternativa		Alternativa		Ideal	Ponderación	
	1	2	3		1	2	3
Facilidad de montaje	7	9	6	9	78	90	67
Capacidad de carga	9	9	9	10	90	90	90
Espacio a utilizar	7	9	8	9	78	90	89
Seguridad	7	9	9	10	70	90	90
Deterioro del serpentín	6	9	10	10	60	90	100
Mantenimiento	8	9	7	9	89	100	78
Ruido	7	7	7	8	88	88	88
Limpieza	8	8	9	9	89	89	100
TOTAL	59	69	65	75	642	727	702

De la tabla 3.1 se observa que la mejor alternativa para el diseño es la número 2.

3.5.5. ALTERNATIVAS DEL TIPO DE REFRIGERANTE A UTILIZAR.

Los refrigerantes R404A y R507 son parte de estudio para la selección del refrigerante, trabajan en rangos de media a baja temperatura de descarga, mientras que el R134a trabaja en rangos de media de temperatura, lo que limita su aplicación en sistemas de congelación.

3.5.5.1. Alternativa 1

Una primera opción en el diseño del equipo es la utilización del refrigerante R507, el cual es un gas no dañino para el ozono, presenta baja toxicidad, no es inflamable, su temperatura de descarga, capacidad frigorífica y costo es levemente superior a la del R404A.

3.5.5.2. Alternativa 2

La segunda alternativa es la utilización del refrigerante R404A, el cuál al igual que el R507 no es contaminante, ni toxico e inflamable. Sin embargo su eficiencia es levemente inferior a la del R507 debido a su capacidad frigorífica, pero su costo en el mercado es asequible y comercialmente usado.

En la tabla 3.2 se muestra los parámetros a tomar en cuenta para la selección del refrigerante:

PARAMETROS DE	TIPO DE REFRIGERANTE.			
SELECCIÓN.	R134a	R404a	R507	
Incidencia sobre la capa de ozono.	Ninguna	Ninguna	Ninguna	
Presión crítica (bar).	40,67	37,35	37,7	
Temperatura crítica (°C).	101,1	72,07	70,8	
Coeficiente de funcionamiento.		1,8	1,8	
Inflamabilidad.	Ninguna	Ninguna	Ninguna	
Toxicidad (ppm).	Baja	Baja	Baja	
Precio.	Bajo	Bajo	Alto	

Tabla 3.2 Parámetros de selección del refrigerante.³⁸

Debido a la diferencia existente en el costo y a su disponibilidad en el mercado nacional, el refrigerante seleccionado es el R404A.

3.6. ANÁLISIS TÉRMICO DEL CICLO DE REFRIGERACIÓN DEL SISTEMA.

Para determinar el ciclo de refrigeración a utilizarse en el sistema, se toma en cuenta las consideraciones termodinámicas. Como el equipo requiere el uso de un evaporador para el preenfriamiento de la mezcla líquida y de otro evaporador para la congelación de la mezcla que sale del preenfriador, se requiere de un ciclo de refrigeración por compresión de vapor que trabaje con dos evaporadores a diferentes temperaturas.

3.6.1. CICLO DE REFRIGERACIÓN POR COMPRESIÓN DE VAPOR CON DOS EVAPORADORES.

El ciclo de refrigeración con dos evaporadores se utiliza cuando se quiere mantener a una temperatura específica. Para la aplicación de enfriamiento y congelación del helado, se utiliza el ciclo de refrigeración de múltiples evaporadores a diferentes temperaturas con un solo compresor, válvulas individuales de expansión y una válvula de presión de retorno. En la figura 3.6 se muestra el ciclo con dos evaporadores y en la figura 3.7 se representa el proceso en un diagrama p-h.

-

³⁸ http://www.gas-servei.com/productos/?tipus=HFC.

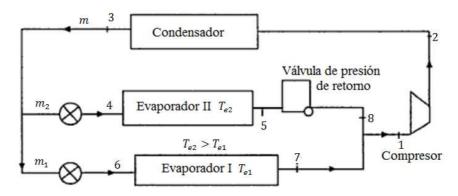


Figura 3.6 Ciclo de refrigeración con dos evaporador. 39

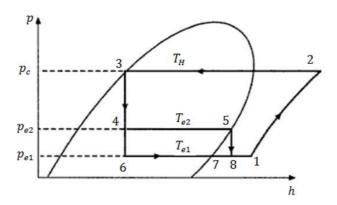


Figura 3.7 Diagrama p-h del ciclo de refrigeración con dos evaporadores.

En el sistema los dos evaporadores están a diferentes temperaturas y en consecuencia sus presiones también son diferentes. El evaporador a baja temperatura está a baja presión comparado con el otro, mientras que el flujo másico de refrigerante que circula por cada evaporador depende de la carga individual de refrigeración y la presión a la entrada del condensador se mantiene a la misma presión del evaporador de baja temperatura, esto se consigue bajando la presión del evaporador de alta mediante una válvula de presión de retorno.

• El flujo másico de refrigerante que circula por cada evaporador es:

$$\dot{m}_1 = \frac{q_1}{h_7 - h_6} \tag{3-1}$$

$$\dot{m}_2 = \frac{q_2}{h_5 - h_4} \tag{3-2}$$

Donde:

 \dot{m}_1, \dot{m}_2 = flujo másico del refrigerante cada evaporador, [kg/s]

 q_1, q_2 = carga de refrigeración de cada evaporador, [kW]

h= entalpía del refrigerante, [kJ/kg]

³⁹ Refrigeration and air conditioning; Sapali; 2009.

• El flujo másico total del refrigerante a la entrada del compresor, etapa 1.

$$\dot{m} = \dot{m}_1 + \dot{m}_2 \tag{3-3}$$

• Por balance de energía durante la mezcla del refrigerante.

$$\dot{m}h_1 = \dot{m}_1 h_7 + \dot{m}_2 h_5 \tag{3-4}$$

Potencia del compresor:

$$W = \dot{m}(h_2 - h_1) \tag{3-5}$$

Donde:

 $(h_2 - h_1)$ = cambio de entalpía, [kJ/kg]

W= Potencia del compresor, [k]/s]

• Coeficiente de rendimiento del ciclo de refrigeración está dado por:

$$COP = \frac{Carga\ total\ de\ refrigeraci\ ón}{Potencia\ del\ compresor}$$
 (3-6)

$$COP = \frac{Q_1 + Q_2}{\dot{m}(h_2 - h_1)} \tag{3-7}$$

3.6.2. CÁLCULO DE LA TEMPERATURA DE EVAPORACIÓN EN EL RECIPIENTE PREENFRIADOR.

Para el cálculo de la temperatura de evaporación se considera el tipo de evaporador a utilizarse y las condiciones, a las cuáles se encuentra el mismo. Los valores aproximados de la diferencia de temperatura de evaporación se indican en tabla:

Tabla 3.3 Tabla de valores aproximados de diferencia de temperatura de evaporación.⁴⁰

Evaporadores de inmersión.	Diferencia de temperatura de evaporación a temperatura de baño.		
En baño de agua, sin formación de hielo.	5,5 a 8 °C		
En baño de agua, formando ligera capa de	8 a 12 °C		
hielo alrededor del tubo serpentín.			
En baño de salmuera.	4,5 a 5,5 °C		

La expresión que determina la temperatura de evaporación está dada por:

$$T_{e2} = T_{l,out} - \Delta T \tag{3-8}$$

⁴⁰ Tratado práctico de refrigeración; Alarcón, J; 12va Edición; España; 1998.

Donde:

 T_{e2} = temperatura de evaporación del recipiente preenfriador, [°C]

 $T_{l.out}$ = temperatura final de la mezcla líquida de helado, [°C]

 ΔT = diferencia de temperatura, [°*C*]

La temperatura de evaporación del recipiente preenfriador se determina considerando como evaporador de inmersión en baño de agua, sin formación de hielo:

Datos de Diseño:

$$\Delta T = 8[^{\circ}C]$$

$$T_{l.out} = 5[°C]$$

Reemplazando los datos en la ecuación (3-8), se obtiene:

$$T_{e2} = T_{l.out} - \Delta T = 5 - 8 = -3$$
°C

Según el anexo B, para una temperatura de evaporación de (-3°C) se obtiene una presión de evaporación en el preenfriador de:

$$P_{e2} = 0.56 MPa^{41}$$

3.6.3 TEMPRETURA DE EVAPORACIÓN EN EL RECIPIENTE CONGELADOR.

La expresión que se utiliza para calcular la temperatura de evaporación en el recipiente congelador es:

$$T_{e1} = T_{s,out} - \Delta T \tag{3-9}$$

Donde:

 $T_{e,1}$ = temperatura de evaporación del recipiente congelador, [°C]

 $T_{s.out}$ = temperatura final del helado, [°C]

 ΔT = diferencia de temperatura, [°*C*]

Datos de Diseño:

$$\Delta T = 20[°C]^{42}$$

$$T_{s.out} = -5.5[^{\circ}C]$$

⁴¹ Thermodynamic properties of DuPont Suva 404A refrigerant.

⁴² Diseñar y construir un batidor-congelador para la elaboración de helados; Nuñéz, F; Proaño, J; Riobamba, Ecuador; 2008. ASHRAE handbook of fundamentals; 2009.

Reemplazando los datos en la ecuación (3-9), se obtiene:

$$T_{e1} = -5.5 - 20 = -25.5$$
°C

Según el anexo B, para una temperatura de evaporación de (-26°C) se obtiene una presión de evaporación en el congelador de:

$$P_{e1} = 0,246MPa^{43}$$

3.6.4 CÁLCULO DE LA TEMPERATURA DE CONDENSACIÓN.⁴⁴

Par el cálculo de la temperatura de condensación se conoce que el medio condensante es aire, para este medio se admite generalmente que la temperatura de condensación esté aproximadamente entre 12 a 16 (°C) por encima de la temperatura ambiente.

La expresión que determina la temperatura de evaporación es:

$$T_C = T_{amb} + \Delta T \tag{3-10}$$

Donde:

 T_C = temperatura de condensación, [°C]

 T_{amb} = temperatura ambiente, [°C]

 ΔT = differencia de temperatura, [°C]

Datos de Diseño:

$$T_{amb} = 18[^{\circ}C]$$

$$\Delta T = 16[^{\circ}C]$$

Reemplazando los datos en la ecuación (3-10), se obtiene:

$$T_C = 18 + 16 = 34$$
° C

Según el anexo B, para una temperatura de condensación de (34°C) se obtiene una presión de condensación de:

$$P_C = 1,57 MPa$$

3.6.5 PROPIEDADES TERMODINÁMICAS DEL REFRIGERANTE R404A.

Para la determinación de las entalpías del refrigerante se considera que las condiciones de trabajo se mantienen como líquido y vapor saturado. Utilizando los datos de presión de evaporación y condensación, y mediante el diagrama de Mollier se traza las líneas de presión en el diagrama p-h del refrigerante R404A.

⁴³ Thermodynamic properties of DuPont Suva 404A refrigerant.

⁴⁴ Nueva enciclopedia de la climatización; Ramírez, J; Ceac S.A.; Barcelona; 2000.

A continuación en la tabla 3.4 se detalla las presiones de evaporación y condensación de los dos evaporadores.

Tabla 3.4 Presiones de evaporación y condensación.

Componente	Presión de evaporación. (MPa)	Presión de condensación. (MPa)
Evaporador I	0,246	1,6
Evaporador II	0,56	

La figura 3.8 muestra el diagrama de Mollier del refrigerante.

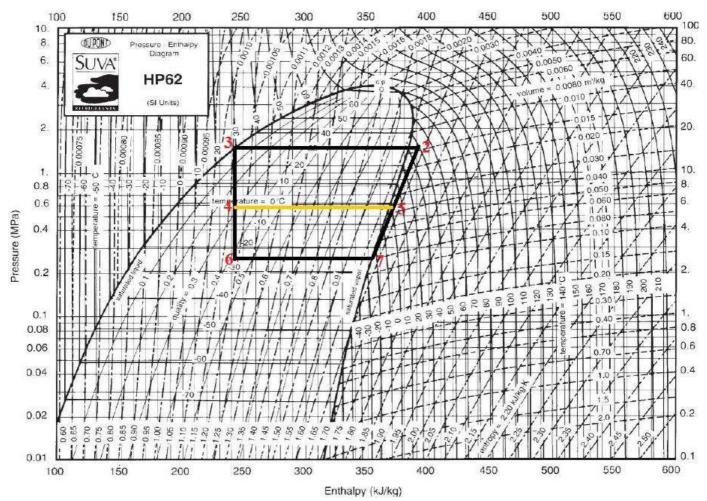


Figura 3.8 Trazo del ciclo termodinámico en el diagrama P-h de Mollier. 45

Del diagrama P-h para el refrigerante R404A se obtiene las propiedades de los puntos de análisis del ciclo termodinámico.

-

⁴⁵ Thermodynamic properties of DuPont Suva 404A refrigerant.

Tabla 3.5 Entalpías del refrigerante R404A en los puntos de análisis del ciclo termodinámico.

Punto	P[MPa]	Entalpía del
		refrigerante[<i>kJ/kg</i>]
2	1,6	398
3	1,6	242
4	0,56	242
5	0,56	370
6	0,246	242
7	0,246	350

3.6.6 CÁLCULO DE LAS CARGAS DE ENFRIAMIENTO.

Datos funcionales.

- Temperatura de entrada de la mezcla líquida de helado al preenfriador, $T_{l,in}=17[{}^{\circ}C]$
- Temperatura de salida de la mezcla líquida de helado al preenfriador o temperatura de entrada al recipiente congelador, $T_{l,out} = 5[^{\circ}C]$
- Temperatura de salida del helado del recipiente congelador, $T_{s,out} = -5.5[^{\circ}C]$
- Volumen del helado a la salida del preenfriador , $V = 60 \left[\frac{l}{h} \right]$

Determinación de las propiedades físicas de la mezcla, tabla 3.6.

Tabla 3.6 Propiedades físicas del helado. 46

			Ср		
Producto	Punto de enfriamiento	% agua	Encima del punto de congelación	Debajo del punto de congelación	Calor latente de fusión($h_{fg,m}$)
			(Cp_l)	(Cp_s)	
	27 (°F)		0,78	0,45	96(btu/lb)
Helado		58 - 66	(Btu/h°F)	(Btu/h°F)	
	-2,778 (°C)		3,266	1,884	223,296 (kJ/kg)
			(kJ/kg°C)	(kJ/kg°C)	

3.6.6.1. Carga en el recipiente preenfriador.

Para el cálculo de la carga en el preenfriador se requiere obtener las propiedades de la mezcla en estado líquido.

⁴⁶ ASHRAE Handbook of fundamentals; New York; 1972.

65,94

Temperatura Temperatura Volumen de Densidad de Masa de la la mezcla inicial de la final de la la mezcla mezcla $(kg/m^3).^{47}$ mezcla líquida mezcla líquida líquida (m^3) $m_h(kg)$ $T_{l,in}$ (°C) $T_{l,out}(^{\circ}C)$

0,06

1099

Tabla 3.7 Propiedades de la mezcla líquida.

• Carga de recipiente preenfriador, ecuación (2-6).

$$Q_{pre} = m_h * Cp_l * (T_{l,in} - T_{l,out})$$

$$Q_{pre} = 65,94 * 3,266 * (17 - 5) = 2587,49[kJ]$$

3.6.6.2. Cargas en el recipiente congelador.

17

Para el cálculo de las cargas en el recipiente congelador se requiere determinar las propiedades de la mezcla en estado sólido.

Tabla 3.8 Propiedades de la mezcla sólida.

Temperatura	Temperatura final	Punto de congelación	Densidad de la
inicial de la mezcla	de la mezcla solida	de la mezcla solida	mezcla congelada
líquida $T_{s,in}$ (°C)	$T_{s,out}$ (°C)	T_{pc} (°C)	$(kg/m^3).^{48}$
5	-5,5	-2,78	1118,7

• Carga de preenfriamiento, ecuación (2-6).

$$Q_e = m_h * Cp_l * (T_{l,out} - T_{pc})$$

 $Q_e = 65,94 * 3,27 * (5 - (-2,78)) = 1610,71[kJ]$

• Carga por cambio de fase, ecuación (2-7).

Para el cambio de fase se considera el porcentaje de agua congelada presente en la mezcla.

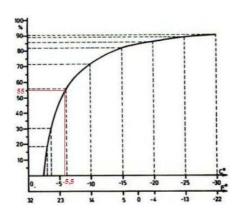


Figura 3.9 Porcentaje de agua congelada en la mezcla a diversas temperaturas. 49

⁴⁷ Air conditioning refrigerating data book; The american society of refrigerating engineers; New York; 1956.

⁴⁸ Anexo U.

$$Q_{cf} = m_h * h_{fg,m}$$

$$Q_{cf} = 65,94 * 223,29 * 0,55 = 8098,06[kJ]$$

• Carga de subenfriamiento, ecuación (2-8).

$$Q_b = m_h * Cp_s * (T_{pc} - T_{s,out})$$

$$Q_b = 65,94 * 1,884 * (-2,78 - (-5,5)) = 376,42[kJ]$$

• Carga total en el recipiente congelador, ecuación (2-9).

$$Q_{cong} = Q_e + Q_{cf} + Q_b$$

$$Q_{cong} = 1610,71 + 8098,06 + 376,42 = 10085,19[kJ]$$

3.6.6.3. Carga total de enfriamiento.

$$Q_T = Q_{pre} + Q_{cong} = 2587,49 + 10085,19 = 12672,68[kJ]$$

3.6.6.4 Cálculo del calor ganado por superficie.

El calor ganado a través de las paredes se calcula a partir de la ecuación (2-5).

$$q_g = UA \Delta T = UA(T_{s,i} - T_{s,f})$$

La figura 3.10 muestra las resistencias térmicas en la pared del equipo.

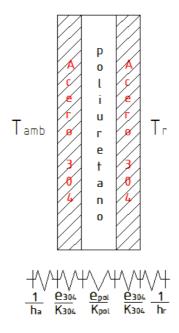


Figura 3.10 Resistencias térmicas en la pared del equipo.

⁴⁹ Helados: elaboración, análisis y control de calidad; Madrid, A; Cenzano, I, España; 2003.

Donde:

 e_{304} = espesor del acero inoxidable 304, [m]

 e_{pol} = espesor del poliuretano, [m]

 k_{304} = conductividad térmica del acero, [W/m°K]

 k_{pol} = conductividad térmica del poliuretano, $[W/m^{\circ}K]$

 h_a = coeficiente convectivo del aire, $[W/m^2K]$

 h_r = coeficiente convectivo del refrigerante, $[W/m^2K]$

• Se define las propiedades de los materiales:

Tabla 3.9 Propiedades de los materiales.

Material	Conductividad térmica [W/m°C]	
Poliuretano ⁵⁰	0,02	
Acero 304 ⁵¹	16,3	
PVC ⁵²	0,16	

- Se fija el flujo de calor máximo permisible, $q_g = 8[Kcal/h]$. 53
- Calculo del coeficiente convectivo del aire, para las paredes laterales, frontal y trasera de la máquina.

La temperatura ambiente es de $T_{amb} = 18 \, [^{\circ}C]$

Se asume una temperatura de la superficie $T_s=17\ [^{\circ}C]$

Propiedades del aire a temperatura $T_m = 273 + 17 = 290$ [°K], (anexo C).

$$T_{amb} = 18$$
[°C]

$$T_s = 17[^{\circ}C]$$

$$g = 9.8 \left[\frac{m}{s^2} \right]$$

$$\beta = \frac{1}{T_m} = 3,45 * 10^{-3}[k]$$

$$v = 15 * 10^{-6} \left[\frac{m^2}{s} \right]$$

 $^{^{50}\} http://asiterm.cl/pdf/FichaTecnicaPoliuretanoAsiterm.pdf.$

⁵¹ http://www.goodfellow.com/S/Acero-Inoxidable-AISI-304.html.

⁵² http://www.pvcastellet.com/cas/aislamiento_termico.asp

⁵³ Tratado práctico de refrigeración automática; Alarcón, J; Barcelona; 1981.

$$k = 0.02546[W/m^{\circ}C]$$

$$Pr = 0,7096$$

$$L = 0.48[m]$$

Cálculo del número de grashof, ecuación

$$Gr = \frac{g\beta L^3}{v^2} (T_{amb} - T_s) = \frac{(9.8 * 3.45 * 10^{-3})}{(15 * 10^{-6})^2} * (18 - 17) * (0.48^3)$$

$$G_r = 8.24 * 10^6$$

$$Gr * Pr = 5.84 * 10^6$$

Si
$$Gr * Pr < 10^9$$

$$Nu_{L} = \frac{hL}{k} = 0.68 + \frac{0.670 * (Gr * Pr)^{1/4}}{[1 + (0.492/Pr)^{9/16}]^{4/9}}$$

$$h_{a} = \frac{0.02546}{0.48} * \left[0.68 + \frac{0.670 * (5.84 * 10^{6})^{1/4}}{[1 + (0.492/0.7096)^{9/16}]^{4/9}} \right] = 1.38[W/m^{2} ° C]$$

• Calculo del coeficiente convectivo del aire, para la pared superior de la máquina.

La temperatura ambiente es de $T_{amb} = 18 \, [^{\circ}C]$

Se asume una temperatura de la superficie $T_s = 17$ [°C]

Propiedades del aire a temperatura $T_m = 273 + 17 = 290$ [°K], (anexo C).

$$T_{amb} = 18[^{\circ}C]$$

$$T_s = 17[^{\circ}C]$$

$$k = 0.02546[W/m^{\circ}C]$$

$$\beta = \frac{1}{T_m} = 3,45 * 10^{-3}[k]$$

$$v = 15 * 10^{-6} \left[\frac{m^2}{s} \right]$$

$$g = 9.8[m/s^2]$$

$$Pr = 0,7096$$

$$L = 0.76[m]$$

Cálculo del número de grashof, ecuación. 54

$$Gr = \frac{g\beta L^3}{v^2} (T_{amb} - T_s) = \frac{(9.8 * 3.45 * 10^{-3})}{(15 * 10^{-6})^2} * (18 - 17) * (0.76^3)$$

$$G_r = 8.24 * 10^6$$

$$Gr * Pr = 5.85 * 10^6$$

Si
$$10^4 \le Gr * Pr \le 10^7$$

$$Nu_L = \frac{hL}{k} = 0.54 * (Gr * Pr)^{1/4}$$

$$h_{a,s} = \frac{0.02546}{0.76} * 0.54 * (5.85 * 10^6)^{1/4} = 0.889[W/m^2°C]$$

• Calculo del coeficiente convectivo del aire, para la pared inferior de la máquina.

La temperatura ambiente es de $T_{amb} = 34 \, [^{\circ}C]$

Se asume una temperatura de la superficie $T_s=33\ [^{\circ}C]$

Propiedades del aire a temperatura $T_m = 273 + 33 = 300$ [°K], (anexo C).

$$T_{amb} = 34[^{\circ}C]$$

$$T_s = 33[^{\circ}C]$$

$$k = 0.02624[W/m^{\circ}C]$$

$$\beta = \frac{1}{T_m} = 3,33 * 10^{-3}[k]$$

$$v = 15,89 * 10^{-6} \left[\frac{m^2}{s} \right]$$

$$g = 9.8[m/s^2]$$

$$Pr = 0.707$$

$$L = 0.76[m]$$

Cálculo del número de grashof, ecuación

$$Gr = \frac{g\beta L^3}{v^2} (T_{amb} - T_s) = \frac{(9.8 * 3.33 * 10^{-3})}{(15.89 * 10^{-6})^2} * (34 - 33) * (0.76^3)$$

$$G_r = 7.09 * 10^6$$

⁵⁴ Fundamentos de transferencia de calor; Incropera, F; 4ta edición; México; 1999.

$$Gr * Pr = 5.02 * 10^6$$

Si
$$10^5 \le Gr * Pr \le 10^{10}$$

$$Nu_L = \frac{hL}{k} = 0.27 * (Gr * Pr)^{1/4}$$

$$h_{a,i} = \frac{0.02624}{0.76} * 0.27 * (5.02 * 10^6)^{1/4} = 0.44[W/m^2 ° C]$$

- Como el coeficiente convectivo del refrigerante es muy grande se considera como infinito y despreciable para el cálculo del coeficiente global de transferencia de calor.
- La temperatura del interior se considera la misma temperatura del refrigerante.
- Determinación del área de transferencia de calor por superficie.

Tabla 3.10 Cálculo del área de transferencia de calor por superficie.

	Dimensio	Área de	
Superficie	Longitud Altura		transferencia.
Lateral derecha	0,76	0,48	0,364
Lateral izquierda	0,76	0,48	0,364
Frontal	0,93	0,48	0,446
Trasera	0,93	0,48	0,446
Inferior	1,10	0,76	0,836

• Se determina el coeficiente global de transferencia de calor para la mayor área de transferencia de calor y mayor diferencial de temperatura. Ecuación (2-5).

$$q_g = U * A * \Delta T$$

Tabla 3.11 Determinación del coeficiente global de transferencia de calor.

q_g	$A[m^2]$	$T_{amb}[^{\circ}C]$	$T_{int}[^{\circ}C]$	$\Delta T[^{\circ}C]$	<i>U</i>	<i>U</i>
[Kcal/	h]				$[Kcal/hm^2$ °C]	$[W/m^2$ °C]
8	0,446	18	-26	44	0,408	0,474
8	0,836	34	-26	60	0,159	0,185

- En base a los datos funcionales el espesor de pared de las planchas de acero inoxidable 304 es de $e_{304} = 0,0015[m]$.
- En base a las resistencias de la figura 3.10, las propiedades de los materiales y la ecuación de cálculo del coeficiente global de transferencia de calor se calcula el espesor del aislante de poliuretano para los paneles frontal, trasero y laterales.

$$U = \frac{1}{\frac{1}{h_a} + \frac{e_{304}}{k_{304}} + \frac{e_{pol}}{k_{pol}} + \frac{e_{304}}{k_{304}}}$$

$$e_{pol} = k_{pol} \left(\frac{1}{U} - \frac{1}{h_a} - 2 * \frac{e_{304}}{k_{304}} \right)$$

$$e_{pol} = 0.020 * \left(\frac{1}{0.474} - \frac{1}{1.38} - 2 * \frac{0.0015}{16.3} \right) = 0.035[m]$$

El espesor mínimo de poliuretano es de 3,5[cm], por lo tanto para el diseño se utiliza una espuma de poliuretano de 4[cm] de espesor.

• Cálculo del espesor del aislante de poliuretano para el panel inferior.

$$U = \frac{1}{\frac{1}{h_{a,i}} + \frac{e_{304}}{k_{304}} + \frac{e_{pol}}{k_{pol}} + \frac{e_{304}}{k_{304}}}$$

$$e_{pol} = k_{pol} \left(\frac{1}{U} - \frac{1}{h_{a,i}} - 2 * \frac{e_{304}}{k_{304}} \right)$$

$$e_{pol} = 0.020 * \left(\frac{1}{0.185} - \frac{1}{0.44} - 2 * \frac{0.0015}{16.3}\right) = 0.079[m]$$

El espesor mínimo de poliuretano es de 7.9[cm], por lo tanto para el diseño se utiliza una espuma de poliuretano de 8[cm] de espesor.

• Datos para el cálculo del flujo de calor.

Tabla 3.12 Temperaturas de los recipientes preenfriador y congelador.

Preenfriador		Congelador	
T_{amb} [°C]	T _{int} [°C]	T_{amb} [°C]	T_{int} [°C]
18	-3	18	-26

• Determinación del área de transferencia de calor.

Parámetros geométricos del preenfriador D = 0.36[m] y congelador D = 0.3[m]

Área de transferencia en la tapa del preenfriador

$$A = \frac{\pi(D)^2}{4} = \frac{\pi * (0.36)^2}{4} = 0.102[m^2]$$

Área de transferencia en la tapa del congelador.

$$A = \frac{\pi * (0,3)^2}{4} = 0,071[m^2]$$

• Determinación del coeficiente global de transferencia de calor en la tapa del preenfriador y congelador. Espesor del aislante $e_{PVC} = 0.003[mm]$

$$U = \frac{1}{\frac{1}{h_{a,s}} + \frac{e_{PVC}}{k_{PVC}}}$$

$$U = \frac{1}{\frac{1}{0,889} + \frac{0,003}{0,16}} = 0,874[W/m^2 °C]$$

• Determinación del flujo de calor por ganancia de superficie, ecuación (2-5).

Flujo de calor en la tapa del preenfriador y congelador.

$$q_{pre} = (0.874) * (0.102) * (18 - 5) = 1.157[W]$$

$$q_{cong} = (0.874) * (0.071) * (18 - (-5.5)) = 1.46[W]$$

 Ejemplo de cálculo del coeficiente global de transferencia de calor en el panel frontal del equipo.

$$U = \frac{1}{\frac{1}{h_a} + \frac{e_{304}}{k_{304}} + \frac{e_{pol}}{k_{pol}} + \frac{e_{304}}{k_{304}}}$$

$$U = \frac{1}{\frac{1}{1.39} + \frac{0,0015}{16.3} + \frac{0,04}{0.020} + \frac{0,0015}{16.3}} = 0,367[W/m^2 °C]$$

• Determinación del flujo de calor ganado a través de las superficies.

Tabla 3.13 Cálculo del calor ganado por superficie en función del área de transferencia de calor.

Superficie	A	h	U	ΔT	q
Pared	$[m^2]$	$[W/m^2$ °C]	$[W/m^2$ °C]	[°C]	[<i>W</i>]
Lateral derecha	0,365	1,38	0,367	44	5,89
Lateral izquierda	0,365	1,38	0,367	44	5,89
Frontal	0,446	1,38	0,367	44	7,20
Trasera	0,446	1,38	0,367	44	7,20
Superior	0,629	0,889	0,320	44	8,86
Inferior	0,836	0,44	0,159	60	5,86
Tapa preenfriador	0,102	0,889	0,874	13	1,157
Tapa congelador	0,071	0,889	0,874	23,5	1,46
q (total)		_	_		43,52

3.6.7. CÁLCULO DEL FLUJO DE CALOR.

El flujo de calor tanto en el recipiente preenfriador como en el congelador se calcula considerando un tiempo de una hora (3600 segundos).

• Flujo de calor en el preenfriador.

$$q_{pre} = \frac{Q_{pre}}{t} = \frac{2587,49}{3600} * 1000 = 718,74[W]$$

Flujo de calor en el congelador.

$$q_{cong} = \frac{Q_{cong}}{t} = \frac{10085,19}{3600} * 1000 = 2801,44[W]$$

• Flujo de calor total.

$$q_{total} = q_{pre} + q_{cong} + q_g = 718,74 + 2801,44 + 43,52 = 3564[W]$$

3.6.8. CÁLCULO DEL FLUJO MÁSICO DEL REFRIGERANTE.

• Cálculo del flujo másico del refrigerante en el preenfriador, ecuación (3-2).

$$\dot{m}_2 = \frac{q_2}{h_5 - h_4}$$

$$\dot{m}_{r,pre} = \frac{718,74}{1000 * (370 - 242)} = 0,0056[kg/s]$$

• Cálculo del flujo másico del refrigerante en el congelador, ecuación (3-1).

$$\dot{m}_1 = \frac{q_1}{h_7 - h_6}$$

$$\dot{m}_{r,cong} = \frac{2801,44}{1000 * (350 - 242)} = 0,026[kg/s]$$

3.6.9. CÁLCULO DEL COEFICIENTE DE RENDIMIENTO DEL CICLO DE REFRIGERACIÓN.

Flujo másico total del refrigerante a la entrada del compresor, ecuación (3-3).

$$\dot{m} = \dot{m}_{r,pre} + \dot{m}_{r,cong}$$
 $\dot{m} = 0.0056 + 0.026 = 0.0316[kg/s]$

Cálculo de la entalpía de vapor en la entrada del compresor h_1 , utilizando la ecuación (3-4) y con los datos de la tabla 3.5.

$$\dot{m}h_1 = \dot{m}_1 h_7 + \dot{m}_2 h_5$$

$$h_1 = \frac{\dot{m}_{r,pre} h_5 + \dot{m}_{r,cong} h_7}{\dot{m}} = \frac{0,0056 * 370 + 0,026 * 350}{0,0316} = 353,54 [kJ/kg]$$

Cálculo de la potencia del compresor, ecuación (3-5).

$$W = \dot{m}(h_2 - h_1) = 0.0316 * (400 - 353.54) * 1000 = 1468[W]$$

Cálculo del COP, ecuación (3-7).

$$COP = \frac{q_{total}}{W} = \frac{3578}{1468} = 2,44$$

El coeficiente de rendimiento calculado es alto y sirve como referencia para la selección de la unidad condensadora.

3.6.10. CÁLCULO DEL COEFICIENTE DE TRANSFERENCIA DE CALOR DEL REFRIGERANTE.

• Las propiedades del refrigerante se calcula a partir de las ecuaciones dadas por el fabricante. 55

$$\mu_l = 180.7 - 2.46 * T + 2.02E^{-2} * T^2 - 1.377E^{-4} * T^3$$
 (3-11)

$$k = 76.7 - 0.333 * T + 1.38E^{-4} * T^2 - 1.06E^{-5} * T^3$$
 (3-12)

$$C_p = 1.345 + 4.435E^{-3} * T + 6.914E^{-5} * T^2 + 2.113E^{-6} * T^3$$
 (3-13)

Donde:

 μ_l = viscosidad del líquido, [Pa * s]

 $k = \text{conductividad térmica de líquido, } [W/m^{\circ}C]$

 C_p = calor específico del líquido, $[kJ/kg^{\circ}C]$

T = temperatura del medio refrigerante, [°C]

 ρ_l = densidad de líquido del refrigerante, $[kg/m^3]$

 ρ_v = densidad de vapor del refrigerante, $[kg/m^3]$

En la tabla 3.14 se indica las propiedades del refrigerante a la temperatura evaluada.

Tabla 3.14 Propiedades del refrigerante.

Propiedades del	Recipiente preenfriador	Recipiente congelador
refrigerante.	a T(-3°C)	a T(-26°C)
μ_l	188,27E ⁻⁶	260,73 E ⁻⁶
k	77,7E ⁻³	85,64 E ⁻³
C_p	1,33	1,24
ρ_l	1162,2	1239
$ ho_v$	27,207	12,225

⁵⁵ Transport properties of Dupont Suva refrigerants.

- Para el cálculo del coeficiente convectivo del refrigerante se considera una tubería de cobre tipo L de 3/8 in de diámetro interior (Di).
- El coeficiente convectivo se calcula utilizando las correlación de flujo interno en tuberías dada por Dittus y Boelter, ecuación (2-21), ya que cumple con las dos condiciones: 0.7 < Pr < 100 y L/D > 60

$$Nu_D = 0.023 * Re_D^{0.8} * Pr^{0.3}$$

3.6.10.1. Cálculo del coeficiente de transferencia de calor en el recipiente preenfriador.

• Cálculo de la velocidad del fluido en el recipiente preenfriador ecuación (3-14).

$$V = \frac{4\dot{m}_r}{\pi \rho_l D_i^2} \tag{3-14}$$

Donde:

V = velocidad del fluido, [m/s]

 \dot{m}_r = flujo másico del refrigerante, [Kg/s]

 D_i = diámetro interior del serpentín de acero inoxidable, [m]

$$V = \frac{4 * 0,0056}{\pi * 1162,2 * (9,525E^{-3})^2} = 0,068[m/s]$$

• Cálculo de Reynolds, ecuación (2-12).

$$Re_D = \frac{V * \rho_l * D_i}{\mu_l}$$

$$Re_{D,1} = \frac{0,068 * 1162,2 * 9,525E^{-3}}{188,27E^{-6}} = 3976,1$$

• Cálculo de Prandtl, ecuación (2-13).

$$Pr_p = \frac{Cp * \mu_l}{k_l}$$

$$Pr_1 = \frac{1,33 * 1000 * 188,27E^{-6}}{77.7E^{-3}} = 3,2$$

• Cálculo del número de Nusselt, ecuación (2-21).

$$Nu_D = 0.023 * Re_D^{0.8} * Pr^{0.4}$$

$$Nu_{D,1} = 0.023 * (3976,1)^{0.8} * (3,2)^{0,4} = 27,85$$

• Cálculo de la longitud característica, ecuación (3-15).

$$l_c = \left[\frac{\sigma}{g(\rho_l - \rho_v)}\right]^{0.5} \tag{3-15}$$

Donde:

 σ = tensión superficial del refrigerante R404A a temperatura de evaporación.

$$g = \text{gravedad } 9.8[m/s^2]$$

Determinación de la tensión superficial, ecuación (3-16)⁵⁶

$$\sigma = O_0 + O_1 T + O_2 T^2 + O_3 T^3$$
 (3-16)
$$O_0 = 7,5370[10^{-3}N/m] \qquad O_2 = 1,6168e^{-4}[10^{-3}N/m^{\circ}C^2]$$

$$O_1 = -0,129[10^{-3}N/m^{\circ}C] \qquad O_3 = 1,5624e^{-6}[10^{-3}N/m^{\circ}C^3]$$

Evaluando la tensión superficial a la temperatura de evaporación de $-3[^{\circ}C]$

$$\sigma = \frac{7,537 - 0,129 * (-3) + 1,6168e^{-4} * (-3)^{2} + 15624e^{-6}(-3)^{3}}{1000}$$

$$\sigma = 0,0079[N/m]$$

$$l_{c} = \left[\frac{\sigma}{g(\rho_{l} - \rho_{v})}\right]^{0,5}$$

$$l_{c} = \left[\frac{0,0079}{9.8 * (1162.2 - 27.207)}\right]^{0,5} = 0,000844[m]$$

• Cálculo del coeficiente convectivo del refrigerante en el preenfriador, ecuación (2-14).

$$h_1 = \frac{Nu_{D,1} * k_l}{l_c} = \frac{27,85 * 77,7E^{-3}}{0.000844} = 2563,9[W/m^2°C]$$

3.6.10.2. Cálculo del coeficiente de transferencia de calor en el recipiente congelador.

• Cálculo de la velocidad del fluido en el recipiente congelador, ecuación (3-7).

$$V = \frac{4 * 0.026}{\pi * 1239 * (9.525E^{-3})^2} = 0.294[m/s]$$

⁵⁶ Solkane 404A; Technical service – refrigerants.

• Cálculo de Reynolds, ecuación (2-12).

$$Re_{D,2} = \frac{0,294 * 1239 * 9,525E^{-3}}{260,73E^{-6}} = 13329,6$$

• Cálculo de Prandtl, ecuación (2-13).

$$Pr_2 = \frac{1,24 * 1000 * 260,73E^{-6}}{85.64E^{-3}} = 3,8$$

• Cálculo del número de Nusselt, ecuación (2-21).

$$Nu_{D.2} = 0.023 * (13842,3)^{0.8} * (3,8)^{0,4} = 78,03$$

• Cálculo de la longitud característica del congelador.

Evaluando la tensión superficial a la temperatura de evaporación de -26[°C]

$$\sigma = \frac{7,537 - 0,129 * (-26) + 1,6168e^{-4} * (-26)^2 + 15624e^{-6}(-26)^3}{1000}$$
$$\sigma = 0,0110[N/m]$$

$$l_c = \left[\frac{0,0110}{9.8 * (1239 - 12.225)}\right]^{0,5} = 0,0009554[m]$$

• Cálculo del coeficiente convectivo del refrigerante en el preenfriador, ecuación (2-14).

$$h_2 = \frac{Nu_{D,2} * k_l}{l_c} = \frac{78,03 * 85,64E^{-3}}{0.0009554} = 6994,7 \left[\frac{W}{m^2} \text{°C} \right]$$

3.6.10.3. Corrección del coeficiente de transferencia de calor del refrigerante, para flujo interno en serpentines helicoidales.

El coeficiente convectivo en serpentines helicoidales se calcula utilizando el factor de corrección dado por la ecuación (2-35).

$$h_i = h_s(1 + 3.5 * (D_i/D_s))$$

• Corrección del coeficiente de transferencia de calor para el recipiente preenfriador.

$$h_{1^*} = 2563.9 \left(1 + 3.5 * \frac{9.525E^{-3}}{0.36} \right) = 2801.33 \left[\frac{W}{m^2} \text{°C} \right]$$

 Corrección del coeficiente de transferencia de calor para el recipiente congelador.

$$h_{2^*} = 6994,66 \left(1 + 3.5 * \frac{9.525E^{-3}}{0.3} \right) = 7771,9[W/m^2 ° C]$$

3.6.10.4. Corrección del coeficiente de transferencia de calor del refrigerante, por convección forzada y evaporación en el interior de tuberías.

Para el cálculo del coeficiente de transferencia de calor se utiliza el factor de corrección dado por Mikielewicz, ecuación (2-36) y (2-37):

$$\frac{h_s}{h_i} = R^{0,4}$$

$$R = 1 + \frac{v_v - v_L}{v_L}$$

• Coeficiente de transferencia de calor en el recipiente preenfriador.

$$R = 1 + \frac{\frac{1}{\rho_v} - \frac{1}{\rho_l}}{\frac{1}{\rho_l}} = 1 + \frac{\frac{1}{27,207} - \frac{1}{1162,2}}{\frac{1}{1162,2}} = 42,72$$

$$h_{r,pre} = 2801,33 * 42,72^{0,4} = 12578,14[W/m^2°C]$$

• Coeficiente de transferencia de calor en el recipiente congelador.

$$R = 1 + \frac{\frac{1}{\rho_v} - \frac{1}{\rho_l}}{\frac{1}{\rho_l}} = 1 + \frac{\frac{1}{12,225} - \frac{1}{1239}}{\frac{1}{1239}} = 101,35$$

$$h_{r,cong} = 7771,94*101,35^{0,4} = 44370,63[W/m^2°{\rm C}]$$

3.6.11. CÁLCULO DEL ÁREA DE TRANSFERENCIA DE CALOR DEL RECIPIENTE PREENFRIADOR.

El área de transferencia de calor del recipiente preenfriador se calcula con la ecuación (2-34).

$$A = \frac{m_h * Cp_l}{U * t} ln \left(\frac{T_{l,in} - T_r}{T_{l,out} - T_r} \right)$$

• Se considera que el fluido de enfriamiento es agua y se calcula el coeficiente de transferencia de calor.

Para el cálculo se utiliza tubería de cobre tipo L de 1/2" de diámetro exterior.

Se evalúa las propiedades del agua a la temperatura $\bar{T} = \frac{T_{l,in} + T_{l,out}}{2} = \frac{5+17}{2} = 11^{\circ}\text{C}$ (285°K), (anexo C).

$$\gamma = 1,000 * 10^{-3} [m^3/kg]$$

$$\mu = 1225 * 10^{-6} [Ns/m^2]$$

$$k = 590 * 10^{-3} [W/m^\circ K]$$

$$\beta = 114,1 * 10^{-6} [°K^{-1}]$$

$$Pr = 8,81$$

Cálculo del número de Grashof, ecuación (2-15).

$$Gr_D = \frac{g\beta(T_s - T_\alpha)D^3}{(\mu\gamma)^2}$$

$$Gr_D = \frac{9.8 * (114.1 * 10^{-6}) * (11 - (-3)) * (0.0127^3)}{((1225 * 10^{-6}) * (1.000 * 10^{-3}))^2} = 21368.73$$

Cálculo del número de Raylegh, ecuación (2-23).

$$Ra_D = Gr_D * Pr$$
 $Ra_D = (21368,73) * 8,81 = 188258,5$ $Ra_D \le 10^{12}$

Cálculo del coeficiente de transferencia de calor del agua, ecuación (2-24)

$$Nu_D = \frac{hD}{k} = \left\{ 0.60 + \frac{0.387Ra_D^{-1/6}}{[1 + (0.559/Pr)^{9/16}]^{8/27}} \right\}^2$$

$$h_{agua} = \left(\frac{590 * 10^{-3}}{0.0127} \right) \left\{ 0.60 + \frac{0.387(188258.5)^{1/6}}{[1 + (0.559/8.81)^{9/16}]^{8/27}} \right\}^2 = 526.83[W/m^2 °C]$$

• Con el coeficiente de transferencia de calor del agua y el del refrigerante se calcula el coeficiente global de transferencia de calor U.

$$U = \frac{1}{\frac{1}{h_{agua}} + \frac{1}{h_{r,pre}}}$$

$$U = \frac{1}{\frac{1}{523,86} + \frac{1}{12578,14}} = 502,91[W/m^{2}°C]$$

• El área de transferencia calculada para un volumen V = 10[l] o una masa de m = 16,485[kg], en un tiempo de enfriamiento t = 600[s] es:

$$A_s = \frac{16,485 * 3266}{502.91 * 600} ln\left(\frac{17 - (-3)}{5 - (-3)}\right) = 0,163[m^2]$$

3.6.11.1 Cálculo del número de espiras del serpentín en el recipiente preenfriador.

Con el área de transferencia de calor se determina el número de espiras de serpentín, mediante la siguiente ecuación:

$$A_t = \pi d_s L_s = \pi^2 d_s D_s N_s {3-17}$$

Donde:

 A_t =área de transferencia de calor, [m]

 d_s = diámetro nominal del serpentín, [m]

 D_s = diámetro de la hélice del serpentín, [m]

 L_s = longitud del serpentín, [m]

 N_s = número del vueltas del serpentín.

$$L_s = \frac{A_t}{\pi * d_s} = \frac{0.163}{\pi * 0.0127} = 4[m]$$

$$N_s = \frac{A_t}{\pi^2 * d_s * D_s} = \frac{0,163}{\pi^2 * 0,0127 * 0,36} = 3,61 vueltas$$

Por lo tanto el serpentín utilizado debe tener un número de espiras o vueltas $N_s = 4 [vueltas]$.

Cálculo del volumen que ocupa el serpentín:

$$V_{\rm s} = A_{\rm s} * L_{\rm s} \tag{3-18}$$

Donde:

 A_s =área del serpentín, [m]

 L_s = longitud del serpentín, [m]

 V_s = volumen que ocupa el serpentín, [m]

Cálculo del área que ocupa el serpentín:

$$A_s = \pi * d_s^2$$

$$A_s = \pi * (0.0127)^2 = 0.00051 [m^2]$$

$$V_s = 0.00051 * 4 = 0.002 [m^3]$$

El cálculo de la altura del recipiente preenfriador se realiza en base a los datos funcionales D = 0.36[m], para un volumen de 10[l].

$$h = \frac{4*V}{\pi*D^2}$$

$$h = \frac{4*(0,010)}{\pi*(0,36)^2} + \frac{4*(0,002)}{\pi*(0,36)^2} = 0,13[m]$$
(3-19)

3.6.12. CÁLCULO DEL COEFICIENTE CONVECTIVO DE MEZCLA.

El cálculo del coeficiente convectivo de la mezcla se lo realiza mediante el método iterativo, para ello es necesario determinar las propiedades de la mezcla y hacer algunas suposiciones:

- Determinar la conductividad térmica de la mezcla $k_l = 0.452 \, [W/m^{\circ}C]^{.57}$
- Viscosidad experimental $u = u_w = 0.5[Pa. s].$ ⁵⁸
- Estimación del número de revoluciones en función de las características de máquinas similares, $N = [200rpm]^{59}$
- El diámetro del tanque se toma de los datos funcionales $D_t = 0.3 [m]$ mientras que el diámetro de las aletas se asume $D_t = 0.3 [m]$;

Cálculo del coeficiente convectivo de la mezcla h_m , ecuación (2-29)

$$\frac{h_m D_t}{k_l} = 0.36 \left(\frac{Da^2 N\rho}{\mu}\right)^{2/3} \left(\frac{Cp\mu}{k_l}\right)^{1/3} \left(\frac{\mu}{\mu}\right)^{0.21}$$

$$h_m = 0.36 \left(\frac{0.452}{0.3}\right) \left(\frac{(0.26)^2 (200/60)(1099)}{0.5}\right)^{2/3} \left(\frac{3266x0.5}{0.452}\right)^{1/3} (1)^{0.21}$$

$$h_m = 502.48 [W/m^{2\circ}C]$$

3.6.13. CÁLCULO DEL ÁREA DE TRANSFERENCIA DE CALOR EN EL RECIPIENTE CONGELADOR.

Para el cálculo del área de transferencia de calor se utilizará la ecuación de Pham (1986), que se basa en un método estimativo que relaciona los cambios producidos durante el congelamiento de un líquido, como son el preenfriamiento, cambio de fase y subenfriamiento. A continuación se muestra la ecuación de cálculo del tiempo de enfriamiento en función del área de transferencia de calor:

_

⁵⁷ http://www.fstadirect.com/GetRecord.aspx?AN=2006-04-Pn0911

⁵⁸ Diseñar y construir un batidor-congelador para la elaboración de helados; Nuñez, F; Proaño, J; Riobamba: 2008.

⁵⁹ http://www.frisher.com.ar/productos.php?id Cat=5.

$$t = \frac{V}{h_r A_s} \left(\frac{\Delta H_1}{\Delta T_1} + \frac{\Delta H_2}{\Delta T_2} \right) \left(1 + \frac{Bi_s}{4} \right)$$
 (3-20)

$$\Delta H_1 = C_{v,l} (T_{s,in} - T_{fm}) \tag{3-21}$$

$$\Delta H_2 = L_f + C_{v,s}(T_{fm} - T_c)$$
 (3-22)

$$\Delta T_1 = \frac{(T_{s,in} + T_{fm})}{2} - T_r \tag{3-23}$$

$$\Delta T_2 = T_{fm} - T_r \tag{3-24}$$

$$Bi_s = \frac{h_m D_t}{k_s} \tag{3-25}$$

$$C_v = \rho * C_p \tag{3-26}$$

$$T_{fm} = 1.8 + 0.26T_c + 0.15T_r (3-27)$$

Donde:

t= tiempo de enfriamiento, [°C]

 ΔH_1 , ΔH_2 , ΔH_3 = cambio de entalpía volumétrico, $[kJ/m^3]$

 ΔT_1 , ΔT_2 = cambio de temperatura, [°C]

 $C_{v,l}$ = calor específico volumétrico encima del punto de congelación, $[kJ/m^3 \circ C]$

 $C_{v,s}$ = calor específico volumétrico debajo del punto de congelación, $[kJ/m^3 {}^{\circ}C]$

 $T_{s,in}$ = temperatura inicial de la mezcla líquida de helado, [°C]

 T_{fm} = temperatura supuesta de enfriamiento, [°C]

 T_r = temperatura del refrigerante, [°C]

 T_c = temperatura del centro del producto, [°C]

 L_f = calor latente de fusión o congelación, [kJ/kg]

V= volumen de la mezcla de helado, $[m^3]$

 A_s = área de transferencia de calor, $[m^2]$

 h_m = coeficiente convectivo de la mezcla, $[W/m^2$ °C]

 h_r = coeficiente convectivo del refrigerante, [k W/m^2 °C]

 C_p = calor específico, $[kJ/kg^{\circ}C]$

 D_t = diámetro del tanque, [m]

 k_s = conductividad térmica de la mezcla solida, [W/m°C]

 Bi_s = número de Biot

En la siguiente figura se indica las temperaturas consideradas para el cálculo del área de transferencia de calor.

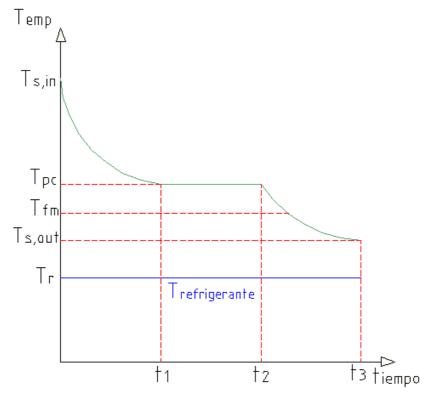


Figura 3.11 Variación de la temperatura en función del tiempo.

• Temperatura supuesta de enfriamiento, ecuación (3-27).

$$T_{fm} = 1.8 + 0.26T_c + 0.15T_r$$

La temperatura del centro del helado se asume como la temperatura final alcanzada por el enfriamiento $T_c = T_{s,out}$.

$$T_{fm} = 1.8 + 0.26(-5.5) + 0.15(-26) = -3.53[\degree C]$$

• Cálculo de ΔH_1 , ecuación (3-21).

$$\Delta H_1 = C_{v,l} \big(T_{s,in} - T_{fm} \big) = C_{p,l} * \rho * \big(T_{s,in} - T_{fm} \big)$$

$$\Delta H_1 = 3,27 * 1099 * (5 - (-3,53)) = 30654,52 [kJ/m^3]$$

• Cálculo de ΔH_2 , ecuación (3-22).

$$\Delta H_2 = L_f + C_{v,s} (T_{fm} - T_c) = L_f + C_{p,s} * \rho * (T_{fm} - T_c)$$

$$\Delta H_2 = 223,\!29*1099+1,\!88*1099*(-3,\!53-(-5,\!5)) = 249474,\!63\,[kJ/m^3]$$

• Cálculo de ΔT_1 , ecuación (3-23).

$$\Delta T_1 = \frac{(T_{s,in} + T_{fm})}{2} - T_r$$

$$\Delta T_1 = \frac{5 + (-3,53)}{2} - (-26) = 26,74 \, [^{\circ}C]$$

• Cálculo de ΔT_2 , ecuación (3-24).

$$\Delta T_2 = T_{fm} - T_r$$

$$\Delta T_2 = -3.53 - (-26) = 22.47 [^{\circ}C]$$

Determinación de la conductividad de la mezcla sólida.⁶⁰

$$k_s = 0.993[W/m^{\circ}C]$$

• Cálculo del número de Biot, ecuación (3-25).

$$Bi_s = \frac{h_m D_t}{k_s} = \frac{502,48 * 0,3}{0,993} = 151,81$$

• Cálculo del volumen de la mezcla de helado.

Durante el proceso de batido de la mezcla líquida de helado se considera un sobre rendimiento de la mezcla. En base a los datos de la tabla 1.2, se utiliza un overrun del 50% para helados super premiun, y se calcula el sobre rendimiento de la mezcla.

Cálculo del volumen de la mezcla de helado, ecuación (1-2).

Overrun =
$$\frac{\text{Volumen de la helado - Volumen de la mezcla}}{\text{Volumen de la mezcla}} \times 100\%$$

Volumen de helado = $(0.5 \times 60) + 60 = 90[l]$

Con un aumento del 50% se toma un volumen inicial de mezcla líquida de 10[l], y un volumen de helado de 15[l] (0,015) (valor referencial para el cálculo del área de transferencia de calor).

- Se utiliza el coeficiente de transferencia de calor del refrigerante anteriormente calculado $h_r = 44,37[kW/m^2{}^{\circ}\text{C}]$
- Con la ecuación (3-20) y con los datos obtenidos, se calcula el área de transferencia de calor en función del tiempo.

$$A_s = \frac{0,015}{44,37 * t} \left(\frac{30654,52}{26,74} + \frac{249474,63}{22,47} \right) \left(1 + \frac{151,81}{4} \right)$$

⁶⁰ http://www.fstadirect.com/GetRecord.aspx?AN=2006-04-Pn0911.

Tiempo	Área de	
[s]	transferencia[m ²]	
350	0,46085075	
385	0,41895523	
420	0,38404229	
460	0,35064731	
500	0,32259553	
545	0,2959592	

Tabla 3.15 Cálculo del área de transferencia de calor en función del tiempo.

3.6.13.1. Cálculo del número de espiras del serpentín en el recipiente congelador.

600

640

0,2688296

0,25202775

Con el área de transferencia de calor se determina el número de espiras de serpentín, mediante la siguiente ecuación (3-17).

$$L_s = \frac{A_s}{\pi * d_s} = \frac{0,269}{\pi * 0,0127} = 7[m]$$

$$N_s = \frac{A_s}{\pi^2 * d_s * D_s} = \frac{0,269}{\pi^2 * 0,0127 * 0,3} = 7,2[vueltas]$$

Por lo tanto el serpentín utilizado debe tener un número de espiras o vueltas $N_s = 8 [vueltas]$.

Cálculo del volumen que ocupa el serpentín ecuación (3-18)

$$A_s = \pi * (0.0127)^2 = 0.0005 [m^2]$$

$$V_s = 0.0005 * 7.2 = 0.0036 [m^3]$$

El cálculo de la altura del recipiente congelador se realiza en base a los datos funcionales D = 0.3[m], para un volumen del helado de 15[l], ecuación (3-5)

$$h = \frac{4 * V}{\pi * D^2}$$

$$h = \frac{4 * (0,015)}{\pi * (0,3)^2} + \frac{4 * (0,0036)}{\pi * (0,3)^2} = 0,26[m]$$

La altura calculada para el recipiente congelador es 0,26[m], como se requiere que la descarga del recipiente preenfriador coincida con la entrada del fluido en el congelador, se debe comprobar que la altura del preenfriador sea el doble de la del congelador.

$$h = 2 * (0,13) = 0,26[m]$$

3.7. SELECCIÓN DE EQUIPOS Y ACCESORIOS PARA EL SISTEMA DE REFRIGERACIÓN.

El proceso de selección de equipos y accesorios para el sistema de refrigeración consiste en el análisis termodinámico del ciclo de refrigeración, la distribución apropiada de los elementos que conforman la máquina, costos de fabricación y mantenimiento.

La selección de los equipos se realizará en base a los resultados entregados por el programa coolselector de la empresa Danfoss, catálogos y programas complementarios de selección de accesorios facilitados por empresas reconocidas en el mercado.

3.7.1. SELECCIÓN DE LA UNIDAD CONDENSADORA.

Para la selección de la unidad condensadora se toma en cuenta que todas las partes que la conforman van montadas sobre una misma bancada, el medio condensante a enfriar es aire, el compresor es de tipo alternativo semihermético, de pistones y simple etapa, automatismos (filtros, válvulas, visores, etc.) que facilita la instalación de los diversos componentes del circuito de refrigeración.

Datos de entrada:

Capacidad de refrigeración: 3,5 [W]

Refrigerante: R404a.

Voltaje: 220 [V].

Frecuencia: 60 [Hz]

Temperatura de evaporación: -26 [°C]

Temperatura ambiente: 34 [°C]

Recalentamiento evaporador: 10 [K]

Recalentamiento total: 10 [K]

Figura 3.12 Unidad condensadora OPTYMA.

Mediante el software Coolselector, se seleccionó la unidad condensadora marca OPTYMA, modelo OP-HGZD0400U, ver anexo D.

3.7.2. SELECCIÓN DE LAS VÁLVULAS.

3.7.3.1. Válvula reguladora de presión y válvula de retención.

El regulador de presión de evaporación se instala en la línea de aspiración detrás del evaporador para regular la presión de evaporación. En las instalaciones que trabajan con diferentes presiones de evaporación, se monta una válvula reguladora de presión (KVP) detrás del evaporador con más alta presión y una válvula de retención (NRV) en la línea de aspiración detrás del evaporador con la presión de aspiración más baja.

Válvula reguladora de presión.

Datos de entrada:

Refrigerante: R404a.

Capacidad del evaporador: 0,8 [W]

Temperatura del evaporador: -3 [°C]

Temperatura del líquido: 30[°C]

Temperatura del evaporador (mín.): -5[°C]

Serie: KVP.

Figura 3.13 Válvula reguladora de presión.

La válvula reguladora de presión que se usó es de tipo KVP12, conexión soldada serie 034L0023 software danfoss, (ver anexo E).

• Válvula de retención.

Datos de entrada.

Refrigerante: R404a.

Capacidad de refrigeración: 3,6 [W]

Posición de tubería: Tubería de aspiración.

Temperatura de evaporación: -26 [°C]

Temperatura de condensación: 34 [°C]

Serie: NRV.

Figura 3.14 Válvula de retención NRV12.

En base a los datos de entrada se seleccionó la válvula de retención NRV12 software danfoss, anexo F.

3.7.3.2. Válvulas de expansión termostáticas.

Este tipo de válvulas se utilizan para suministrar la cantidad correcta de refrigerante en cada momento. Las válvulas se seleccionan con la ayuda del programa Cool Selector, anexo G.

• Evaporador de alta temperatura (preenfriador).

Datos de entrada.

Refrigerante: R404a.

Capacidad de refrigeración: 0,8 [W]

Temperatura de evaporación: -3 [°C]

Temperatura de condensación: 34 [°C]

Figura 3.15 Válvula de expansión termostática.

De los resultados obtenidos se seleccionó la válvula TE2 con orificio N°00.

• Evaporador de baja temperatura (congelador).

Datos de entrada.

Refrigerante: R404a.

Capacidad de refrigeración: 2,8 [W]

Temperatura de evaporación: -26 [°C]

Temperatura de condensación: 34 [°C]

De los resultados obtenidos se seleccionó la válvula TE2 con orificio N°02.

3.7.3.3. Válvulas solenoides.

Permite abrir o cerrar las líneas de líquido, aspiración y gas caliente. Las válvulas se seleccionan con la ayuda del programa Cool Selector.

Datos de entrada.

Refrigerante: R404a.

Capacidad de refrigeración: 3,6 [W]

Temperatura de evaporación: -26 [°C]

Temperatura de condensación: 34 [°C]

Posición de tubería: tubería de líquido

Figura 3.16 Válvula solenoide.

De los resultados obtenidos se seleccionó la válvula EVR 3 tanto para el evaporador de alta como para el de baja, conexión soldado. Ver anexo H.

3.7.3.4. Filtro secador.

Este dispositivo permite proteger al sistema de la humedad y partículas sólidas.

Datos de entrada.

Refrigerante: R404a.

Capacidad del evaporador: 3,6 [W]

Temperatura de evaporación: -26 [°C]

Temperatura de condensación: 34 [°C]

Carga del sistema: 20 [kg]

Tipo de aceite: POE

Figura 3.17 Filtro secador.

De los resultados obtenidos se seleccionó un filtro tipo DML084 para la línea de líquido, conexión roscada. Ver anexo I.

3.7.3.5. Visor.

Se monta en la línea de líquido y permite visualizar el nivel del refrigerante, situación del aceite, carga de refrigerante y subenfriamiento.

Datos de entrada.

Refrigerante: R404a.

Temperatura de líquido: 30[°C]

Montaje: tubería

Tipo de conexión: Soldar

Tamaño de conexión: 1/2in x 1/2in

Figura 3.18 Visor.

De los resultados obtenidos se seleccionó un visor SGI 12s tipo 014-0036 para la línea de líquido, anexo J.

3.7.3.6. Tubería de cobre.

La selección de la tubería se realiza en función del diámetro nominal y del fluido que circula por el interior, tanto para la línea de líquido como para la línea de succión, ver anexo K.

Datos de entrada.

Diámetro nominal de la tubería: 1/2in

Material: Cobre tipo L

Figura 3.19 Tubería de cobre tipo L.

3.7.3.7. Tubería de acero inoxidable.

Para la selección de la tubería con la que se conforma el serpentín helicoidal de los evaporadores que están en contacto directo con el producto alimenticio, se realizó en función del diámetro nominal y material de la tubería. Ver anexo K.

Datos de entrada.

Diámetro nominal de la tubería: 1/2in

Material: acero inoxidable 304 L.

3.7.3.8. Contactor y relé térmico.

El contactor es el elemento encargado de permitir o interrumpir el paso de corriente, mientras que el relé térmico protege al motor de sobrecargas. El Contactor y relé térmico que se utilizará en la unidad condensadora OPTYMA OP-HGZD0400U y en el motoreductor Rossi, se selecciona en base al voltaje y corriente nominal del equipo. Ver anexo L.

Datos de entrada de la unidad condensadora.

Voltaje nominal: 220V

Corriente nominal: 11,88 A

Potencia: 5 HP

Datos de entrada del motoreductor.

Voltaje nominal: 220V

Corriente nominal: 3A

Potencia: 0,5 HP

Figura 3.20 Contactor y relé termico.

De catálogo se seleccionó un contactor LG GMC18 y un relé térmico GTK22.61

61 http://www.bridex.com.au/lg gmc-9 gmc-12 gmc-18 gmc-22 contactors.htm

_

3.7.3.9. Válvula de dosificación.

La válvula de descarga es la encargada de asegurar el paso del helado desde el recipiente preenfriador al recipiente congelador.

Datos de entrada.

Voltaje nominal: 220V

Frecuencia: 60 Hz

Fluido de trabajo: Helado

Diámetro nominal: 3/8

Figura 3.21 Válvula solenoide 6013.

De catálogo se seleccionó una válvula solenoide de acero inoxidable 6013 tipo G 3/8. Ver anexo M.

3.8. DETERMINACIÓN DE LAS DIMENSIONES DE LA MÁQUINA.

Las dimensiones apropiadas del equipo se determinaron tomando en consideración la disposición de la unidad condensadora, recipiente preenfriador, recipiente congelador, posición del motoreductor y demás componentes de la máquina.

Alto de la máquina: 1,70 m

Ancho de la máquina: 0,80 m

Largo de la máquina: 1,1 m

CAPÍTULO 4

DISEÑO MECÁNICO DEL EQUIPO

En este capítulo se realizará los cálculos respectivos para determinar, la potencia requerida por el agitador, la selección del motoreductor, el diámetro del eje, dimensionamiento del bastidor y pernos, etc. Una vez determinada las cargas, esfuerzos y dimensiones de los componentes de la máquina se procederá con el análisis y simulación de los esfuerzos mediante el método de los elementos finitos, utilizando el software Inventor 2012. Finalmente se diseñará el sistema de dosificación y mecanismo de descarga del helado.

4.1. CALCULO DE LA POTENCIA CONSUMIDA POR EL AGITADOR.

Para la calcular la potencia consumida por el agitador se emplea un método empírico, para lo cual es necesario conocer parámetros adimensionales como son:

• Número de Reynolds, expresado en variables convenientes para la agitación.

$$N_{Re} = \frac{Da^2N\rho}{\mu} \tag{4-1}$$

Dónde:

Da = diámetro de las aletas, [m]

N = número de revoluciones, [rps]

 $\rho = \text{densidad del líquido}, [kg/m^3]$

 $\mu = \text{viscosidad absoluta de la mezcla, } [Pa.s]$

$$N_{Re} = \frac{0.24^2 * \frac{200}{60} * 1099}{0.5} = 422.02$$

• Número de Potencia, coeficiente de arrastre para sistemas de agitación.

$$N_{Po} = \frac{{}^{P}g_{c}}{{}^{N3}Da^{5}\rho}$$
 (4-2)

Dónde:

P = potencia, [W]

 g_c = constante dimensional, $[kg.m/Ns^2]$

La potencia consumida por un agitador mecánico tipo ancla puede ser calculada a partir del número de potencia obtenido de la figura 4.1 para un determinado número de Reynolds.

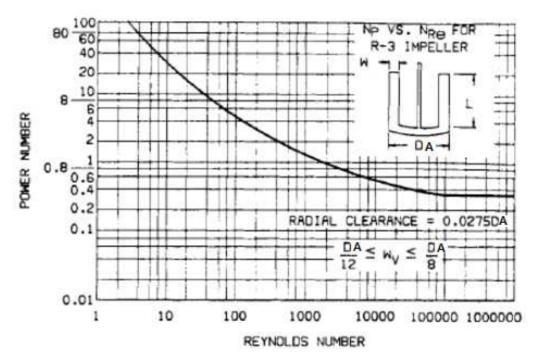


Figura 4.1 Número de Reynolds en función del número de potencia. 62

Mediante interpolación gráfica se determinó que el número de Potencia para el número de Reynolds calculado es:

$$N_{Po}=2$$

Por lo tanto la potencia suministrada por el motoreductor se calcula mediante la ecuación (4-2):

$$P = \frac{N_{Po} N^3 D a^5 \rho}{gc}$$

$$P = \frac{2 * 3,33^3 * 0,24^5 * 1099}{1} = 64,62 [W]$$

$$P = 0,09 HP$$

4.2. SELECCIÓN DEL MOTOREDUCTOR.

La potencia necesaria calculada para el motoreductor no está disponible en el mercado, por lo tanto se sobredimensiona y selecciona la potencia del mismo en base a equipos existentes en el mercado nacional. Ver anexo N.

⁶² Chemical Process equipment: Selection and desing; Couper, J; Penny, L; Walas, M; 2da edición; 2006.

Motoreductor

Marca: Rossi Potencia: 0,25HP

Modelo: MRV 32 Rpm salida: 200 rpm

4.3. CALCULO DEL DIAMETRO DEL EJE.

4.3.1. ANÁLISIS ESTÁTICO.

El eje sirve de acople entre el motoreductor y el agitador mecánico, y permite la sujeción entre los dos componentes.

Para el dimensionamiento del eje se parte de la teoría de diseño mecánico de elementos de máquinas, mediante la siguiente ecuación para el diseño de ejes. ⁶³

$$d = \left(\frac{32N}{\pi} \left[(K_t M)^2 + \frac{3}{4} \left(\frac{T}{S_y}\right)^2 \right]^{1/2} \right)^{1/3}$$
 (4-3)

Dónde:

d = Diámetro del eje, [m]

N = Factor de seguridad del diseño

T = Torque transmitido por el eje [Nm]

 $S_v = \text{Resistencia a la fluencia del material, } [MPa]$

 K_t = Factor de concentración de esfuerzos.

Como el eje solo está sometido al torque producido por el motoreductor y no a cargas perpendiculares que provoquen flexión, el diseño se lo realizará en base al momento torsor producido por el torque aplicado. El acero utilizado en la construcción del eje es AISI 1045 Sy=314 [MPa], (anexo A).

$$T = \frac{P}{\omega}$$

$$T = \frac{186}{3.33 * 2\pi} = 8.9 [Nm]$$

Una vez determinado el torque se calcula el diámetro del eje, ecuación (4-3).

$$d = \left(\frac{32 * 2}{\pi} \left[\frac{3}{4} \left(\frac{8,9}{314e6} \right)^2 \right]^{\frac{1}{2}} \right)^{1/3}$$

⁶³ Diseño de elementos de máquinas; Mott, R; 4ta edición; Mexico; 2006.

Diámetro calculado

 $d \approx 8 [mm]$

Como diámetro del eje calculado es menor que el diámetro del cubo que sirve de alojamiento para el acople en el motoreductor, se sobredimensiona el diámetro del eje tomando en cuenta que no se producirá falla en este.

El agitador tipo ancla está constituido por paletas que van soldadas sobre una barra cilíndrica, que será montada en el primer eje que sirve de acople entre el agitador y el reductor, por lo que su diámetro deberá ser de menor medida ya que estará alojada en el interior del acople con el fin de transmitir torque. Al ser un diámetro de 9 mm suficiente para transmitir el torque calculado sin llegar a la falla, entonces se elige un diámetro de 12 mm para la barra sobre la cual se soldará las paletas del agitador.

4.3.2. ANÁLISIS DINÁMICO.

Como el eje-acople está sometido solo a esfuerzos cortantes, se parte de la presente ecuación para determinar un factor de seguridad en condiciones de esfuerzos variables.⁶⁴

$$n = \frac{S_{Se}}{\tau_g} \tag{4-5}$$

$$S_{Se} = 0.577 * 0.5S_{ut} * k_a * k_b * k_c * k_d * k_e * k_f$$
 (4-6)

Donde:

 k_a = Factor de superficie

 k_b = Factor de tamaño.

 k_c = Factor de confiabilidad.

 k_d = Factor de temperatura.

 k_e = Factor de modificación por concentración de esfuerzos.

 k_f = Factor de efectos varios.

 S_{ut} = Resistencia a la tracción = 650 [MPa]

 τ_a = Esfuerzo cortante amplitud, [MPa]

Los valores de los factores se determinan a continuación:

$$k_a = aS_{ut}^{\ b} \tag{4-7}$$

_

⁶⁴Diseño en Ingeniería mecánica; Shigley, J; Mc Graw Hill, 8va edición; Estados Unidos; 2006.

PROCESO Kpsi MPa Esmerilado 1.34 1.58 -0.086Maquinado o 2.67 4.45 -0.265laminado en frío Laminado en -0.71914.5 56.1 caliente **Forjado** 38.9 271 -0.995

Tabla 4.1 Determinación de factores a y b.

$$k_b = 1.24 * d^{-0.107} 2.79 \le d \le 51 \, mm$$
 (4-8)

 k_c = 0,59 torsión pura

 $k_d = 1$

 $k_e = 1$

 $k_f = 1$

El esfuerzo cortante amplitud es:

$$\tau_a = \frac{\tau_{max} - \tau_{min}}{2} = \frac{16T_{max}}{2\pi d^3}$$

$$n = \frac{0,577 * 0,5 * 650 * 0,533 * 0,9 * 0,59 * 1 * 1 * 1}{16 * 8,9} = 16$$

$$\frac{16 * 8,9}{2 * \pi * 0,019^3}$$

El factor de seguridad calculado es alto, por lo tanto el eje diseñado no fallará a fatiga.

4.4. DISEÑO DEL BATIDOR.

En el proceso de homologación de la mezcla es necesario el uso de un agitador mecánico el cual deberá ser seleccionado y diseñado tomando en cuenta las condiciones a las cuales va a estar sometido el mismo.

Para mezclas que varían su viscosidad y en las cuales la velocidad de agitación es baja, se recomienda la utilización de agitadores de paletas tipo ancla o compuerta para garantizar un flujo tanto axial como radial. Este tipo de agitador se emplea con fluidos viscosos que pueden generar depósitos en las paredes.⁶⁵

_

⁶⁵Proceso de transporte y operaciones unitarias; Geankopolis, C; 3ra edición; México; 1998.

4.4.1. DIMENSIONAMIENTO DEL AGITADOR MECÁNICO.

Las dimensiones del agitador mecánico vienen dadas en proporciones que relacionan el diámetro del tanque contenedor de la mezcla a ser homogenizada y las distintas medidas del agitador.

A continuación en la figura 4.2 se muestra las dimensiones recomendadas para el agitador tipo ancla.

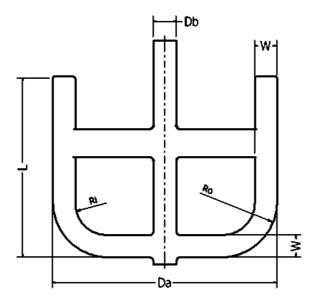


Figura 4.2 Dimensiones del agitador tipo ancla.⁶⁶

$$\frac{Da}{Dt} = 0.8$$

$$\frac{W}{Da} = \frac{1}{8}$$

$$L = 0.6Dt$$

$$C = 0.043Dt$$

Dónde:

Dt= diámetro del tanque, [m]

Da = diámetro de las paletas, [m]

W = ancho de las paletas, [m]

L= altura del ancla, [m]

C = altura entre el ancla y el fondo del recipiente, [m]

Las dimensiones del agitador calculadas en base a las del tanque se muestran en detalle a continuación:

⁶⁶ Agitación de fluidos no newtonianos; Flores, J; Quito; 2001.

Descripción	Nomenclatura	Dimensiones
Diámetro de las paletas	Da	Da = 0.80*0.30 = 0.24 [m]
Ancho de las paletas	W	W = Da/8 = 0.03 [m]
Altura del ancla	L	L = 0.60*0.30 = 0.18 [m]
Radios	Ro	Ro = 0.25*Da = 0.06 [m]
	Ri	Ri = Ro - W = 0.03 [m]

Tabla 4.2 Cálculo de las dimensiones del agitador

4.4.2. DETERMINACIÓN DEL ESPESOR DE LAS PALETAS DEL AGITADOR.

Db

Para la determinación del espesor es necesario conocer la fuerza de arrastre producida por la mezcla durante el proceso de agitación sobre las paletas del homogenizador. Dicha fuerza será calculada en base a la siguiente ecuación:

$$F_D = \frac{1}{2} C_D \rho V^2 A$$
 (4-10)

Db = 0.012 [m]

Dónde:

 F_D = fuerza que ejerce el fluido sobre las paletas.

 C_D = coeficiente de arrastre.

 ρ = densidad del fluido.

Diámetro del eje del agitador

V = velocidad lineal del fluido.

A = área de la paleta del agitador.

El coeficiente de arrastre será determinado a partir de la relación de dimensiones de las paletas de una manera empírica con la utilización de la figura 4.3.

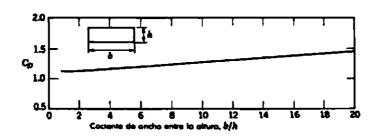


Figura 4.3 C_D en función del cociente de ancho entre la altura⁶⁷

Debido a que para paletas tipo ancla no existen relaciones adecuadas para la determinación del coeficiente de arrastre se la analiza una geometría aproximada por

-

⁶⁷ Introducción a la Mecánica de fluidos; Fox, A; McGraw-Hill; 2da edición; México; 1989.

secciones. En la siguiente figura se muestra la medida de cada una de las partes que conforman el agitador tipo ancla.

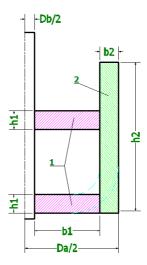


Figura 4.4 Sección del agitador tipo ancla.

En la tabla 4.3 se determinan los valores de cada una de las partes del agitador que se muestran en la figura 4.4.

b1 [m]	b2 = W [m]	h1= W [m]	h2 = L [m]
0,084	0,03	0,03	0,18
b1/h1	C _{D1}	b2/h2	C_{D2}
2.8	1,2	0,166	1,0

Tabla 4.3 Dimensiones del agitador tipo ancla.

Determinados los coeficientes de arrastre y tomando en cuenta que la velocidad lineal de un diferencial de área varia con el radio, se debe replantear la ecuación en función de ésta variable.

$$F_D = \frac{1}{2} C_D \rho(\omega^2 r^2) Wr \tag{4-11}$$

Dividiendo ambos lados de la ecuación para *dr* e integrando entre los límites establecidos para cada una de las geometrías asumidas (figura 4.4), se determina el momento flector que esta fuerza produce sobre las paletas del agitador. Este momento será mayor al considerar la mezcla congelada, debido al incremento en la densidad.

• Momento resultante en el área 1.

$$\int_{Db/2}^{Da/2} F_D dr = \frac{1}{2} C_D \rho c \omega^2 * 2W \int_{Db/2}^{Da/2} r^3 dr$$

$$M_1 = 1,2 * 1118,7 * 20,92^2 * 0,03 \int_{0,006}^{0,084} r^3 dr$$

$$M_1 = 0.1832 Nm$$

• Momento resultante en el área 2.

$$M_2 = \frac{1}{2} * 1 * 1118,7 * 20,92^2 * 0,18 \int_{0,084}^{0,12} r^3 dr$$

$$M_2 = 1,74 Nm$$

En el diseño de elementos de máquinas se tiene que el factor de seguridad de un elemento es el resultado de la relación entre la resistencia a la fluencia del material y el esfuerzo que soporta éste. El esfuerzo en este caso se calcula en base al momento máximo que soportan las paletas, es decir $M = M_2$, además de una estimación de 2 para el factor de seguridad n y una resistencia a la fluencia Sy = 225[MPa], para un acero AISI 304, anexo A.

$$n = \frac{S_y}{\sigma} \tag{4-12}$$

$$\sigma = \frac{Mc}{I} \tag{4-13}$$

$$\sigma = \frac{M*\frac{e}{2}}{\frac{2W*e^3}{12}} \tag{4-14}$$

Combinando las ecuaciones (4-12) y (4-14), despejando el espesor del material y reemplazando valores, se determina el espesor del material utilizado para el diseño de las paletas.

$$e = \sqrt{\frac{3n*M}{S_y W}} = \sqrt{\frac{3*(2)*1,71}{225*0,03}}$$
 (4-15)

$$e = 1.23 \, mm$$

Por facilidad de maquinado, montaje y soldadura se elige un material de 3 [mm] de espesor para el diseño de las paletas.

4.4.2.1. Análisis a fatiga.

De acuerdo con los resultados obtenidos se observa que el mayor momento se produce en el área 2, por lo que se procede al cálculo del momento tomando en cuenta su variación respecto a su densidad inicial. Momento resultante en el área 2.

$$\int_{Db/2}^{Da/2} F_D dr = \frac{1}{2} C_D \rho l \omega^2 * 2W \int_{Db/2}^{Da/2} r^3 dr$$

$$M_3 = \frac{1}{2} * 1 * 1099 * 20,92^2 * 0,18 \int_{0,084}^{0,12} r^3 dr$$

$$M_3 = 1,71 Nm$$

Para el análisis a fatiga se considera $M_2=M_{max}$ y $M_3=M_{min}$ para el cálculo de los esfuerzos producidos por el cambio de densidad en la mezcla.

$$\sigma_{max} = \frac{M_{max} * \frac{e}{2}}{\frac{2W * e^3}{12}} = \frac{1,74 * \frac{0,003}{2}}{\frac{2 * 0,03 * 0,003^3}{12}} = 19,3e^6 = 19,3 [MPa]$$

$$\sigma_{min} = \frac{M_{min} * \frac{e}{2}}{\frac{2W * e^3}{12}} = \frac{1,71 * \frac{0,003}{2}}{\frac{2 * 0,03 * 0,003^3}{12}} = 19e^6 = 19 [MPa]$$

Los esfuerzos producidos sobre las paletas del agitador no muestran una variación significativa, por lo que el análisis a fatiga resultaría innecesario.

4.5. DIMENSIONAMIENTO Y ANALISIS DEL SOPORTE DEL MOTOREDUCTOR.

El montaje del motoreductor se realiza en una estructura soporte que cumpla con los requerimientos necesarios.

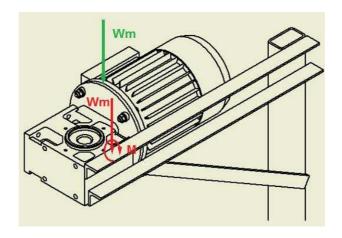


Figura 4.5 Esfuerzos sobre el perfil soporte del motoreductor.

Dadas las dimensiones de la base del reductor de velocidades, es necesaria la selección de un perfil que sirva para el anclaje de éste, por lo que se elige un perfil en L de 25x25x4 mm (anexo O). En el presente análisis se considera el perfil como una viga en cantiléver, para la cual se calcula los esfuerzos producidos por el peso del motoreductor.

Figura 4.6 Sistema equivalente

En el sistema equivalente se indica el traslado del peso del conjunto motoreductor sobre un punto específico ubicado sobre el perfil, con el objeto de facilitar el análisis de momento flector, torsor y de esfuerzos cortantes actuando sobre una viga.

$$n = \frac{S_y}{\sigma} = \frac{S_y * I}{M * c} \tag{4-16}$$

Donde:

 S_v = resistencia a la fluencia del perfil,[MPa]

I =momento de inercia del perfil, [mm⁴]

c =distancia al centroide del perfil, [mm]

n = factor de seguridad calculado por flexión.

Donde el momento flector (M) sobre la viga es producido por el peso del motoreductor, el mismo que se supone estará concentrado en el punto C. Las dimensiones de los perfiles tomando en cuenta la ubicación de las cargas y la distancia hacia los empotramientos, son las siguientes:

$$AB =$$
, $AD = 367 \text{ mm}$, $DC = 48 \text{ mm}$, $\alpha = 30^{\circ}$

La longitud total de los perfiles en L es de 440 mm, pero en los cálculos se considera la medida AD, ya que el punto A está ubicado en la mitad del arreglo de los pernos de sujeción, considerando que el perfil esta empotrado.

La determinación de las propiedades necesarias para el cálculo del factor de seguridad, se calcularon mediante el Software Inventor 2012 por facilidad.

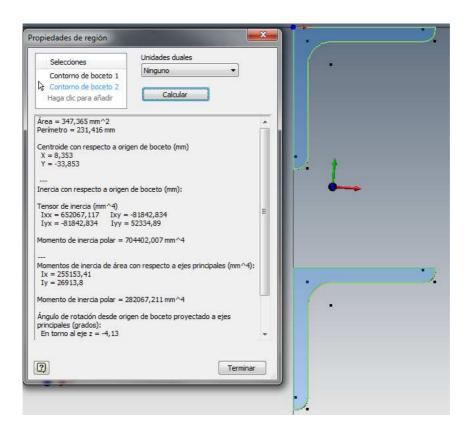


Figura 4.7 Propiedades determinadas en Inventor

 $Ix = 255153,41 \text{ [mm}^4\text{]}$

c = 33.853 mm

• Mediante la ecuación (4-16) se determina el factor de seguridad en el perfil.

$$n = \frac{253,42 * 255153,41}{12 * 9,81 * 367 * 33,853} = 45$$

El factor de seguridad es elevado, esto se debe a que el perfil es capaz de soportar mayor carga que la que se le está aplicando. El perfil satisface las dimensiones geométricas necesarias para el montaje del motoreductor, siendo correcta la selección del mismo.

4.6. ANÁLISIS DEL BASTIDOR DE LA MÁQUINA POR EL MÉTODO DE ELEMENTOS FINITOS MEDIANTE EL SOFTWARE INVENTOR 2012.

Dada la complejidad de la estructura, se procede a la utilización de un software que facilite el análisis de los esfuerzos y desplazamientos en cada uno de los perfiles que conforman el bastidor. Siendo necesario conocer las cargas que van a soportar los distintos perfiles, así como la distribución de dichas cargas sobre estos.

En el anexo O, se indica el tipo de perfiles, planchas, platinas utilizados para la fabricación en la estructura. Además en el anexo P se muestra las dimensiones y propiedades de las planchas de poliuretano.

4.6.1. CONSIDERACIONES PARA EL ANÁLISIS.

- Las cargas distribuidas se las considera por unidad de longitud [N/mm], por lo que se calcula la longitud de los perfiles sobre los cuales se reparte dichas cargas.
- La carga producida por el peso de la mezcla, recipientes y serpentines se la considerara como puntual; distribuida en cada uno de los nodos creados en los extremos de los perfiles, sobre los cuales se montaran los recipientes.
- El peso del motoreductor, acoples y agitador se encuentra desplazado del eje del perfil, por lo que es necesario trasladar la carga hacia el mismo. Para que el sistema no se vea afectado con el desplazamiento se asume un torque que contrarreste los efectos del mismo.

En la siguiente tabla se muestra en detalle el tipo de carga para cada uno de los componentes.

Tabla 4.4 Cargas distribuidas y/o puntual sobre cada uno de los componentes de la máquina.

Componente	Peso [kg]	Fuerza total [N]	Longitud perfiles [mm]	Carga distribuida/Puntual por nodo
Unidad condensadora	95,25	934,4	3440	0,272 [N/mm]
Láminas de acero y aislante superior	8	78,48	5300	0,015 [N/mm]
Láminas de acero y aislante inferior	10	98,1	5300	0,019 [N/mm]
Motoreductor, acoples y agitador	12	117,7		Fuerza = 117,7 N Torque = 5650 N-mm
Mezcla preenfriador, recipiente y serpentín	14	137,3		34,33 [N/nodo]
Mezcla congelador, recipiente y serpentín	20	196,2		48,05 [N/nodo]

4.6.2. CÁLCULO DEL BASTIDOR DE LA MÁQUINA.

4.6.2.1. Diseño del travesaño del bastidor.

En la tabla 4.3 se muestra las cargas aplicadas a la estructura soporte, de aquí se determina que la mayor carga distribuida está aplicada en la base del bastidor debido al peso de la unidad condensadora. Por lo tanto se realiza el análisis más crítico

considerando al travesaño como una viga apoyada, como se muestra en la siguiente figura:

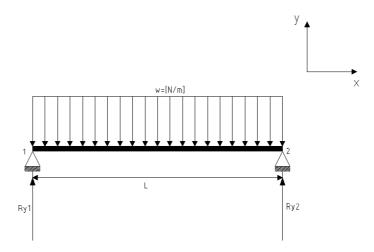


Figura 4.8 Diagrama de cuerpo libre del travesaño del bastidor.

Se considera que la carga total está distribuida en toda la longitud de la base. La carga total es de 95,25 [Kg].

Datos:

$$L_{perfil} = 1,01[m]$$

Cálculo de la carga distribuida⁶⁸:
$$w = \frac{m * g}{L_{total perfil}} = \frac{95,25 * 9,81}{3,44} = 271,63[N/m]$$

Del diagrama de cuerpo libre se tiene:

$$\sum F_{y} = 0$$

$$Q = R_{y_{1}} + R_{y_{2}}$$

$$R = R_{y_{1}} = R_{y_{2}}$$
(4-17)

Para una carga distribuida se tiene:

$$R = \frac{w^*L}{2} = \frac{271,63^*1,01}{2} = 274,35[N]$$

$$R = R_{y_1} = R_{y_2} = 274,35[N]$$
(4-18)

Determinadas las fuerzas que actúan en el sistema se realiza el diagrama de fuerza cortante del sistema:

⁶⁸ Mechanical Engineering design; Shigley, J; 8va edición; Editorial Mc Graw Hill, EEUU; 2006.

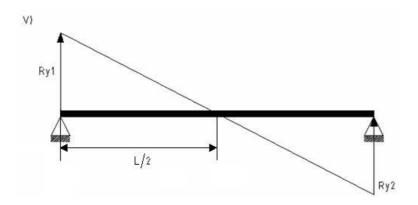


Figura 4.9 Diagrama de fuerza cortante.

• Con el diagrama de fuerza cortante se calcula el momento máximo del sistema.

$$M = \frac{wx}{2}(L - x) \tag{4-19}$$

• El momento máximo $M_{máx}$, es cuando $x = \frac{L}{2}$

$$M_{m\acute{a}x} = \frac{w^*L}{4} * \left(L - \frac{L}{2}\right) = \frac{w^*L^2}{8}$$

$$M_{m\acute{a}x} = \frac{271,63 * (1,01)^2}{8} = 34,64[N*m]$$

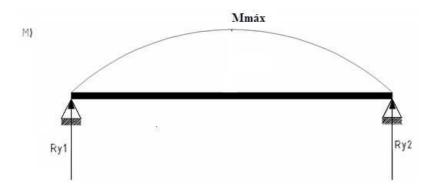


Figura 4.10 Diagrama de momento flector.

Donde:

$$M_{m\acute{a}x} = 34,64[N*m]$$

 $S_y(Acero\ A-36) = 36[Ksi] = 248,2[MPa]$
 $FS = 3$

Con el momento flector máximo se selecciona el perfil de la siguiente manera:

$$\sigma_{m\acute{a}x} = \frac{M_{m\acute{a}x}}{S_{xx}} \le [\sigma]_{material}$$
 (4-20)

$$\left[\sigma\right]_{material} = \frac{S_{y}}{FS} \tag{4-21}$$

Donde:

 σ = esfuerzo, [MPa]

 $M_{m\dot{a}x}$ = momento flector máximo, [N*m]

 S_{xx} = Momento de inercia, $[cm^3]$

 $S_v =$ Resistencia a la fluencia, [MPa]

FS = Factor de seguridad

Con las ecuaciones 4.20 y 4.21, se determina el momento de inercia:

$$S_{xx} \ge \frac{M_{m\acute{a}x}}{S_y / FS} \tag{4-22}$$

$$S_{xx} \ge \frac{34,64}{248,2*10^6/3}$$

$$S_{xx} \ge 0.42[cm^3]$$

Utilizando el catálogo de perfiles angulares de lados iguales se selecciona un perfil tipo L (Ver anexo O). A continuación se indica las principales propiedades y dimensiones.

Perfil seleccionado:

Tipo de perfil: L

Dimensiones: 25*25*3

Módulo de inercia: $0,44[cm^3]$

Sección: $1,35[cm^2]/1,35*10^{-4}[m^2]$

Radio mínimo de giro: 0,59[cm]

El modulo de inercia del perfil seleccionado es mayor al calculado, por lo tanto satisface las condiciones de diseño.

4.6.2.2. Diseño de la columna del bastidor. 69

Para el cálculo de las columnas del bastidor se realiza el análisis de estabilidad mediante el diagrama de cuerpo libre:

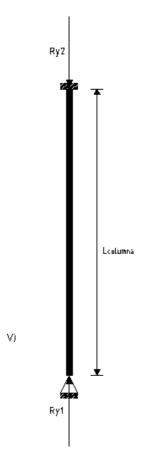


Figura 4.11 Diagrama de cuerpo libre de la columna del bastidor.

Datos:

$$L_{columna} = 1,2[m]$$

La carga que soporta la estructura es de 159,25 [Kg], distribuida en las cuatro columnas del bastidor:

• La carga puntual aplicada a una columna es:

$$V_1 = \frac{159,25*9,81}{4} = 390,56[N]$$

• Del diagrama de cuerpo libre se tiene:

$$\sum F_{y} = 0$$

$$V_{1} = V_{2}$$
(4-23)

⁶⁹ AISC Manual of Steel Construction; 13va edición; EEUU; 2005.

$$V_1 = V_2 = 390,56[N]$$

• La condición de estabilidad está dada por la siguiente ecuación:

$$fa \le Fa \tag{4-24}$$

Donde:

fa =esfuerzo admisible calculado, [MPa]

Fa = esfuerzo admisible teórico, [MPa]

$$fa = \frac{V_1}{A} \tag{4-25}$$

$$fa = \frac{390,56}{1,35*10^{-4}} = 2,89[MPa]$$
$$fa = 0,42[ksi]$$

• Cálculo de los factores G de acuerdo al tipo de junta: $G_1 = 1$, por ser rígida.

$$G_{2} = \frac{\sum \frac{I_{c}}{L_{c}}}{\sum \frac{I_{g}}{L_{g}}} = \frac{\sum \frac{EI}{L_{c}}}{\sum \frac{EI}{L_{g}}}$$
(4-26)

Donde:

 L_c =longitud de la columna, [m]

 L_g =longitud horizontal, [m]

• Determinación de G2:

$$G_2 = \frac{\frac{EI}{L_c}}{\frac{EI}{L_g}} = \frac{L_g}{L_c} = \frac{1,010}{1,2} = 0.8$$

Con los factores G1 y G2 se calcula la constante k, con el gráfico del manual de la AISC. 70

⁷⁰ 70 AISC Manual of Steel Construction; 13va edición; EEUU; 2005 (pág241).

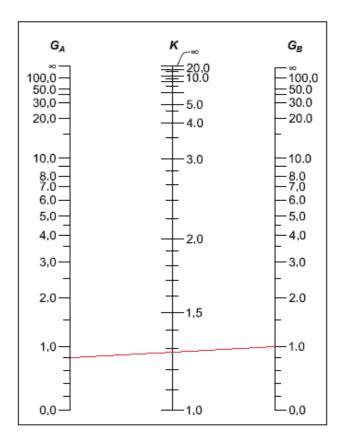


Figura 4.12 Determinación de la longitud efectiva k.⁷¹

La longitud efectiva k=1,3.

La estabilidad se calcula con la siguiente fórmula:

$$\lambda = \frac{K * L}{r_{min}}$$

$$\lambda = \frac{1,3 * 120}{0.899} = 174$$
(4-27)

Con el valor obtenido de λ = 174 , se determina el esfuerzo admisible Fa, utilizando tablas del manual de la AISC. Anexo V.

$$F_a = 4,93[ksi]$$

Utilizando la ecuación (4-24), se analiza la condición de estabilidad:

$$0,42 \le 4,93$$

Por lo tanto se cumple la inecuación, lo que demuestra que las columnas del bastidor no fallarán por estabilidad.

⁷¹ AISC Manual of Steel Construction; 13va edición; EEUU; 2005.

4.6.3. PROCEDIMIENTO PARA EL ANÁLISIS.

4.6.3.1. Restricciones en los apoyos.

La base de la máquina está restringida a desplazarse en sentido horizontal, vertical; así como a rotar. A continuación en la figura 4.13 se muestra la estructura que se analizará:

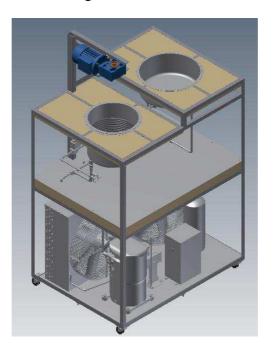


Figura 4.13 Estructura en análisis.

La figura 4.14 indica las restricciones en cada nodo de la estructura.

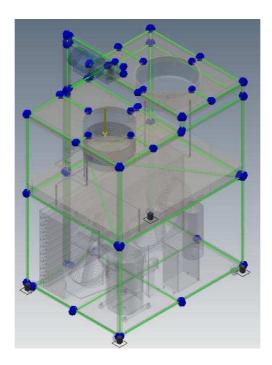


Figura 4.14 Restricciones en los apoyos.

4.6.3.2. Colocación de las cargas sobre los perfiles correspondientes.

El motoredutor será colocado sobre un perfil L, el mismo que es fijado sobre un tubo rectangular ISO 50*30*2, mediante pernos que posteriormente serán calculados. La figura 4.15 muestra la ubicación de las cargas sobre el perfil.

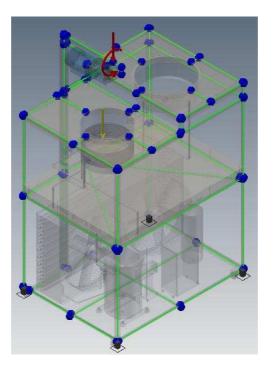


Figura 4.15 Fuerza y torque producido por el peso del motoreductor

El peso de las planchas de acero inoxidable y el aislante en medio de éstas, se distribuirá sobre los perfiles mostrados en la figura 4.16. Los perfiles que conforman el bastidor son ISO L25x25x3mm, T20x20, L30x30x3mm, DIN T20, ver anexo Q.

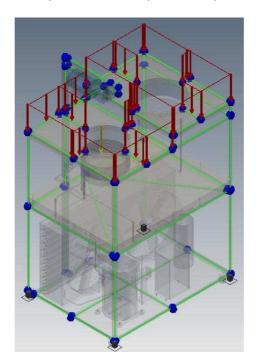


Figura 4.16 Cargas distribuidas producidas por el aislante y planchas de acero

Para el análisis de los efectos producidos por el peso de la mezcla, ésta carga se la distribuirá sobre cuatro nodos al final de los perfiles mostrados.

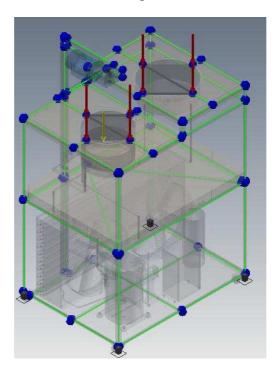


Figura 4.17 Carga puntual sobre los nodos.

En la parte inferior de los recipientes también es necesaria la colocación de planchas de acero y aislante, por lo que las cargas ejercidas por el peso de éstos materiales serán distribuidas sobre perfiles en L que conforman el bastidor, así como en perfiles DIN T2O usados con el fin de rigidizar la estructura y evitar la deflexión de las planchas.

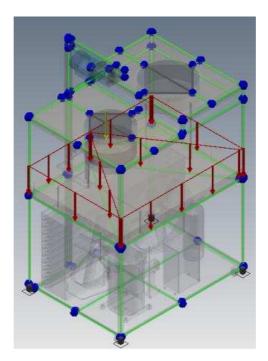


Figura 4.18 Cargas distribuidas producidas por el aislante y planchas de acero bajo los contenedores de la mezcla.

De manera similar el peso de la unidad condensadora será distribuido sobre los perfiles que conforman el bastidor de la máquina.

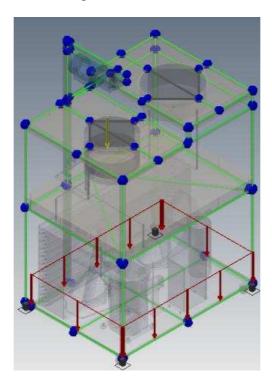


Figura 4.19 Cargas distribuidas por la unidad condensadora.

Al final de la ubicación de todas las cargas y restricciones necesarias se procede a la simulación y obtención de resultados de este análisis.

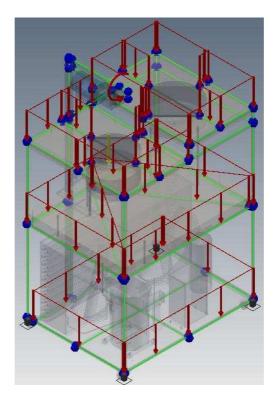


Figura 4.20 Condiciones previas a la simulación.

Los resultados obtenidos para la deformación y esfuerzos máximos con la simulación son aceptables, ya que el esfuerzo máximo producido es mucho menor al límite de fluencia de los perfiles utilizados. Estos resultados se han obtenido después de haber analizado con diferentes tipos de perfiles y dimensiones.

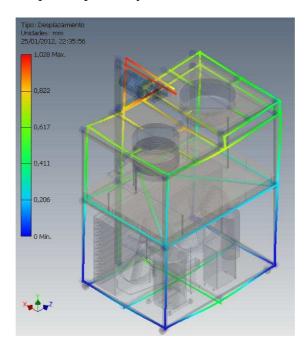


Figura 4.21 Análisis de deformaciones.

Como se puede observar en la figura 4.21, la mayor deformación se produce en la parte superior de la máquina sobre los perfiles donde va montado el motoreductor.

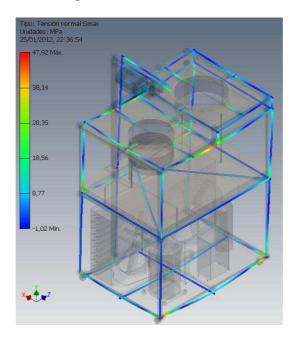


Figura 4.22 Análisis de esfuerzos.

El análisis de esfuerzos de la estructura muestra que la tensión máxima se da en la parte superior e inferior del equipo.

4.6.4. JUNTAS SOLDADAS.

La estructura que conforma el bastidor de la máquina, así como los perfiles, que cumplen determinadas funciones ya sea montaje o soporte de los componentes, serán unidos mediante un proceso de soldadura. Para este propósito es necesaria la preparación de juntas y biseles en los perfiles para garantizar una correcta unión de los materiales.

4.6.4.1. Condiciones de la soldadura:

- Las juntas a realizarse son: junta a tope y junta de perfil.
- El proceso de soldadura a utilizarse es SMAW para la soldadura de los perfiles y GMAW en lugares específicos que requieren la unión de acero inoxidable.
- Los electrodos usados en estos procesos son: E6011 y E308-16 respectivamente.

El detalle de las juntas será indicado posteriormente en los planos de la maquina. Ver anexo W.

4.6.5. DIMENSIONAMIENTO Y SELECCIÓN DE PERNOS.⁷²

4.6.5.1. Pernos para el anclaje de la estructura.

Es necesario dimensionar los pernos que sirven para el empotramiento del perfil y el posterior ensamblaje del motoreductor sobre éste. El primer conjunto de pernos estará sometido a corte, debido a que sobre el perfil actúa el peso del motoreductor, por lo que la distribución de las fuerzas sobre cada uno de los elementos será la siguiente.

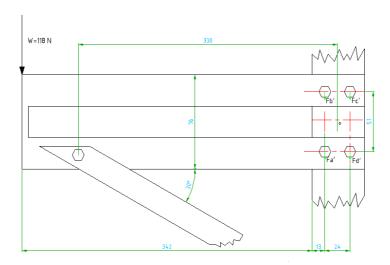


Figura 4.23 Distribución de las cargas aplicada sobre el perfil.

El esfuerzo cortante V se dividirá en partes iguales entre los pernos y se supone que esta reacción pasa por el punto O, de tal manera que el momento se calcula a partir de este punto.

⁷² Diseño en Ingeniería mecánica; Shigley, J; Mc Graw Hill, 4ta edición; México; 1983.

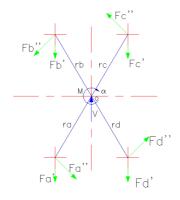


Figura 4.24 Distribución de las cargas aplicadas al perno.

$$V=118[N]$$
 $M=118*(367)=36,7[N.m]$

La distancia del centroide hasta cada uno de los pernos es:

$$r = \sqrt{12^2 + 25,5^2} = 28,18 \, mm$$

El valor de α es de 64,8°.

La carga cortante primaria:

$$F' = \frac{V}{4}$$
 (4-28)
 $F' = 29.5[N]$

Las fuerzas cortantes secundarias son las mismas, por lo que se tiene

$$F'' = \frac{M}{4r}$$

$$F'' = \frac{43,31}{4(0,02818)} = 384,2 N$$
(4-29)

Por lo que la fuerza resultante en cada perno es de:

$$Fa = Fb = 397,7 \text{ N}$$

$$Fc = Fd = 372,6N$$

Debido a que la fuerza que soportan los pernos es pequeña, para el diseño se utilizan pernos grado SAE 1, los cuales tienen un esfuerzo cortante admisible $\tau_a = 69$ [MPa].

El diámetro del perno se determina mediante la siguiente ecuación:

$$\tau_a = \frac{F}{A_s} \tag{4-30}$$

Dónde:

F = fuerza actuante sobre el perno. [N]

 A_s = área transversal del perno sometida a corte:

$$A_{s} = \frac{\pi D^{2}}{4}$$

$$A_{s} = \frac{397.7}{69} = 5.76 * 10^{-6} [m^{2}]$$

$$D = 2.7 [mm]$$
(4-31)

Dado que no existen pernos normalizados con este diámetro se selecciona pernos de cabeza hexagonal M6x1 existentes en el mercado. La longitud de estos es de 46 [mm] tomando en cuenta la utilización de dos arandelas planas, una tuerca y el espesor de los perfiles.

Además el no tomar en cuenta la reacción producida por el perfil plano colocado no afecta los resultados obtenidos, ya que el análisis se lo realiza en una situación más crítica donde el momento producido es mayor.

4.6.5.2. Pernos para el montaje del motoreductor.

Para la instalación del motoreductor sobre la estructura, la selección de los pernos se ve restringida por las dimensiones geométricas del mismo, ya que los agujeros en la carcasa de éste tienen un diámetro de 7 [mm].

4.7. DISEÑO DE LA CHAVETA.⁷³

El diseño de la chaveta está dada por el torque de T = 8,9Nm obtenido del motoreductor, el material del cual será construida la misma es acero AISI 1018 Sy = 304 [Mpa], (Anexo A) debido a que el torque a trasmitir es bajo por lo que el material de la chaveta no necesita tener una resistencia elevada.

La fuerza que actúa en la chaveta es:

$$F = \frac{2*T}{D}$$

$$F = \frac{2*8,9}{0.014} = 1271.4[N]$$
(4-32)

En el diseño de chavetas se consideran dos posibles condiciones de falla, por corte y aplastamiento.

4.7.1. DISEÑO POR ESFUERZOS CORTANTES.

$$n = \frac{S_{sy}}{\tau} = \frac{S_{sy} bl}{2F} \tag{4-33}$$

⁷³ Diseño en Ingeniería mecánica; Shigley, J; Mc Graw Hill, 4ta edición; México; 1983.

Dónde:

 S_{sy} = resistencia al cortante 0,577*Sy,[Mpa]

n = factor de seguridad

b, l = dimensiones de la chaveta, [mm]

Las longitudes seleccionadas b, l se seleccionan de un catálogo de chavetas normalizadas (anexo Q). Utilizando la ecuación 4.33 se calcula el factor de seguridad.

$$n = \frac{0,577 * 304 * 0,005 * 0,025}{2 * 1271.4} = 8$$

4.7.2. DISEÑO POR APLASTAMIENTO.

Para resistir al aplastamiento, se utiliza el área de la mitad de la cara de la chaveta.

$$n = \frac{S_y bl}{2F}$$

$$n = \frac{304 * 0,005 * 0,025}{2 * 1271,4} = 15$$
(4-34)

De los resultados obtenidos se observa que el dimensionamiento de la chaveta es satisfactorio, ya que no se producirá falla en esta al tener factores de seguridad elevados, por tal motivo se omite el análisis dinámico. Las dimensiones establecidas para este elemento cumplen requerimientos constructivos que facilitan el diseño.

4.8. DISEÑO DE LA CUÑA.

Para el montaje del acople sobre el motoreductor es necesaria la utilización de una cuña con talón, con el fin de fijar permanentemente el acople, además de evitar el deslizamiento en sentido vertical del mismo luego de ensamblar el agitador tipo ancla.

El dimensionamiento de la cuña es similar al de la chaveta, es decir se tiene las mismas consideraciones para el diseño, el material a utilizar en este caso es AISI 1018. Para el cálculo de la fuerza se utiliza la ecuación 4-32.

$$F = \frac{2 * 8,9}{0.019} = 936,8[N]$$

4.8.1. DISEÑO POR ESFUERZOS CORTANTES.

Las longitudes seleccionadas b, l se seleccionan de un catálogo de chavetas de talón normalizadas (anexo Q). El diseño por esfuerzos cortantes se utiliza la ecuación 4.33.

$$n = \frac{0,557 * 304 * 0,006 * 0,040}{2 * 936,8} = 21$$

4.8.2. DISEÑO POR APLASTAMIENTO.

Para resistir al aplastamiento, se utiliza el área de la mitad de la cara de la chaveta, se calcula la ecuación 4.34.

$$n = \frac{304 * 0,006 * 0,040}{2 * 936.8} = 39$$

De los resultados obtenidos se observa que el dimensionamiento de la cuña es satisfactorio, ya que no se producirá falla en esta al tener factores de seguridad elevados, por tal motivo se omite el análisis dinámico. Las dimensiones establecidas para este elemento cumplen requerimientos constructivos que facilitan el diseño.

4.9. DISEÑO DEL SISTEMA DE DOSIFICACIÓN.⁷⁴

El sistema de dosificación del líquido desde el recipiente preenfriador al recipiente congelador se realiza mediante una válvula solenoide con actuador eléctrico, el cual permite fijar la válvula en dos posiciones abierta o cerrada. Debido a que el fluido que circula por el interior de la válvula es un producto alimentico el material del cuerpo de la válvula debe ser de acero inoxidable 304. Ver anexo A.

4.9.1. ESTIMACIÓN DEL TIEMPO DE DOSIFICACIÓN.

Para el cálculo del tiempo de dosificación se desprecia las pérdidas en la tubería, válvula y accesorios que no afectan en gran medida en el resultado final. En la figura 4-25 se indica las dimensiones consideradas para el cálculo del tiempo de dosificación.

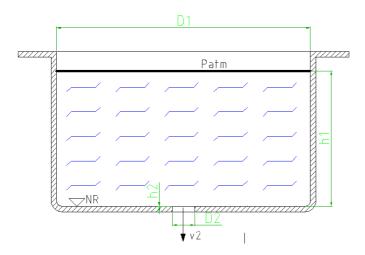


Figura 4.25 Sección del recipiente preenfriador.

Mediante la ecuación de la continuidad se determina la velocidad a la salida del recipiente preenfriador.

$$h_1 + \frac{{v_1}^2}{2g} + \frac{P_1}{\rho g} = h_2 + \frac{{v_2}^2}{2g} + \frac{P_2}{\rho g}$$
 (4-35)

⁷⁴ Mecánica de fluidos; Mott, R; 4ta Edición; México; 2006.

Datos de entrada:

$$v_{1} = 0$$

$$P_{1} = P_{atm}$$

$$P_{2} = P_{atm}$$

$$g = 9.8 \left[\frac{m}{s^{2}}\right]$$

$$h_{1} = 0.1[m]$$

$$h_{2} = 0[m]$$

$$A_{1} = 0.102[m^{2}]$$

$$A_{2} = 7.13 * 10^{-5}[m^{2}]$$

Donde:

 v_1 = velocidad inicial del fluido.

 P_1 = presión inicial del fluido.

 P_2 = presión final del fluido.

 P_{atm} = presión atmosférica.

g= fuerza gravitacional.

 h_1 = altura inicial del fluido.

 h_2 = altura final del fluido.

 A_1 = área del recipiente preenfriador.

 A_2 = área del orificio a la salida del preenfriador.

Reemplazando los datos de entrada en la ecuación anterior se tiene:

$$h_1 + 0 + \frac{P_{atm}}{\rho g} = 0 + \frac{{v_2}^2}{2g} + \frac{P_{atm}}{\rho g}$$
$$v_2 = \sqrt{2gh_1}$$
$$v_2 = \sqrt{2*(9.8)*(0.10)} = 1.4[m/s]$$

Con la velocidad de salida del fluido se calcula el caudal volumétrico, mediante la siguiente ecuación:

$$\dot{Q} = A * v = \frac{v}{t} \tag{4-36}$$

Donde

 \dot{Q} = caudal volumétrico.[m^3/s]

V= volumen del recipiente, $[m^3]$

A partir de la ecuación (4-36), se determina el caudal volumétrico:

$$\dot{Q}_2 = A_2 * v_2 = (7.13 * 10^{-5}) * 1.4 = 9.98 * 10^{-5} [m^3/s]$$

De la ecuación (4-36), se calcula el tiempo de dosificación:

$$t = \frac{V}{\dot{Q}} = \frac{0.01}{9.98 * 10^{-5}} = 100.2[s]$$

Por lo tanto se estima un tiempo de dosificación de 2 minutos por cada descarga desde el recipiente preenfriador al recipiente congelador.

4.10. MECANISMO DE DESCARGA.

El mecanismo de descarga tiene dos funciones, la primera es la retención del líquido durante el proceso de mezclado del helado; la segunda es permitir la salida del helado una vez que se solidifica la mezcla líquida.

Mediante el software Inventor 2012 se analizó los movimientos, desplazamientos y restricciones de los eslabones. Esto permitió determinar las dimensiones y ángulos convenientes para el correcto funcionamiento del mecanismo. El accionamiento es manual y se lo realiza mediante un brazo exterior que conecta con el mecanismo.

A continuación en la figura 4.26 se muestra las dimensiones principales de los eslabones y ángulos que forman los mismos.

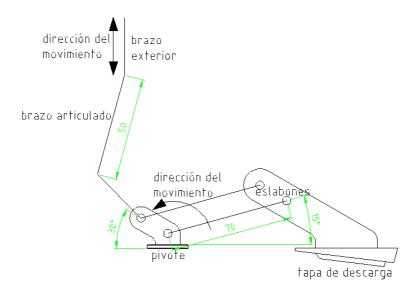


Figura 4.26 Disposición los eslabones del mecanismo de descarga.

Los movimientos y desplazamientos de los eslabones se muestran a continuación en la figura 4.27.

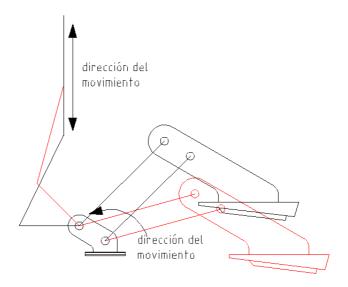


Figura 4-27 Desplazamientos de los eslabones.

La figura 4.28 muestra el ensamble del mecanismo de descarga del recipiente congelador.

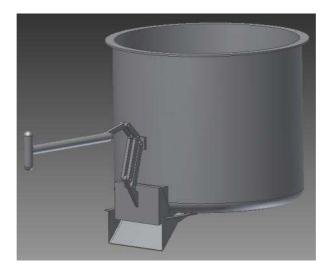


Figura 4-28 Mecanismo de descarga.

Luego de haber realizado el ensamble, el mecanismo funciona correctamente, solo requiere del accionamiento manual por parte del operario, abriendo o cerrando la compuerta según se necesite.

4.11. MECANISMO DE COMPUERTA.

Con el fin de minimizar las pérdidas por intercambio de calor entre el interior y exterior de la máquina, se utiliza una compuerta que se acciona manualmente. La compuerta está conectada a eslabones articulados y estos a su vez están acoplados a cuatro rodamientos (anexo R) que sirven como guía para su desplazamiento.

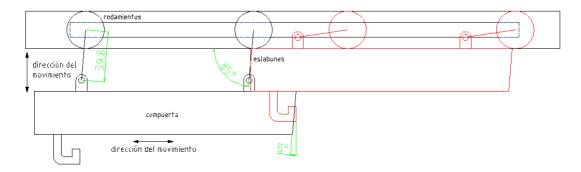


Figura 4-29 Disposición y desplazamiento de los eslabones.

Como se muestra en la figura anterior la compuerta se empuja hacia adelante, asegurando el desplazamiento de los rodamientos y eslabones articulados, luego se desliza en la dirección indicada hasta abrirla completamente o viceversa.

4.12. SELLO MECÁNICO ENTRE EL SERPENTÍN Y EL TANQUE.

El sello mecánico del equipo es el encargado de asegurar que no existan fugas en el fondo del recipiente. A continuación en la figura 4.30 se muestra la posición del sello en el serpentín helicoidal.

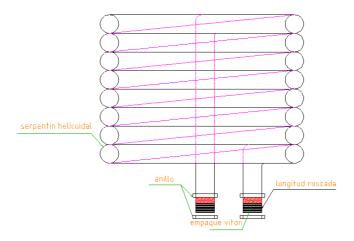


Figura 4.30 Sello mecánico en el fondo del recipiente preenfriador y congelador.

Para fijar los tubos del serpentín en el fondo del tanque se utilizará dos anillos que van soldados al final del tubo de cobre respectivamente, debajo de estos se colocará o'rings, para asegurar el sellado y evitar que exista fugas (anexo S).

Una vez insertados los serpentines en el fondo del tanque para sujetarlos en la parte inferior con el tanque se colocará un anillo, junto con un acople giratorio (anexo T) roscados a la tubería.

CAPÍTULO 5

MONTAJE DEL EQUIPO

En este capítulo se detalla el proceso de preparación, armado y montaje de cada uno de los elementos que conforman la máquina.

5.1. MONTAJE DE LA ESTRUCTURA METÁLICA SOPORTE.

La estructura metálica es la encargada de soportar los equipos y componentes de la máquina, en ésta se colocaron los siguientes elementos:

- Los elementos del sistema de refrigeración, unidad condensadora, tuberías, acoples, accesorios de tuberías, válvulas, recipientes y serpentines de los evaporadores.
- Sistema de transmisión de movimiento, motoreductor, ejes, batidor y acoples.
- Mecanismo de descarga, brazos mecánicos, tapa de descarga, anillos de retención y otros complementos.
- Mecanismo de compuerta, rieles, rodamientos, tirador y soportes.
- Carcasa de la máquina, planchas de poliuretano, planchas de acero inoxidable.

El proceso realizado luego de la adquisición de la materia prima fue:

- Medición y corte de los perfiles.
- Medición y corte de las platinas.
- Medición y corte del aislante de poliuretano.
- Medición y corte de las planchas de acero inoxidable 304.
- Soldadura de los perfiles y platinas.
- Colocación de garruchas.

Luego del corte y soldadura de las partes de la estructura se procede con el acabado superficial del bastidor.

- Lijado
- Pulido
- Acabados finales

5.2. MONTAJE DEL SISTEMA DE REFRIGERACIÓN.

El montaje del sistema de refrigeración se realizo siguiendo el siguiente proceso:

- Montar la unidad condensadora.
- Montar el recipiente preenfriador y congelador.
- Medición de las tuberías.
- Conexión de tuberías y accesorios.
- Aislamiento de las tuberías.

- Calibración de válvulas.
- Colocación de válvulas y filtros.
- Instalación de conexiones eléctricas.
- Carga del refrigerante.

A continuación en la figura 5.1 se muestra el circuito frigorífico con la ubicación de cada uno de los elementos del sistema de refrigeración.

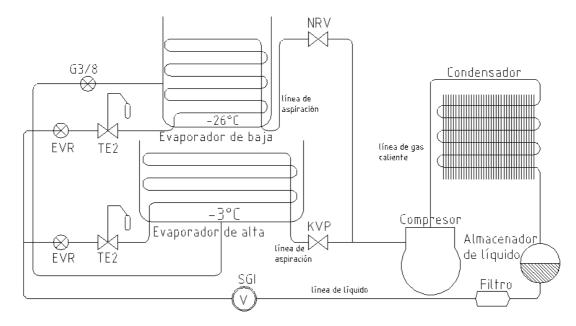


Figura 5.1 Conexiones de los componentes del sistema de refrigeración.

5.3. MONTAJE DEL SISTEMA DE TRANSMISIÓN DE MOVIMIENTO.

El sistema de transmisión de movimiento se monta en la estructura soporte:

- Montaje de motoreductor.
- Medición y corte de ejes.
- Medición de la plancha de acero inoxidable.
- Montaje del eje de transmisión de movimiento.
- Medición y corte de las planchas.
- Soldadura entre las partes
- Acabado final.
- Colocación de elementos normalizados.
- Montaje de la transmisión.

5.4. MONTAJE DEL MECANISMO DE DESCARGA.

Luego del mecanizado de la materia prima se monta el mecanismo de descarga siguiendo los siguientes pasos:

- Medición y corte de las platinas.
- Medición y corte de las varillas.
- Medición y corte de los ejes.
- Doblado de las planchas.
- Oxicorte.
- Limado y pulido.
- Perforar las planchas y platinas.
- Soldadura entre las partes.
- Acabados finales.
- Ensamble del mecanismo.

5.5. MONTAJE DEL MECANISMO DE COMPUERTA.

La compuerta es montada de la siguiente manera:

- Medición y corte de las planchas de acero inoxidable.
- Medición y corte de las planchas de poliuretano.
- Medición y corte de platinas.
- Rectificado de las platinas.
- Perforación de agujeros.
- Colocar elementos normalizados.

5.6. MONTAJE DEL SISTEMA ELÉCTRICO.

El montaje del sistema eléctrico se lo realiza mediante el siguiente diagrama eléctrico:

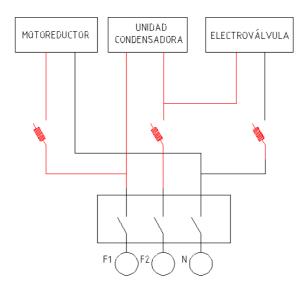


Figura 5.2 Esquema de conexión de la fuente de alimentación.

En la figura 5.1 se muestra la conexión del motoreductor unidad condensadora y de la electroválvula con la fuente de alimentación. A continuación se muestra las tensiones de trabajo de los dispositivos utilizados en la máquina.

La tensión entre los terminales es:

F1-N=110V

F2-N=110V

F1-F2=220V

5.7. MONTAJE DE LA CARACASA DE LA MÁQUINA.

Finalmente luego de construir el bastidor y montar los componentes de la máquina se coloca la cubierta de la siguiente manera:

- Medir y cortar las planchas de acero inoxidable.
- Medir y cortar las planchas de poliuretano.
- Perforar las planchas.
- Empernar la cubierta de la máquina

El orden de montaje de los paneles que cubren el equipo se muestra en la siguiente figura:

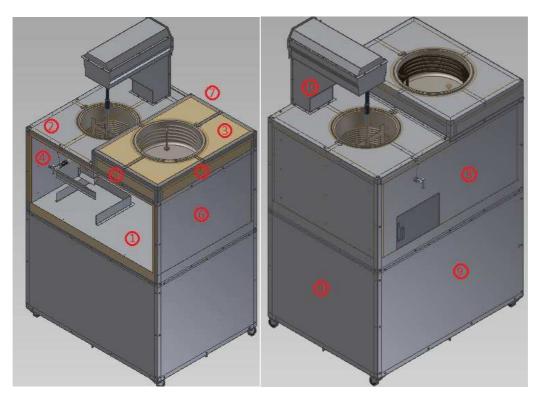


Figura 5.3 Orden de montaje de las cubiertas de la máquina.

CAPÍTULO 6

ANÁLISIS DE COSTOS

El análisis de costos es uno de los pasos importantes que comprende la realización y factibilidad del proyecto. En este capítulo se determinará los costos de adquisición de los equipos y componentes de la máquina ya diseñados, así como también los costos de mano de obra que implica el maquinado de los elementos y los costos de diseño. La cotización de los elementos se realizó en el mercado nacional.

6.1. COSTOS DIRECTOS DE FABRICACIÓN.

Los costos directos son aquellos rubros necesarios para la obtención de un producto como son:

- Materia prima.
- Elementos normalizados.
- Mecanizado.
- Montaje.

6.2. MATERIA PRIMA.

La materia prima constituye todos los elementos que se transforman en el producto final terminado. Los costos de esta se obtienen en longitudes estándares que ofrecen las empresas, sin embargo para la construcción se requiere longitudes menores de ciertos materiales que no se adquieren en el mercado; por lo tanto la construcción se la hará en a una metalmecánica que disponga de estos materiales a fin de minimizar los costos.

Tabla 6.1 Costo de materiales para el bastidor y carcasa de la máquina.⁷⁵

CANTIDAD	DESCRIPCIÓN	COSTO	COSTO
		UNITARIO	PARCIAL
		[USD]	[USD]
18,5 [m]	Perfil L 25mmx25mmx3mm	1,50	27,75
1 [m]	Perfil L 30mmx30mmx3mm	2,00	2,00
2 [m]	Tubo rectangular 50mmx30mmx3mm	3,70	7,40
5 [m]	Perfil T 20mmx3mm	1,40	7,00
1/2 [m]	Platina 25mmx4mm	1,12	1,12
2	Planchas de acero inoxidable 304 de	200,48	400,96
	1200mmx2440mmx1,5mm		
7	Panel de aislante de poliuretano	54,90	384,30
	1000mmx1000mmx40mm.		
1	Panel de aislante de poliuretano	63,00	63,00
	1160mmx1160mmx80mm.		
	COSTO TOTAL [USD]		893,53

⁷⁵ DIPAC-Productos de acero.

Tabla 6.2 Costo de materiales para el sistema de refrigeración. ⁷⁶, ⁷⁷

CANTIDAD	DESCRIPCIÓN	COSTO UNITARIO [USD]	COSTO PARCIAL [USD]
7[m]	Tubo flexible de cobre ؽ"	3,68	25,76
11,5[m]	Tubo flexible de acero inoxidable 304	9,60	110,40
, []	ؽ"		
7[m]	Aislamiento de tubería Rubatex 1/2"	7,60	88,20
1	Cilindro de gas refrigerante R404a de 24 lb	201,60	201,60
1	Válvula KVP 12	16,80	16,80
1	Válvula NRV 12	22,40	22,40
1	Válvula de expansión T2-TE2 N°00 +	80,64	80,64
	orificio		
1	Válvula de expansión T2-TE2 N°02 +	80,64	80,64
	orificio		
2	Válvula solenoide con bobina tipo EVR 6	95,20	190,40
1	Filtro secador DML084	14,56	14,56
1	Visor de líquido SGI ؽ"	25,76	25,76
1	Válvula solenoide G Ø3/8"	207,12	207,12
5	Acople giratorio Ø ½"	2,40	12,00
1	Acople giratorio Ø3/8"	2,20	2,20
11	Codo de cobre ؽ"	0,90	9,90
1	Codo de acero inoxidable 304 ؽ"	2,20	2,20
1	Unión de cobre de ؽ"	0,67	0,67
2	T de cobre ؽ"	0,90	1,80
1	Recipiente de acero inoxidable 304	130,00	130,00
	Ø300mmx130mm		
1	Recipiente de acero inoxidable 304	160,00	160,00
	Ø360mmx260mm		
2	Tapa de PVC Ø300mm	8,40	16,80
1	Tapa de PVC Ø360mm	15,80	15,80
	COSTO TOTAL[USD]		1415,65

Tabla 6.3 Costos de materiales para el sistema de transmisión de movimiento.

CANTIDAD	DESCRIPCIÓN	COSTO	COSTO
		UNITARIO	PARCIAL
		[USD]	[USD]
1	Eje de acero inoxidable 304	13,60	13,60
	de Ø3/4"x350mm		
1	Eje de acero AISI 1018 de	23,68	23,68
	Ø1"x320mm		
	COSTO TOTAL [USD]		37,28

MEGAFRÍO-Importadora de equipos y accesorios de refrigeración
 MAFRIWALL-Sistema de aislamiento térmico.

Tabla 6.4 Costos de materiales para el mecanismo de descarga.

CANTIDAD	DESCRIPCIÓN	COSTO UNITARIO	COSTO PARCIAL
		[USD]	[USD]
1	Platina de 12mmx300mmx6mm	0,84	0,84
1	Platina de 38mmx100mmx6mm	1,48	1,48
1	Platina de acero inoxidable 304	2,54	2,54
	de 25mmx250mmx3mm		
1	Platina de acero inoxidable 304	3,40	3,40
	de 30mmx100mmx3mm		
1	Platina de acero inoxidable 304	60,00	60,00
	de 100mmx30mm		
1	Varilla de acero inoxidable 304	1,10	1,10
	Ø2mmx60mm		
1	Eje de acero AISI 1018	3,40	3,40
	Ø15mmx100mm		
	COSTO TOTAL [USD]		72,76

Tabla 6.5 Costos de materiales para el mecanismo de compuerta. 78

CANTIDAD	DESCRIPCIÓN	COSTO UNITARIO	COSTO PARCIAL
		[USD]	[USD]
1	Tiradera para puerta	2,25	2,25
4	Pasadores cilíndricos	0,80	3,20
1	Platina de 12mmx400mmx6mm	1,06	1,06
1	Plancha de acero inoxidable	45,50	45,50
	304 de 200mmx240mmx3mmm		
	COSTO TOTAL [USD]		

Tabla 6.6 Costos de materiales para el sistema eléctrico.

CANTIDAD	DESCRIPCIÓN	COSTO	COSTO
		UNITARIO	PARCIAL
		[USD]	[USD]
2	Cable aislado 220V	1,70	3,40
1	Enchufe 220-110V	1,50	1,50
2	Contactor GMC 12 de 18A	24,80	24,80
2	Relé térmico 12-18A	41,72	41,72
2	Taipe negro 3000mm	0,50	1,00
	COSTO TOTAL [USD]		72,42

⁷⁸ KYWI-supermercado ferretero.

6.3. COSTOS DE ELEMENTOS NORMALIZADOS

Los elementos normalizados son aquellos que se comercializan y no necesitan modificarse para ser usados. A continuación en la tabla 6.7 se muestra en detalle los elementos normalizados.

Tabla 6.7 Costos de elementos normalizados.⁷⁹

CANTIDAD	DESCRIPCIÓN	COSTO UNITARIO [USD]	COSTO PARCIAL [USD]
1	Juego de garruchas de 4" soporta 205kg	7,82	7,82
1	Motoreductor 0,25 hp	304,50	304,50
4	Rodamiento FAG Ø19mm	3,50	13,50
20	Perno hexagonal, arandela y tuerca M4x1 L=5mm.	0,12	2,40
60	Perno hexagonal, arandela y tuerca M6x1 L=8mm.	0,15	9,00
120	Perno hexagonal, arandela y tuerca M6x1 L=50mm.	0,24	28,80
18	Perno hexagonal, arandela y tuerca M6x1 L=90mm.	0,32	5,76
4	Perno hexagonales, arandela y tuerca M7x 1 L=46mm	0,27	1,08
4	Bisagra de acero inoxidable 2"	2,72	10,88
1	Resorte Ø14mm L=51mm	0,70	0,70
4	Arandela plana de acero inoxidable de ؽ"	0,10	0,40
4	Pernos prisioneros	0,30	1,20
4	O'ring viton	1,20	4,80
1	Chaveta AISI 1045, L=25mm	0,40	0,40
1	Cuña AISI 1045, L=40mm	0,60	0,60
	COSTO TOTAL [USD]		391,84

6.4. MECANIZADO.

Representan los costos por concepto de uso de maquinas o equipos necesarios para la fabricación de los componentes anteriormente diseñados, seleccionados y de los accesorios complementarios de los equipos, así como también, se debe incluir dentro de este costos el manejo de un operario de la maquinaria requerida, en el tiempo necesario para realizar cada proceso de maquinado. A continuación se detalla los costos en tablas de acuerdo al elemento y tipo de proceso usado para su fabricación.

⁷⁹ La casa del perno.

Tabla 6.8 Costos de maquinado para el bastidor y carcasa.

EQUIPO	HORAS DE	COSTO/HORA	COSTO
	USO	[USD/h]	PARCIAL
	[h]		[USD]
Cortadora de disco	3	5,00	15,00
Soldadora Smaw	24	10,00	240,00
Taladro	3	6,00	18,00
Plegadora	2	9,00	18,00
Roscadora de tubos	1	6,00	8,00
Sierra de cinta	5	7,00	35,00
COS	ΓΟ TOTAL [US	D]	334,00

Tabla 6.9 Costos de maquinado para los serpentines helicoidales.

EQUIPO	HORAS DE USO	COSTO/HORA [USD/h]	COSTO PARCIAL
	[h]		[USD]
Cortatubos	2	8,00	16,00
Dobladora de tubos	5	7,00	35,00
Soldadora Tig	3	15,00	45,00
Equipo de pulido	1	12,00	12,00
COS	108,00		

Tabla 6.10 Costos de maquinado para la tubería de cobre, acoples y accesorios.

EQUIPO	HORAS DE USO [h]	COSTO/HORA [USD/h]	COSTO PARCIAL [USD]		
Cortatubos	1	8,00	12,00		
Soldadora oxiacetilénica	10	8,00	80,00		
Roscadora de tubos	1	6,00	6,00		
COST	COSTO TOTAL[USD]				

Tabla 6.11 Costos de maquinado para el recipiente preenfriador y congelador.

EQUIPO	HORAS DE	COSTO/HORA	COSTO
	USO	[USD/h]	PARCIAL
	[h]		[USD]
Soldadora oxiacetilénica	2	8,00	16,00
Soldadora Tig	3	15,00	45,00
Taladro	1	6,00	6,00
Cortadora de disco	1	5,00	5,00
Rectificadora	1	10,00	10,00
Lima manual	2	5,00	10,00
Equipo de pulido	2	12,00	24,00
COSTO	TOTAL [USD]		116,00

Tabla 6.12 Costos de maquinado para el sistema de transmisión de movimiento.

PROCESO	HORAS DE USO	COSTO/HORA [USD/h]	COSTO PARCIAL
	[h]		[USD]
Cortadora de disco	1	5,00	5,00
Soldadura oxiacetilénica	1	8,00	8,00
Rectificadora	1	10,00	10,00
Taladro	1	6,00	6,00
Soldadora Tig	1	15,00	15,00
COSTO TOTAL [USD]			44,00

Tabla 6.13 Costos de maquinado para el mecanismo de descarga.

EQUIPO	HORAS DE	COSTO/HORA	COSTO
	USO	[USD/h]	PARCIAL
	[h]		[USD]
Cortadora de disco	2	5,00	10,00
Rectificadora	3	10,00	30,00
Fresadora	3	12,00	36,00
Taladro	1	6,00	6,00
Torno	1	10,00	10,00
Soldadora Tig	1	15,00	15,00
COSTO TOTAL [USD]			107,00

Tabla 6.14 Costos de maquinado para el mecanismo de compuerta.

PROCESO	HORAS DE	COSTO/HORA	COSTO
	USO	[USD/h]	PARCIAL
	[h]		[USD]
Cortadora de disco	1	5,00	5,00
Rectificadora	1	10,00	10,00
Plegadora	1	9,00	9,00
Fresadora	2	12,00	24,00
Taladro	1	6,00	6,00
Soldadora Tig	3	15,00	45,00
COSTO TOTAL [USD]			99,00

6.4.1. COSTOS DE MONTAJE.

Los costos de montaje y calibración representan la mano de obra necesaria para el armado y ensamble total de las partes y elementos que conforman la máquina de helados. En la tabla 6.15 se indica los costos por concepto de montaje.

Tabla 6.15 Costos de maquinado para el sistema eléctrico.

OPERARIOS	TIEMPO [h]	COSTO/HORA [USD/h]	COSTO PARCIAL [USD]
4	6	6,00	144,00
COSTO TOTAL [USD]			144,00

6.5. COSTOS INDIRECTOS DE FABRICACIÓN.

Los costos indirectos corresponden a los gastos generales necesarios para la ejecución de trabajos no incluidos en los costos directos, y también los costos indirectos.

Tabla 6.16 Costos indirectos generales.

DESCRIPCIÓN	COSTO PARCIAL [USD]
Gastos de transporte	100,00
Gastos generales indirectos	50,00
COSTO TOTAL [USD]	150,00

A continuación en la tabla 6.17 se muestran los costos de diseño e ingeniería corresponden al trabajo de dos ingenieros, basado en que la remuneración sería para un proyecto específico.

Tabla 6.17 Costos de diseño e ingeniería.

DESCRIPCIÓN	TIEMPO [h]	COSTO/HORA [USD/h]	COSTO PARCIAL [USD]
Honorarios profesionales	90	15,00	1350,00
Dibujo y planos ⁸⁰	30	5,00	150,00
COSTO TOTAL [USD]			1500,00

6.6. COSTOS TOTALES.

Tabla 6.18 Costos totales.

DESCRIPCIÓN	COSTO PARCIAL [USD]
Costos de materia prima	2935,49
Costos de mecanizado	808,00
Costos de montaje	144,00
Costos indirectos	1650,00
COSTO TOTAL [USD]	5537,49

⁸⁰ Laboratorio de simulación de procesos.

6.7. ANÁLISIS FINANCIERO.

Para el análisis del financiero se considera los costos actuales de fabricación del helado que tiene la microempresa Rikkos Helados, como son costos de energía eléctrica, materia prima, costos de producción, costos de operación e inversión, y los costos de fabricación que se tendían con la implementación de la máquina.

6.7.1. CONSUMO ENERGÉTICO.

Actualmente la microempresa Rikkos Helados destina un porcentaje importante de dinero por gastos de consumo eléctrico, debido a la utilización de equipos de refrigeración para el preenfriamiento de la mezcla líquida de helado.

El consumo mensual por concepto de energía eléctrica en la producción artesanal es:

- Potencia del refrigerador: W₁=1[Hp]
- Tiempo de trabajo: t_T =20 [días] durante 8[h] diarias.
- Costo kWh: $C_{kWh}=0.080 [USD/kWh]^{81}$

La potencia total mensual consumida es:

$$W_T = W_1 = 1 * 0.7457 = 0.75[kW]$$

El tiempo de trabajo es:

$$t_T = dias * horas$$

$$t_T = 20 * 8 = 160[h]$$

Mediante la ecuación (6.1) se obtiene el consumo mensual de energía, por cada refrigerador:

$$Q = W * t * C_{kWh} \tag{6.1}$$

$$Q = 10.81 + 0.75 * 160 * 0.080 = 20.41[USD]$$

Con la implementación de la máquina no se requiere de enfriadores para el preenfriamiento de la mezcla líquida de helado, ya que el equipo consta de un recipiente para el preenfriamiento. Para el funcionamiento de los componentes de la máquina se requiere de energía eléctrica, a continuación se determina el consumo eléctrico:

- Potencia de la unidad condensadora OPTYMA: W₂=5[hp]
- Potencia del motoreductor: W₃=0,25[hp]
- Tiempo de trabajo: t_T = 20 [días] durante 4 [h] diarias.

La potencia total mensual consumida es:

$$W_T = W_2 + W_3 \tag{6.2}$$

⁸¹ http://www.conelec.gob.ec/documentos.php?cd=3073&l=1

$$W_2 = 5 * 0.7457 = 3.7[kW]$$

 $W_3 = 0.25 * 0.7457 = 0.19[kW]$
 $W_T = 3.7 + 0.19 = 3.89[kW]$

El tiempo de trabajo es:

$$t_T = dias * horas$$

 $t_T = 20 * 4 = 80[h]$

Utilizando la ecuación (6.1), se determina el consumo energético de la máquina:

$$Q = 10.81 + 3.89 * 80 * 0.080 = 35.71[USD]$$

Los costos energéticos por preenfriamiento de la mezcla líquida de helado en la producción artesanal equivalen al 50% del consumo total mensual de la máquina, lo que implica un gasto innecesario de energía por el enfriador.

En base a un estudio de mercado de la producción artesanal de microempresa se determinó los costos anuales de producción. A continuación se muestra en tablas el costo por producción artesanal y por máquina.

Tabla 6.19 Costos anuales por producción artesanal.

COSTOS ANUALES	PRODUCCIÓN ARTESANAL					
COSTOS ANUALES	Cantidad	C. Unitario	C. Total			
Materi	a prima					
Cubo de hielo	1440	0,40	576,00			
Quintal de sal	8	5,50	44,00			
Costal de paja	12	6,00	72,00			
Costo total de materia prima			692,00			
Mano	de obra					
Empleados ⁸²	2	292,00	7.008,00			
Decimo tercer sueldo		292,00	584,00			
Decimo cuarto sueldo		292,00	584,00			
Aporte patronal IESS 12,15%		35,48	851,47			
Costo total por empleados			9.027,47			
Costos indirectos	s de produc	cción ⁸³				
Energía eléctrica [USD/kWh]	1440	0,08	115,20			
Tarifa básica de consumo	12	10,81	129,72			
Consumo eléctrico anual			244,92			

⁸² Los trabajadores necesarios para producir la mezcla líquida de helado y el posterior batido, incluido beneficios de ley.

⁸³ Energía eléctrica necesaria para el preenfriamiento de la mezcla líquida de helado y energía requerida para el funcionamiento de la máquina.

Inversión ⁸⁴									
Inversión inicial			630,00						
Costos de p	Costos de producción ⁸⁵								
Costo de producción	7200 [1]	1,40	10.080,00						
Costos de ventas									
Costo de mano de obra	1	292,00	3.504,00						
Decimo tercer sueldo		292,00	292,00						
Decimo cuarto sueldo		292,00	292,00						
Aporte patronal IESS 12,15%		35,48	425,74						
Costo total de mano de obra			4.513,74						

Tabla 6.20 Costos anuales por producción con máquina.

COSTOS ANUALES	PRODUCCIÓN CON MÁQUINA							
COSTOS ANUALES	Cantidad	C. Unitario	C. Total					
Mater	ria prima							
Refrigerante de 24 lb	1	201,60	201,60					
Mano de obra								
Operador de máquina 86	1	299,30	299,30					
Decimo tercer sueldo		299,30	299,30					
Decimo cuarto sueldo		299,30	299,30					
Aporte patronal IESS 12,15%		36,36	436,38					
Costo total de operador			1.334,28					
Técnico de mantenimiento 87	2	299,30	598,60					
Empleados	10	292,00	35.040,00					
Decimo tercer sueldo		292,00	2.920,00					
Decimo cuarto sueldo		292,00	2.920,00					
Aporte patronal IESS 12,15%		35,48	4.257,36					
Costo total de empleados			45.137,36					
Costos indirect	os de produc	ción ⁷⁰						
Energía eléctrica [USD/kWh]	3734	0,08	298,72					
Tarifa básica de consumo	12	10,81	129,72					
Consumo eléctrico anual			428,44					
Inversión ⁷¹								
Inversión inicial			5537,49					
Costos de	producción ⁷	72						
Costo de producción	86400 [1]	1,40	120.960,00					

 ⁸⁴ Inversión inicial requerida para empezar la producción.
 ⁸⁵ Capacidad de producción artesanal es de 30 [l/dia], mientras que la capacidad con máquina es de 360[l/dia].

86 Operador calificado para el manejo de la máquina.

87 Técnico encargado de realizar el mantenimiento 2 veces al año.

Con los costos anuales de producción se obtiene el costo unitario por litro de helado para la producción artesanal y con máquina.

Tabla 6.21 Costos anuales de fabricación artesanal.

COSTO ANUALES DE FABRICACIÓ)N
Descripción	Producción artesanal
Producción anual (litros)	7.200
Costo de materia prima	692,00
Costos de mano de obra	9.027,47
Costo indirecto de producción	244,92
Costo total anual incurridos por fabricación	9.964,39
Amortización anual de la inversión (5 años) 88	126,00
Amortización de la inversión por litro de helado	0,02
Costo del proceso de fabricación por litro de helado	1,38
Costo promedio del litro de helado proporcionado por la microempresa Rikkos Helados	1,40
Costo por gestión de ventas ⁸⁹	0,63
Costo unitario total por litro de helado	3,36

Tabla 6.22 Costos anuales de fabricación con máquina.

COSTO ANUALES DE FABRICACIO	ÓN
Descripción	Producción con máquina
Producción anual (litros)	86.400
Costo de materia prima	201,60
Costos de mano de obra	46.471,64
Costo indirecto de producción	428,44
Costo de mantenimiento	598,60
Costo total anual incurridos por fabricación	47.700,28
Amortización anual de la inversión (5 años)	1.107,50
Amortización de la inversión por litro de helado	0,01
Costo del proceso de fabricación por litro de helado	0,55
Costo promedio del litro de helado proporcionado por la microempresa Rikkos Helados	1,40
Costo por gestión de ventas	0,79
Costo unitario total por litro de helado	2,75

⁸⁸ Mediante tablas se determinó que la depreciación de los enseres, máquinas y equipos es de 5 años.
⁸⁹ Se considera que el porcentaje por gestión de ventas de la producción con máquina es de un 25% el de la producción artesanal.

Luego de haber realizado un análisis de los costos de producción se logró determinar el costo unitario por litro de helado, los resultados obtenidos del estudio muestran que los costos disminuyen con la implementación de la máquina, lo que genera mayor rentabilidad y capacidad de producción a la microempresa Rikkos Helados. A pesar de que la inversión inicial es alta, su recuperación depende de la demanda del producto en el mercado.

La dificultad del trabajo es uno de los grandes problemas que enfrenta la producción artesanal de helados de paila, sin embargo con la máquina se soluciona este problema, ya que no se requiere de mayor esfuerzo físico por parte del operario.

Con este proyecto la microempresa busca automatizar la producción de helados de paila, ya que la actual producción artesanal no satisface la demanda del mercado, por lo que se ve obligada a aumentar la mano de obra y el tiempo de trabajo.

Al finalizar este análisis se concluye que el proyecto para fines de industrialización de la microempresa Rikkos Helados resulta ser atractivo y beneficioso, ya que reduce los costos de producción y maximiza la capacidad de producción, manteniendo la calidad del producto.

CAPÍTULO 7

CONCLUSIONES Y RECOMENDACIONES

7.1. CONCLUSIONES

- El objetivo principal del proyecto de diseñar una máquina para hacer helados de paila se ha cumplido en su totalidad, los resultados obtenidos han sido satisfactorios.
- La implementación de la máquina para la microempresa Rikkos Helados, resulta ser conveniente para fines de industrialización de la misma, permite reducir los costos de mano de obra directa, reemplazando el consumo de hielo, sal y paja por el consumo únicamente de refrigerante.
- El modelo matemático teórico propuesto por Pham, resulta apropiado para la determinación del área de transferencia en función del tiempo total de congelación, por lo que el error porcentual teórico es bajo, menor al 10%, siendo aceptable para este tipo de aplicaciones.
- Al utilizar el serpentín helicoidal en el interior de los recipientes, se espera incrementar más la eficiencia de la máquina, puesto que aumentaría el intercambio de calor entre la superficie del serpentín y la mezcla líquida de helado.
- El diseño hermético del equipo permite mantener las condiciones sanitarias apropiadas durante todo el proceso de batido del helado.
- Las pérdidas por flujo de calor a través de las paredes son bajas menores a un 5% del calor total requerido por todos los componentes de la máquina. Por lo que se concluye que el espesor de aislamiento de poliuretano utilizado resultó ser el apropiado.
- Con el diseño de la máquina se disminuye la intervención humana durante el proceso de batido del helado, y no se requiere de mayor esfuerzo físico por parte del operador.
- Todas las superficies que estén en contacto directo con el helado deberán ser hechas de material apropiado, resistente a la corrosión y de fácil limpieza.
- Luego de haber realizado el análisis de esfuerzos de la estructura soporte se concluye que los perfiles seleccionados son aceptables, ya que los resultados de

la simulación, en el software Inventor 2012, muestra que el esfuerzo máximo producido es inferior al límite de fluencia de los perfiles.

 Tanto el mecanismo de descarga como el de compuerta satisface las restricciones, movimientos y desplazamientos necesarios para el funcionamiento de los mecanismos.

7.2. RECOMENDACIONES.

- Se recomienda que la temperatura de congelación del producto se mantenga constante con el fin mejorar las propiedades y calidad del helado; luego de cada descarga es conveniente almacenarlo en cámaras de congelación hasta el momento de su comercialización.
- Debido a que las empresas comercializadoras de acero, ofertan sus productos en longitudes estándares de 6 metros; por lo tanto se recomienda que la construcción de la máquina de helados, se la realice en una metal mecánica donde se disponga de los materiales utilizados para la fabricación, en longitudes menores, con el fin de abaratar los costos.
- Mediante el análisis de costos se determinó que la capacidad de producción de la máquina es superior a la actual producción artesanal que tiene la microempresa, por lo que se recomienda que Rikkos Helados realice una ampliación del mercado, para así lograr una recuperación de la inversión a corto plazo.
- Cuando se vaya a construir el equipo se recomienda:
 - No exceder la capacidad de carga de la máquina de 60 [l/h].
 - Mantener el equipo bajo condiciones a las cuales ha sido diseñada, para así evitar mayores pérdidas de calor.
 - Revisar cuidadosamente el capítulo de montaje del equipo previo a la instalación del sistema eléctrico y de refrigeración.
 - Realizar la selección de los sellos de los recipientes y de la tapa de descarga, con mucho cuidado, para así evitar fugas debido a la contracción producida por los cambios de temperatura de trabajo.

CAPÍTULO 8

REFERENCIAS BIBLIOGRÁFICAS

- ULCUANGO, W; Evaluación de los ingredientes funcionales (crema y estabilizante), en la elaboración de helados de crema tipo paleta; Ibarra; 2007.
- MADRID, A; CENZANO, I; Helados: elaboración, análisis y control de calidad; Ediciones Mundi-Prensa; españa; 2003.
- VILLACÍS, E; Formulación de helados aptos para diabéticos; EPN; Quito; 2010.
- CENGEL, Y; BOLES, M; Termodinámica; 5ta edición; McGraw Hill; México; 2006.
- DOSSAT, R; Principios de refrigeración; 2da edición; Continental; México; 1999.
- JUTGLAR, L; Bombas, ventiladores y compresores; Ceac; Barcelona; 2005.
- FRANCO, J; Manual de refrigeración; Reverté; España; 2006.
- ALARCÓN, J; Tratado práctico de refrigeración automática; 12 va Edición; España; 1998.
- ALVAREZ, O; Tratado General de Refrigeración; Bell; Argentina; 1973.
- INCROPERA, F; Fundamentos de transferencia de calor; 4ta edición; Prentice Hall; México; 1999.
- WELTY, J; Transferencia de calor aplicada a la ingeniería; 1ra edición; México; 1978.
- DONALD, R; LEIGHTON, E; Theory and problems of heat transfer; 2da edición; McGraw-Hill; 1998.
- GREANKOPOLIS, C; Proceso de transporte y operaciones unitarias; 3ra edición: México: 1998.
- MINTON, P; Handbook of evaporation technology; EEUU; 1986.
- MIKIELEWICZ, J; Semi empirical method of determining the heat transfer coeficient for subcooled, satured boiling in a cannel; International Journal of heat and mass transfer; vol 17.
- VINUEZA, R; Diseño y construcción de un tanque refrigerado para leche; Quito; 1992.
- RAMIREZ, J; Introducción a la reología de alimentos; Colombia; 2006.
- VILLANUEVA, R; Refrigerantes para aire acondicionado y refrigeración; España; 2004.
- MC CABE, J; Operaciones unitarias de ingeniería química; Volumen 1; 1973.
- THE AMERICAN SOCIETY OF REFRIGERATING ENGINEERS; Air conditioning refrigerating data book; New York; 1956.
- SAPALI, N.A.; Refrigeration and air conditioning; 2009.
- DUPONT SUVA REFRIGERANTS; Thermodynamic properties of R404A; Technical information.
- NUÑEZ, F; PROAÑO, J; Diseñar y construir un batidor-congelador para la elaboración de helados; Riobamba, Ecuador; 2008.
- ASHRAE; handbook of fundamentals; Atlanta; 2009.
- RAMIREZ, J; Nueva enciclopedia de la climatización; Ceac S.A.; Barcelona; 2000.

- ASHRAE; Handbook of fundamentals; New York; 1972.
- SOLKANE; 404 Thermodynamics.
- COUPER, J; PENNY, R; WALAS M; Chemical Process equipment: Selection and desing; 2da edición; 2006.
- MOTT, R; Diseño de elementos de máquinas; 4ta edición; México; 2006.
- FLORES, J; Agitación de fluidos no newtonianos; Quito; 2001.
- FOX, A; Introducción a la Mecánica de fluidos; 2da edición; McGraw-Hill; México; 1989.
- SHIGLEY, J; Diseño en Ingeniería mecánica; 4ta edición; Editorial Mc Graw Hill, México; 1983.
- SHIGLEY, J; Mechanical Engineering design; 8va edición; Editorial Mc Graw Hill, EEUU; 2006.
- AISC Manual of Steel Construction; EEUU; 1973.
- AISC Manual of Steel Construction; 13va edición; EEUU; 2005.
- MOTT, R; Mecánica de fluidos; 4ta Edición; México; 2006.
- http://www.conelec.gob.ec/documentos.php?cd=3073&l=1
- http://www.fcecon.unr.edu.ar/investigacion/jornadas/archivos/martinezyliend ohelado.pdf.
- http://senacondensadores.blogspot.com/2007/11/condensadores-enfriadospor-aire.html
- http://www.slideshare.net/martorque/calculo-carga-refrigeracion.
- http://www.gas-servei.com/docs/tecnicas/ref/R404A.pdf
- http://www.gas-servei.com/docs/tecnicas/ref/R507.pdf.
- http://espanol.wunderground.com/global/stations/84043.html.
- http://maps.google.com/maps?ct=reset.
- http://www.gas-servei.com/productos/?tipus=HFC.
- http://asiterm.cl/pdf/FichaTecnicaPoliuretanoAsiterm.pdf.
- http://www.goodfellow.com/S/Acero-Inoxidable-AISI-304.html.
- http://www.pvcastellet.com/cas/aislamiento_termico.asp
- http://www.fstadirect.com/GetRecord.aspx?AN=2006-04-Pn0911
- http://www.frisher.com.ar/productos.php?id Cat=5.
- http://www.fstadirect.com/GetRecord.aspx?AN=2006-04-Pn0911.
- http://www.bridex.com.au/lg_gmc-9_gmc-12_gmc-18_gmc-22 contactors.htm
- http://medinia.com.ar/catalogo/concepto-de-calidad-6.html

ANEXOS

ANEXO A

PROPIEDADES DE LOS ACERO UTILIZADOS EN EL DISEÑO DE LA MÁQUINA.

BÖHLER | MANUAL DE ACEROS ESPECIALES - 2010

BÖHLER A 604

Tipo de aleación:

C 0.05 máx. Si 0.50

Mn 1.40

Cr 19.00

Ni 10.0

Color de identificación:

Estado de suministro:

Acabado:

Azul

Apagado

Pulido h9

DIN: X5CrNi18-10 No. Mat. 1.4301

PROPIEDADES:

Acero inoxidable austenítico al cromo - níquel con bajo contenido de carbono. Resistente a la corrosión intercristalina hasta 300 °C. Resiste al efecto corrosivo del medio ambiente, vapor, agua y ácidos, así como de soluciones alcalinas si se emplea con la superficie pulida espejo. Muy apropiado para embutir. Fácil mecanizado.

EMPLEO:

En las industrias alimenticias tales como la cervecera, lechera, azucarera, camaronera, donde las normas exigen el uso de acero inoxidable. Fábricas de jabones, ceras y grasas comestibles. Utensilios domésticos y de hotelería. Industria farmacéutica.

TRATAMIENTO TÉRMICO:

Fórjado:	1050 - 750.°C f
Apagar: al agua, espesor > 2 mm al aire.	1040 - 1100 °C

Los aceros austeníticos son susceptibles a endurecer durante el maquinado y presentar magnetismo. Por ello, las herramientas deberán estar perfectamente afiladas y firmemente sujetas. La profundidad de corte no debe ser muy pequeña.

PROPIEDADES MECÁNICAS

Producto	Dimensiones mm	Limite de fluencia N/mm²	Resistencia a la tracción N/mm²
	≥ 160	220	520
Barras	> 160 ≤ 250	220	020

SOLDADURA DE UNIÓN

Electrodo recomendado:

UTP 308 L - 16

AISI: ~ 1045

No. Mat. 1.1191

DIN: C45

3 - Aceros de construcción mecánica

3.3.- Aceros al carbono

BÖHLER V 945

Tipo de aleación:

C 0.45

Si 0.25

Mn 0.65

Color de Identificación:

Blanco

Estado de suministro:

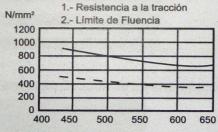
Recocido 180 HB

PROPIEDADES:

Acero al carbono de alta calidad, de mayores propiedades mecánicas que el acero de transmisión, puede mejorar sus propiedades mecánicas si es bonificado.

EMPLEO:

Para la fabricación de partes de maquinaria sometida a esfuerzos normales, como: árboles de transmisión, ejes, pernos, tuercas, ganchos, pines de sujeción, pasadores, cuñas, chavetas, portamatrices.


TRATAMIENTO TÉRMICO:

Forjado:	1100 - 850 °C
Recocido:	650 – 700 °C
enfriamiento lento en el horno	All the All th
Normalizado:	840 - 870 °C
Distensionado:	500 °C
Temple:	820 - 850 °C
enfriamento en: agua, acelte (piezas pequeñas).	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
Dureza obtenible:	54 – 56 HRC
Revenido: ver en el diagrama de bonificación la re	natancia requenda
Nitruración: en baño de sales	580 °C

PROPIEDADES MECÁNICAS

Estado	Diametra/	de "ou s'	Carrierani et la fragalité la fragalité	Alerganilento (Now5d) Intir	Contracción min.
Recocido	16 - 100 100 - 250	340 330	850 - 750 580 - 700	17 18	35

DIAGRAMA DE BONIFICACIÓN

Temperatura de revenido en °C

SOLDADURA DE UNIÓN O REPARACIÓN

Electrodo recomendado:

UTP 642, 63 ó 630

Precauciones:

UTP 642: No precalentar, excepto si la temperatura ambiente es menor a 0 °C (si es así, precanlentar las uniones a soldar a 40 °C).

Post-calentamiento: recocido a 620 °C.

UTP 63 ó 630: No precalentar excepto que la temperatura ambiente sea menor a 0 °C. Dejar enfriar lentamente luego de soldar.

ANEXO B

PROPIEDADES TERMODINÁMICAS DEL REFRIGERANTE R404A.

Table 1 (continued)
Suva® 404A (HP62) Saturation Properties—Temperature Table

TEMP.		SURE Pa		.UME ³/kg	DEN:			ENTHALPY kJ/kg			ROPY kg)(K)	TEMP.
°C	LIQUID Pf	VAPOR Pg	LIQUID V _f	VAPOR Vg	LIQUID 1/v _f	VAPOR 1/v _g	LIQUID h _f	LATENT h _{fg}	VAPOR h _g	LIQUID Sf	VAPOR S _g	°C
-40	136.7	132.5	0.0008	0.1434	1283.2	6.975	145.6	198.2	343.8	0.7862	1.6380	-40
-39	142.9	138.6	0.0008	0.1374	1280.1	7.278	146.9	197.6	344.5	0.7916	1.6371	-39
-38	149.4	144.9	0.0008	0.1317	1277.0	7.592	148.1	197.0	345.1	0.7970	1.6362	-38
-37	156.1	151.5	0.0008	0.1263	1273.8	7.916	149.4	196.3	345.8	0.8024	1.6353	-37
-36	163.0	158.3	0.0008	0.1212	1270.7	8.250	150.7	195.7	346.4	0.8077	1.6345	-36
-35	170.1	165.3	0.0008	0.1163	1267.5	8.595	152.4	194.6	347.0	0.8150	1.6337	-35
-34	177.5	172.6	0.0008	0.1117	1264.4	8.951	153.7	194.0	347.7	0.8203	1.6330	-34
-33	185.2	180.1	0.0008	0.1073	1261.2	9.319	155.0	193.4	348.3	0.8256	1.6322	-33
-32	193.0	187.8	0.0008	0.1031	1258.0	9.698	156.3	192.7	349.0	0.8309	1.6315	-32
-31	201.2	195.8	0.0008	0.0991	1254.9	10.090	157.5	192.1	349.6	0.8362	1.6308	-31
-30	209.5	204.1	0.0008	0.0953	1251.7	10.492	159.9	190.3	350.3	0.8460	1.6301	-30
-29	218.2	212.5	0.0008	0.0917	1248.5	10.906	161.2	189.7	350.9	0.8512	1.6295	-29
-28	227.0	221.3	0.0008	0.0882	1245.3	11.332	162.5	189.1	351.5	0.8563	1.6289	-28
-27	236.2	230.3	0.0008	0.0849	1242.2	11.772	163.7	188.4	352.2	0.8615	1.6283	-27
-26	245.7	239.7	0.0008	0.0818	1239.0	12.225	165.0	187.8	352.8	0.8667	1.6277	-26
-25	255.4	249.3	0.0008	0.0788	1235.8	12.692	166.3	187.1	353.4	0.8718	1.6271	-25
-24	265.4	259.2	0.0008	0.0759	1232.5	13.174	167.6	186.5	354.0	0.8769	1.6265	-24
-23	275.8	269.4	0.0008	0.0732	1229.3	13.669	168.9	185.8	354.7	0.8821	1.6260	-23
-22	286.4	279.9	0.0008	0.0705	1226.1	14.180	170.2	185.1	355.3	0.8872	1.6255	-22
-21	297.4	290.7	0.0008	0.0680	1222.8	14.705	171.5	184.4	355.9	0.8924	1.6250	-21
-20	308.7	301.8	0.0008	0.0656	1219.6	15.246	172.8	183.8	356.5	0.8975	1.6245	-20
-19	320.3	313.3	0.0008	0.0633	1216.3	15.803	174.1	183.1	357.1	0.9026	1.6240	-19
-18	332.2	325.1	0.0008	0.0611	1213.1	16.376	175.4	182.4	357.8	0.9078	1.6235	-18
-17	344.5	337.2	0.0008	0.0589	1209.8	16.966	176.7	181.7	358.4	0.9129	1.6231	-17
-16	357.1	349.7	0.0008	0.0569	1206.5	17.572	178.0	180.9	359.0	0.9180	1.6226	-16
-15	370.1	362.5	0.0008	0.0550	1203.2	18.196	179.4	180.2	359.6	0.9231	1.6222	-15
-14	383.4	375.7	0.0008	0.0531	1199.8	18.838	180.7	179.5	360.2	0.9282	1.6218	-14
-13	397.1	389.2	0.0008	0.0513	1196.5	19.498	182.1	178.7	360.8	0.9334	1.6214	-13
-12	411.1	403.1	0.0008	0.0496	1193.2	20.177	183.4	178.0	361.4	0.9385	1.6210	-12
-11	425.6	417.4	0.0008	0.0479	1189.8	20.875	184.7	177.2	362.0	0.9436	1.6206	-11
-10	440.4	432.1	0.0008	0.0463	1186.4	21.593	186.1	176.5	362.6	0.9487	1.6202	-10
-9	455.6	447.2	0.0008	0.0448	1183.0	22.331	187.5	175.7	363.2	0.9538	1.6198	-9
-8	471.2	462.6	0.0008	0.0433	1179.6	23.089	188.8	174.9	363.8	0.9589	1.6195	-8
-7	487.2	478.5	0.0009	0.0419	1176.1	23.868	190.2	174.1	364.3	0.9641	1.6191	-7
-6	503.6	494.7	0.0009	0.0405	1172.7	24.669	191.6	173.3	364.9	0.9692	1.6188	-6
-5	520.5	511.4	0.0009	0.0392	1169.2	25.492	193.0	172.5	365.5	0.9743	1.6184	-5
-4	537.7	528.5	0.0009	0.0380	1165.7	26.338	194.4	171.7	366.1	0.9794	1.6181	-4
-3	555.4	546.1	0.0009	0.0368	1162.2	27.207	195.8	170.9	366.6	0.9846	1.6178	-3
-2 -1	573.5 592.1	564.1 582.5	0.0009 0.0009	0.0356 0.0345	1158.6 1155.1	28.100 29.018	197.2 198.6	170.9 170.0 169.2	367.2 367.7	0.9897 0.9948	1.6175 1.6171	-2 -1
0	611.1	601.3	0.0009	0.0334	1151.5	29.960	200.0	168.3	368.3	1.0000	1.6168	0
1	630.6	620.7	0.0009	0.0323	1147.8	30.928	201.4	167.4	368.9	1.0051	1.6165	1
2	650.6	640.5	0.0009	0.0313	1144.2	31.923	202.9	166.5	369.4	1.0102	1.6162	2
3	671.0	660.7	0.0009	0.0304	1140.5	32.944	204.3	165.7	369.9	1.0154	1.6159	3
4	691.9	681.5	0.0009	0.0294	1136.8	33.994	205.7	164.7	370.5	1.0205	1.6156	4
5	713.3	702.7	0.0009	0.0285	1133.0	35.072	207.2	163.8	371.0	1.0257	1.6153	5
6	735.1	724.5	0.0009	0.0276	1129.2	36.179	208.6	162.9	371.5	1.0308	1.6150	6
7	757.5	746.7	0.0009	0.0268	1125.4	37.316	210.1	162.0	372.1	1.0360	1.6147	7
8	780.4	769.5	0.0009	0.0260	1121.6	38.485	211.6	161.0	372.6	1.0412	1.6144	8
9	803.8	792.7	0.0009	0.0252	1117.7	39.685	213.1	160.0	373.1	1.0464	1.6141	9
10	827.8	816.5	0.0009	0.0244	1113.7	40.917	214.5	159.1	373.6	1.0515	1.6138	10
11	852.2	840.8	0.0009	0.0237	1109.8	42.184	216.0	158.1	374.1	1.0567	1.6135	11
12	877.2	865.7	0.0009	0.0230	1105.7	43.485	217.5	157.0	374.6	1.0619	1.6132	12
13	902.8	891.1	0.0009	0.0223	1101.7	44.821	219.1	156.0	375.1	1.0671	1.6129	13
14	928.9	917.1	0.0009	0.0216	1097.5	46.194	220.6	155.0	375.6	1.0723	1.6126	14
15	955.6	943.6	0.0009	0.0210	1093.4	47.605	222.1	153.9	376.0	1.0776	1.6123	15
16	982.8	970.7	0.0009	0.0204	1089.1	49.055	223.6	152.9	376.5	1.0828	1.6120	16
17	1010.6	998.4	0.0009	0.0198	1084.9	50.545	225.2	151.8	377.0	1.0880	1.6116	17
18	1039.0	1026.7	0.0009	0.0192	1080.5	52.076	226.7	150.7	377.4	1.0933	1.6113	18
19	1068.1	1055.6	0.0009	0.0186	1076.1	53.650	228.3	149.6	377.9	1.0985	1.6110	19

Table 1 (continued)
Suva® 404A (HP62) Saturation Properties—Temperature Table

TEMP.		SURE Pa		UME /kg	DEN: kg/			ENTHALPY kJ/kg			ROPY kg)(K)	TEMP.
°C	LIQUID Pf	VAPOR Pg	LIQUID V _f	VAPOR V _g	LIQUID 1/v _f	VAPOR 1/v _g	LIQUID h _f	LATENT h _{fg}	VAPOR h _g	LIQUID S _f	VAPOR S _g	°C
20	1097.7	1085.1	0.0009	0.0181	1071.7	55.267	229.9	148.4	378.3	1.1038	1.6106	20
21	1127.9	1115.2	0.0009	0.0176	1067.2	56.930	231.5	147.3	378.7	1.1091	1.6103	21
22	1158.7	1145.9	0.0009	0.0171	1062.6	58.640	233.0	146.1	379.2	1.1144	1.6099	22
23	1190.2	1177.2	0.0009	0.0166	1057.9	60.398	234.6	144.9	379.6	1.1197	1.6095	23
24	1222.3	1209.2	0.0009	0.0161	1053.2	62.206	236.3	143.7	380.0	1.1250	1.6091	24
25	1255.0	1241.8	0.0010	0.0156	1048.4	64.066	237.9	142.5	380.4	1.1304	1.6087	25
26	1288.4	1275.1	0.0010	0.0152	1043.5	65.980	239.5	141.3	380.8	1.1357	1.6083	26
27	1322.5	1309.1	0.0010	0.0147	1038.5	67.949	241.2	140.0	381.1	1.1411	1.6079	27
28	1357.2	1343.7	0.0010	0.0143	1033.5	69.975	242.8	138.7	381.5	1.1465	1.6075	28
29	1392.6	1379.0	0.0010	0.0139	1028.3	72.062	244.5	137.4	381.9	1.1519	1.6070	29
30	1428.7	1415.0	0.0010	0.0135	1023.1	74.210	246.2	136.1	382.2	1.1574	1.6065	30
31	1465.4	1451.7	0.0010	0.0131	1017.8	76.422	247.9	134.7	382.6	1.1628	1.6060	31
32	1502.9	1489.1	0.0010	0.0127	1012.3	78.702	249.6	133.3	382.9	1.1683	1.6055	32
33	1541.1	1527.2	0.0010	0.0123	1006.8	81.050	251.3	131.9	383.2	1.1738	1.6050	33
34	1580.0	1566.0	0.0010	0.0120	1001.1	83.472	253.0	130.5	383.5	1.1793	1.6044	34
35	1619.7	1605.6	0.0010	0.0116	995.4	85.968	254.8	129.0	383.8	1.1848	1.6038	35
36	1660.1	1645.9	0.0010	0.0113	989.5	88.543	256.5	127.5	384.1	1.1904	1.6032	36
37	1701.2	1687.0	0.0010	0.0110	983.5	91.201	258.3	126.0	384.3	1.1960	1.6026	37
38	1743.1	1728.8	0.0010	0.0106	977.4	93.944	260.1	124.5	384.6	1.2016	1.6019	38
39	1785.8	1771.4	0.0010	0.0103	971.1	96.777	261.9	122.9	384.8	1.2073	1.6012	39
40	1829.2	1814.8	0.0010	0.0100	964.7	99.704	263.8	121.3	385.0	1.2130	1.6005	40
41	1873.4	1859.0	0.0010	0.0097	958.2	102.730	265.6	119.6	385.2	1.2187	1.5998	41
42	1918.4	1904.0	0.0011	0.0094	951.5	105.860	267.5	117.9	385.4	1.2245	1.5990	42
43	1964.2	1949.8	0.0011	0.0092	944.6	109.098	269.4	116.2	385.6	1.2303	1.5981	43
44	2010.8	1996.4	0.0011	0.0089	937.6	112.452	271.3	114.4	385.7	1.2362	1.5973	44
45	2058.3	2043.9	0.0011	0.0086	930.4	115.926	273.2	112.6	385.8	1.2421	1.5964	45
46	2106.6	2092.2	0.0011	0.0084	923.0	119.529	275.1	110.8	385.9	1.2480	1.5954	46
47	2155.7	2141.3	0.0011	0.0081	915.5	123.267	277.1	108.9	386.0	1.2540	1.5944	47
48	2205.6	2191.3	0.0011	0.0079	907.7	127.150	279.1	107.0	386.1	1.2600	1.5933	48
49	2256.5	2242.2	0.0011	0.0076	899.7	131.185	281.1	105.0	386.1	1.2662	1.5922	49
50	2308.2	2294.0	0.0011	0.0074	891.5	135.384	283.2	102.9	386.1	1.2723	1.5910	50
51	2360.7	2346.6	0.0011	0.0072	883.0	139.757	285.3	100.8	386.1	1.2786	1.5897	51
52	2414.2	2400.2	0.0011	0.0069	874.3	144.317	287.4	98.6	386.0	1.2849	1.5884	52
53	2468.6	2454.6	0.0012	0.0067	865.3	149.078	289.6	96.4	385.9	1.2913	1.5870	53
54	2523.8	2510.0	0.0012	0.0065	856.0	154.056	291.7	94.1	385.8	1.2977	1.5855	54
55	2580.0	2566.4	0.0012	0.0063	846.4	159.270	294.0	91.7	385.7	1.3043	1.5839	55
56	2637.1	2623.7	0.0012	0.0061	836.5	164.738	296.2	89.2	385.5	1.3110	1.5822	56
57	2695.2	2681.9	0.0012	0.0059	826.2	170.486	298.5	86.7	385.2	1.3178	1.5804	57
58	2754.2	2741.1	0.0012	0.0057	815.6	176.541	300.9	84.0	384.9	1.3247	1.5785	58
59	2814.2	2801.4	0.0012	0.0055	804.5	182.935	303.3	81.2	384.6	1.3317	1.5764	59
60	2875.1	2862.6	0.0013	0.0053	792.9	189.706	305.8	78.3	384.2	1.3389	1.5742	60
61	2937.0	2924.8	0.0013	0.0051	780.9	196.901	308.4	75.3	383.7	1.3463	1.5718	61
62	2999.9	2988.0	0.0013	0.0049	768.3	204.575	311.0	72.1	383.1	1.3539	1.5692	62
63	3063.8	3052.3	0.0013	0.0047	755.0	212.799	313.7	68.8	382.5	1.3617	1.5664	63
64	3128.7	3117.6	0.0013	0.0045	741.0	221.659	316.5	65.2	381.8	1.3697	1.5633	64
65	3194.6	3184.0	0.0014	0.0043	726.2	231.271	319.5	61.5	380.9	1.3781	1.5599	65

ANEXO C PROPIEDADES TERMOFÍSICAS.

TABLA A.4 Propiedades termofísicas de gases a presión atmosférica"

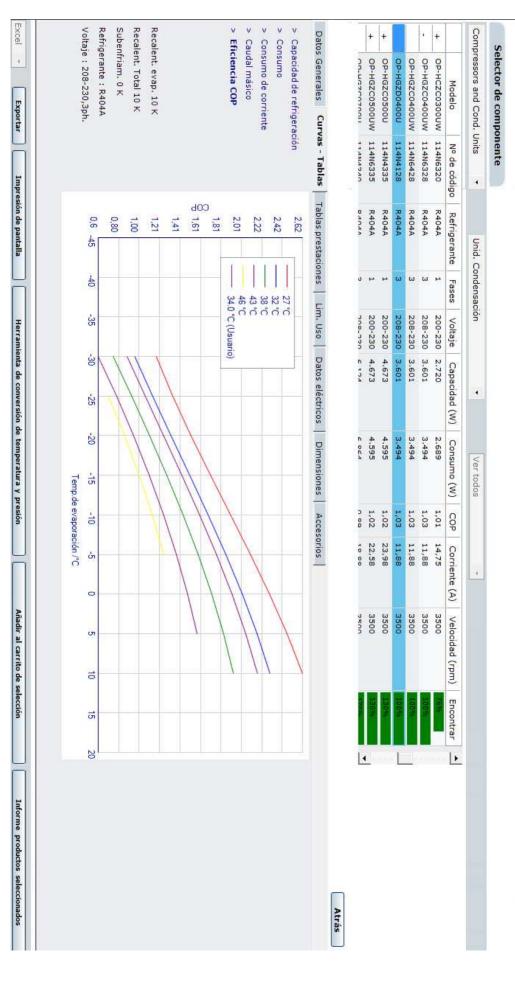
Τ ρ		Cp.	$\mu \cdot 10^7$	$v \cdot 10^{6}$	$k \cdot 10^{3}$	$\alpha \cdot 10^6$	06	
- (K)	(kg/m ³)	(kJ/kg·K)	$(N \cdot s/m^2)$	(m ² /s)	(W/m · K)	(m ² /s)	Pr	
Aire			2119	-	59			
100	3.5562	1.032	71.1	2.00	9.34	2.54	0.786	
150	2.3364	1.012	103.4	4.426	13.8	5.84	0.758	
200	1.7458	1.007	132.5	7.590	18.1	10.3	0.737	
250	1.3947	1.006	159.6	11.44	22.3			
300	1.1614	1.007				15.9	0.720	
300	1.1014	1.007	184.6	15.89	26.3	22.5	0.707	
350	0.9950	1.009	208.2	20.92	30.0	29.9	0.700	
400	0.8711	1.014	230.1	26.41	33.8	38.3	0.690	
450	0.7740	1.021	250.7	32.39	37.3	47.2	0.686	
500	0.6964	1.030	270.1	38.79	40.7	56.7	0.684	
550	0.6329	1.040	288.4	45.57	43.9	66.7	0.683	
	0.00.00	1.010	200.4	45.57	C.Tringer	(10.7	0.003	
600	0.5804	1.051	305.8	52.69	46.9	76.9	0.685	
650	0.5356	1.063	322.5	60.21	49.7	87.3	0.690	
700	0.4975	1.075	338.8	68.10	52.4	98.0	0.695	
750	0.4643	1.087	354.6	76.37	54.9	109	0.702	
800	0.4354	1.099	369.8	84.93	57.3	120	6.709	
850	0.4097	1.110	384.3	93.80	59.6	131	0.716	
900	0.3868	1.121	398.1	102.9	62.0	143	0.720	
950	0.3666	1.131	411.3	112.2	64.3	155	0.723	
1000	0.3482	1.141	424.4	121.9	66.7			
1100	0.3462	1.159				168	0.726	
1100	0.5100	1.139	449.0	141.8	71.5	195	0.728	
1200	0.2902	1.175	473.0	162.9	76.3	224	0.728	
1300	0.2679	1.189	496.0	185.1	82	238	0.719	
1400	0.2488	1.207	530	213	91	303	0.703	
1500	0.2322	1.230	557	240	100	350	0.703	
1600	0.2322	1.248						
1000	0.21//	1.240	584	268	106	390	0.688	
1700	0.2049	1.267	611	298	113	435	0.685	
1800	0.1935	1.286	637	329		482	0.683	
1900	0.1833	1.307	663	362	128	534	0.677	
2000	0.1741	1.337	689	396	137	589	0.672	
2100	0.1658	1.372	715	431	147	646		
2100	0.1056	1.372	/13	431		040	0.667	
2200	0.1582	1.417	740	468		714	0.655	
2300	0.1513	1.478	766	506	175	783	0.647	
2400	0.1448	1.558	792	547		869	0.630	
2500	0.1389	1.665	818	589	222	960	0.613	
3000	0.1135	2.726	955	841	486	1570	0.536	
	. /NIEW							
	iaco (NH ₃)	2.150				14.4	0.00	
300	0.6894	2.158	101.5	14.7	24.7	16.6	0.887	
320	0.6448	2.170	109	16.9	27.2	19.4	0.870	
340	0.6059	2.192	116.5	19.2	29.3	22.1	0.872	
360	0.5716	2.221	124	21.7	31.6	24.9	0.872	
380	0.5410	2.254	131	24.2	34.0	27.9	0.869	

ANEXO D

CARACTERÍSTICAS TÉCNICAS DE LA UNIDAD CONDENSADORA OPTYMA OP-HGZD0400U.

Versión 1.0.1.1 Versión de la base de datos 1.0.0.1

Archivo Menú Preferencias Buscar de código Ayuda Danfols


	30Hz	Diseño tipo Marca Tipo de compresor Nº Código compresor Voltaje nominal máx. 60Hz Voltaje nominal máx. 60Hz Tvin Refrigerante 1 Refrigerante 2 Homologaciones Flujo Aire 60Hz	Marca Tipo de compres Nº Código compu Voltaje nominal Voltaje nominal Twin Refrigerante 1 Refrigerante 2 Homologaciones Flujo Aire 60Hz	
	9Hz	po compresor compresor ominal min. 6 ominal máx. nte 1 nte 2 aciones 60Hz	Marca Tipo de c Nº Código Voltaje n Voltaje n Twin Refrigera Refrigera Homolog Flujo Aire	
	ZH0S	po compresor compresor cominal mín. 6 cominal máx. cominal máx. cominal máx.	Marca Tipo de c Nº Código Voltaje n Voltaje n Twin Refrigera Refrigera Homolog Flujo Aire	
	2Hz	po compresor compresor cominal mín. 6 cominal máx. nte 1 nte 2 aciones 60Hz	Marca Tipo de c Nº Código Voltaje no Voltaje no Twin Refrigera Refrigera Homolog Flujo Aire	
	9Hz	po ompresor ocompresor ominal míx. ominal máx. nte 1 nte 2 nte 2	Marca Tipo de c Nº Código Voltaje n Voltaje n Tvin Refrigera Refrigera	
	90Hz	po ompresor compresor ominal mín. 6 ominal máx. ominal máx.	Marca Tipo de c Nº Código Voltaje n Voltaje n Twin Refrigera	
	2H2	po ompresor o compresor ominal mín. 6 ominal máx.	Marca Tipo de c Nº Código Voltaje n Voltaje n Tvin Refrigera	
-	ZH0	po ompresor o compresor ominal mín. e	Marca Tipo de c Nº Código Voltaje no Voltaje no Twin	
	240 240	po ompresor ocompresor ominal mín. 6	Marca Tipo de c Nº Código Voltaje no Voltaje no	
	윘	po ompresor o compresor ominal mín. 6	Marca Tipo de c Nº Código Voltaje no	
		po ompresor compresor	Marca Tipo de c Nº Código	
		po	Marca Tipo de c	
		Po	Marca	
	5	ро		
			Diseño tipo	
			N Código	> Principal Datos
				-
Tablas prestaciones Lim. Uso Datos eléctricos Dimensiones Accesorios	estaciones Lim. U		Curvas - Tablas	Datos Generales Cui
700-730 C 474 C 0C4 0 00 40 00 0 00 T	סחכ פ	VVOVO	11484040	OB-BEZONTANII
200-230 4.673 4.595 1,02 22,58 3500 130%	1 200	R404A	V 114N6335	OP-HGZC0500UW
200-230 4.673 4.595 1,02 23,98 3500	1 200	R404A	114N4335	OP-HGZC0500U
208-230 3.601 3.494 1,03 11,88 3500 100%	3 208	R404A	114N4128	OP-HGZD0400U
208-230 3.601 3.494 1,03 11,88 3500 100%	3 208	R404A	V 114N6428	OP-HGZC0400UW
208-230 3.601 3.494 1,03 11,88 3500 100%	3 208	R404A	V 114N6328	OP-HGZC0400UW
200-230 2.720 2.689 1.01 14,75 3500 76%	1 200	R404A	V 114N6320	OP-HCZC0300UW
Voltaje Capacidad (W) Consumo (W) COP Corriente (A) Velocidad (rpm) Encontrar	Refrigerante Fases Vo		Nº de código	Modelo
Ver todas *			. Units 🕶	Compressors and Cond. Units

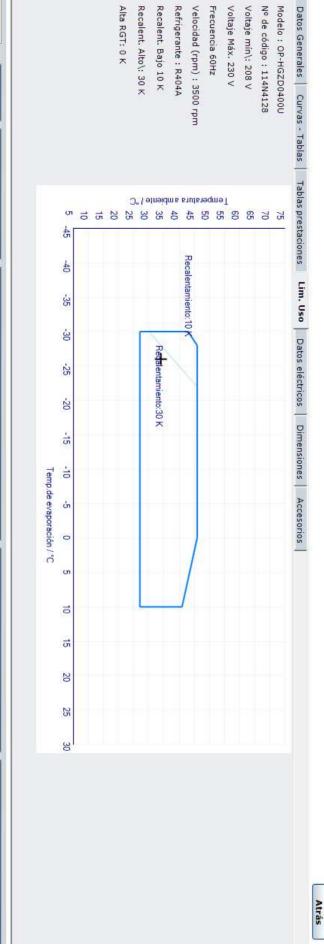
Versión 1.0.1.1 Versión de la base de datos 1.0.0.1

Archivo

Menú

Preferencias Buscar de código Ayuda Danfoss

Versión 1.0.1.1 Versión de la base de datos 1.0.0.1


Archivo Menú Preferencias Buscar de código Avud

			į		
١	Ĺ		١	١	١
1	Į		•	J	Ļ
١	١	į	Ī		
١	ļ	į	L		
	ľ	ç	ì	١	į
	ı	ì	ŝ	۰	

Compressors and Cond. Units Page Condensoin Veriodod Ver		Capacidad de refrigeración /													
No.	Dinic Condensación Pases Voltaje Capacidad (W) Consumo (W) Con Corriente (A) Velocidad (rpm) Encontrar A 200-230 2,720 2,623 3,601 3,494 1,03 11,89 3500 200-230 4,673 3,494 1,03 11,89 3500 200-230 4,673 4,595 1,02 23,89 3500 200-230 4,673 4,595 1,02 23,89 3500 200-230 4,673 4,595 1,02 23,89 3500 200-230 4,673 4,595 1,02 23,89 3500 200-230 4,673 4,595 1,02 23,89 3500 200-230 4,673 4,595 1,02 23,89 3500 200-230 4,673 4,595 1,02 23,89 3500 200-230 4,673 4,595 1,02 23,89 3500 200-230 4,673 4,595 1,02 23,89 3500 200-230 4,673 4,595 1,02 23,89 3500 200-230 4,673 4,595 1,02 23,89 3500 200-230 4,673 4,595 1,02 23,89 3500 200-230 4,673 4,595 1,02 23,89 3500 200-230 4,673 4,595 1,02 23,89 3500 200-230 4,673 4,595 1,02 2,039 3,000 200-230 4,673 4,595 1,02 2,039 3,000 200-230 4,673 4,595 4,5														
Principlessors and Cond. Units Unit. Condensación Vertodos														: 208-230,3ph.	oltaje
Modelo No de codd o Refrigerante Fases Veltaje Capacidad (VV) Consumo (V) CoP Corriente (A) Velocidad (pm) Encontrar A Percocadao (VV) Capacidad (VV) Consumo (V) CoP Corriente (A) Velocidad (pm) Encontrar A Percocadao (VV) I.1446.229 R404A 3 208-230 3.601 3.494 1.03 11.68 3500												20		rante : R404A	efrige
												15		nam. U.K	Joeni
Mode s					15.506			.61				10			
					(3.473		311					C)		nt. Total 10 K	cale
Modelo	v Unid. Condensación Veltodos Vertodos Nacional de la vertodos Maria de l				1,519		9					0		it. evap. 10 K	ecaler
					1.673	in.						ú			
	v Unid. Condensación Vertodos				7.961	-1						-10			
Dep-Hazcosouw 114Ns325 Rada4 1 200-230 3-601 3-494 1.03 11.85 3500 300 300 300 300 300 300 3-601 3					5.407	6						-15			
Node No de codigo Refrigerante Fases Capacidad (W) Consumo (W) COP Corriente (A) Velocidad (rpm) Encontrar A OP-HGZCO400UW 114W328 R404A 3 208-230 3.601 3.494 1.03 11.88 3500 209-200 2.792 2.792 2.793	Unid. Condensación Fases Voltaje Capacidad (W) Consumo (W) COP Corriente (A) Velocidad (rpm) Encontrar Sizo Sizo				5.021	Ţ#						-20			
Mode	Codigo Refrigerante Fases Voltaje Copazcidad (W) Consumo (W) COP Corriente (A) Velocidad (rpm) Encontrar △ 3320 R404A 1 200-230 2.720 2.689 1.01 14.75 3500 7889 4389 1.02 1.03 11.88 3500 7889 41 1.03 11.88 3500 1909 41 1.03 11.88 3500 1909 42				3.819	pa						-25			
Dimid. Condensación	Poddigo Refrigerante Fases Voltaje Capacidad (W) Consumo (W) COP Corriente (A) Velocidad (rpm) Encontrar A 3320 R404A 1 200-230 2.720 2.6693 1.01 14.75 3500 89.33 1.03 11.88 3500 100% 100% 12.693 1.01 14.88 3500 100% 100% 12.693 1.01 14.88 3500 100% 100% 12.693 1.01 14.88 3500 100% 100% 12.693 1.03 11.88 3500 100% 100% 100% 12.693 1.03 11.88 3500 100%				2.798	K 1	19		н			-30		encia COP	Efici
Mode	Código Refrigerante Fases Voltaje Capacidad (W) Consumo (W) COP Corriente (A) Velocidad (rpm) Encontrar A 3320 R404A 1 200-230 3.601 3.601 3.601 3500 2689 1.01 14.75 3500 2689 1.01 14.75 3500 2689 1.01 14.75 3500 2689 1.01 14.75 3500 2689 1.01 14.75 3500 2689 1.01 14.75 3500 2689 1.01 14.75 3500 2689 1.02 11.88 3500 2689 1.02 1.03 11.88 3500 2689 1.02 23.494 1.03 11.88 3500 2698 1.02 23.494 1.03 11.88 3500 2698 2698 2698 2698 2698 2698 2698 2698 2698 3500 2698 2698 2698 2698 2698 2698 2698 2698 2698 2698 <											-35		fal másico	Cau
Deptication	v Unid. Condensación v Vertodos vertodos v vertodos consumo (w) COP Corriente (A) Velocidad (rpm) Encontrar 3320 R404A 1 200-230 3.601 3.494 1,03 11,88 3500 100%											-40		umo de corriente	Cons
Dep-HgZco300uW 114N6325 R404A 1 200-230 3.601 3.494 1.03 3.500 3.500 3.500 3.601 4.75 3.500 3.500 3.601 4.75 3.500 3.601 4.75 3.500 3.601 4.75 3.500 3.601 4.75 3.500 3.601 4.75 3.601 4.75 3.500 3.601 4.75 3.75 3.601 4.75 3.75 3.601 4.75 3.75	v Unid. Condensación v Vertodos v Vertodos v Vertodos v Velocidad (rpm) Encontrar Δ 3200 Refrigerante Fases Voltaje Capacidad (w) Consumo (w) COP Corriente (A) Velocidad (rpm) Encontrar Δ 3320 R404A 1 200-230 2.720 2.689 1,01 14,75 3500 3500 1095 4 4428 R404A 3 208-230 3.601 3.494 1,03 11,88 3500 1005 1005 1128 R404A 3 208-230 3.601 3.494 1,03 11,88 3500 1005 1005 1335 R404A 1 200-230 4.673 4.595 1,02 23,98 3500 1005 1005 1335 R404A 1 200-230 4.673 4.595 1,02 22,58 3500 1005 1005 1005 1005 1005 1005											-45		umo	Cons
de código Refrigerante Fases Voltaje Capacidad (W) Consumo (W) COP Corriente (A) Velocidad (rpm) Encontrar A M6320 R404A 1 200-230 2.720 2.689 1,01 14,75 3500 78% 4 M6328 R404A 3 208-230 3.601 3.494 1,03 11,88 3500 100% 100% M4128 R404A 3 208-230 3.601 3.494 1,03 11,88 3500 100% 100% M4335 R404A 3 208-230 3.601 3.494 1,03 11,88 3500 100% 100% M6335 R404A 1 200-230 4.673 4.595 1,02 23,98 3500 100% 100% M6335 R404A 1 200-230 4.673 4.595 1,02 23,98 3500 130% 130% M6335 R404A 1 200-230 4.673 4.	→ Unid. Condensación → Ver todos → Ver todos →				34.0 °C (Usuario)	69 C		-	F-5552.F-7	ļ.	te 1 (°C)	Temp.d evaporación	ación	acidad de refriger	Cap
de código Refrigerante Fases Voltaje Capacidad (W) Consumo (W) COP Corriente (A) Velocidad (rpm) Encontrar ▲ M6320 R404A 1 200-230 2.720 2.689 1.01 14,75 3500 3500 1058 M6328 R404A 3 208-230 3.601 3.494 1,03 11,88 3500 1058 M6428 R404A 3 208-230 3.601 3.494 1,03 11,88 3500 1058 M4128 R404A 3 208-230 3.601 3.494 1,03 11,88 3500 1058 M4335 R404A 1 200-230 4.673 4.595 1,02 23,98 3500 1098 M6335 R404A 1 200-230 4.673 4.595 1,02 23,98 3500 1098 M6335 R404A 1 200-230 4.673 4.595 1,02 22,58 3500 1098 M6335 R404A 3 200-230 4.673 4.595 1,02	→ Unid. Condensación → Vertodos ✓ Vertodos → Vertodos → Processor Vertodos → Processor Vertodos → Processor → Processor → Processor Processor → Processor Processor → Processor			8	onos	Acces	mensiones		tos electric		cs Lim	arias pi estacion		Generales Curv	Sole
Condensación Ver todos Ver todos Velocidad (rpm) Encontrar Inversaria Velocidad (v) Cop Corriente (A) Velocidad (rpm) Encontrar Inversaria Velocidad (v) Cop Cop Corriente (A) Velocidad (rpm) Encontrar Inversaria Velocidad (v) Cop Cop Cop Cop Cop Inversaria Velocidad (v) Cop Cop Cop Cop Velocidad (rpm) Encontrar A Inversaria Inversaria Inve	T Unid. Condensación T Vertodos Vertodos <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td><td>his prostacione</td><td></td><td></td><td></td></t<>										1	his prostacione			
de código Refrigerante Fases Voltaje Capacidad (W) Consumo (W) COP Corriente (A) Velocidad (rpm) Encontrar N6328 R404A 1 200-230 3.601 3.494 1,03 11,88 3500 100% N6428 R404A 3 208-230 3.601 3.494 1,03 11,88 3500 100% N6428 R404A 3 208-230 3.601 3.494 1,03 11,88 3500 100% N4128 R404A 3 208-230 3.601 3.494 1,03 11,88 3500 100% N4128 R404A 1 200-230 4.673 4.595 1,02 23,98 3500 100% N4335 R404A 1 200-230 4.673 4.595 1,02 22,58 3500 100% N4335 R404A 1 200-230 4.673 4.595 1,02 22,58 3500 100% N4336	de código Refrigerante Fases Voltaje Capacidad (W) Consumo (W) COP Corriente (A) Velocidad (rpm) Encontrar M6320 R404A 1 200-230 2.720 2.689 1,01 14,75 3500 3500 100% M6328 R404A 3 208-230 3.601 3.494 1,03 11,88 3500 100% M6428 R404A 3 208-230 3.601 3.494 1,03 11,88 3500 100% M4128 R404A 3 208-230 3.601 3.494 1,03 11,88 3500 100% M4128 R404A 3 208-230 3.601 3.494 1,03 11,88 3500 100% M4128 R404A 1 200-230 4.673 4.595 1,02 23,98 3500 100% M6335 R404A 1 200-230 4.673 4.595 1,02 22,58 3500 100% <	Atrás													
de código Refrigerante Fases Voltaje Capacidad (W) Consumo (W) COP Corriente (A) Velocidad (rpm) Encontrar N63220 R404A 1 200-230 3.601 3.494 1,03 11,88 3500 100% N6428 R404A 3 208-230 3.601 3.494 1,03 11,88 3500 100% N6428 R404A 3 208-230 3.601 3.494 1,03 11,88 3500 100% N4128 R404A 3 208-230 3.601 3.494 1,03 11,88 3500 100% N4128 R404A 1 200-230 3.601 3.494 1,03 11,88 3500 100% N4135 R404A 1 200-230 4.673 4.595 1,02 23,98 3500 100% N6335 R404A 1 200-230 4.673 4.595 1,02 22,58 3500 100%	de código Refrigerante Fases Voltaje Capacidad (W) Consumo (W) COP Corriente (A) Velocidad (rpm) Encontrar M63220 R404A 1 200-230 2.720 2.689 1,01 14,75 3500 3500 100% M6328 R404A 3 208-230 3.601 3.494 1,03 11,88 3500 100% M6428 R404A 3 208-230 3.601 3.494 1,03 11,88 3500 100% M4128 R404A 3 208-230 3.601 3.494 1,03 11,88 3500 100% M4128 R404A 3 208-230 3.601 3.494 1,03 11,88 3500 100% M4128 R404A 1 200-230 4.673 4.595 1,02 23,98 3500 100% M6335 R404A 1 200-230 4.673 4.595 1,02 22,58 3500 100%	•	10000	3,000	10 00	000	*	202	134				11484540	UNTER A CUADOUT	-
de código Refrigerante Fases Voltaje Capacidad (W) COP Corriente (A) Velocidad (rpm) Encontrar N6328 R404A 3 208-230 3.661 3.494 1,03 11,88 3500 100% N6428 R404A 3 208-230 3.661 3.494 1,03 11,88 3500 100% N6428 R404A 3 208-230 3.661 3.494 1,03 11,88 3500 100% N4128 R404A 1 208-230 3.661 3.494 1,03 11,88 3500 100% N4128 R404A 1 208-230 3.661 3.494 1,03 11,88 3500 100% N41335 R404A 1 208-230 3.661 3.494 1,03 11,88 3500 100%	de código Refrigerante Fases Voltaje Capacidad (W) Consumo (W) COP Corriente (A) Velocidad (rpm) Encontrar N6320 R404A 1 200-230 2.720 2.689 1,01 14.75 3500 78% N6328 R404A 3 208-230 3.601 3.494 1,03 11.88 3500 100% N6428 R404A 3 208-230 3.601 3.494 1,03 11.88 3500 100% N4128 R404A 1 208-230 3.601 3.494 1,03 11.88 3500 100% N4128 R404A 1 208-230 3.601 3.494 1,03 11.88 3500 100% N4335 R404A 1 208-230 3.601 3.494 1,03 11.88 3500 100%		130%	3500	22,58	1,02	Š	4.59	673				114N6335	OP-HGZC0500UW	725
de código Refrigerante Fases Voltaje Capacidad (W) Consumo (W) COP Corriente (A) Velocidad (rpm) Encontrar N6320 R 404A 1 200-230 2.720 2.689 1,01 14,75 3500 78% N6428 R 404A 3 208-230 3.601 3.494 1,03 11,88 3500 100% N6428 R 404A 3 208-230 3.601 3.494 1,03 11,88 3500 100% N6428 R 404A 3 208-230 3.601 3.494 1,03 11,88 3500 100%	de código Refrigerante Fases Voltaje Capacidad (W) Consumo (W) COP Corriente (A) Velocidad (rpm) Encontrar N6320 R404A 1 200-230 2.720 2.689 1,01 14,75 3500 78% N6328 R404A 3 208-230 3.601 3.494 1,03 11,88 3500 100% N6428 R404A 3 208-230 3.601 3.494 1,03 11,88 3500 100% N4428 R404A 3 208-230 3.601 3.494 1,03 11,88 3500 100%		120%	3500	23,98	1,02	ŭ	4.59	673				114N4335	OP-HGZC0500U	
Ver todos Ver todos <t< td=""><td>de código Refrigerante Fases Voltaje Capacidad (W) Consumo (W) COP Corriente (A) Velocidad (rpm) Encontrar N6320 R404A 1 200-230 2.720 2.689 1,01 14.75 3500 78% N6328 R404A 3 208-230 3.601 3.494 1,03 11.88 3500 100% N6428 R404A 3 208-230 3.601 3.494 1,03 11.88 3500 100%</td><td></td><td>100%</td><td>3500</td><td>11,88</td><td>1,03</td><td>4</td><td>3.45</td><td>601</td><td></td><td></td><td></td><td>114N4128</td><td>OP-HGZD0400U</td><td></td></t<>	de código Refrigerante Fases Voltaje Capacidad (W) Consumo (W) COP Corriente (A) Velocidad (rpm) Encontrar N6320 R404A 1 200-230 2.720 2.689 1,01 14.75 3500 78% N6328 R404A 3 208-230 3.601 3.494 1,03 11.88 3500 100% N6428 R404A 3 208-230 3.601 3.494 1,03 11.88 3500 100%		100%	3500	11,88	1,03	4	3.45	601				114N4128	OP-HGZD0400U	
Ver todos Ver todos de código Refrigerante Fases Voltaje Capacidad (W) Consumo (W) COP Corriente (A) Velocidad (rpm) Encontrar N6320 R404A 1 200-230 2,720 2,689 1,01 14,75 3500 75% N6328 R404A 3 208-230 3,601 3,494 1,03 11,88 3500 100%	Vertodos		18095	3500	11,88	1,03	4	3.49	601				114N6428	OP-HGZC0400UW	No.
vertodos	vertodos Vertodos vertodos de código Refrigerante Fases Voltaje Capacidad (W) Consumo (W) COP Corriente (A) Velocidad (rpm) Encontrar N6320 R404A 1 200-230 2,720 2,689 1,01 14,75 3500 76%		100%	3500	11,88	1,03	4	3.49	109				114N6328	OP-HGZC0400UW	
▼ Unid. Condensación ▼ Ver todos de código Refrigerante Fases Voltaje Capacidad (W) Consumo (W) COP Corriente (A) Velocidad (rpm) Encontrar	✓ Unid. Condensación ✓ Ver todos de código Refrigerante Fases Voltaje Capacidad (W) Consumo (W) COP Corriente (A) Velocidad (rpm) Encontrar		7630	3500	14,75	1,01	99	2.68	720				114N6320	OP-HCZC0300UW	
✓ Unid. Condensación ✓ Ver todos	✓ Unid. Condensación ✓ Ver todos	<u> </u>		Velocidad (rpm)	Corriente (A)	COP	nsumo (W)		apacidad (\				Nº de código	Modelo	
					*		Ver todos		*	-	densación	Unid. Con		essors and Cond. L	ompr
		•		Velocidad (rpm) 3500 3500	Corriente (A) 14,75 11,88	COP 1,01	Ver todos nsumo (W)		apacidad () 720 501	oltaje 00-230 2 08-230 3	densaciór Fases 2		V-22	nits • Nº de código 114N6320 114N6328 114N6428	npressors and Cond. Units

Selector de componente

	E											
	Modelo	Nº de código	Refrigerante	Fases	Voltaje	Capacidad (W)	Consumo (W)	COP	Corriente	Æ	(A) Velocidad (rpm)	
+	OP-HCZC0300UW	114N6320	R404A	1	200-230	2.720	2.689	1,01	14,75		3500	3500
9	OP-HGZC0400UW	114N6328	R404A	ω	208-230	3.601	3.494	1,03	11,88		3500	3500
	OP-HGZC0400UW	114N6428	R404A	ω	208-230	3.601	3.494	1,03	11,88		3500	3500 100%
	OP-HGZD0400U	114N4128	R404A	ω	208-230	3.601	3.494	1,03	11,88		3500	3500 180%
+	OP-HGZC0500U	114N4335	R404A	1	200-230	4.673	4.595	1,02	23,98		3500	3500
+	OP-HGZC0500UW	114N6335	R404A	1	200-230	4.673	4.595	1,02	22,58		3500	3500
	1002002001	11404540	04044	a	200-220	7,77	0004	000	10 00		3,500	3500

Excel

Exportar Impresión de pantalla

Herramienta de conversión de temperatura y presión

Añadir al carrito de selección

Informe productos seleccionados

Versión 1.0.1.1 Versión de la base de datos 1.0.0.1

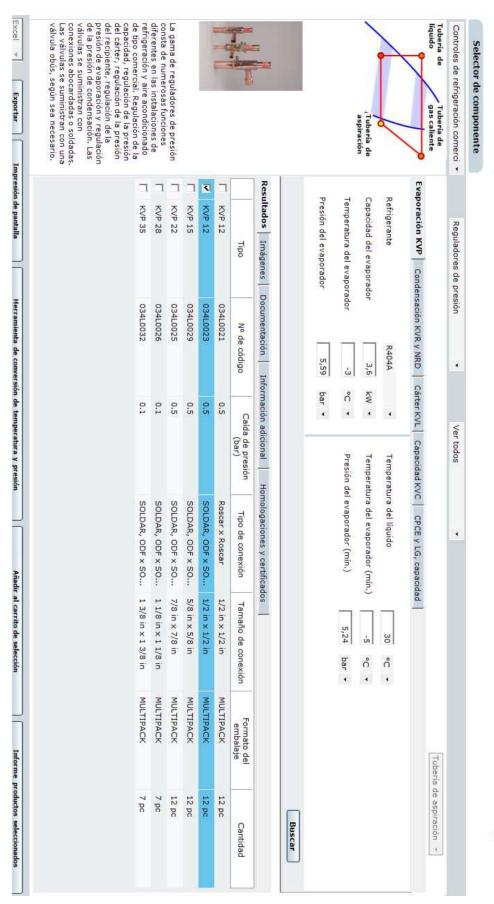
Menú

Archivo

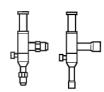
Preferencias Buscar de código

Ayuda

C	L	1	١
ì	ζ		ļ
	ì		
	1	ì	-
	K	-	

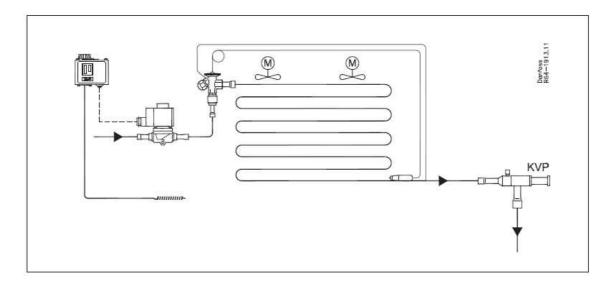


ANEXO E DATOS TÉCNICOS DE LA VÁLVULA KVP 12 SERIE 034L0023.


Versión 1.0.1.1 Versión de la base de datos 1.0.0.1

Archivo Menú

Preferencias Buscar de código Avuda Danfoss


Datos técnicos y pedidos

Regulador de presión de evaporación

T1	C	apacidad no	minal en kW	1)	Conexión al	oocardar ^{2) 3)}	C (- d) 4)	Conexión	soldar 3)	C d d l m a
Tipo	R22/R407C	R134a	R404A/R507	R407C	in. (pulg.)	mm	Código ⁴	in. (pulg.)	mm	Código
KVP 12	4.0	2.8	3.6	3.7	1/2	12	034L0021	1/2		034L0023
KVF 12	4.0	2.0	3.0	3.7					12	034L0028
KVP 15	4.0	2.8	3.6	3.7	5/8	16	034L0022	5/8	16	034L0029
KVP 22	4.0	2.8	3.6	3.7				7/8	22	034L0025
KVP 28	8.6	6.1	7.7	7,9				11/8		034L0026
KVF 28	0.0	0.1	7.7	7.9					28	034L0031
KVP 35	8.6	6.1	7.7	7.9				13/8	35	034L0032

- -7.7
 -7.7
 -7.7
 -7.7
 -7.7
 -7.7
 -7.7
 -7.7
 -7.7
 -7.7
 -7.7
 -7.7
 -7.7
 -7.7
 -7.7
 -7.7
 -7.7
 -7.7
 -7.7
 -7.7
 -7.7
 -7.7
 -7.7
 -7.7
 -7.7
 -7.7
 -7.7
 -7.7
 -7.7
 -7.7
 -7.7
 -7.7
 -7.7
 -7.7
 -7.7
 -7.7
 -7.7
 -7.7
 -7.7
 -7.7
 -7.7
 -7.7
 -7.7
 -7.7
 -7.7
 -7.7
 -7.7
 -7.7
 -7.7
 -7.7
 -7.7
 -7.7
 -7.7
 -7.7
 -7.7
 -7.7
 -7.7
 -7.7
 -7.7
 -7.7
 -7.7
 -7.7
 -7.7
 -7.7
 -7.7
 -7.7
 -7.7
 -7.7
 -7.7
 -7.7
 -7.7
 -7.7
 -7.7
 -7.7
 -7.7
 -7.7
 -7.7
 -7.7
 -7.7
 -7.7
 -7.7
 -7.7
 -7.7
 -7.7
 -7.7
 -7.7
 -7.7
 -7.7
 -7.7
 -7.7
 -7.7
 -7.7
 -7.7
 -7.7
 -7.7
 -7.7
 -7.7
 -7.7
 -7.7
 -7.7
 -7.7
 -7.7
 -7.7
 -7.7
 -7.7
 -7.7
 -7.7
 -7.7
 -7.7
 -7.7
 -7.7
 -7.7
 -7.7
 <l
- Suministrado sin tuercas abocardadas. Pueden suministrarse tuercas abocardadas por separado:
 in. / 12 mm, Código 011L1103, % in. / 16 mm, Código 011L1167.
 Las dimensiones de la conexión no deben ser demasiado reducidas, dado que las velocidades del gas superiores a 40 m/s a la entrada del regulador pueden generar ruido de flujo.

ANEXO F

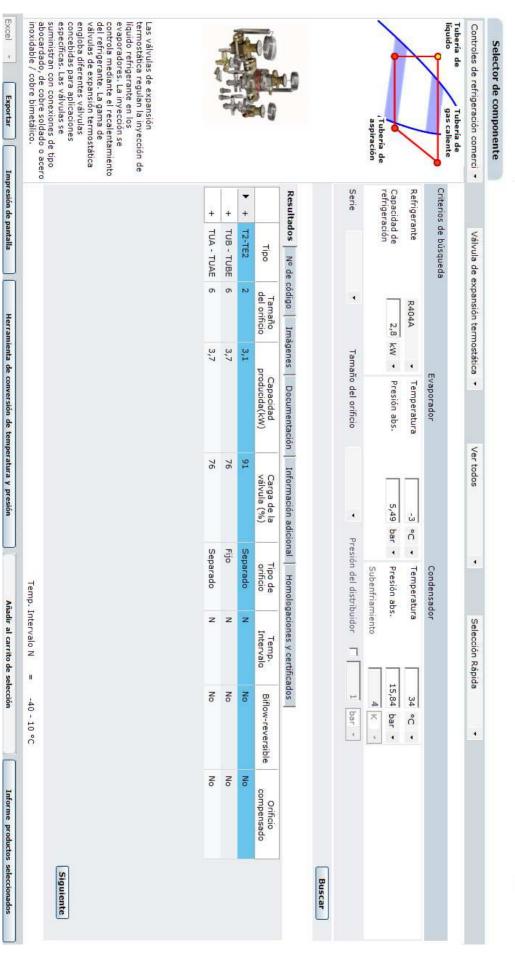
CARACTERÍSTICAS TÉCNICAS DE LAS VÁLVULA DE RETENCIÓN NRV 12.

Archivo

Datos técnicos y pedidos

					Con	exión		Pérdida de	N 1866	Presión
	Tipo	Ven	sion	In.	(pulg.)		mm	carga en la valvula	Valor k*21 m ³ /h	de trabaj
	0.000007	001536		Tamaño	Codigo	Tamaño	Código	Ap bar 1	myn	māxima
	NRV6			34	020-1040	6	020-1040	- 1 may 8	0.56	
	NRV 10			-36	020-1041	10	020-1041	0.07	1.43	
	NRV 12	1	Abocardar	35	020-1042	12	020-1042		2.05	1
	NRV 16		3	- 34	020-1043	16	020-1043	0.05	3.60	
	NRV 19			34	020-1044	19	020-1044		5.50	1
	NRV 6s			36	020-1010	6	020-1014	222		1
	NRV 6s 3	7	3	36	020-1057	10	020-1050	0.07	0.56	
	NRVH 6s 3	8	8	36	020-1069	10	020-1062	0.30		1
	NRV 10s	Ī	3	36	020-1011	10	020-1015	0.07		1
	NRVH 10s	70:	(A)	36	020-1046	10	020-1036	0.30	102122	
	NRV 10s 31		1	10	020-1058	12	020-1051	0.07	1.43	
	NRVH 105 ³⁾	1	30	10	020-1070	12	020-1063	0.30		
	NRV 12s	7	2	35	020-1012	12	020-1016	0.05		1
	NRVH 12s	Paso recto	1 8	15.	020-1039	12	020-1037	0.30	642/229	
	NRV 12s 11		l ü	34	020-1052	16	020-1052	0.05	2.05	
	NRVH 12s 3	1	- 1	36	020-1064	16	020-1064	0.30		
	NRV 16s	7	- 3	- 56	020-1018	16	020-1018	0.05		1
	NRVH 16s	9	8	36	020-1038	16	020-1038	0.30		
	NRV 165 ³¹	1	38		-	18	020-1053	0.05		
	NRVH 16s 3	7	2		- 3	18	020-1065	0.30	3.60	1997
	NRV 165 ³		\$	34	020-1059	19	020-1059	0.05		46 bar
	NRVH 16s ³⁾	1	Soldar	34	020-1071	19	020-1071	0.30		1
	NRV 19s	4	cobre		-	18	020-1017	0.05		†
	NRVH 19s	7	ODF	-	-	18	020-1008	0.30		
	NRV 19s	9	3	34	020-1019	19	020-1019	0.05		
	NRVH 19s	1	8	34	020-1023	19	020-1023	0.30	5.50	
	NRV 195 ³	7	9	36	020-1054	22	020-1054	0.05		
	NRVH 195 ³⁾		. 3	- 54	020-1066	22	020-1066	0.30		1.
	NRV 22s		° 3	- 74	020-1020	22	020-1020	0.04		1
	NRVH 22s	7	- 3	36	020-1032	22	020-1032	0.30		
	NRV 22s ³ 1		- 5	116	020-1060	28	020-1055	0.04	8.50	
	NRVH 225 ³⁾	9	8	1%	020-1072	28	020-1067	0.30		
	NRV 28s		33	1%	020-1021	28	020-1025	0.04		1
)*	NRVH 285	Paso en	- 3	1%	020-1029	28	020-1033	0.30		
	NRV 285 31	angulo	3	1%	020-1025	35	020-1056	0.04	19.00	
П	NRVH 28s 3		8	1%	020-1068	35	020-1068	0.30		
H	NRV 35s	7	9	1%	020-1006	35	020-1026	0.04		1
	NRVH 35s		- 3	156	020-1026	35	020-1026	0.30		
	NRV 35s 31	<u> </u>	88	1%	020-1061	42	020-1027	0.04	29.00	
	NRVH 35s 3	-	3	1%	020-1001	42	020-1027	0.30		

 ³⁾ Δp = diferencia de presión minima a la cual la valvula está completamente abierta.
 En la tubería de descarga de compresores conectados en paralelo, se utilizan valvulas NRVH con un muelle más fuerte.
 ³⁾ El valor la escaudal de agua en m³/h para una pérdida de carga a través de la valvula de 1 bar, p = 1000 kg/m³.
 ³⁾ Conexiones sobredimensionadas.


ANEXO G

CARACTERÍSTICAS TÉCNICAS DE LAS VÁLVULAS DE EXPANSIÓN TE2 Nº00 Y TE2 Nº02.

Menú

Archivo

Versión 1.0.1.1 Versión de la base de datos 1.0.0.1

Archivo Menú Preferencias Buscar de código Ayuda Danfobs

inoxidable / cobre bimetálico.	Las válvulas de expansión termostática regulan la inyección de líquido refrigerante en los evaporadores. La inyección se controla mediante el recalentamiento del refrigerante. La gama de válvulas de expansión termostática engloba diferentes válvulas se especificas. Las válvulas se especificas. Las válvulas se especificas. Las válvulas se especificas. Las válvulas se especificas.	4	212			0.0			,Tubería de aspiración		Tubería de líquido gas caliente	Controles de refrigeración comerci 🕶	Selector de componente
		+	+	+		Resultados		Serie	Capacidad de refrigeración	Refrigerante	Criterios		
		TUA - TUAE	TUB - TUBE	T2-TE2	Tipo	3 3 3 3			ación	ante	Criterios de búsqueda	Válvula de e	
		2	2	0	Tamaño del orificio	Nº de código Imágenes		•	0,8	R404A		Válvula de expansión termostática 🕶	
		0,88	0,88	0,91	P	ágenes		Tamai	0,8 kW •			nostática	
					Capacidad producida(kW)	Documentación		Tamaño del orificio	Presión abs.	Temperatura	Evaporador	*	
		91	91	88	Carga de la válvula (%)	in Información adicional		4	5,49	ئ		Ver todos	
		Sep	Fijo	Sep	22000	dicional		Presió	bar •	o° •			
Temp		Separado	1000	Separado	Tipo de orificio			Presión del distribuidor	Presión abs. Subenfriamiento	Temperatura	Condensador		
Temp. Intervalo N =		z	Z	z	Temp. Intervalo	Homologaciones y certificados		ibuidor	bs.	ura	dor	Selección Rápida	
-40 - 10 °C		No	No	No	Biflow-reversible	ados		1 bar *	15,84 bar ◆ 4 K +	34 °C ◆		da	
		No	No	No	Orificio compensado								
	Siguiente						Buscar						

Exportar Impresión de pantalla Herramienta de conversión de temperatura y presión

Añadir al carrito de selección

Informe productos seleccionados

Datos técnicos y pedidos

Elemento termostático con abrazadera de sensor, sin: orificio, cono de filtro y tuercas

Conexión abocardar × abocardar

·	50 510 510	Taran Company	Total	Con	exión			Cód	lgo ≒		
Refrigerante	Tipo de válvula	de presión Abocardar	Tubo capilar	Entrada	x Salida		go N +10°C	Rango NM -40 a -5°C	Rango NL -40 a -15°C		go B -25℃
		Abocardar	m	in. × in.	mm×mm	Sin MOP	MOP+15°C	MOP o°C	MOP -10°C	Sin MOP	MOP -20°C
R22/R407C	TX 2		1.5	3/5 × 1/2	10×12	068Z3206	068Z3208	068Z3224	068Z3226	068Z3207	068Z3228
K22/K40/C	TEX 2	14 in.	1.5	3/8 × 1/3	10 × 12	068Z3209	068Z3211	068Z3225	068Z3227	068Z3210	068Z3229
	TZ 2	A	1.5	3/8 × 1/2	10 × 12	068Z3496	068Z3516				12
R407C	TEZ 2	34 in.	1.5	3/8 × 1/2	10 × 12	068Z3501	068Z3517				
Acres :	TN 2	28 SES	1.5	3/s × 1/2	10×12	068Z3346	068Z3347	068Z3393	068Z3369		8
R134a	TEN 2	14 in.	1.5	3/8 × 1/2	10 × 12	068Z3348	068Z3349	068Z3392	068Z3370		i i
D	TS 2	1987	1.5	3/11 × 1/2	10 × 12	068Z3400	068Z3402	068Z3406	068Z3408	068Z3401	068Z3410
R404A/R507	TES 2	14 in.	1.5	3/8 × 1/2	10×12	068Z3403	068Z3405	068Z3407	068Z3409	068Z3404	068Z3411

Elemento termostático con abrazadera de sensor, sin: orificio, cono de filtro y tuercas

Conexión abocardar x soldar

		200000000000000000000000000000000000000	Total	Con	exión			Código 11		1774
Refrigerante	Tipo de válvula	lgualación de presión Soldar	Tubo capilar	Entrada	Salida		igo N i+10°C	Rango NL -40 a −15°C		go B -25℃
		Joidan	m	abocardar	soldar ODF	Sin MOP	MOP +15°C	MOP-10°C	Sin MOP	MOP −20°C
2 202 - 2	TX 2 TX 2		1.5 1.5	³/*in. 10 mm	1/2 in. 12 mm	068Z3281 068Z3302	068Z3287 068Z3308	068Z3366	068Z3357 068Z3361	068Z3319 068Z3276
R22/R407C	TEX 2 TEX 2	¼ in. 6 mm.	1.5 1.5	3/*in. 10 mm	1/2 in. 12 mm	068Z3284 068Z3305	068Z3290 068Z3311	068Z3367	068Z3359 068Z3363	068Z3220 068Z3277
	TZ 2 TZ 2	1	1.5 1.5	³/∘in. 10 mm	½ in. 12 mm	068Z3502	068Z3329 068Z3514			
R407C	TEZ 2 TEZ 2	¼ in. 6 mm.	1.5 1.5	³/* in. 10 mm	¹/₂ in. 12 mm	068Z3446 068Z3503	068Z3447 068Z3515			
	TN 2 TN 2	-	1.5 1.5	¾sin. 10 mm	1/2 in. 12 mm	068Z3383 068Z3384	068Z3387 068Z3388			\$0 50
R134a	TEN 2 TEN 2	¼ in. 6 mm.	1.5 1.5	³/=in. 10 mm	³/² in. 12 mm	068Z3385 068Z3386	068Z3389 068Z3390			
	TS 2 TS 2	1345	1.5 1.5	³/∘in. 10 mm	¹/z in. 12 mm	068Z3414 068Z3435	068Z3416 068Z3423	068Z3429 068Z3436	068Z3418 068Z3425	068Z3420 068Z3427
R404A/R507	TES 2 TES 2	¼ in. 6 mm.	1.5 1.5	∜≈in. 10 mm	1/2 in. 12 mm	068Z3415 068Z3422	068Z3417 068Z3424	068Z3430 068Z3437	068Z3419 068Z3426	068Z3421 068Z3428

Conjunto de orificio

83				Rango N: -	40 a +10°					Rango B: -	60 a -25°		Cód	lgo ¹⁰
N° orificio			d nominal adas (TR)			Capacida en	d nominal kW			d nominal ladas (TR)		d nominal kW	Version	Versión para
otilido	R22	R407C	R134a	R404A R507	R22	R407C	R134a	R404A R507	R22	R404A R507	R22	R404A R507	abocardar × abocardar ²⁷	adaptador soldar ^a
οX	0.15	0.16	0.11	0.11	0.50	0.50	0.40	0.38	0.15	0.11	0.50	0.38	068-2002	068-2089
00	0,30	0.30	0.25	0.21	1.0	1.1	0.90	0.70	0.20	0.21	0.70	0.70	068-2003	068-2090
01	0.70	0.80	0.50	0.45	2.5	2.7	1.8	1.6	0.30	0.45	1.0	1.6	068-2010	068-2091
02	1.0	1.1	0.80	0.60	3.5	3.8	2.6	2.1	0.60	0.60	2.1	2.1	068-2015	068-2092
03	1.5	1.6	1.3	1.2	5.2	5.6	4.6	4.2	0.80	1.0	2.8	3.5	068-2006	068-2093
04	2.3	2.5	1.9	1.7	8.0	8,6	6.7	6.0	1.2	1.4	4.2	4.9	068-2007	068-2094
05	3.0	3.2	2.5	2.2	10.5	11.3	8.6	7.7	1.5	1.7	5.2	6.0	068-2008	068-2095
06	4.5	4.9	3.0	2.6	15.5	16.7	10,5	9.1	2.0	1.9	7.0	6.6	068-2009	068-2096

La capacidad nominal está basada en: Temperatura de evaporación $te=+5^{\circ}C$ para rango N y $te=-30^{\circ}C$ para rango B, Temperatura de condensación $tc=+32^{\circ}C$, y temperatura de refrigerante líquido delante de la válvula $t=+28^{\circ}C$.

Adaptador soldar cobre sin conjunto de orificio

Código 11
068-2062
068-2063
068-41017
068-2060
068-2061
068-4100 ³⁾

Oddigos en negrita ofrecen habitualmente plazos de controlo profesorario.

a Incluido el filtro

Filtro

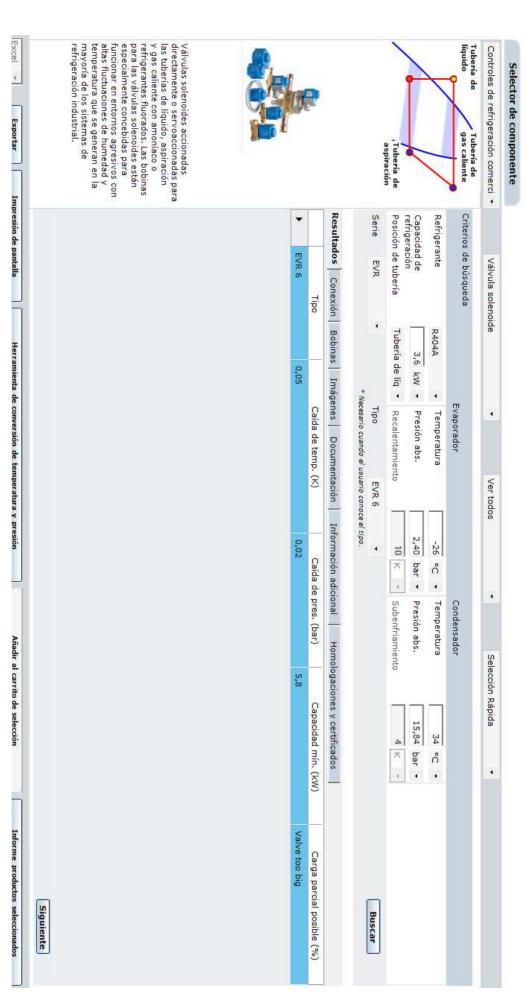
Tipo de filtro	Código 11	
Para conexión abocardar	068-0003	
Para adaptador soldar cobre	068-0015	

El adaptador está diseñado para utilizarse con las válvulas de expansión termostática T2 y TE2.

Cuando el adaptador se acopla debidamente, cumple los requisitos de estanqueidad estipulados por la directiva DIN 8964. El orificio estándar (aboc. × aboc.) de las T2 y TE2 puede utilizarse con el adaptador soldar cobre cuando se cambia el filtro de la válvula de expansión por otro filtro pedido por separado. Sólo de esta manera se cumplen los requisitos DIN 8964. No se puede utilizar el adaptador de soldar cobre (FSA) en la entrada de la T2.

Abrazadera del bulbo (suministrada con la válvula) y accesorios

Tipo	Longitud	Diámetro máx. de la línea de aspiración	Código
T2/TE2	110 mm	1 1/8" (28 mm)	068U3507
Accesorios	190 mm	2" (50 mm)	067N3508


Válvulas de expansión termostática – T2, TE2

ANEXO H CARACTERÍSTICAS TÉCNICAS DE LA VÁLVULA SOLENOIDE EVR 6.

Versión 1.0.1.1 Versión de la base de datos 1.0.0.1

Archivo Menú

Preferencias Buscar de código Ayuda Dan

Folleto técnico

Válvulas de solenoide, tipo EVR 2 → 40 - NC / NO

Pedidos (continuación)

Componentes

Conexiones abocardar y soldar

Тіре	Bobine requerida -	Connexión		Código. Cuerpo de valvula sin bobina				
				Abocardar 3	Solder OOF			
		inquerios .	'n.	mes	in/mm	in.	THE	Con apertura manual
EVR 2	C.I.	Na .	- 6	032F1200	032F1201	032F1202		
EVR 3		7,	. 0	032F1205	032F1206	032F1207		
EVN 3		4.	10	032F1203	032F1204	032F1208		
man a		ν,	10	032F1211	032F1212	032F1213		
EVR 0		16	12	032F1235	032F1209	032F1236		
min so.	E.B/C.C	190	12	032F1215	032F1217	032F1218		
EVR 10		1/4	16	032F1238	032F1214	032F1214		
EVR 13	1 [No.	10	032F1221	032F1228	032F1228		
		No	-10	032F1231 ()			032F1227	
		1/4	22		032F1225	032F1225		
	C.A.	1/4	22		032F1240	032F1240		
		No.	22		.,		032F1254	
EVR 20		11/2	26		032F1244	032F1245		
C 8 10 4 10	EE -	7.	22		032F1264	032F1264		
		7/4	22		A 0.000	u soussoned	032F1274	
EVR 22	C.A.	19,	-35		032F3267	032F3267	C21.200	
EVR 25	calce	11/2					032F2200	032F2201
		377-15	28				032F2205	032F2208
		11/4	33				032F2207	032F2208
EVR 32		19/4	33				042H1105	042H1106
		1%					042H1103	042H1104
			42				042H1107	042H1108
EVR 40		1%					042H1109	042H1110
		-	42				042H1113	042H1114
		21/2	54				042H1111	042H1112

Тіро	Bobina requerida	Connexión		Cuespo de válvula sta bobina 1)				
				Aboca	rdar 1	Solder ODF		
		100000	in.	mm	in.	mm	in.	mm
EVR 0	/ ₆ 22	V _e	10	032F1289	032F8085	032F1290	032F1295	
EVR 10		4.	12	032F1293	032F8091	032F1291	032F1296	
EVR 15		Y.,	10	032F1297	032F8099	032F1299	032F1299	
EWNIZ				032F3270	032F3270			
EVR 20		1/8	22			032F1260	032F1260	
		11/6	28			032F1269	032F1279	
EVR.22	C/L	1%	35		W W	032F3268	032F3268	

Bobinas Ver "Bobinas para válvulas de solenoide", RD.3J.E2.05

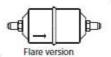
<sup>Con apertura manual.

Face les valvales NO, puede utilizarse la game normal de bobines, con la excepción de les versiones para doble frecuencia de T10 V, 50/60 Hz y 220 V, 50/00 Hz.</sup>

ANEXO I CARACTERÍSTICAS TÉCNICAS DEL FILTRO SECADOR DML 084.

Archivo

Preferencias Buscar de código Ayuda Dan


refrigerantes y aceites minerales o de benceno. Los filtros secadores son herméticos y están homologados para 42 bar. Se suministran Excel Los filtros secadores están optimizados para determinados abocardadas o cobreadas. Tubería de Controles de refrigeración comerci * Selector de componente Exportar Tubería de Tubería de aspiración Impresión de pantalla Resultados | Imágenes | Documentación | Información adicional | Capacidad del evaporador Criterios de búsqueda 3 Carga del sistema Tipo de aceite Refrigerante Secadores para tuberías de líquido Núcleo intercambiable Combinado y biflow Secadores de latubería de aspiración **DML 163** DML 163 **DML 162 DML 162 DML 085 DML 084 DML 084 DML 083** DML 082 **DML 082 DML 083** Tipo Filtros secadores 023Z5073 023Z5043 023Z5157 023Z5160 023Z5042 023Z0045 023Z5041 023Z5159 023Z5158 023Z5040 023Z5039 Nº de código POE o PAG, c - Tipo de conexión R404A Herramienta de conversión de temperatura y presión 27.27 27.27 13.10 13.10 13.10 13.10 13.10 13.10 13.10 20 3,6 kW + Agua absorbida(grams) Kg Evaporador Tipo de núcleo Presión abs. 4 Recalentamiento Temperatura 0,0289 0,0036 0,0036 0,0289 0,0033 0,0034 0,0115 0,0115 0,0290 0,0034 0,0290 Caída de presión (bar) Ver todos Roscar x Roscar Tipo DM 2,40 bar * -26 Homologaciones y certificados 10 Tipo de aceite × ô 4 1 Temperatura del líquido Presión abs. Subenfriamiento Temperatura Condensador Roscar x Roscar 3/8 in x 3/8 in Roscar x Roscar Tipo de conexión Añadir al carrito de selección 3/8 in x 3/8 in 5/8 in x 5/8 in 1/4 in x 1/4 in 1/4 in x 1/4 in 1/2 in x 1/2 in 1/2 in x 1/2 in 3/8 in x 3/8 in 3/8 in x 3/8 in 1/4 in x 1/4 in 1/4 in x 1/4 in conexion 15,84 bar • 30 34 4 × °° ô MULTIPACK Formato del embalaje Informe productos seleccionados 28 pc 15 pc 28 pc 28 pc 28 pc 28 pc 15 pc 15 pc 28 pc 28 pc Cantidad Buscar

Datos técnicos y pedidos

Filtro secador

			Núcleo	sólido	Cap	acidad (de secad	lo [kg re	frigeran	ite] ¹¹	Capac	idad de l en kW²	iquido	Sol	dar	Abocarda
Tipo	Cone	Conexión	Superfi- cie	Volumen [cm²]	R1	34a		04A 507	R4	22 07C 10A	R134a	R404A R507	R22 R407C R410A	Código ^a	Código	Código
	in. (pulg.)	mm	- [cm-1	E STORES	24°C	52°C	24°C	52°C	24°C	52°C	S 2		NYIVA	in. (pulg.)	mm	2.
DML 032	1/4	6	65	41	5.5	Sec.	7.5	4.5	4.5	1590	7	5	7	023Z4552 ⁿ	023Z4551 ^a	023Z5035 ^x
DML 033	3/8	10	65	41	3.5	5	15	4.5	4.5	4	17	13	19	023Z4555	023Z4554	023Z5036 ³
DML 052	1/4:	6	70	65	0.5	8		75	8	7	7	5	8	023Z4559	023Z4558	023Z5037
DML 053	3/6	10	75	/5 65	8.5	8	13	7.5	8	-1:	18	14	19	023Z4562	023Z4561	023Z5038
DML 082	1/4	6	1								7.	- 5	8	023Z4567	023Z4566	023Z5039
DML 083	3/8	10									19	14	21	023Z4570	023Z4569	023Z5040
DML 084	1/2	12	110	100	12.5	12	20	11.5	12.5	11	26	20	29	023Z4572	023Z4571	023Z5041
DML 085	5/8	16									42	31	46	023Z4573	023Z4573	023Z5073
DML 162	7/4	6		175 225							7	5	8	023Z4575	023Z4574	023Z5042
DML 163	7/1	10									22	16	24	023Z4578	023Z4577	023Z5043
DML 164	1/2	12	175		225	27	25.5	43.5	24	27	23	30	22	33	023Z4580	023Z4579
DML 165	5/a	16									43	30	47	023Z4581	023Z4581	023Z5045
DML 166	3/4	19									44	31	48	023Z4582	023Z4582	023Z5046
DML 303	1/8	10	38	9	4	8	9		6 3	6 - 1	21	15	23	023Z4585	023Z4584	023Z0049
DML 304	1/2	12									31	22	34	023Z4587	023Z4586	023Z0050
DML 305	5/8	16	345.49	480	57	54	92.5	51	57	48.5	45	33	49	023Z4588	023Z4588	023Z0051
DML 306	3/4	19		100-0400-0			V574	2-3/5		10000000	62	45	68	023Z4589	023Z4589	023Z0193
DML 307	7/2	22				2-3					62	45	68	023Z4590	023Z4590	M.
DML 414	1/2	12									32	23	35	023Z4594	023Z4593	023Z0109
DML 415	s _{fit}	16	400	650	80	75	130	70	80	74	53	37	58	023Z4595	023Z4595	023Z0110
DML 417	7/12	22	2,000	(max)	Name of	2000	Acce	Mess		3323	91	65	100	023Z4696	023Z4596	and the second of the
DML 606	3/4	19	1				Ĩ				44	32	48	023Z4601	023Z4601	
DML 607	7/6	22	660	960	113	107	185	101	114	97	75	54	82	023Z4602	023Z4602	
DML 609	1½c	28									87	64	95	023Z4604	023Z4603	
DML 757	7/1	22			Ý	M					82	60	90	023Z4605	023Z4605	
DML 759	11/n	28	800	1300	160	150	260	140	160	148	94	68	102	023Z4607	023Z4606	

🖰 La capacidad de secado se basa en la siguiente prueba de contenido de humedad del refrigerante antes y

después de la deshidratación: R134a: de 1050 ppm W a 75 ppm W. Si se requiere un secado a 50 ppm W, reducir la capacidad un 15% a la R134a: de 1050 ppm W a 75 ppm W. Si se requiere un secado a 50 ppm W, reducir la capacidad ui indicada en la tabla.

R404A, R507: de 1020 ppm W a 30 ppm W.

R407C: de 1020 ppm W a 30 ppm W.

R410A: de 1050 ppm W a 60 ppm W.

R22: de 1050 ppm W a 60 ppm W de conformidad con ARI 710-86

7) Valores según la norma ARI 710-86 para t_o = -15°C (5°F), t_c = 30°C (85 F) y Δp = 0,07 bar (1 psig)

Malla antipartículas en la salida del filtro secador

Adaptador soldar / abocardar

Tipo	Conexión abocardar × soldar in. (pulg.)	Código para 1 ud.	Código para 2 uds.	
FSA 22	1/4×1/4	023U8012	023U8002	
FSA 32	3/1×1/4	023U8022	-	
FSA 33	1/6 × 1/8	023U8014	023U8004	
FSA 44	1/2×1/2	023U8016	023U8006	
FSA 516m	5/a × 5/a	023U8017	023U8007	
FSA 66	2/4×2/4	023U8020	023U8010	

Tipo	Conexión abocardar × soldar mm	Código para 1 ud.	Código para 2 uds.
FSA 26m	1/4× 6	023U8011	023U8001
FSA 36m	3/0 × 6	023U8021	
FSA 310m	3/n × 10	023U8013	023U8003
FSA 412m	1/2×12	023U8015	023U8005
FSA 516m	³/a × 16	023U8017	023U8007
FSA 618m	³/*×18	023U8019	023U8009

Accesorios			
Arandela de cobre	Tamaño	Cant.	Código
B2 - 4 spec.	1/4 in./6 mm	300	011L4025
B2 - 6	3/4 in./10 mm	300	011L4017
B2 - 8	1/2 in./12 mm	200	011L4018

Arandela de cobre	Tamaño	Cant.	Código
B2 -10	3/8 in./16 mm	100	011L4019
B2 -12	3/4 in./18 mm	50	011L4020

ANEXO J CARACTERÍSTICAS TÉCNICAS DEL VISOR SGI 12s 014-0036.

Folleto técnico

Visores, tipos SG, SGR, SGI, SGN, SGH, SGRI, SGRN y SGRH

Pedidos

Tipo	Versión	Conexión pulg.	Conexión mm	Nº de código
SG 10	Abocardada ext. × ext.	3/8 × 3/8	10 × 10	014-0080
SG 12 SG 16	Soldar cobre ODF × ODF	1/2 × 1/2 5/8 × 5/8	16 × 16	014-0086 014-0087

CFC/HCFC

	Tipo	Versión	Conexión pulg.	Conexión mm	Nº de código
d ⊙D	SGI 6 SGI 10 SGI 12 SGI 16 SGI 19	Abocardada ext. × ext.	1/ ₄ × 1/ ₄ 3/ ₈ × 3/ ₈ 1/ ₂ × 1/ ₂ 5/ ₈ × 5/ ₈ 3/ ₄ × 3/ ₄	6×6 10×10 12×12 16×16 19×19	014-0007 014-0008 014-0009 014-0024 014-0028
	SGI 6 SGI 10 SGI 12 SGI 16 SGI 19	Abocardada int. × ext. ¹)	1/4 × 1/4 3/8 × 3/8 1/2 × 1/2 5/8 × 5/8 3/4 × 3/4	6×6 10×10 12×12 16×16 19×19	014-0021 014-0022 014-0025 014-0026 014-0043
	SGI 6s SGI 10s		1/4×1/4 3/8×3/8		014-0034 014-0035
	SGI 12s SGI 16s SGI 19s SGI 22s	Soldar cobre ODF × ODF	3/8 × 3/8 3/4 × 3/4 7/8 × 7/8	16 × 16 19 × 19 22 × 22	014-0036 014-0044 014-0047 014-0039
	SGI 6s SGI 10s SGI 12s SGI 18s	Soldar cobre ODF × ODF		6×6 10×10 12×12 18×18	014-0040 014-0041 014-0042 014-0045
	SGI 6s SGI 10s SGI 12s SGI 16s SGI 22s	Soldar cobre ODF × ODM	1/ ₄ × 1/ ₄ 3/ ₈ × 3/ ₈ 1/ ₂ × 1/ ₂ 3/ ₈ × 5/ ₈ 7/ ₈ × 7/ ₈	16 × 16 22 × 22	014-0125 014-0126 014-0127 014-0128 014-0130

¹⁾ Puede roscarse directamente en el filtro secador.

ANEXO K

CATÁLOGO DE LA TUBERÍA DE COBRE TIPO "L" Y ACERO INOXIDABLE AISI 304.

TABLA 2. Dimensiones y características de tubería rígida de cobre

Medida	Diámetro	Diá	imetro inter	no	Esp	esor de pa	red	Peso por	tramo de 6	6.10 mts	Pr	esión máxima	
nominal	exterior	М	L	K	М	L	K	М	L	K	М	L	K
1/4"	0.375"	0.324"	0.314"	0.276"	0.025"	0.030"	0.049"	2.132 lb	2.524 lb	5.385 lb	6,133 lb/pulg ²	7,200 lb/pulg ²	8,820 lb/pulg ²
6.35 mm	9.525 mm	8.255 mm	8.001 mm	7.035 mm	0.635 mm	0.762 mm	1.245 mm	0.968 kg	1.146 kg	2.445 kg	431.15 kg/cm ²	506.16 kg/cm ²	620.04 kg/cm ²
3/8"	0.500"	0.449"	0.429"	0.401"	0.025"	0.035"	0.049"	2.903 lb	3.965 lb	6.890 lb	4,500 lb/pulg ²	6,300 lb/pulg ²	7,056 lb/pulg ²
9.50 mm	12.700 mm	11.43 mm	10.922 mm	10.21 mm	0.635 mm	0.889 mm	1.245 mm	1.318 kg	1.800 kg	3.128 kg	316.35 kg/cm ²	442.89 kg/cm ²	496.03 kg/cm ²
1/2"	0.625"	0.572"	0.544"	0.494"	0.028"	0.040"	0.065"	4.083 lb	5.705 lb	12.813 lb	4,032 lb/pulg ²	5,760 lb/pulg ²	6,685 lb/pulg ²
12.7 mm	15.875 mm	14.453 mm	13.843 mm	12.573 mm	0.711 mm	1.016 mm	1.651 mm	1.854 kg	2.590 kg	5.817 kg	283.45 kg/cm ²	404.92 kg/cm ²	469.95 kg/cm ²
3/4"	0.875"	0.811"	0.784"	0.744"	0.032"	0.045"	0.065"	6.566 lb	9.110 lb	16.799 lb	3,291 lb/pulg ²	4,632 lb/pulg ²	5,200 lb/pulg ²
19 mm	22.225 mm	20.601 mm	19.939 mm	18.923 mm	0.812 mm	1.143 mm	1.651 mm	2.981 kg	4.136 kg	7.627 kg	231.35 kg/cm ²	325.62 kg/cm ²	209.00 kg/cm ²
1"	1.125"	1.054"	1.024"	0.994"	0.035"	0.050"	0.065"	9.310 lb	13.114 lb	20.824 lb	2,800 lb/pulg ²	4,000 lb/pulg ²	4,260 lb/pulg ²
25 mm	28.575 mm	26.797 mm	26.035 mm	25.273 mm	0.889 mm	1.270 mm	1.651 mm	4.227 kg	5.954 kg	9.454 kg	196.84 kg/cm ²	281.20 kg/cm ²	299.47 kg/cm ²
11/4"	1.375"	1.290"	1.264"	1.230"	0.042"	0.055"	0.072"	13.656 lb	17.700 lb	27.231 lb	2,749 lb/pulg ²	3,600 lb/pulg ²	3,988 lb/pulg ²
32 mm	34.925 mm	32.791 mm	32.131 mm	31.267 mm	1.067 mm	1.397 mm	1.829 mm	6.200 kg	8.036 kg	12.363 kg	193.25 kg/cm ²	253.08 kg/cm ²	280.35 kg/cm ²
11/2"	1.625"	1.526"	1.504"	1.459"	0.049"	0.060"	0.083"	18.821 lb	22.826 lb	41.249 lb	2,713 lb/pulg ²	3,323 lb/pulg ²	3,515 lb/pulg ²
38 mm	41.275 mm	38.785 mm	38.227 mm	37.059 mm	1.245 mm	1.524 mm	2.108 mm	8.545 kg	10.363 kg	18.727 kg	190.72 kg/cm ²	233.60 kg/cm ²	247.10 kg/cm ²
2"	2.125"	2.016"	1.984"		0.058"	0.070"		29.233 lb	35.042 lb		2,470 lb/pulg ²	2,965 lb/pulg ²	
51 mm	53.975 mm	51.029 mm	50.419 mm		1.473 mm	1.778 mm		13.272 kg	15.909 kg		173.65 kg/cm ²	208.43 kg/cm ²	
21/2"	2.625"	2.494"	2.464"		0.065"	0.080"		40.647 lb	49.658 lb		2,228 lb/pulg ²	2,742 lb/pulg ²	
64 mm	66.675 mm	63.373 mm	62.611 mm		1.651 mm	2.032 mm		18.454 kg	22.545 kg		156.62 kg/cm ²	192.76 kg/cm ²	
3"	3.125"	2.976"	2.944"		0.072"	0.090"		53.663 lb	66.645 lb		2,073 lb/pulg ²	2,592 lb/pulg ²	
76 mm	79.375 mm	75.597 mm	74.803 mm		1.889 mm	2.286 mm		24.363 kg	30.257 kg		145.73 kg/cm ²	182.21 kg/cm ²	
4"	4.125"	3.934"	3.904"		0.095"	0.110"		93.310 lb	107.729 lb		2,072 lb/pulg ²	2,400 lb/pulg ²	
102 mm	104.775 mm	99.949 mm	99.187 mm		2.413 mm	2.794 mm		42.363 kg	48.909 kg		145.65 kg/cm ²	168.72 kg/cm ²	

TABLA 2a. Dimensiones y características de tubería de cobre tipo ACR

Diámetro exterior	Diámetro exterior	Espesor de pared	Presión máxima permitida		Peso aproximado
pulg	mm	mm	kg/cm²	lbs/pulg ²	kg/m
1/8	3,18	0.76	250	3,554	0.051
³ / ₁₆	4,76	0.76	154	2,198	0.085
1/4	6,35	0.76	112	1,589	0.119
⁵ / ₁₆	7,94	0.81	94	1,334	0.162
3/8	9,53	0.81	77	1,095	0.198
1/2	12,70	0.81	57	807	0.270
5/8	15,90	0.89	49	704	0.374
3/4	19,10	1.07	50	704	0.540
7/8	22,22	1.14	45	642	0.673

Tubo sin soldadura de acero inoxidable

Medidas fraccionales

- Tubo de instrumentación estándar
- Tubo limpiado y pasivado químicamente
- Tubo limpiado por termopar

Características

- Disponible en tamaños desde 1/8 a 2 pulg de diámetro exterior; también disponibles tamaños métricos
- Marcado con indicación del tamaño, material, normativa, especificaciones y número de colada

Consulte una lista completa de presiones de servicio en el catálogo Swagelok® Datos de tubo en la página F-5.

Tubo de instrumentación estándar

Estándares del material

Grado	UNS	ASTM	ASME
316 / 316L	S31600 / S31603	A213 ⁽¹⁾ / A269	SA213 ⁽³⁾
304 / 304L	S30400 / S30403	A213 ^① / A269	SA213®

[©] Espesores de pared nominales, no mínimos.

Composición química

	Grado del material						
	316 / 316L	304 / 304L					
Elementos	Composición, % peso						
Cromo	16,0 a 18,0	18,0 a 20,0					
Níquel	11,0 a 14,0	8,0 a 11,0					
Molibdeno	2,00 a 3,00						
Manganeso	2,00 máx	2,00 máx					
Silicio	0,75 máx	0,75 máx					
Carbono	0,035 máx ⁽¹⁾	0,035 máx ⁽¹⁾					
Azufre	0,030 máx	0,030 máx					

① Los tamaños de tubo inferiores a 1/2 pulg de diâmetro exterior contienen un porcentaje de carbono de hasta el 0,040 de su peso.

Información de pedido y dimensiones

Seleccione una referencia.

Tubo OD pulg	Espesor nominal de la pared pulg	Referencia	Longitud nominal pies	Peso Lb/pies
	31	6 / 316L Sin soldadura		
1/8	0,028	SS-T2-S-028-20		0,029
	0,035	SS-T4-S-035-20		0,080
1/4	0,049	SS-T4-S-049-20		0,105
	0,065	SS-T4-S-065-20		0,128
	0,035	SS-T6-S-035-20		0,127
3/8	0,049	SS-T6-S-049-20		0,171
	0,065	SS-T6-S-065-20		0,215
	0,035	SS-T8-S-035-20		0,174
1/2	0,049	SS-T8-S-049-20		0,236
	0,065	SS-T8-S-065-20	20	0,302
5/8	0,065	SS-T10-S-065-20		0,389
3/4	0,065	SS-T12-S-065-20		0,476
1	0,083	SS-T16-S-083-20		0,813
1 1/4	0,095	SS-T20-S-095-20		1,187
1 1/4	0,120	SS-T20-S-120-20		1,473
1 1/2	0,120	SS-T20-S-120-20		1,792
1 1/2	0,134	SS-T20-S-134-20		1,981
2	0,134	SS-T20-S-134-20		2,705
-	0,188	SS-T20-S-188-20		3,686
	30	4 / 304L Sin soldadura	l .	
1/4	0,035	304L-T4-S-035-20		0,080
3/8	0,035	304L-T6-S-035-20	20	0,127
1/2	0,035	304L-T8-S-035-20		0,174

ANEXO L

ESPECIFICACIONES TÉCNICAS DEL CONTACTOR GMC9, GMC12 Y RELÉ TÉRMICO GTK22.

Type GMC-9 GMC-12 GMC-18 GMC-22

		GMC-9	GMC-12	GMC-18	GMC-22
Ratings					
AC1		20A	20A	25A	32A
IEC-60947 AC3	200 ~ 240V	2.5kW 11A	3.5kW 13A	4.5kW 18A	5.5kW 22A
	380 ~ 440V	4kW 9A	5.5kW 12A	7.5kW 18A	11kW 22A
	500 ~ 550V	4kW 7A	7.5kW 12A	7.5kW 13A	15kW 22A
	690V	4kW 5A	7.5kW 9A	7.5kW 9A	15kW 18A
Continuous Current Ith					
UL		20A	25A	30A	32A
Motor AC Single phase	115V	0.5HP	0.5HP	1HP	2HP
	230V	1HP	2HP	3HP	3HP
Three phase	200V	2HP	3HP	5HP	7HP
	230V	2HP	3HP	5HP	7.5HP
	460V	5HP	7.5HP	10HP	10HP
	575V	7.5HP	10HP	15HP	15HP
Туре		GMC-9	GMC-12	GMC-18	GMC-22
Coil Current					
	AC 220V, 50Hz	36mA	36mA	36mA	36mA
	AC 110V, 50Hz	73mA	73mA	73mA	73mA
Operating Time					
Closing	AC 220V, 60Hz	10 ~ 17mS	10 ~ 17mS	10 ~ 17mS	10 ~ 17mS
	AC 110V, 60Hz	11 ~ 18mS	11 ~ 18mS	11 ~ 18mS	11 ~ 18mS
Opening	AC 220V, 60Hz	6 ~ 9mS	6 ~ 9mS	6 ~ 9mS	6 ~ 9mS
***************************************	AC 110V, 60Hz	6 ~ 9mS	6 ~ 9mS	6 ~ 9mS	6 ~ 9mS

Α	U-1	AU-	2	AU	1-4
<i>[</i>]	1no +1nc	25/	2no 2nc		4no 4nc
5/		00	1no + 1nc	CCA-	3no + 1nc 1no + 3nc

gs of the o	perational c	oil		GMC	O940		
AC Coil	AC 60Hz	24V AC	48V AC	110V AC	120V AC	208V AC	220V AC
AC COII	AC BUITZ	240V AC	277V AC	380V AC	440V AC	480V AC	600V AC
	No. 10 control of the	24V AC	42V AC	48V AC	100V AC	110V AC	220V AC
AC Coil	AC 50Hz	240V AC	380V AC	400V AC	415V AC	440V AC	500V AC
0.000000000	THE SHARE	550V AC		7/4H47//275255	1000000000		
DC Coil	DC	12V DC	24V DC	48V DC	100V DC	110V DC	125V DC
DC COII	DC	200V DC	220V DC	250V DC			

Thermal Overload Relays	GTK-22	Selecti	on (A)	Separate Mounting Unit
		0.1 - 0.16	2.5 - 4	AZ-22H
	000	0.16 - 0.25	4 - 6	
AL: 88.5		0.25 - 0.4	5 - 8	- Dan
/ PR:63		0.4 - 0.63	6 - 9	1
AN:44		0.63 - 1	7 - 10	
ALT		1 - 1.6	9 - 13	and the same
		1.6 - 2,5	12 - 18	
			16 - 22	Rail Din

ANEXO M

ESPECIFICACIONES TÉCNICAS DE LA VÁLVULA SOLENOIDE 6013 TIPO G3/8.

2/2-way direct acting solenoid valve

- · High quality seal material
- Special versions up to +180°C
- Impulse version optional
- Threaded port and sub-base connections
- · Explosion proofed version optional

Type 6013 can be combined with.

Cable plug

Type 1078

Type 2511 ASI Cable plug

This direct-acting 2/2-way miniature solenoid valve is available in two versions.

Standard version:

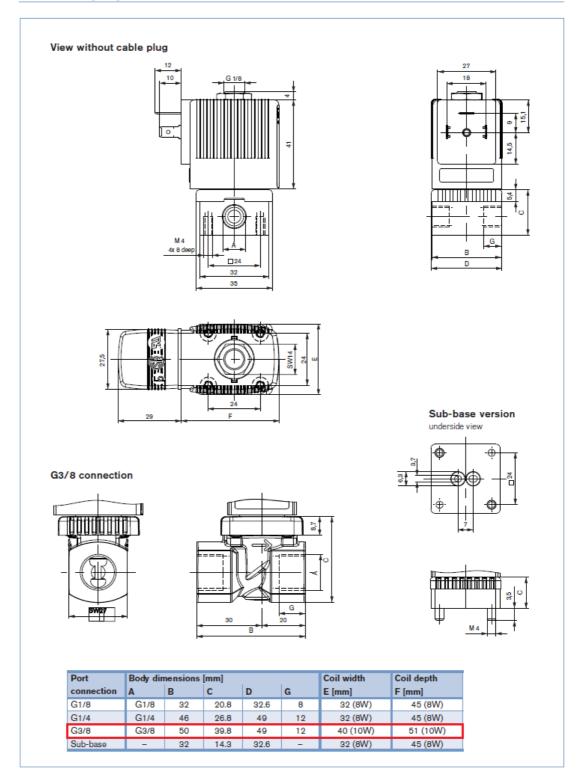
Type 6013 is a small direct acting solenoid valve for general purpose used for shut-off and dosing, it is of modular design and may be mounted individually or as a block on a multiple manifold.

Analysis and vacuum technology:

Type 6013 A is a high-quality small solenoid valve for analysis and vacuum technology. It is manufactured under clean-room conditions. This includes thorough cleaning of all parts in contact with media from organic and inorganic substances. The limit for residual hydrocarbons is below 0.2 mg/dm2 The valve will undergo an external 100 % non-standard leakage tast with respect to seat tightness and impermeability. The permissible leakage rate is 10.4 mbar Vs. The valve is used for shut-off, dosing, filling, ventilating and particularly for analysis technology.

Circuit Function A

2/2-way valve, normally closed by spring fornce


Circuit Function B

2/2-way valve, normally closed by spring fornce

Technical data	
Body material Type 6013 Type 6013 A	Brass, stainless steel 1.4305 Brass, stainless steel 1.4305
Seal material	FKM, PTFE/Graphite (EPDM on request)
Analysis version Type 6013 A	Silicon, oil and tat free version Tightness < 10 * mbar l/s
Limit value for risidual carbon Type 6013 A	<0.2 mg/dm²
Medium Type 6013 Type 6013 A	Technical vacuum Neutral gases and liquids (e.g. compressed air, water, hydraulic oil) Neutral medium, which does not attack the body and seal materials (see chemical resistance chart)
Media temperature FKM PTFE/Graphite FKM, Circuit function B	-10 to +100 °C (FA coil) till 120°C (Epoxy coil) Up to +180 °C (see chemical resistance chart) -10 to 100°C (AC) -10 to 120°C (DC)
Ambient temperature	Max. +55 °G
Viscosity	Max. 21 mm ² /s
Port connection Type 8013 Type 6013 A	G1/8, G1/4, G3/8, sub-base G1/8, G1/4
Operating voltage Type 8013 Type 6013 A	24 V DC, 24 V/50 Hz, 230 V / 60Hz 24 V DC, 230 V / 50 Hz (other voltages on request)
Voltage tolerance	± 10%
Duty cycle/single valve With block assembly on manifold	100% continuous rating Intermittent operation 60% (30 min) or with 5 W coil on request
Electrical connection	Tag connector acc. to DIN EN 175301-803 Form A (previously DIN 43650) for cable plug Type 2508 (see accessories)
Installation	As required, preferably with actuator upright
Assembly	No oils, tats or silicone to be used during installation
Protection class	IP65 with Cable Plug
Coil insulation class	Polyamide class B Epoxy class H

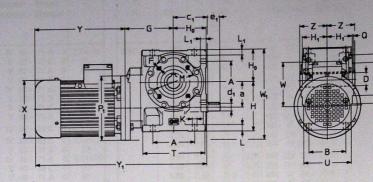
Dimensions [mm]

ANEXO N MOTOREDUCTOR ROSSI.

9 - Programa de fabricación (motorreductores)9 - Programme de fabrication (motoréducteurs)

P,	n ₂	P ₂ kW	M ₂ daN m	fs	Reductor - Motor Réducteur - Moteur	1	
1)					2)		
0,25	22,1	0,18	7,7 6,9	1,18 0,71	MR IV 40 - 71 A 4	2,54×25 63	0,37
	22,2	0,16	6,9	0,71	MR V 40 - 71 A 4	63	
	22,5	0,17	7,2 7,8	2,12	MR V 40 - 71 B 6	2,54×25	
	22,2 22,5	0,16	7,1	1,4	MR V 50 - 71 A 4		
	22,3	0,17	7,4 7,5	2,36	MR V 63 - 71 A 4		
	25	0,19	7,4	1,25	MR IV 40 - 63 C 4		
	27 28,1	0,18	6,4 5,9	0,8	MR IV 32 - 63 C 4		
	27,6	0,18	6,3	1,5 1,06	MR IV 40 - 71 A 4		
	28 28	0,17 0,17	5,8 5,8	1,06	MR V 40 - 71 A 4	50	
	28,1 27,6	0,18	6,4	1,32	MR V 40 - 71 B 6		
	28	0,17	5,9	1,9 2,36	MR V 50 - 71 A 4		
	28,1 33,8	0,18	6,1 5,5	0,85	MR IV 32 - 63 C		
	35 36	0,17	4,73	0,75	MR V 32 - 63 C 4		
	34,5	0,18	5,5	1,6	MR IV 40 - 71 A	2,54×16	
	35	0,18	4,83 4,83	1,32	MR V 40 - 63 C 4		
	36	0,18	4,88	1,7	MR V 40 - 71 B 6		
	35 43,8	0,18	4,97 3,94	2,36 0,95	MR V 32 - 63 C		
	43,8	0,18	3,94	0,95	MR V 32 - 71 A		
	45 43,8	0,19	3,97 4,03	1,18	MR V 40 - 63 C	32	
	43,8 45	0,18	4,03 4,01	1,8	MR V 40 - 71 A 4		
	56	0,19	3,21	1,18	MR V 32 - 63 C	25	
	56 56	0,19	3,21	1,18	MR V 32 - 71 A MR V 40 - 63 C		
	56	0,19	3,26		MR V 40 - 71 A	25	
	70 70	0,19	2,64 2,64			20	
	70	0,2	2,67		MR V 40 - 71 A	20	
	87,5 87,5	0,21	2,24			16	
	87,5	0,21	2,27		MR V 40 - 71 A	1 16	
	108	0,21	1,86 1,86			1 13	
	140	0,21	1,45	1	MR V 32 - 63 C	4 10	
	140	0,21	1,45	BEG .		10 16	
	200	0,21	1,16	-		4 7	
	200	0,22	1,05	and the second		4 7 2 13	
	215	0,22	0,96	Will So		2 10	
	400	0,22	0,54	- 1100		2 7	
0,37	1,49	0,22	138	0,85	MR 2IV 100 - 80 A	6 12,1 x50	
	1,86	0,23	116	1,12		6 12,1 x40	
	2,32	0,22	89 89	0,67		4 12.1 x50 4 12.1 x50	
	2,32 2,33	0,23	94	0,71	MR 2IV 80 - 71 C	6 12,1 x32	
	2,33 2,33	0,23	94 96	0,85		6 12,1 x32 6 12,1 x32	
	2,89	0,23	75	0,85	MR 2IV 80 - 71 B	4 12.1 x40	
	2,89	0,23	75 77	0,95	MR 2IV 81 - 71 B MR 2IV 80 - 71 C	4 12,1 x40 6 12,1 x25	
	2,98 2,98	0,24	77	1,06	MR 2IV 81 - 71 C	6 12.1 x25	
	2,98	0,25	79	1,9	MR 2IV 100 - 80 A	6 12,1 x25 4 12,1 x32	
	3,62 3,62	0,24	62	1 25	MR 2IV 81 - 71 B	4 12,1 x32	
	3,56	0,25	67	2,24	MR 2IV 100 - 80 A	6 10,1 x25	

1) Potencias para servicio continuo S1: para servicios S2 S10 es posible aumentarias
1) Potencias para servicio continuo S1, para servicios oz
(cap. 2b); proporcionalmente P ₂ , M ₂ aumentan y /s disminuye.
tout and production and and and and a


P ₁ kW	min.,	P ₂ kW	M ₂ daN m	fs	Réducteur - Moteur
1)					2)
37	3,76 3,76 3,76 4,63 4,63 4,74 4,63 4,63	0,22 0,22 0,23 0,24 0,24 0,22 0,25 0,25	55 55 57 49,7 49,7 45 51	0,8 0,9 1,5 0,75 0,8 0,67 1,4 1,6	MR IV 80 - 71 C 6 3,8 x63 MR IV 81 - 71 C 6 3,8 x63 MR IV 100 - 80 A 6 3,8 x63 MR 2IV 63 - 71 B 4 12,1 x25 MR 2IV 64 - 71 C 6 3,8 x50 MR 2IV 80 - 71 B 4 12,1 x25 MR 2IV 80 - 71 B 4 12,1 x25 MR 2IV 81 - 71 B 4 12,1 x25
	4,74 4,74 4,74	0,23 0,23 0,24	46,5 46,5 48,1	1,12 1,25 2,12	MR IV 80 - 71 C 6 3,8 x50 MR IV 81 - 71 C 6 3,8 x50 MR IV 100 - 80 A 6 3,8 x50
	5,53 5,53 5,85 5,92 5,92 5,53 5,53 5,85 5,85 5,92 5,92	0,24 0,24 0,22 0,24 0,25 0,25 0,23 0,23 0,24 0,24	42 42 35,9 38 38 42,8 42,8 37 37 39,2 39,2	0,85 0,95 0,67 0,75 0,85 1,6 1,9 1,18 1,32 1,5 1,7	MR 2IV 63 - 71 B 4 10,1 x25 MR 2IV 64 - 71 B 4 10,1 x25 MR IV 64 - 71 B 4 3,8 x63 MR IV 63 - 71 C 6 3,8 x40 MR IV 64 - 71 C 6 3,8 x40 MR 2IV 80 - 71 B 4 10,1 x25 MR IV 80 - 71 B 4 3,8 x63 MR IV 80 - 71 B 4 3,8 x63 MR IV 80 - 71 C 6 3,8 x40 MR IV 80 - 71 C 6 3,8 x40 MR IV 81 - 71 C 6 3,8 x40
	6,88 6,88 7,09 7,37 7,37 7,4 6,88 6,88 7,37 7,37	0,24 0,24 0,25 0,25 0,23 0,23 0,25 0,25 0,25 0,24 0,24 0,25 0,25	33,4 33,2 33,2 30,3 30,3 31,6 31,6 34,4 34,4 31,3 31,3 32,6 32,6	0,95 1,06 1,06 1,18 0,8 0,95 1 1,12 1,8 2,12 1,5 1,8 1,9 2,24	MR 2IV 63 - 71 B 4 6,36x32 MR 2IV 64 - 71 B 4 6,36x32 MR 2IV 64 - 80 A 6 5,08x25 MR IV 63 - 71 B 4 3,8 x50 MR IV 64 - 71 B 4 3,8 x50 MR IV 64 - 71 C 6 3,8 x32 MR 2IV 80 - 71 B 4 6,36x32 MR 2IV 80 - 71 B 4 6,36x32 MR 2IV 80 - 71 B 4 3,8 x50 MR IV 80 - 71 B 4 3,8 x50 MR IV 80 - 71 B 4 3,8 x50 MR IV 80 - 71 B 4 3,8 x50 MR IV 80 - 71 B 4 3,8 x50 MR IV 80 - 71 C 6 3,8 x32 MR 2IV 80 - 71 C 6 3,8 x32 MR 2IV 80 - 71 C 6 3,8 x32 MR 2IV 80 - 71 C 6 3,8 x32
	7,4 8,85 8,8 8,8 9,21 9,21 8,84 8,84 9,21 9,21	0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25	26,8 27,2 27,2 25,5 25,5 27 27 26,3 26,3	0,75 1,25 1,4 1,06 1,25 1,12 1,32 2 2,36	MR 2IV 50 - 71 B 4 7,91×20 MR 2IV 63 - 71 B 4 6,36×25 MR 2IV 64 - 71 B 4 6,36×25 MR IV 63 - 71 B 4 3,8 ×40 MR IV 64 - 71 C 6 3,18×32 MR IV 64 - 71 C 6 3,18×32 MR IV 80 - 71 B 4 3,8 ×40
	10,9 11 11,1 11,5 11,5 11,5	0,25 0,23 0,25 0,25 0,25 0,26	21,8 20,2 21,2 21,1 21,1 21,1	0,85 0,67 0,8 1,4 1,6 2,65	MR IV 50 - 71 B 4 2.54×50 MR IV 50 - 71 C 6 2.54×32 MR IV 63 - 71 B 4 3.8 ×32 MR IV 64 - 71 B 4 3.8 ×32
	13,6 13,8 14,2 13,9 13,8 13,8 14,3 14,3 14,3	0,26 0,25 0,26 0,25 0,26 0,26 0,24 0,24 0,24 0,25	18 17 17,3 17,4 18 18 16,2 16,2 16,2	1,06 0,85 1,06 0,95 1,5 1,8 1,16 1,16 1,18 1,18	MR 2IV 50 - 71 B 4 5,15×20 MR IV 50 - 71 B 4 2,254×40 MR IV 50 - 71 C 6 2,54×20 MR IV 50 - 80 A 6 2,03×3 MR IV 63 - 71 B 4 3,18×3 MR IV 64 - 71 B 4 3,18×3 MR IV 64 - 71 C 6 63 MR V 63 - 71 C 6 63 MR V 63 - 80 A 6 63 MR V 64 - 80 A 6 63 MR V 64 - 80 A 6 63
	17 17,7 17,3 17,7 17,7 18 17,6 18	0,28 0,26 0,26 0,27 0,26 0,24 0,27 0,26 0,26 0,26	13 14,7 13,6 13,6	0,7 1,1 1,3 1,2 0,9 2 1,5	1 MR IV 40 - 71 C 6 2.54x2 2 MR IV 50 - 71 C 6 2.54x3 2 MR IV 50 - 71 C 6 2.54x3 5 MR IV 50 - 80 A 6 2.03x2 6 MR V 50 - 71 C 6 50 MR IV 63 - 71 B 4 MR V 63 - 71 B 6 50 MR V 63 - 80 A 6 50

10 - Ejecuciones, dimensiones, formas constructivas y cantidades de aceite

10 - Exécutions, dimensions, positions de montage et quantités d'huile

MR V 32 ... 81

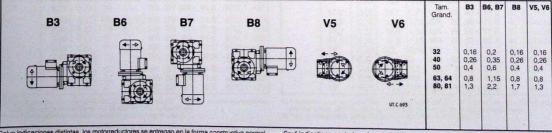
Ejecución1)

normal salida de sinfín

Exécution1)

normale vis sortante

UO3A UO3D


Gr red.	naño and. motor	а	A	C ₁	D Ø H7	d ₁ Ø	F	G	H h11	H ₀	H ₁	Kø	L	Mø	N Ø h6	Pø	Т	Z	Po	X Ø	!		•	11	* A	W ₁ ≈	Ma	asa isse
réd.	moteur B5		В			e,	2)						L,			Q	U					3)		3)				3)
32	63 71 ⁸⁾ 71 B5R ⁸⁾	32	61 52	51	19	11 20	M 5	76	71	48	34,5	7	10	75	55 5)	90	91 66	39	140 160 140	122 140 140	185 211 225	229	309 335 349	353	101 112 112	171 192 182	8 11 11	10
40	63 71 80 ⁸⁾	40	70 62	57,5	24	14 25	M 6 4)	87 87 99	82	56	41,5	9,5	12	85	68 5)	105	106 80	46	140 160 200	122 140 160	185 211 231	229 275 —	328 354 374	372 418 -	101 112 122	171 192 222	11 14 18	13 17 -
	80 B5R8)						ene	87		19									160	160	245	-	388	-	122	202	18	-
50	63 71 80	50	86 75	70,5	28	16 30	M 6 4)	98 98 98	100	67	49	9,5	13 12	100	85 5)	120	126 95	53 6)	140 160 200	122 140 160	185 211 231	229 275 307	350 376 396	394 440 472	101 112 122	187 197 222	14 18 22	16 21 27
	90 ⁸⁾ 90 B5R ⁸⁾							110 98											200 200	180 180	270 270	=	435 435	=	149 149	249 249	28 28	-
63 64	71 80 90	63	102 90	83	32	19 30	M 8	118 118 118	125	80	58,5	11,5	16 14	100	80	120	151 114	63	160 200 200	140 160 180	211 231 270	275 307 355	409 429 468	473 505 553	112 122 149	223 243 249	23 27 33	26 32 38
	100 ⁸⁾ 100 B5R ⁸⁾							130 118			0	In.							250 200	207 207	343 343	-	541 541	-	164 164	289 264	40 40	=
80 81	80 90 100 ⁷⁾	80	132 106	103	38 (80) 40	24 36	M 10	138	150	100	69,5	14	20 17	130	110	160 3,5	189 135	75	200 200 250	160 180 207	231 270 343	307 355 419	469 508 581	545 593 657	122 149 164	280 280 305	37 43 50	42 48 57
	*1127)	8			(81)	123		1											250	207	343	419	581	657	164	305	60	71

- cia t8.
 didlo y con sobreprecio, cota P, = 160; consultarnos.
 dido para 100L 4, 112M 4 también forma constructiva B5R (ver cap. 2b) excluido

- 1) Pour l'exécution du moteur, voir chap. 3.
 2) Longueur utile du filetage 2 · F.
 3) Valeurs valables pour moteur frein.
 4) Trous tournés de 45° par rapport au schéma.
 5) Tolérance 18.
 6) Sur dermande et avec supplément de prix, cote P, = 160: nous consulter.
 7) Sur dermande pour 100L 4, 112M 4 aussi position de montage B5R (chap. 2b) à l'exception de la grand. 81.
 8) Moteur frein impossible.
 8 IMPORTANT: en cas de moteur frein et fixation pendulaire ou positions de montage V5, V6, nous consulter. Moteur frein F0 112MC impossible.

Formas constructivas - sentido de rotación - y cantidades de aceite [I]

Positions de montage - sens de rotation - et quantités d'huile [I]

Salvo indicaciones distintas, los motorreductores se entregan en la forma constructiva normal 83 (83 y 88 para tam. ≤ 64) que, siendo la normal, no se debe indicar en la designación.

Sauf indications contraires, les motoréducteurs sont fournis selon la position de montage normale B3 (B3 et B6 pour grandeurs ≤ 64) qui, étant normale, ne doit pas figurer dans la désignation.

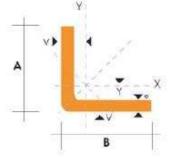
ANEXO O

ESPECIFICACIONES TÉCNICAS DE LOS PERFILES, PLANCHAS Y EJES UTILIZADOS.

PERFILES ESTRUCTURALES

ANGULOS "L" DOBLADO Especificaciones Generales

Norma INEN 1 623-2000
Otras calidades Previa consulta


Largo normal 6,0m

Otros larges Previa consulta

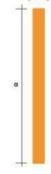
Esperares Desde 1,5mm hasta 12,0mm

Acobado Natural

Otro acobado Previa consulta

DIME	NSIONE	s	PE	sos							
A	В	е	- 6	1	SECCION		EJE X-X	= EJE	(-Y	EJE U-U	EJE V-V
		9	metros	metro	OLCOIOIS	T.	W	10	XnY	1	1
9003	mm	mm	Kg	Kg	cm2	cm4	cm3	cm	cm	cm	em
25	25	2	4.38	0.73	0.93	0.57	0.32	0.78	0.72	0.99	0.47
25	25	3	6,36	1.06	1.35	0.79	0.44	0.76	0.77	0.98	0.44
30	30	2	5.34	0.89	1.13	1.00	0.46	0.94	0.84	1.20	0.58
30	30	3	7.80	1.30	1.65	1.41	0.67	0.92	0.89	1.18	0.55
30	30	-4	10.08	1,68	2.14	1,80	0.88	0.92	0.94	3,17	0.52
40	40	2	7.20	1.20	1,53	2.44	0.84	1.26	1.09	1.61	0.78
40	40	3	10.62	1.77	2,25	3.50	1.22	1.25	1.14	1.59	0.76
40	40	4	13.86	2.31	2 94	4 46	1.58	1.23	1.19	1.58	0.78
40	40	:5	19.62	2.82	3:59	5:31	1.91	1.22	1.23	0.73	0.73
50	50	2	9 12	1,52	1.93	4.86	1.33	1.58	1.34	2.01	0.98
50	50	3	13,44	2.24	2.85	7.03	1.95	1.57	1,39	2.00	0.90
50	50	4	17.64	2.94	3.74	9.04	2.53	1.56	1.43	1.98	0.94
50	50	5	21.60	3,60	4.59	10.88	3.09	1.54	1,48	1.97	0.93
50	50	6	25.92	4,32	5.40	12.57	3.62	1.53	1,53	1.96	0.90
60	60	3	16.26	2.71	3.45	12,37	2.84	1.89	1.64	2,41	1.16
60	60	4	21.36	3.56	4.54	16.00	3.71	1.88	1,68	2.39	1.15
50	60	5	26.34	4,39	5.59	19.40	4.54	1.86	1.73	2.38	1.13
50	60	6	31.68	5.28	6.60	22.56	5.35	1.85	1.78	2.37	1.11
50	60	8	41.04	6.84	8.55	28.21	6.85	1.82	1.88	2.34	1.05
75	75	3	19.56	3,26	4.35	24.80	4.48	2.38	2,01	3.02	1,48
75	7.5	4	27.06	4.51	5.74	32.02	5 88	2.36	2.06	3.00	1.45
75	75	5	33.42	5.57	7.09	39.08	7.25	2.35	2.11	2.99	1.43
75	75	6	40.32	6.72	8.40	45.76	8.57	2.33	2.10	2.97	1,40
75	75	8	52.56	8.76	10.95	58.03	11.05	2.30	1.25	2.95	1.37
75	75	10	64.92	10.82	13.36	68.69	13,38	2.27	2.35	2.92	1.32
BD	80	4	28.92	4.82	6.14	39.10	6.72	2.52	2.18	3.21	1.56
80	80	5	35.76	5.96	7.59	47.79	8.28	2.51	2.23	3.20	1.54
80	80	6	43,20	7,20	9.00	56.05	9.80	2.49	2.28	3.18	1,51
80	80	8	56.40	9.40	11.75	71.32	12.67	2.46	2.37	3.16	1.46
BD	80	10	68.94	11.49	14.36	84.94	15.36	2.43	2.47	3.13	1.43
80	80	12	81.78	13.63	16,83	97.05	17.87	2.40	2.57	3.10	1.38

También en gaivanizado e inoxidable - Medidas Especiales Bajo Pedido.


PERFILES LAMINADOS PLATINAS

Especificaciones Generales

Calidad ASTM A36 SAE 1008
Otras calidades Previa Consulta
6,00m
Otros largos Previa Consulta
Acabado Natural
Otro acabado Previa Consulta

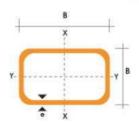
100	DIMENS		PE	so	AREA
DENOMINACION	mr	n			
DE ASIMINATION I	a	е	kg/m	kg/6m	cm2
PLT 12X3	12	3	0.28	1.70	0.36
PLT 12X4	12	4	0.38	2.45	0.48
PLT 12X6	12	6	0.57	3.40	0.72
PLT 19X3	19	3	0.45	2.68	0.57
PLT 19X4	19	4	0.60	3.58	0.76
PLT 19X6	19	6	0.89	5.37	1,15
PLT 19X4	19	4	0.60	3.58	0.76
PLT 19X6	19	6	0.89	5.37	1.15
PLT 25X3	25	3	0.59	3.53	0.75
PLT 25X4	25	4	0.79	4.71	1.00
PLT 25X3	25	6	1.18	7.07	1.50
PLT 25X12	30	3	0.71	4.24	0.90
PLT 30X4	30	4	0.94	5.65	1.20
PLT 30X6	30	6	1.41	8.47	1.80
PLT 30X9	30	9	2.12	12.71	2.70
PLT 30X12	30	12	2.83	16.95	3.60
PLT 38X3	38	3	0.89	5.37	1.15
PLT 38X4	38	4	1.19	7.16	1.52
PLT 38X6	38	6	1.79	11.40	2.28
PLT 38X9	38	9	2.69	16.11	3.42
PLT 38X12	38	12	3.58	21.48	4.56
PLT 50X3	50	3	1.18	7.08	1.50
PLT 50X4	50	4	1.58	9.42	2.00
PLT 50X6	50	6	2.26	14.16	3.00
PLT 50X9	50	9	3.53	21.20	4.50
PLT 50X12	50	12	4.71	28.26	6.00
PLT 65X6	65	6	3.06	18.37	3.90
PLT 65X9	65	9	4.59	27.55	5,85
PLT 65X12	65	12	6.12	36.73	7.80
PLT 75X6	75	6	3.53	21.20	4.50
PLT 75X9	75	9	5.30	31.80	6.75
PLT 75X8	75	8	7.07	28.26	9.00
PLT 75X12	75	12	7.07	42.39	9.00
PLT 100X6	100	6	4.71	28.26	6.00
PLT 100X8	100	8	7.07	37.68	9.00
PLT 100X9	100	9	7.07	43.00	9.00
PLT 100X12	100	12	9.42	58.00	12.00
PLT 120X12	120	12	67.82	67.82	14.40
PLT 150X15	150	15	105.88	105.88	22.50
PLT 150X20	150	20	145.44	145.00	30.00

TUBO ESTRUCTURAL RECTANGULAR

Especificaciones Generales

Norma ASTM A-500

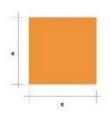
Recubilmiento Negro o galvanizado


Largo normal 6.00m

Otros largos Previa Consulta

Dimensiones Desde 12.00mm x 25.00mm a 40.00mm x 80.00mm
Espesor Desde 2.00mm a 3.00mm

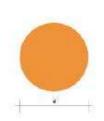
	DIME	NSIONES		AREA		EJES X-X		- 0	EJES Y-Y	
A mm	B	ESPESOR mm	PESO Kg/m	AREA cm2	I cm4	W cm3	i	I cm4	W cm3	i
20	40	1,2	1,09	1,32	2,61	1,30	1,12	0,88	0,88	0,83
20	40	1,5	1,35	1,65	3,26	1,63	1,40	1,09	1,09	0,8
20	40	2,0	1,78	2,14	4,04	2,02	1,37	1,33	1,33	0,7
25	50	1,5	1,71	2,10	6,39	2,56	1,74	2,19	1,75	1,0
25	50	2,0	2,25	2,74	8,37	3,35	1,75	2,80	2,24	1,0
25	50	3,0	3,30	4,14	12,56	5,02	1,74	3,99	3,19	0,9
30	50	1,5	1,88	2,25	7,27	2,91	1,80	3,32	2,21	1,2
30	50	2,0	2,41	2,94	9,52	3,81	1,80	4,28	2,85	1,2
30	50	3,0	3,30	4,21	12,78	5,11	1,74	5,66	3,77	1,1
30	70	2,0	3,03	3,74	22,20	6,34	2,44	5,85	3,90	1,2
30	70	3,0	4,48	5,41	30,50	8,71	2,37	7,84	5,23	1,2
40	60	1,5	2,29	2,91	14,90	4,97	2,26	7,94	3,97	1,6
40	60	2.0	3,03	3,74	18,08	6,13	2,22	9,81	4,90	1,6
40	60	3,0	4,48	5,41	25,31	8,44	2,16	13,37	6,69	1,5
30	70	1,5	2,34	2,91	18,08	5,17	2,49	4,76	3,17	1,2
30	70	2,0	2,93	3,74	22,20	6,34	2,44	5,85	3,90	1,2
30	70	3,0	4,25	5,41	30,50	8,71	2,37	7,84	5,23	1,2
40	80	1,5	2,76	3,74	31,75	7,94	2,91	10,77	5,39	1,7
40	80	2,0	3,66	4,54	37,32	9,33	2,87	12,70	6,35	1,6
40	80	3,0	5,42	6,61	52,16	13,04	2,81	17,49	8,75	1,6
50	100	2,0	4,52	5,74	74,94	14,99	3,61	25,65	10,26	2,1
50	100	3,0	6,71	8,41	106,34	21,27	3,56	35,97	14,39	2,0
50	150	2,0	6,17	7,74	207,45	27,66	5,18	37,17	14,87	2,1
50	150	3,0	9,17	11,41	298,35	39,78	5,11	52,54	21,02	2,1


Especificaciones Generales

PERFILES LAMINADOS

Coldad ASTM A35

Otras calidades Previa Consulla Largo normal 6.00m
Otros largos Previa Consulta
Acabado Natural
Otro acabado Previa Consulta


VARILLA CUADRADA LISA

	LADO	PE	so .	AREA
DENOMINACION	mm	kg/m	kg/6m	cm2
VCU 5/16	8.0	0.57	3,41	0.72
VCU 3/8	9.0	0.64	3 83	0.81
VCU 1/2	11.0	0.95	5.70	1.21
VCU 5/8	15.0	1.77	10.60	2.25
VCH 3/4	18.0	2.54	15.26	3.24
VCU 24.5	24.5	4.72	28.30	6.00

VARILLA REDONDA LISA

	DIAM	ETRO	PESO	AREA
DENONINACION	mm	kg/m	kg/6m	cm2
VRL 5,5	5.5	0.34	2.04	0.43
VRL 8	8.0	0.50	2.96	0.63
VRL 10	10.0	0.62	3.70	0.79
VRL 12	12.0	0.89	5.33	1.13
VRL 15	15.0	1.39	8.32	1.77
VRL 18	18.0	2 00	11.98	2.55
VRL 22	22.0	2.98	17.90	3.80
VRL 24,5	24.0	3.70	22.20	4.71

TEES

	DIME	NSIO	NES	PE	so	AREA	
DENOMINACION		mm		builes	kg/8m	cm2	
DENGINERACION	a	b	0	Ngori	NGPDHI	SHILL	
TEE 20X3	20	20	3	0.90	5.40	1.15	
TEE 25X3	25	25	3	1.19	7.14	1.52	
TEE 30X3	30	30	3	1.41	8,48	1.80	

PLANCHAS INOXIDABLES

Especificaciones Generales

| Norma | 304, 316, 430 | | Desde 0.40mm hasta 15.00mm | X 1220mm | 4 x 8 pies |

Largos y calidades especiales bajo pedido

						CC	MPOSICION C	UIMICA	4.96	
Tipo de estructura	Tipo de Composición	Descripción de acuerdo a JIS*		Descripción de acuerdo a DIN***	O	Simax	Mn	P	S max	Ni
	17 Cr-5Ni-7Mn	SUS 201	201		0.15 max	1,00	5.50 ~ 7.50	0.06	0,030	3,50 ~ 5,5
			202							
	18 Cr-6Ni-10Mn 17Cr-7Ni	SUS 202 SUS 301	301	4040	0,15 max 0.15 max	1,00	7,50 ~ 10,00	0,06	0.030	4,00 ~ 6,00
	111111111111111111111111111111111111111	SUS 301	300	4310	120,100,110000	1,00	2,00 - max	0,04	0.030	8.00 ~ 10.00
	18Cr-8Ni-hightC 18Cr-8Ni	SUS 304	302 304	4300	0,15 max 0.08 max	1,00	2,00 - max	0,04		
	A STATE OF THE PARTY OF THE PAR			4301	31023 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1,00	2,00 - max	0,04	0,030	8,00 ~ 10,50
	18Cr-8Ni-extra-low-C 18Cr-12Ni	SUS 304 L SUS 305	304L 305	3955	0,030 max	1,00	2,00 - max 2.00 - max	0,04	0.030	9,00 ~ 13,00
	23Cr-12Ni	SUS 309 S	309 S	-416.416.1	0,12 max 0.08 max	1,00	. my s. a	0,04		
Austenite	25Cr-12Ni 25Cr-20Ni	SUS 310 S	310 S	4845	0.08 max	1,00	2,00 - max 2.00 - max	0,04	0.030	12,00 ~ 15,00
	18Cr-12Ni-2.5Mo	SUS 316	316	4401	0.08 max	1,50	2.00 - max 2.00 - max	0.04	0.030	10.00 ~ 22,00
	18Cr-12Ni-2,5Mo 18Cr-12Ni-7,5Mo-extra-low-C	SUS 316 L	316 L	4404	0.030 max	1,00	2,00 - max 2.00 - max	0.04	0.030	12.00 ~ 15.00
	18Cr-12Ni-2Mo-2Cu	SUS 316 J1	310 L	4505	0,030 max	1,00	2.00 - max	0.04	0.030	10.00 ~ 14.00
	18Cr-13Ni-3,5Mo	SUS 317	317	4402	0.08 max	1,00	2,00 - max 2,00 - max	0.04	0,030	18,00 ~ 15,00
	18Cr-13Ni-3,5Mo-extra-low-C	SUS 317 L	317 L	4402	0.030 max	1.00	2.00 - max	0.04	0.030	11.00 ~ 15.00
	18Cr-8Ni-Ti	SUS 321	321	4541	0.030 max	1,00	2,00 - max	0.04	0.030	9.00 ~ 13.00
	18Cr-9Ni-Nb	SUS 347	347	4550	0,08 max	1,00	2,00 - max	0,04	0,030	9,00 ~ 13,00
	13Cr-Al	SUS 405	405	4002	0.08 max	1,00	1,00 max	0.04	0.030	0.60 max
Ferrite	16Cr	SUS 429	429	4009	0,12 max	1.00	1,00 max	0.04	0,030	De la contraction
A CONTRACTOR AND A CONT	18Cr	SUS 430	430	4016	0.12 max	0.75	1,00 max	0.04	0.030	0,60 max
	18Cr-Mo	SUS 434	434	4113	0,12 max	1,00	1,00 max	0,04	0,030	N-511-5-11-5-1
	13Cr-low Si	SUS 403	403	4024	0,15 max	0,50	1,00 max	0,04	0,030	0,60 max
	13Cr	SUS 410	410	4000	0,15 max	1,00	1,00 max	0.04	0,030	0,60 max
Martensite	13Cr-high C	SUS 420 J2	420	4021	0,26 ~ 0,40	1,00	1,00 max	0,04	0,030	
	18Cr-high C	SUS 440 A	440 A		0,60 ~ 0,75	1,00	1,00 max	0,04	0.030	
Endurecido por recipitación	17Cr-7Ni-1Ai	SUS 631	631		0,09 max	1,00	1,00 max	0,04	0,030	6,50 ~ 7,75

EJES **ACERO INOXIDABLE**

Especificaciones Generales

Material AiSI 304
Dureza HB 249-278
Limite de Influencia 225 N/mm2

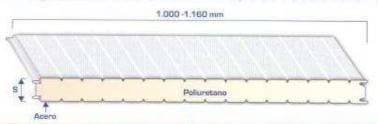
Aplicaciones
INDUSTRIAS ALIMENTICIAS,
CERVECERA, AZUCARERA,
ALIMENTICIA, UTENSILLOS DOMESTICOS
INDUSTRIA DEL CUERO
FARMACEUTICA, DENTAL, ETC...

DIMENSIONES

DIAMETRO	LONGITUD
3/16"	6m.
1/4"	6m.
5/16"	6m.
3/8"	6m.
1/2"	6m.
5/8"	6m.
3/4"	6m.
1"	6m.
1-1/4"	6m.
1-1/2"	6m.
2"	6m.
2-1/2"	6m.
3"	6m.
3-1/2"	6m.
4"	6m.
5"	6m.
6"	6m.

PROPIEDADES QUÍMICAS

%C		%Mn		%S	%Ni	%Cr
0 - 0,08	0 - 1	0-2	0 - 0,045	0 - 0,03	8 - 10.5	18 - 20


ANEXO P CATÁLOGO DE LAS PLANCHAS DE POLIURETANO.

Sistemas de aislamiento térmico para pared

Panel metálico para muros, inyectado con poliuretano expandido de alta densidad y ambas caras de acero recubierto de aluminio y Zinc prepintado.

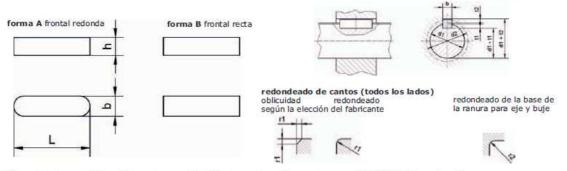
Espesor de panel mm.	Ancho d	itil mm_	Peso kg./m²	Separación máxima entre apoyos
50 60 278	1,000 1,000 0,000 1,000	1,180 1,180 1,160	9:59 10:02 10:48	3/40 3.75
100 125 780	1,000 1,000 1,000	1,160 1,160 1,160	\$1,54 18,57	A25 475 525

- Cumple con altos estándares de asepsia,
 Excelentas acabados con diferentes texturas. Gran flexibilidad para reubicación o ampliación de las cámaras.
- Sistema de ganchos para unión hermética. Computibles con diferentes sistemas de acabados.

- Elemento aislante, modular y autoportante para la construcción de cámeras de frío y conservación.
 Elemento para fachadas y divisiones interiores recomendadas en edificaciones.

• Carga admisible según tablas. • Ancho útil 1,000 - 1,160 mm.

ANEXO Q CATÁLOGO DE CHAVETAS Y CUÑAS.



Chavetas paralelas fijadas por tornillo DIN 6885

forma altura

Norma mbo 37

Ejemplo de pedido: Chaveta paralela fijada por tomillo conforme a DIN 6885 formato alto; b = 10 mm, h = 8 mm, L = 70 mm, forma A frente redondo; Número de pedido: 10 37 1008 0700

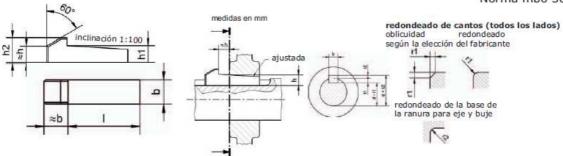
Forma C hasta forma J a demanda

Número de	Anchura	Altura		diá-	Rar Anchura	Profur	-	Anchura		es - ran	ura didad t		d ₂ medida		uidad/ deado	Redon de la b	deado ase de		Long	itud L	
pedido 1/2	Anchura	Aituia	mesus	ue eje		Con t	1 O sobre	10.4700.00	Con hol-				mínima	15.0505.050	deado	la ra	nura			Desv.	perm.
100	b	h	Sobre	Hasta	Ь	holgura de reformo	medida Dese perm	b	gura de retorno	Desv. perm.	O sobre- medida	Dasv. perm.	d ₁ -)	Min.	Máx.	Min.	Máx.	Desde	Hasta	Resorte	Ranura
37 0202	2	2	6	8	2	1,2	+0,1	2	1	+0,1	0,5	+0,1	2,5	0,16	0,25	0,16	0,08	6	20	-0,2	+0,2
37 0303	3	3	8	10	3	1,8	+0,1	3	1,4	+0,1	0,9	+0,1	3,5	0,16	0,25	0,16	0,08	6	36	-0,2 -0,3	+0,2
37 0404	4	4	10	12	4	2,5	+0,1	4	1,8	+0,1	1,2	+0,1	4	0,16	0,25	0,16	0,08	8	45	-0,2 -0,3	+0,2
37 0505	5	5	12	17	5	3	+0,1	5	2,3	+0,1	1,7	+0,1	5	0,25	0,4	0,25	0,16	10	56	-0,2 -0,3	+0,2
37 0606	6	6	17	22	6	3,5	+0,1	6	2,8	+0,1	2,2	+0,1	6	0,25	0,4	0,25	0,16	14	70	-0,2 -0.3	+0,2
37 0807	8	7	22	30	8	4	+0,2	8	3,3	+0,2	2,4	+0,2	8	0,25	0,4	0,25	0,16	18	90	-0,2 -0,3 -0,5	+0,2
37 1008	10	8	30	38	10	5	+0,2	10	3,3	+0,2	2,4	+0,2	8	0,4	0,6	0,4	0,25	22	110	-0.2 -0.3 -0.5	+0,2 +0,3 +0,5 +0,2 +0,3 +0,5
37 1208	12	8	38	44	12	5	+0,2	12	3,3	+0,2	2,4	+0,2	8	0,4	0,6	0,4	0,25	28	140	-0,5 -0,3 -0,5	+0,5
37 1409	14	9	44	50	14	5,5	+0,2	14	3,8	+0,2	2,9	+0,2	9	0,4	0,6	0,4	0,25	36	160	-0,3 -0.5	+0,3
37 1610	16	10	50	58	16	6	+0.2	16	4.3	+0.2	3.4	+0.2	11	0.4	0.6	0.4	0,25	45	180	-0,3 -0,5	+0,3
37 1811	18	11	58	65	18	7	+0.2	18	4.4	+0.2	3,4	+0.2	11	0.4	0.6	0.4	0.25	50	200	-0,3 -0.5	+0,3
37 2012	20	12	65	75	20	7.5	+0.2	20	4.9	+0.2	3.9	+0.2	12	0.6	0.8	0.6	0.4	56	220	-0,3	+0,3
37 2214	22	14	75	85	22	9	+0.2	22	5.4	+0,2	4.4	+0.2	14	0.6	0.8	0.6	0.4	63	250	-0,5 -0,3	+0,5
37 2514	25	14	85	95	25	9	+0.2	25	5,4	+0.2	4.4	+0.2	14	0.6	0.8	0,6	0,4	70	280	-0,5 -0,3	+0,5
37 2816	28	16	95	110	28	10	+0.2	28	6.4	+0.2	5.4	+0.2	16	0.6	0.8	0.6	0,4	80	320	-0,5 -0,3	+0,5
37 3218	32	18	110	130	32	11	+0.2	32	7.4	+0.2	6.4	+0.2	18	0.6	0.8	0.6	0.4	90	360	-0,5	+0.5
37 3620	36	20	130	158	36	12	+0.3	36	8,4	+0.3	7.1	+0.3	21	1	1.2	1	0.7	100	400	-0.5	+0.5
37 4022	40	22	150	170	40	13	+0.3	40	9.4	+0.3	8.1	+0.3	23	1	1.2	1	0.7	110	400	-0.5	+0.5
37 4525	45	25	170	200	45	15	+0.3	45	10.4	+0.3	9.1	+0.3	26	1	1.2	1	0.7	125	400	-0.5	+0.5
37 5028	50	28	200	230	50	17	+0.3	50	11.4	+0.3	10.1	+0.3	28	1	1.2	1	0.7	140	400	-0.5	+0.5
37 5632	56	32	230	260	56	20	+0.3	56	12,4	+0.3	11,1	+0.3	32	1.6	2	1,6	1,2	160	400	-0,5	+0.5
37 6332	63	32	260	290	63	20	+0,3	63	12,4	+0,3	11,1	+0,3	32	1,6	2	1,6	1,2	180	400	-0,5	+0,5
37 7036	70	36	290	330	70	22	+0,3	70	14,4	+0,3	13,1	+0,3	36	1,6	2	1,6	1,2	200	400	-0,5	+0,5
37 8040	80	40	330	380	80	25	+0,3	80	15,4	+0,3	14,1	+0,3	40	2,5	3	2,5	2	220	400	-0,5	+0,5
37 9045	90	45	380	440	90	28	+0,3	90	17,4	+0,3	16,1	+0,3	45	2,5	3	2,5	2	250	400	-0,5	+0,5
37 0050	100	50	440	500	100	31	+0.3	100	19.5	+0.3	18.1	+0.3	50	2.5	3	2.5	2	280	400	-0.5	+0.5

¹⁾ Las 4 últimas cifras deben señalar la longitud L. Indique la longitud L expresamente.

Material:

con alturas h de chavetas paralelas fijadas por tornillo hasta 25 mm: St 50-1 K con alturas h de chavetas paralelas fijadas por tornillo superiores a 25 mm: St 60-2


² Las dos primeras cifras señalan: 10 = forma A (frontal redonda) y 11 = forma B (frontal recta). Indicar expresamente.

Chavetas de talón DIN 6887

Norma mbo 30

Ejemplo de pedido: Chaveta de talón conforme a DIN 6887: b = 10mm, h = 8mm, l = 50mm;Número de pedido: 10 30 1008 0500

Número de pedido ⁴⁾	Anchura de chaveta b	Altura de chaveta h		diá- de eje		ra de veta	Altura de talón	Anchura de ranura b		didad de del eje	ranura	didad de del buje	Oblic redon	uidad/ deado	de la b	ndeado ase de inura r ₂	L	ongitu)
	h ₉	3.500	Sobre	177	h ₁	Desv. perm.	hz	D ₁₀	t ₁ 2)	Desv. perm.	t22)	Desv. perm.	Min.	Máx.	Máx.	Min.	Desde	Hasta	Desv. perm.
10 30 0404	4	4	10	12	4,1	-0,1	7	4	2,5	+0,1	1,2	+0,1	0,16	0,25	0,16	0,08	14	45	-0,2/-0,3
10 30 0505	5	5	12	17	5,1	-0,1	8	5	3	+0,1	1,7	+0,1	0,25	0,4	0,25	0,16	14	56	-0,2/-0,3
10 30 0606	6	6	17	22	6,1	-0,1	10	6	3,5	+0,1	2,2	+0,1	0,25	0,4	0,25	0,16	16	70	-0,2/-0,3
10 30 0807	8	7	22	30	7,2	-0,2	11	8	4	+0,2	2,4	+0,2	0,25	0,4	0,25	0,16	20	90	-0,2/-0,5
10 30 1008	10	8	30	38	8,2	-0,2	12	10	5	+0,2	2,4	+0,2	0,4	0,6	0,4	0,25	25	110	-0,2/-0,5
10 30 1208	12	8	38	44	8,2	-0,2	12	12	5	+0,2	2,4	+0,2	0,4	0,6	0,4	0,25	32	140	-0,3/-0,5
10 30 1409	14	9	44	50	9,2	-0,2	14	14	5,5	+0,2	2,9	+0,2	0,4	0,6	0,4	0,25	40	160	-0,3/-0,5
10 30 1610	16	10	50	58	10,2	-0,2	16	16	6	+0,2	3,4	+0,2	0,4	0,6	0,4	0,25	45	180	-0,3/-0,5
10 30 1811	18	11	58	65	11,2	-0,2	18	18	7	+0,2	3,4	+0,2	0,4	0,6	0,4	0,25	50	200	-0,3/-0,5
10 30 2012	20	12	65	75	12,2	-0,2	20	20	7,5	+0,2	3,9	+0,2	0,6	0,8	0,6	0,4	56	220	-0,3/-0,5
10 30 2214	22	14	75	85	14,2	-0,2	22	22	9	+0,2	4,4	+0,2	0,6	0,8	0,6	0,4	63	250	-0,3/-0,5
10 30 2514	25	14	85	95	14,2	-0,2	22	25	9	+0,2	4,4	+0,2	0,6	0,8	0,6	0,4	70	280	-0,3/-0,5
10 30 2816	28	16	95	110	16,2	-0,2	25	28	10	+0,2	5,4	+0,2	0,6	0,8	0,6	0,4	80	320	-0,3/-0,5
10 30 3218	32	18	110	130	18,3	-0,2	28	32	11	+0,2	6,4	+0,2	0,6	0,8	0,6	0,4	90	360	-0,5
10 30 3620	36	20	130	150	20,4	-0,3	32	36	12	+0,3	7,1	+0,3	1	1,2	1	0,7	100	400	-0,5
10 30 4022	40	22	150	170	22,4	-0,3	36	40	13	+0,3	8,1	+0,3	1	1,2	1	0,7	110	400	-0,5
10 30 4525	45	25	170	200	25,4	-0,3	40	45	15	+0,3	9,1	+0,3	1	1,2	13	0,7	125	400	-0,5
10 30 5028	50	28	200	230	28,4	-0,3	45	50	17	+0,3	10,1	+0,3	1	1,2	-1	0,7	140	400	-0,5
10 30 5632	56	32	230	260	32,5	-0,3	50	56	20	+0,3	11,1	+0,3	1,6	2	1,6	1,2			te .
10 30 6332	63	32	260	290	32,5	-0,3	50	63	20	+0,3	11,1	+0,3	1,6	2	1,6	1,2			in the second
10 30 7036	70	36	290	330	36,5	-0,3	56	70	22	+0,3	13,1	+0,3	1,6	2	1,6	1,2			ic.
10 30 8040	80	40	330	380	40,5	-0,3	63	80	25	+0,3	14,1	+0,3	2,5	3	2,5	2			
10 30 9045	90	45	380	440	45,6	-0,3	70	90	28	+0,3	16,1	+0,3	2,5	3	2,5	2			
10 30 0050	100	50	440	500	50,6	-0,3	80	100	31	+0,3	18,1	+0,3	2,5	3	2,5	2			j.:

¹⁾ Para medidas de acoplamiento, en particular de los extremos de eje, se ha de respetar necesariamente la clasificación de la sección transversal de la

Material:

St 60 - 1

chaveta a los diámetros de eje.

2) Tenga en cuenta las especificaciones de la norma DIN 6887,

3) Las longitudes intermedias situadas fuera de la norma DIN 6887 se deberán elegir según la norma DIN 3. Tenga en cuenta las especificaciones de la

norma DIN 6887.

4) Las 4 últimas cifras deben señalar la longitud I. Indique la longitud I expresamente.

ANEXO R CATÁLOGO DE RODAMIENTOS FAG RÍGIDOS DE BOLAS.

ANEXO S ESPECIFICACIONES DEL O'RING.

FLUORELASTOMERO

Desde -40° hasta +200°C este oring resiste ataques químicos y resiste altas FKM temperaturas.

	CLAVE	DUREZA	COLOR	ATRIBUTOS	ESPECIFICACION TIPICA
oring Fluore- lasto-mero	V75	75	NEGRO	ESTANDAR INDUSTRIAL	ASTM D2000 M2HK810, A1-10, B38, EF31, EO78, EO88 Z1 (Z1 = 75 +- 5 shore)
	V90	90	NEGRO	ESTANDAR INDUSTRIAL	ASTM D2000, A1-10, B38, EF31, EO78, EO88 Z1 (Z1 = 90 +- 5 shore)
	V121	75	NEGRO	AQ	RESISTENCIA UIMICOS B/B-TYPE BASE)
	V178	75	ROJ0	US	PARA SER SADO EN CON ALIMENTOS

ANEXO T ACOPLES Y UNIONES DE TUBERÍAS.

Accessoires de tuyauterie filetés Inox 316 ou 316L

Pipe fittings

20 bar à 20°C 16 bar à 100°C

Référence Prix unit. 652435-8 652435-10 652435-15 652435-20 652435-25 652435-32 652435-40

Modelo **5243**

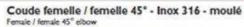
Adaptateur femelle / måle - Inox 316L

Female / male adapter

D	esignation	on.			Poids	Ga	z
DN	F.	Fg	S	-	(kg)	Référence	Prix unit.
8-8	1/4"	1/4*	17	26	0,03	652433-8	8,40
10-10	3/8*	3/8*	21	29	0,04	652433-10	12,10
15-15	1/2"	1/2"	24	33	0,04	652433-15	14,90
20-20	3/4"	3/4"	30	40	0.07	652433-20	22,50
25-25	1*	1"	38	46	0,12	652433-25	40,90
32-32	11/4	1"1/4	46	50	0,22	652433-32	66,60
40-40	1"1/2	1"1/2	55	50	0,36	652433-40	85,30
50-50	2"	2"	65	57	0.41	652433-50	114,70

652435-60

Modelo 5244


Coude femelle / femelle 90° - Inox 316 - moulé

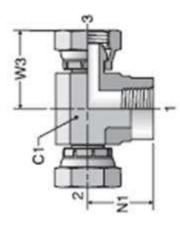
Female / female 90° elbow

ال	+	1, .
		7 4
[#-	+	ᅪ
A	1	9

Desi	gnation		Poids	Gaz		NP	ĭ
DN	F	A	(kg)	Référence	Prix unit.	Référence	Prix unit.
6	1/8"	17,5	0,04	452444-6	1,30	I	2-7-0
8	1/4"	19,5	0,06	452444-8	1,90	452445-8	2,60
10	3/8"	23.5	0,07	452444-10	2,70	452445-10	3,70
15	1/2"	27,5	0,10	452444-15	4,60	452445-15	6,10
20	3/4*	32,5	0,16	452444-20	6,70	452445-20	8,70
25	12	38,5	0,26	452444-25	10,50	452445-25	13,30
32	1"1/4	45,5	0,51	452444-32	17,30	452445-32	23,30
40	1"1/2	48,5	0,65	452444-40	21,40	452445-40	27,30
50	2"	57,5	0,80	452444-50	33,30	452445-50	40,80
65	2"1/2	69,5	1,10	452444-65	66,60	Hickory	in the state of
80	3*	78,5	1,58	452444-80	74,30		
100	4"	96,5	1,98	452444-100	137,50		

Dési	gnation		Poids	Ga	z
DN	F	A	(kg)	Référence	Prix unit.
6	1/3"	16,5	0,04	452454-6	4,60
8	1/4"	17,5	0,08	452454-8	4,10
10	3/8"	19,5	80,0	452454-10	4,60
15	1/2"	21,5	0,11	452454-15	6,10
20	2/4"	25,5	0,20	452454-20	6,70
25	17	29,5	0,28	452454-25	11,40
32	171/4	33,5	0,46	452454-32	18,70
40	1"1/2	37,5	0,64	452454-40	23,40
50	2*	42,5	0,85	452454-50	40,20

Modille 5240

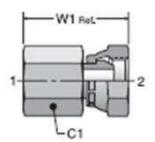


Coude femelle / femelle 90° réduit - Inox 316 - moulé Reducing female / female 90° elbow

	ئے	-	_
щ	₫		
\mathbb{H}	100	╁	-+
P	A		

D	esignatio	n.		2	Poids	Gaz	
DN	Fi	Fo	A	8	(kg)	Référence Prix u	
8/6	1/4"	1/8"	22	23	0,06	452404-86	9,00
10/8	3/8"	1/4"	20	24	60,08	452404-108	9,40
15/10	1/2*	3/8"	26	25	0,09	452404-1510	11,90
20/15	3/4*	1/2*	34	28	0,12	452404-2015	21,30
25/20	1.	2/4"	37	33	0,24	452404-2520	30,80
32/25	1"1/4	1"	39	40	0,51	452404-3225	45,00
40/32	1*1/2	111/4	45	48	0,55	452404-4032	57,10
50/40	2.	1*1/2	52	56	0,70	452404-5040	73,20

227T Full DimensionsFemale Pipe Branch Tee NPTF / NPSM Swivel / NPSM Swivel



L		END SIZE	· ·	3			STA	STANDARD Dynamic Procesure	RD Ic
FITTING	-	2	3	5 ¥	ž	W3	(x 1,	x 1,000 PSI	(IS
PART #	NPTF	NPSM	NPSM	(in.)	(in.)	(in.)	s.	-SS	ė
2277-4-4	1/4-18	1/4-18	1/4-18	3/4	0.94	1.13	5.0		
227T-6-6	3/8-18	3/8-18	3/8-18	2/8	1.00	1.20	4.5		
227T-8-8	1/2-14	1/2-14	1/2-14	11/16	1.17	1.46	3.0		
227T-12-12	3/4-14	3/4-14	3/4-14	1 3/16	1.44	1.60	3.0		

0207 Full Dimensions

Female Pipe Adapter NPTF / NPSM Swivel

SAE 140131

TUBE	END	SIZE	C1		D:	ANDAI ynami essur	c e
FITTING	1	2	LE C1 P (x) NPSM (in.) (in.) (in.) -S 1/8-27 9/16 1.02 6.0 1/4-18 11/16 1.33 6.0 1/8-27 9/16 1.32 6.0 1/8-27 9/16 1.32 6.0 1/4-18 11/16 1.43 6.0 1/4-18 7/8 1.49 6.0 3/8-18 7/8 1.51 6.0 1/2-14 1 1.64 5.0 1/4-18 1 1.70 5.0 3/8-18 1 1.73 5.0 1/2-14 1 1.79 5.0 1/2-14 1 1.74 1.85 4.0 3/4-14 1 1/4 1.97 4.0		1,000 PSI)		
PART#	NPTF			_		-SS	-B
0207-2-2	1/8-27	1/8-27	9/16	1.02	6.0	6.0	
0207-2-4	1/8-27	1/4-18	11/16	1.33	6.0		
0207-4-2	1/4-18	1/8-27	9/16	1.32	6.0		
0207-4-4	1/4-18	1/4-18	11/16	1.43	6.0	6.0	
0207-6-4	3/8-18	1/4-18	7/8	1.49	6.0	6.0	
0207-6-6	3/8-18	3/8-18	7/8	1.51	6.0	6.0	
0207-6-8	3/8-18	1/2-14	1	1.64	5.0		
0207-8-4	1/2-14	1/4-18	1	1.70	5.0		
0207-8-6	1/2-14	3/8-18	1	1.73	5.0	5.0	
0207-8-8	1/2-14	1/2-14	1	1.79	5.0	5.0	
0207-12-8	3/4-14	1/2-14	1 1/4	1.85	4.0		
0207-12-12	3/4-14	3/4-14	1 1/4	1.97	4.0	4.0	
0207-16-12	1-11 1/2	3/4-14	1 1/2	2.28	3.0		
0207-16-16	1-11 1/2	1-11 1/2	1 1/2	2.37	3.0	3.0	
0207-20-20	1 1/4-11 1/2	1 1/4-11 1/2	1 7/8	2.38	2.5		
0207-24-24	1 1/2-11 1/2	1 1/2-11 1/2	2 1/8	2.42	2.0		
0207-32-32	2-11 1/2	2-11 1/2	2 5/8	2.55	1.5	1.5	

ANEXO U

CÁLCULO DE LA DENSIDAD DE LA MEZCLA EN ESTADO SÓLIDO.

CÁLCULO DE LA DENSIDAD

La densidad de la mezcla se calcula en base a los diferentes componentes que la conforman, según la ecuación:

$$\rho = \frac{(1 - \epsilon)}{\sum Xi/\rho i} \tag{1}$$

Datos:

 x_i = porcentaje de cada componente.

 $\rho_i = \text{densidad de cada componente, } [kg/m^3]$

 ε = porosidad del alimento.

En la siguiente tabla se muestra la composición porcentual de diferentes tipos de helados (ASHRAE).

Table 3 Unfrozen Composition Data, Initial Freezing Point, and Specific Heats of Foods* (Continued)

8	Moisture Content,			Carbo	hydrate		Initial Freezing	Specific Heat Above	Specific Heat Below	Latent Heat of
Food Item	% Nwo	% Xp	Fat, %	Total, %	Fiber, %	Ash, %	Point,	Freezing, kJ/(kg·K)	Freezing kJ/(kg·K)	Fusion, kJ/kg
Dairy Products Butter	17.94	0.85	81.11	0.06	0.0	0.04	::-::	2.40	2.65	60
Cream Half and half Table Heavy whipping	80.57 73.75 57.71	2.96 2.70 2.05	11.50 19.31 37.00	4.30 3.66 2.79	0.0 0.0 0.0	0.67 0.58 0.45	-2.2 -	3.73 3.59 3.25	2.16 2.21 2.32	269 246 193
Ice Cream Chocolate Strawberry Vanilla	55.70 60.00 61.00	3.80 3.20 3.50	11.0 8.40 11.00	28.20 27.60 23.60	1.20 0.30 0.0	1.00 0.70 0.90	-5.6 -5.6 -5.6	3.11 3.19 3.22	2.75 2.74 2.74	186 200 204

Table 1 Thermal Property Models for Food Components ($-40 \le t \le 150$ °C)

Thermal Property	Food Component	Thermal Property Model
Thermal conductivity, W/(m·K)	Protein	$k = 1.7881 \times 10^{-1} + 1.1958 \times 10^{-3}t - 2.7178 \times 10^{-6}t^{-2}$
	Fat	$k = 1.8071 \times 10^{-1} - 2.7604 \times 10^{-4}t - 1.7749 \times 10^{-7}t^{2}$
	Carbohydrate	$k = 2.0141 \times 10^{-1} + 1.3874 \times 10^{-3}t - 4.3312 \times 10^{-6}t^{-2}$
	Fiber	$k = 1.8331 \times 10^{-1} + 1.2497 \times 10^{-3}t - 3.1683 \times 10^{-6}t^{-2}$
	Ash	$k = 3.2962 \times 10^{-1} + 1.4011 \times 10^{-3}t - 2.9069 \times 10^{-6}t^{2}$
Density, kg/m ³	Protein	$\rho = 1.3299 \times 10^3 - 5.1840 \times 10^{-1}t$
	Fat	$\rho = 9.2559 \times 10^2 - 4.1757 \times 10^{-1}t$
	Carbohydrate	$\rho = 1.5991 \times 10^3 - 3.1046 \times 10^{-1}t$
	Fiber	$\rho = 1.3115 \times 10^3 - 3.6589 \times 10^{-1}t$
	Ash	$\rho = 2.4238 \times 10^3 - 2.8063 \times 10^{-1}t$

La tabla anterior muestra las ecuaciones para el cálculo de las propiedades térmicas a distintas temperaturas.

Composición del helado.

Componentes	Densidad ρi	xi %	xi/ ρ i
Proteínas	1332,8	3,2	0,0024
Grasa	927,9	8,4	0,0091
Carbohidratos	1600,8	27,6	0,0172
Fibra	1313,5	0,3	0,0002
Solidos	2425,3	0,7	0,0003
Agua	997,1	60	0,0602
Temperatura	-5,5	Suma	0,0894

Utilizando la ecuación (1) y reemplazando los datos de la tabla anterior, se determina la densidad de la mezcla en estado sólido: $\rho_s=1118,7~[kg/m^3]$

ANEXO V

DETERMINACIÓN DE kL/r EN FUNCIÓN DEL ESFUERZO DE FLUENCIA Sy.

TABLE 1-36

ALLOWABLE STRESS (KSI)

FOR COMPRESSION MEMBERS OF 36 KSI SPECIFIED YIELD STRESS STREET

Membe to 200	ndary L/r 121	Seco			Iain M		bers		ondary of over			M
1 7	F _{0,i} (ksi)	$\frac{l}{r}$	F _o (ksi)	$\frac{Kl}{r}$	F _s (ksi)	$\frac{Kl}{r}$	F _a (ksi)	$\frac{Kl}{r}$	F _* (ksi)	$\frac{Kl}{r}$	F. (ksi)	KI Z
161 7	10.19	121	5.76	161	10.14	121	15.24	81	19.11	41	21.56	1
162 7	10.09	122	5.69	162	9.99	122	15.13	82	19.03	42	21.52	2
163 7	10.00	123	5.62		9.85	123	15 02	8.3	18 95	43	21.48	3
164 7 165 7	9.90	124	5.55		9.70	124 125	14.90	85	18.86 18.78	44	21.44	5
		00000				0000	NOST TUBBLE	7 12 Se 1	300 (5040)	200	211.00	
166 7	9.70	126 127	5.42	166	9.41	126	14.67	86	18.70	46	21.35	6
167 7	9.49	128	5.29	168	9.11	127 128	14,56 14,44	87	18.61 18.53	47	21.30	7
169 6	9.40	129	5 23	169	8.97	129	14.32	89	18.44	48	21 25 21 21	8 9
170 6.	9.30	130	5.17		8.84	130	14.20	90	18.35	50	21.16	10
171 6	9.21	131	5.11	171	8.70	131	14.09	91	18.26	51	21.10	11
172 6.1	9.12	132	5.05	172	8.57	132	13.97	92	18.17	52	21.05	12
170 6	9.03	133	4.99	173	8,44	133	13.84	93	18.08		21.00	13
174 6.	8.94	134	4.93		8.32	134	13,72	94	17.99	54	20.95	14
175 67	8.86	135	4.88	175	8.19	135	13.60	95	17.90	55	20.89	15
176 8.7	8.78	136	4.82		8.07	136	13.48	96	17.81	56	20.83	16
177 6 6 178 6 6	8.70	137	4.77	177	7.96	137	13,35	97	17,71	57	20.78	17
179 5.4	8 62	138	4.71	178 179	7.84	138	13.23	98	17.62	100.51	20.72	18
180 1 9	8.47	140	4.61		7.73	139 140	13.10 12.98	99 100	17.53 17.43	0.00	20.66	19 20
185 4.0	8.39	141	4.56	181	7.51	141	12.85	101	17 00		V/10/55/5/	0.0
182 1.3	8.32	142	4.51	182	7.41	142	12.72	101	17.33 17.24	61	20.54	21
185 6 6	8.25	143	4.46	183	7.30	143	12.59	103	17.14	63	20.41	23
184 A.G.	8.18	144	4.41	184	7.20	144	12,47	104	17.04	64	20.35	24
	8.12	145	4.36	185	7.10	145	12.33	105	16.94	65	20:28	25
(南) (百)	8.05	146	4.32	186	7.01	146	12.20	106	16.84	66	20.22	26
125 11 1	7.991	147	4.27	187	6.91	147	12.07	107	16.74	67	20.15	27
189 6-	7.87	148	4 23 4 18	188	6.82	148	11.94	108	16.64	68	20.08	28
190 6 3	7.81	150	4.14	189	6.64	149	11.81	109	16.53	69	20.01	29
FI 4.2	4.45		O Constant	100	0.04	100	11.67	110	16.43	70	19.94	30
93.6		151	4.09	191	6.55	151	11.54	111	16.33	71	19.87	31
21 6	7.64	153	4.05	192	6.46	152	11,40	112	16.22		19.80	32
64 0 P	CONTRACTOR OF THE PARTY OF THE	154	3.97		6.30	153	11.26 11.13	113	16.12 16.01	73 74	19.73	
	SHEET	155	3,93	195	6.22	155	10.99		15.90		19.65 19.58	
07.0	200	156	3.89	196	6.14	156	10.85	116	15.79	70	10 50	20
	7.43	157	3.85	197	6.06		10.71		15.69		19.50	
		158	3.81	198	5.98	158	10.57	118	15.58		19 35	38
Charles .		159 160	3.77	199	5.91	159	10.43	119	15.47		19.27	39
G et din	102	100	3.73	200	5.83	160	10.28	120	15.36		19.19	

[&]quot; K taken as 1.0 for secondary members.

Note: C_c = 126.1

ANEXO W PLANOS.