ESCUELA POLITECNICA NACTONAL FACULTAD DE INGENIERIA ELECTRICA

TESIS DE GRADO

" COMPORTAMIENTO DINAMICO DE MAQUINAS DE CORRIENTE CONTINUA INCLUIDA LA SATURACION

۰.

MAGNETICA "

TESIS PREVIA A LA OBTENCION DEL TITULO DE INGENIERO ELECTRICO EN LA ESPECIALIZACION DE POTENCIA.

LUIS HANDEL SANDOVAL CASARES .

QUITO NOVIEMBRE 1981

CERTIFICACION

Certifico que el presente trabajo fue realizado en su totalidad por el señor Luis Handel Sandoval Casares, ING. MEXTOR POVEDA A. Director de Tésis

AGRADECIMIENTO

Al Señor Ingeniero Méntor Poveda por su sincera colaboración en el desarrollo del presen te trabajo

J

· Handel Sandoval Casares

INDICE

		Pag.	
Introducción			
CAPITULO I			
	MODELO MATEMATICO		
1.1.	Modelo matemático Elegido	4	
1.2	Representación de la Máquina Primitiva	5	
1.3.	Parámetros de introducción estacionaria		
	de la máquina primitiva	7	
1.4	Inducciones rotacionales	8	
1.5.	Ecuaciones de equilibrio eléctrico	9	
1.6	Ecuaciones de equilibrio mecánico	10	
CAPITULO II			
	MAQUINAS DE CORRIENTE CONTINUA-		
2.1.	Modelo matemático de las Máquinas D.C. sin		
	considerar la saturación magnética	13	
2,2,	Introducción 🖧 la saturación magnética	18	
2,3,	Determinación de condiciones iniciales	25	
2.4.	Tipos de Conexión aplicables al modelo de		
	dos devanados	26	
2.5	Interpolos y bobinas de compensación	31	

CAPITULO III

PROGRAMA DIGITAL

3.1.	Algoritmo utilizado	32
	Programa Principal	34
	Subrutina COINI	34
	Subrutina SATUNA	3४
	Subrutina CRAFU	3 9
	Subprograma de función RUGE	3 9
3.2.	Diagrama de flujo de programa digital.	40
3.3.	Restricciones impuestas al modelo	49

CAPITULO IV

APLICACIONES DEL PROGRAMA

4.1.	Variación brusca de torque en generador		
	con excitación independiente	50	
4.2.	Cortocircuito en Generador Shunt	64	
4.3.	Arranque con carga motor Shunt	65	
4.4.	Variación brusca de carga en motor		
a. '	Shunt	77	

CAPITULO V

ANALISIS Y COMPARACION DE RESULTADOS

5.1.	Comprobación experimental de las perturba	
	ciones analizadas en forma digital	83
	- Incremento brusco de torque en la má-	
	quina impulsora del generador con exc <u>i</u>	
	tación independiente	83

	Pag.
- Cortocircuito en Generador Shunt	93
- Arranque con carga en motor Shunt	98
- Incremento brusco de carga motor -	
shunt	105
5.2. Comparación de Resultados obtenidos en	
el programa digital con los experimen-	•
tales	109
CAPITULO VI .	
CONCLUSIONES Y RECOMENDACIONES	126
-	
APENDICE A	
Medición de los parámetros eléctricos y	
mecánicos de las máquinas de contínua.	131
APENDICE B	. ~
Manual de uso y listado del programa digi	
tal	141
APENDICE C	
Equipo empleado en el laboratorio	153
BIBLIOGRAFIA	155

•

ć

.

.

.

INTRODUCCION

En años recientes, [/]con el advenimiento de grandes sistemas de potencia interconectados, y en las industrias el uso extenso del c©ntrQl automático de los motores y generadores, el com portamiento transitorio de las máquinas ha llegado a ser más importante y consecuentemente obligan a desarrollar nuevos métodos de análisis. /

/La máquina de corriente contínua frecuentemente se utiliza en sistemas de control. Puede decirse que las máouinas usadas en aplicaciones de control normalmente no son operadas en condiciones de estado permanente, sus condiciones de operación pueden describirse de una manera más conveniente como "dinámicas" o "transitorias", más aún, todas las máquinas tienen que ser arrancadas, y el arranque es uno de los casos del comportamiento dinámico./

Todos los estudios recientes han ido directamente al desarro-11o de circuitos equivalentes lineales y de modelos matemáticos de los cuales pueden obtenerse las características en estado estable y transitorio. En realidad el problema es bien difícil. Las ecuaciones del movimiento se obtienen fácilmente con la ayuda del modelo, pero las ecuaciones mismas son no lineales y no pueden resolverse tan fácilmente con las técnicas analíticas disponibles.

Generalmente las ecuaciones diferenciales de las máquinas de contínúa se las aproxima a lineales depreciando la satura ción magnética, lamentablemente dichas ecuaciones diferenciales, en la mayoría de las conexiones de éstas máquinas no pueden linealizarse despreciando la saturación ni por otre aproximación justificable.

El propósito del presente trabajo es desarrollar un modelo matemático en función de concatenaciones de flujo, introducir la saturación en dichos parámetros y determinar el compor tamiento dinámico de las máquinas de corriente contínua.

El análisis incluye incremento brusco de torque en generador con excitación independiente, cortocircuito en generador derivación, arranque con carga en motor derivación e incremento brusco de carga en igual conexión, siendo tan variadas las aplicaciones se demuestra el amplísimo campo de aplicación del modelo.

- 2 -

El modelo desarrollado es simulado en el computador digital y sus resultados son comparados con los experimentales, obtenien dose respuestas satisfactorias comprobando de esta manera la veracidad del método ideado .

CAPITULO I

MODELO MATEMATICO

El desarrollar un modelo matemático único para representar las máquinas giratorias tiene varias ventajas: simplificar las manipulaciones matemáticas, reducir el tiempo y el trabajo que se requieren en el estudio de muchas máquinas; y, lo que es más importante aún, sirve para demostrar que muchas máquinas rotatorias distintas son básicamente similares en su naturaleza física y que los principios de la conversión de energía son, en realidad los mismos para todas las máquinas rotatorias.

1.1. Modelo Matemático Elegido

El modelo seleccionado para este propósito es un modelo de circuito eléctrico, denominado frecuentemente "La Máquina Primitiva" (1).

La máquina primitiva sirve como una herramienta poderosa para el análisis de las máquinas de corriente contínua, contiene un mecanismo de conmutación llamado conmutador. Igualmente se pue de analizar las máquinas síncronas y las de inducción de corrien te alterna, a pesar de que no llevan el mecanismo conmutador.

- 4 -

Este modelo se usará para máquinas de dos polos, si se quiere representar polos múltiples, es necesario introducir una constante en algunas ecuaciones.

La máquina primitiva no corresponde exactamente a ninguna máqui na real, para obtener resultados prácticos útiles, es necesario hacer algunas consideraciones.

- Circuito magnético lineal (se desprecia la saturación y la histéresis)
- Entre hierro uniforme, no se toma en cuenta las ranuras, prac ticadas en: la periferie interior del estator y el rotor es un cilindro liso.
- 3. Distribución simétrica de los devanados del estator de tal forma que se produzca una fuerza magnetomotriz distribuída sinusoidalmente en el entrehierro.

1.2. Representación de la Máguina Primitiva

La máquina primitiva que se representa en la figura 1.1. tiene cuatro devanados, dos en estator y dos en el rotor.

- 5 -

Fig. 1.1 Maquina Primitiva completa d-q de cuatro devanados

Los subindices q, d indican los ejes en cuadratura y directo; los superíndices r, s indican el rotor y el estator respectivamente, así, V_q^s será el voltaje del devanado en cuadratura del estator e i_q^s será la corriente que lo recorre.

La introducción de corriente constante en cualquiera de las bobi nas del estator trae como consecuencia la creación de un campo magnético que está fijo en el espacio, respecto al rotor. Los circuitos de éste, en la máquina primitiva, crearán también un campo análogo, lo cual significa que el campo del devanado del rotor, excitado con corriente constante, permanecerá fijo en el espacio respecto al estator, cualquiera que sea la orientación de la estructura del rotor. A fin de conseguir este efecto, se utiliza el dispositivo llamado commutador. La idea más importan te que hay que tener presente es la condición de un campo magnético fijo, que depende solamente de la corriente que pasa por el devanado del rotor, pero no de la posición o velocidad de la estructura de éste.

1.3. Parámetros de Inducción Estacionaria de la Máquina Primitiva

Los acoplos inductivos totales (concatenaciones de flujo) de los devanados vendrán dados en forma matricial según:

 $\begin{bmatrix} \lambda d^{s} \\ \lambda d^{s} \\ \lambda q^{s} \end{bmatrix} = \begin{bmatrix} L_{d}^{s} & 0 & M_{dd}^{st} & 0 \\ 0 & L_{q}^{s} & 0 & M_{qq}^{sr} \\ M_{dq}^{s} & 0 & L_{d}^{r} & 0 \\ 0 & M_{qq}^{rs} & 0 & L_{q}^{r} \end{bmatrix} \begin{bmatrix} i_{d}^{s} \\ i_{q}^{s} \\ i_{d}^{r} \end{bmatrix}$ (1.1)

Los coeficientes L son las autoinducciones respectivas de los cuatro devanados y los M, las inducciones mutuas. El primer con-

- 7 -

junto de subíndices y superíndices de que van afectados dichos coeficientes M, designan a los devanados que tienen acoplamientos inductivos, y el segundo conjunto de subíndices y superíndices indica los devanados por los que circula la corriente que produce dichos acoplamientos.

1.4. Inducciones Rotacionales

Puesto que solamente gira el rotor, las tensiones inducidas se presentarán en los devanados del mismo.

$$e_q r = G_{qd}^{rs} \cdot \omega^r \cdot i_d^s + G_{qd}^{rr} \cdot \omega^r \cdot i_d^r$$

у

 $e_d r = G_{qd}^{rs} \cdot \omega^r i_q^r - G_{dq}^{qr} \cdot \omega^r i_q^r$

e_qr = Tensión inducida en el devanado de eje on cuadratura del rotor.

ed^r = Tensión inducida en el devanado de eje directo del rotor.

Los coeficientes G tienen dimensiones en henrios y se llaman generalmente inducciones rotacionales, donde la tensión inducida es una función de la velocidad angular del rotor ω^{r} . Obsérvese que las tensiones inducidas por giro, tienen lugar solamente en los devanados del rotor debidas a corrientes que circulan por los devanados del rotor o del estator, que están en cuadratura, mientras que las tensiones creadas por inducción; mutua, o tensiones de transformador, se producen entre devanados situados en el mismo eje.

1.5. Ecuaciones de Equilibrio Eléctrico

Las ecuaciones de malla para cada uno de los cuatro devanados de la máquina primitiva vienen dadas por:

$$V_{d}^{s} = R_{d}^{s} i_{d}^{s} + L_{d}^{s} \frac{d_{id}^{s}}{dt} + M_{dd}^{sr} \frac{d_{id}^{r}}{dt}$$

$$V_{q}^{s} = R_{q}^{s} i_{q}^{s} + L_{q}^{s} \frac{d_{iq}^{q}}{dt} + M_{qq}^{sr} \frac{d_{iq}^{r}}{dt}$$

$$V_{q}^{r} = R_{q}^{r} i_{q}^{r} + L_{q}^{r} \frac{d_{iq}^{r}}{dt} + M_{qq}^{r} \frac{d_{iq}^{s}}{dt} - G_{qd}^{r} \omega^{r} i_{d}^{s} - G_{qd}^{rr} \omega^{r} i_{d}^{r}$$

$$V_{d}^{r} = R_{d}^{r} i_{d}^{r} + L_{d}^{r} \frac{d_{iq}^{r}}{dt} + M_{dd}^{r} \frac{d_{iq}^{s}}{dt} - G_{qd}^{rs} \omega^{r} i_{d}^{s} - G_{qd}^{rr} \omega^{r} i_{d}^{r}$$

$$V_{d}^{r} = R_{d}^{r} i_{d}^{r} + L_{d}^{r} \frac{d_{id}^{r}}{dt} + M_{dd}^{rs} \frac{d_{id}^{s} + G_{qd}^{rs}}{dt} + G_{dq}^{rs} \omega^{r} i_{d}^{r} i_{d}^{r}$$

En forma matricial, tenemos:

$$\begin{bmatrix} \mathbf{V}_{d}^{s} \\ \mathbf{V}_{q}^{s} \\ \mathbf{V}_{q}^{s} \end{bmatrix} = \begin{bmatrix} \mathbf{R}_{d}^{s} + \mathbf{L}_{d}^{s}\mathbf{p} & \mathbf{O} & \mathbf{M}_{dd}^{sr} & \mathbf{O} \\ \mathbf{O} & \mathbf{R}_{q}^{s} + \mathbf{L}_{q}^{s}\mathbf{p} & \mathbf{O} & \mathbf{M}_{qq}^{sr} \\ \mathbf{O} & \mathbf{R}_{q}^{s} + \mathbf{L}_{q}^{s}\mathbf{p} & \mathbf{O} & \mathbf{M}_{qq}^{sr} \\ \mathbf{V}_{q}^{r} \end{bmatrix} = \begin{bmatrix} \mathbf{M}_{dd}^{rs} & \mathbf{G}_{dq}^{rs} & \mathbf{w}^{r} & \mathbf{R}_{d}^{r} + \mathbf{L}_{d}^{r}\mathbf{p} & \mathbf{G}_{dq}^{rr} & \mathbf{r} \\ \mathbf{M}_{dd}^{r} & \mathbf{G}_{dq}^{rs} & \mathbf{w}^{r} & \mathbf{R}_{d}^{r} + \mathbf{L}_{d}^{r}\mathbf{p} & \mathbf{G}_{dq}^{rr} & \mathbf{r} \\ \mathbf{Y}_{q}^{r} \end{bmatrix} = \begin{bmatrix} \mathbf{M}_{dd}^{rs} & \mathbf{G}_{dq}^{rs} & \mathbf{w}^{r} & \mathbf{R}_{d}^{r} + \mathbf{L}_{d}^{r}\mathbf{p} & \mathbf{G}_{dq}^{rr} & \mathbf{r} \\ \mathbf{G}_{qd}^{r} & \mathbf{W}_{dq}^{r} & \mathbf{G}_{qd}^{rr} & \mathbf{W}_{qq}^{r} \end{bmatrix} \begin{bmatrix} \mathbf{i}_{q}^{r} \\ \mathbf{i}_{q}^{r} \end{bmatrix}$$
(1)

.2)

p Operador lineal d/dt.

1.6 Ecuaciones de Equilibrio Mecánico

El par que se aplica al eje exteriormente tiene que compensarse con diversos tipos de pares de la máquina, como son: un efecto de inercia, un par viscoso o de resistencia del aire, par de elasticidad debido a la torsión del eje y por último un par que se ejerce sobre el rotor, de origen eléctrico; por tanto,

$$T^{r} = J \frac{d}{dt} \omega^{r} + D \omega^{r} + \frac{1}{K} \int \frac{d}{dt} dt + Te$$

donde:

T^r es el par exterior aplicado.

J momento de incercia total del rotor.

D Es el coeficiente angular de fricción viscosa.

K Es la deformación del eje del rotor

- 10 -

Te Es el par de origen eléctrico.

La torsión que sufre el eje es pequeña por lo que se puede con siderar depreciable, luego $\frac{1}{K} \int_{-\infty}^{t} dt = 0$, y T^r queda $T^{r} = J P_{\omega}^{r} + D \cdot_{\omega}^{r} + Te$ (1.3)

Luego de algunas consideraciones (1) se llega a demostrar que , el par de origen eléctrico es :

$$Te = - (G_{dq}^{rs} i_q^{s} + G_{dq}^{rr} i_q^{r}) i_d^{r} + (G_{qd}^{rs} i_d^{s} + G_{qd}^{rr} i_d^{r}) i_q^{r}$$
(1.4)
y (1.3) queda:

 $T^{\mathbf{r}} = J p \omega^{\mathbf{r}} + D \omega^{\mathbf{r}} - (G_{dq}^{\mathbf{rs}} i_q^{\mathbf{s}} + G_{dq}^{\mathbf{rr}} i_q^{\mathbf{r}}) i_d^{\mathbf{r}} + (G_{qd}^{\mathbf{rs}} i_d^{\mathbf{s}} + G_{qd}^{\mathbf{rr}} i_d^{\mathbf{r}}) i_q^{\mathbf{r}} (1.1)$

(1.2) y (1.5) son un conjunto completo de ecuaciones de equilibrio que definen el comportamiento de la máquina primitiva.

CAPITULO II

MAQUINAS DE CORRIENTE CONTINUA

Los dispositivos de conversión de energía que más se parecen a la máquina primitiva son los que llevan incorporados un commutador y escobillas, es decir, las máquinas de corriente contínua Las ecuaciones de funcionamiento de dichas máquinas se obtienen con facilidad, mediante el sencillo método de seleccionar de entre los devanados de la máquina primitiva, los que lleve la que se va a analizar.

Muchas de las máquinas de corriente contínua que se presentan en la práctica, tanto generadores como motores poseen un estator con un solo devanado, y un rotor de un solc devanado tam bién. Como el devanado del rotor tiene el dispositivo de conmutador y escobillas, la máquina de dos devanados, se puede deducir, a partir de la máquina primitiva, sin más que eliminar un devanado del rotor y uno del estator.

- 12 -

2.1. Modelo Matemático de las Máquinas D.C. sin Considerar La Saturación Magnética

De la máquina de dos devanados (Figura 2.1) y del análisis realizado en el capítulo anterior, se puede determinar las <u>e</u> cuaciones que rigen el comportamiento de las máquinas de corriente contínua.

Fig. 2.1 Modelo de máquina primitiva d - q correspondiente a la máquina con dos devanados y commutador

Puesto que, en un principio, se asume la linealidad del circuito magnético, se seguirá aplicando las ecuaciones encontradas anteriormente. Las concatenaciones de flujo obtenidos de (1.1), correspondientes a la máquina de dos devanados serán:

$$\begin{bmatrix} \lambda d^{s} \\ \lambda q^{r} \end{bmatrix} = \begin{bmatrix} L_{d}^{s} & 0 \\ 0 & L_{q}^{r} \end{bmatrix} \begin{bmatrix} i_{d}^{s} \\ i_{q}^{r} \end{bmatrix}$$
(2.1)

Las ecuaciones de equilibrio eléctrico provenientes de (1.2) son:

б:

$$\begin{bmatrix} \mathbf{V}_{\mathbf{d}}^{\mathbf{S}} \\ \mathbf{V}_{\mathbf{q}}^{\mathbf{r}} \end{bmatrix} = \begin{bmatrix} \mathbf{R}_{\mathbf{d}}^{\mathbf{S}} & \mathbf{0} \\ -\mathbf{G}_{\mathbf{q}\mathbf{d}}^{\mathbf{r}\mathbf{s}} & \mathbf{R}_{\mathbf{q}}^{\mathbf{r}} \end{bmatrix} \begin{bmatrix} \mathbf{i}_{\mathbf{d}}^{\mathbf{S}} \\ \mathbf{i}_{\mathbf{q}}^{\mathbf{r}} \end{bmatrix} + \begin{bmatrix} \mathbf{p}(\mathbf{L}_{\mathbf{d}}^{\mathbf{S}} & \mathbf{i}_{\mathbf{d}}^{\mathbf{S}}) \\ \mathbf{p}(\mathbf{L}_{\mathbf{q}}^{\mathbf{r}} & \mathbf{i}_{\mathbf{q}}^{\mathbf{r}}) \end{bmatrix} (2.2)$$

Reemplazando (2.1) en (2.2).

$$\begin{bmatrix} V_{d}^{s} \\ V_{q}^{r} \end{bmatrix} = \begin{bmatrix} R_{d}^{s} & 0 \\ \vdots & G_{qd}^{rs} & R_{q}^{r} \end{bmatrix} \begin{bmatrix} i_{d}^{s} \\ i_{q}^{r} \end{bmatrix} + \begin{bmatrix} p & \lambda_{d}^{s} \\ p & \lambda_{q}^{r} \end{bmatrix}$$

Defino $\lambda ex = .G_{qd}^{rs} i_{d}^{s}$ (2.3.)

de donde:

$$\begin{bmatrix} \mathbf{v}_{\mathbf{d}}^{\mathbf{s}} \\ \mathbf{v}_{\mathbf{q}}^{\mathbf{r}} \end{bmatrix} = \begin{bmatrix} \mathbf{R}_{\mathbf{d}}^{\mathbf{s}} & \mathbf{0} \\ \mathbf{0} & \mathbf{R}_{\mathbf{q}}^{\mathbf{r}} \end{bmatrix} \begin{bmatrix} \mathbf{i}_{\mathbf{d}}^{\mathbf{s}} \\ \mathbf{i}_{\mathbf{q}}^{\mathbf{r}} \end{bmatrix} + \begin{bmatrix} \mathbf{p} & \lambda \mathbf{d}^{\mathbf{s}} \\ \mathbf{p} & \lambda \mathbf{q}^{\mathbf{r}} \end{bmatrix} + \lambda \cdot \mathbf{ex} \begin{bmatrix} \mathbf{0} \\ \mathbf{r} \\ \boldsymbol{\omega} \end{bmatrix}$$
(2.4)

Si a (2.1) le sumamos y le restamos λex , la igualdad no se altera, por lo tanto:

$$\begin{bmatrix} \lambda d^{S} \\ \lambda d^{r} \end{bmatrix} = \begin{bmatrix} L_{d}^{S} & 0 \\ 0 & L_{q}^{r} \end{bmatrix} \begin{bmatrix} \mathbf{i} d^{S} \\ \mathbf{i} d^{r} \end{bmatrix} + \begin{bmatrix} \lambda ex \\ 0 \end{bmatrix} - \begin{bmatrix} \lambda ex \\ 0 \end{bmatrix}$$

Por inversion de matrices:

$$\begin{bmatrix} \mathbf{i}_{d}^{\mathbf{S}} \\ \mathbf{i}_{q}^{\mathbf{r}} \end{bmatrix} = \begin{bmatrix} \mathbf{1} & \mathbf{0} \\ \mathbf{L}_{d}^{\mathbf{S}} - \mathbf{G}_{qd}^{\mathbf{r}\mathbf{S}} & \mathbf{0} \\ \mathbf{0} & \mathbf{1}_{Lq^{\mathbf{r}}} \end{bmatrix} \begin{bmatrix} \lambda \, \mathbf{d}^{\mathbf{S}} & \lambda \, \mathbf{ex} \\ \lambda \, \mathbf{q}^{\mathbf{r}} \end{bmatrix}$$
(2.5)

Reemplazando (2.5) en (2.4) .

$$\begin{bmatrix} \mathbf{v}_{d}^{s} \\ \mathbf{v}_{q}^{r} \end{bmatrix} = \begin{bmatrix} \frac{\mathbf{R}_{d}^{s}}{\mathbf{L}_{d}^{s} - \mathbf{G}_{qd}^{rs}} & \mathbf{0} \\ \mathbf{0} & \frac{\mathbf{R}_{q}^{r}}{\mathbf{L}_{q}^{r}} \end{bmatrix} \begin{bmatrix} \lambda \, d^{s} - \lambda \, ex \\ \lambda \, q^{r} \end{bmatrix} + \begin{bmatrix} p \lambda \, d^{s} \\ p \lambda \, q^{r} \end{bmatrix} + \begin{bmatrix} \lambda \, ex \\ \mu \lambda \, q^{r} \end{bmatrix}$$

Reordenando:

,

La última ecuación matricial muestra las relaciones de equilibrio eléctrico pero en función de concatenaciones de flujo λ y veloci dad ω^{r} .

La ecuación de equilibrio mecánico de (1.3) es:

 $T^r = (Jp + D) \omega^r + Te$

Como se eliminó los devanados en cuadratura del estator y dire<u>c</u> to del rotor, sus corrientes serán iguales a cero $(i_q^{s_a} \circ, i_d^{r=0})$, luego de (2.4) el torque electromagnético Te serán

 $Te = G_{qd}^{rs} i_{q}r i_{d}s$ con ello, $T^{r} = (J_{p}+D)$. $\overset{r}{\overset{}{\omega}} + G_{qd}^{rs} \cdot i_{q}r \cdot i_{d}s$ Sustituyendo (2-5) en la ecuación anterior: $T^{r} = (J_{p} + D) \cdot \overset{r}{\overset{}{\omega}} + G_{qd}^{rs} \cdot \frac{(\lambda ds - \lambda ex)}{L_{d}s(L_{d}s - G_{qd}s)} \frac{\lambda q^{r}}{L_{q}r}$ (2.7)

De esta manera la ecuación de equilibrio mecánico estará, al igual que (2.6) en función de constanaciones de flujo y de la velocidad. A (2.6) y (2.7) se las puede descomponer para así obtener las ecuaciones, teniendo a concatenaciones de flujo y velocidad como variables de estado.

El modelo basado en concatenaciones de flujo presenta la ventaja de que se requiere menos esfuerzo de computación al introducir lo no linealidad de la curva de saturación magnética,

Por lo tanto:

$$\begin{bmatrix} p & \lambda d^{S} \\ p & \lambda d^{S} \\ p & \lambda d^{T} \end{bmatrix} = \begin{bmatrix} V_{d}^{S} \\ V_{q}^{T} \end{bmatrix} = \begin{bmatrix} \frac{R_{d}^{S}}{L_{d}^{S} - G_{qd}^{T}S} & 0 \\ 0 & \frac{R_{q}^{T}}{L_{q}r} \end{bmatrix} \begin{bmatrix} \lambda d^{S} \\ \lambda d^{T} \\ \lambda q^{T} \end{bmatrix} + \lambda ex \begin{bmatrix} \frac{R_{d}^{S}}{L_{d}^{S} - G_{qd}^{T}S} \\ w^{T} \end{bmatrix}$$
(2.8)
$$p = w^{T} = \frac{1}{T} T^{T} - D \frac{r}{w} - \frac{G_{qd}^{TS}}{H_{q}} \frac{(\lambda d^{S} - \lambda ex) \lambda q^{T}}{(L_{d}^{S} - G_{qd}^{T}) L_{q}r}$$
(2.9)

En las últimas ecuaciones puede observarse que la variable dependiente está en función de si misma (ej. $p^{\lambda} d^{S} = f(\lambda d^{S})$, lo que a primera vista podría considerarse incorrecto. Sin embargo es correcto, si se considera que se parte de un punto inicial, determinado por ciertas condiciones iniciales, para luego determiar un nuevo punto.

2.2. Introducción de la Saturación Magnética

El modelo, cuyas fórmulas se ha implementado, se supone constituídospor una estructura de hierro de permeabilidad infinita. Los campos magnéticos que establecen los diferentes devanados son, por tanto, funciones lineales de las corrientes que circulan por ellos.

Tanto el par electromagnético como la tensión inducida dependen en cualquier máquina, de la variación del flujo concatenado con sus devanados. Para una fuerza magnetomotriz de los devanados, dada, el flujo depende de la reluctancia del hierro del circuito magnético y de la de los entrehierros, por lo que la saturación influye apreciablemente en las características de la máquina.

Los princiaples datos del circuito magnético relacionados con la saturación se desprenden de las características en vacío y de las curvas de magnetización o saturación (4). —La figura 2.2 muestra un ejemplo.

- 18 -

Fig. 2.2 Características en circuito abierto y línea del entrehierro.

Basicamente esta cara cterística es la curva de magnetización •correspondiente a la geometría particular del hierro y del entrehierro de la máquina en estudio. En las abscisas figura la intensidad de la corriente inductora; en las ordenadas la tensión en el inducido cuando no circula corriente por el, a una velocidad constante.

- 19 -

Con corrientes de excitación bajas la relación de tensión de circuito abierto a corriente de excitación es lineal hasta un punto límite o valor crítico, después del cual la curva deja de ser lineal. En la parte recta, para iguales variaciones de corriente se tenía iguales variaciones de tensión; en la parte no lineal se observa que es necesario aumentar la variación de corriente para una misma variación de tensión.

Para introducir esta no linealidad, es muy importante tener en cienta que para condiciones π_e circuito abierto, el voltaje de circuito abierto va en la línea de entrehierro es igual a ;

Dividiendo para r:

$$\frac{Va}{r} = \operatorname{Grs}_{qd} i_d^s$$

Relación muy importante pues en este análisis la saturación no depende de la velocidad.

Reemplazando (2.3) en la última igualdad

 $\frac{Va}{\omega r} = \lambda ex$ para la parte lineal $\lambda ex = \lambda ex$

Si se multiplica a la corriente de excitación por G_{qd}^{rs} , en abscisas se tiene también λex , con lo cual la pendiente de la recta de entrehierro es igual a 1, es decir, forma un ángulo de 45° con uno de los ejes del sistema de referencia. Realizado esto, la figura 2.2. se transforma en la figura 2.3.

Fig. 2.3.

En la figura 2,3, para cada valor de corriente y por tanto de λ ex es factible determinar Δ Xi, que es la diferencia que existe en tre la línea de entrehierro y el valor verdadero de la curva de magnetización, siempre y cuando se sobrepase el "codo de curva". En consecuencia:

$$\lambda^* ex = G_{ad}^{rs} i J^{s} - \Delta Xi$$
 (2.10)

 λex es el valor de λ ex introducida la saturación.

Con ello las ecuaciones de corriente quedarán:

$$\begin{bmatrix} \mathbf{i}_{d}^{s} \\ \mathbf{i}_{q}^{r} \end{bmatrix} = \begin{bmatrix} \frac{1}{L_{d}^{s} - G_{q}^{r} \overline{d}} & 0 \\ 0 & \frac{1}{L_{q}^{r}} \end{bmatrix} \begin{bmatrix} \lambda_{d}^{s} - \gamma \overline{\lambda} e_{x} \\ 0 & \frac{1}{L_{q}^{r}} \end{bmatrix}$$
(2.11)

Reemplazando i_d ^s en (2.10) nos da:

$$\lambda \dot{e}_{x} = G_{qd}^{rs} \qquad \frac{(\lambda d^{s} - \lambda \dot{e}_{x}) - \Delta Xi}{L_{d}^{s} - G_{qd}^{rs}}$$

Simplificando:

$$\lambda \overset{\circ}{e}_{x} = \underbrace{\frac{G_{qd}^{rs} \lambda d^{s}}{L_{d}s}}_{L_{d}s} - \underbrace{\frac{(L_{d}^{s} - G_{qd}^{rs})}{L_{d}s}}_{L_{d}s} \Delta \tilde{X}i \quad (2.12)$$

De (2.11) y (2.12) se llegó a demostrar que λd^{s} también és un valor de concatenación de flujo corregido λd^{s*}

 $\lambda d^{S^{*}} L_d^{s} \cdot i_d^{s} - \Delta Xi$ (2.13)

 λd^{3*} concatenación de flujo de eje directo corregida (saturada) sustituyendo (2.13) en (2.12).

$$\lambda ex = \frac{G_{qd}^{r_s} \lambda d^{s_{\#}} - (L_d^s - G_{qd}^{r_s})}{L_d^s} \quad \Delta xi \quad (2.14)$$

Es necesario recalcar que mientras no se sobrepase el límite de linealidad, $\lambda d^{s} = \lambda d^{s}$, $\Delta Xi = 0 \ y \ \lambda \ ex = \lambda ex$.

La saturación como se puede ver de (2.14), es una función impliita es decir, depende de sí mismo (3). Esta característica difi culta el cálculo digital, pero no imposibilita su solución, pues se posee la curva de la figura 2.3 y la ecuación (2.10), de donde se obtiene una nueva curva (figura 2.4).

Fig. 2.4 $\triangle Xi$ en función de $\lambda * ex$

- 23 -

La figura 2.4 muestra a $\Delta Xi = \mathcal{F}(\lambda e X)$, conocido ΔXi la ecuación (2.14) está determinada y en consecuencia, (2.11) también.

Por tanto, teniendo en cuenta la saturación del hierro, las ecuaciones fundamentales del modelo matemático quedan definidos como:

El método expuesto para introducir la saturación, por medio de concatenaciones de flujo es más ventajoso que si se lo hubiera hecho por corrientes. Al utilizar las ecuaciones diferenciales en función de las corrientes, estas deben ser puestas en función de concatenaciones de flujo para introducir la saturación

- 24 -

luego, volver a términos de corrientes para resolver las ecuaciones diferenciales, lo que aumenta considerablemente el tiem po de computación. Todo este proceso, no es necesario hacerlo, al utilizar concatenaciones de flujo, como se ha demostrado.

2.3 Determinación de Condiciones Iniciales

Una vez determinado el modelo, es necesario encontrar las condiciones iniciales, para la resolución de las ecuaciones diferen ciales; teniendo concatenaciones de flujo y velocidad como variables de estado, es imprescindible determinar las condiciones iniciales en estos mismos parámetros.

Al imaginar físicamente el funcionamiento de la máquina a simuarse en un tiempo inicial (t = 0) se cae en cuenta de que las condiciones iniciales deberán obtenerse de los valores que se puedan medir en el laboratorio, es decir, voltajes, corrientes, velocidad y parámetros electromecánicos de la máquina en cuestión.

t= 0 seg. será el inicio de la perturbación.

Para t <o estaremos trabajando con la máquina desenergizada o en estado estable, dependiendo del tipo de perturbación.

- 25 -

Con el objeto de concordar con la teoría desarrollada, se prefirió. trabajar en la parte no lineal de la curva de saturación, luego las concatenaciones de flujo que deberán entrar como condiciones iniciales, necesariamente serán saturadas. Para cumplir con esta afirmación, se implementó un proceso iterativo de aproximaciones en la obtención de $\lambda ex y \Delta Xi$ iniciales; conocido ΔXi se puede determinar la concatenación de flu jo eje directo corregido λd^{s*} , por medic de (Z.13). Este pro ceso se explicará posteriormente.

2.4 Tipos de Conexión aplicables al Modelo de dos Devanados

El modelo de la máquina primitiva, al ser una teoría generalizada nos garantiza, una variedad de conexiones en las máquinas de contínua.

Las notables ventajas de las máquinas de contínua son consecuencia de la variedad de condiciones operativas que se pueden conseguir seleccionando adecuadamente la forma de excitar el devanado inductor. Si el inductor está excitado por una fuente independiente, se tiene la conexión con excitación independiente. --Cuando el devanado inductor se conecta en paralelo o en serie se tienen las conexiones en derivación (shunt) y serie respectivamente; si la energía necesaria para excitar el devanado inductor es tonada de la propia máquina, esta trabaja como generador y si la energía es tonada de una fuente externa, la máquina trabaja como motor.

En la figura 2.5 se da una descripción del esquema y del modelo del circuito de estas conexiones:

ESQUEMA

CIRCUITO

MODELO DEL

con excitación in

a)

b)

Generador o motor en derivación (shunt).

Generador o motor

dependiente.

Fig. 2.5 Conexiones del circuito de excitación aplicables a las máquinas de contínua de dos devanados. (a) Excitación independiente (b) en derivación; (c) en serie.

En las máquinas de continua el devanado inductor se encuentra en el estator y en el modelo se lo representa por el devanado de eje directo del estator con subíndice de y superíndice s; el devanado inducido o armadura se encuentra en el rotor, en el mo delo, es el devanado de eje en cuadratura en el rotor con subíndice q y superíndice r.

La figura 2.5 a corresponde al caso de excitación independiente. La corriente de excitación i_d ^S que se requiere es una fracción muy pequeña; un pequeño incremento de potencia en el inductor

- 28 -

puede regular una potencia relativamente grande en el inducido; desde este punto de vista el generador es un amplificador de potencia.

La figura 2.5 b muestra la conexión en derivación (shunt) en ella se ha conectado el devanado inductor en paralelo al inducido, cuando la máquina opera como motor y se aplica un voltaje én terminales, la corriente de campo id^s y el voltaje de la armadura quedan determinados, y así la velocidad en vacío es fija. En el caso de que la máquina trabaje como generador en derivación, es necesario que la estructura del campo magnético haya almacenado algún magnetismo residual. Si existe un magnetismo residual, la rotación de la armadura genera un pequeño voltaje, suponiendo que el circuito de campo se ha conectado para autoexcitación, es decir, con la polaridad correcta; el pequeño volta envía una corriente a través del circuito de campo, 10 que 10 cambia la intensidad del campo magnético. Si la conección selec cionada se opone al magnetismo residual entonces el voltaje per manece muy cercano a cero, pero si se agrega o refuerza a este voltaje residualcentonces el voltaje inducido aumenta, Fácilmente puede verse que el proceso de desarrollo es acumulativo 'esto es, un mayor voltaje incrementa la corriente de campo, la cual a su vez, aumenta el voltaje, etc. El hecho de que este

proceso acumulativo termine en un valor finito se debe a la naturaleza no lineal del circuito magnético (2).

Por lo expuesto anteriormente se cree que una acertada comprobación del buen funcionamiento del modelo desarrollado en este trabajo, es la simulación de la conexión en derivación, en diferentes casos, tanto como generador o como motor, aún más, con diferentes tipos de perturbación.

La figura 2.5 c. corresponde a la conexión serie, en la cual el devanado inductor se conecta en serie con el devanado de armadura. El devanado inductor deberá ser diseñado de manera que pueda llevar la intensa corriente de armadura. Esta conexión no se la simula en este trabajo para no hacerlo más extenso, pero se aclara que comprobado el buen funcionamiento del modelo, la representación de este caso no trae ninguna dificultad, solamente hay que tomar en cuenta algunas consideraciones (1), que depen-·derán de la forma de conectar las bobinas (fig. 2.5 c) y el modelo responderá acertadamente.

- 30 -
2.5 Interpolos y Bobinas de Compensación

Las máquinas D.C. modernas tienen bobinas de interpolos y algunas tienen bobinas de compensación, conectadas en serie con la armadura, estableciendo fuerzas magnetonotrices en el eje en cuadratura en oposición a la bobina de la armadura.

Para propósitos de simulación; en el modelo, la combinación de las bobinas de armadura, de interpolos y de compensación pueden ser tratados como una simple bobina, en la cual, la resistencia es la suma de las resistencias individuales, mientras que la com binación de las inductancias depende de como las bobinas están magnéticamente afectadas. Normalmente una bobina de interpolos incrementa el valor efectivo de la inductancia de armadura, mientras que la bobina de compensación la reduce (5). Si estos valores revisados de resistencia e inductancia son usados, el modelo desa rrollado aquí es aún aplicable.

CAPITULO III

PROGRAMA DIGITAL

3.1. Algoritmo Utilizado

El algoritmo de solución seguido por el programa digital es el siguiente:

a) Suministro de parámetros de la máquina D.C.

 b) Determinación de las condiciones iniciales, según el tipo de perturbación.

c) Solución de las ecuaciones diferenciales, por medio del mé-

todo de Runge-Kutta de cuarto orden.

d) Introducir la saturación (si se sobrepasa la parte lineal).»

e) Efectuar perturbaciones correspondientes .

f) Calcular variables involucradas en elc.comportamiento dinámico..

g) Graficar resultados.

į

Método de solución seguido por el programa digital

El programa digital está formado del programa principal, tres subrutinas y un subprograma de función.

- Programa Principal

Lee los parámetros: de la máquina, llama a la subrutina COINI, imprime títulos, resuelve las recuaciones diferenciales introduciendo la saturación en cada subpaso de integración. Realiza la perturbación correspondiente, calcula variables, almacena resultados y llama a la subrutina GRAFO para graficación.

- Subrutina COINI

Determina las condiciones iniciales para la integración. En tres de los cuatro casos de perturbación, se parte del estado estable; en el arranque, la máquina está desenergizada para un tiempo anterior a la perturbación.

Se prefirió trabajar en la parte no lineal de la curva de satura ción; más en principio no se tiene λ_{ex}^{s} , λ_{i} , λ_{d}^{s*} iniciales. Para resolver este problema es necesario usar un proceso de aproximaciónes que iterativamente determine los verdaderos valores de las variables citadas. La corriente de eje directo i_d ^s entra como dato, obtenido del estado estable. Se tiene la curva $\Delta Xi = f(\lambda ex)$, a esta curva se la aproxima a tres segmentos de recta, de la forma:

$$\Delta X i = a \lambda e x - b$$

Con estas condiciones, el diseño del algoritmo para determinar $\lambda \stackrel{*}{\underset{k}{\otimes}} y \Delta Xi$ es como sigue:

1. Dar un valor estimado de λ ex, el escogido es el valor no saturado de λ ex, por lo tanto

$$\lambda ex = G_{qd}^{rs} i_d^s$$

Este valor estimado siempre será mayor que el real. El valor real es igual al valor estimado menos Δ Xi por (2.10)

2. Con λ ex extimado y por intermedio de la curva Xi = f(λex) Se determina Δ Xi. En un principio Δ Xi no será el valor verdadero, será mayor. Por medio de aproximaciones consecutivas, en la curva, bajaremos desde un punto mayor hasta coincidir con el verdadero. En la fig. 3.2 se aprecia más facilmente este criterio.

Para asegurar la convergencia, h es un valor pequeño h = 0.01,

y $\varepsilon = 10^{-8}$, con lo cual se tiene gran exactitud 5. Obtenido ΔXi se puede calcular ya, λd^{S^*} con la ecuación (2.13).

 $\lambda d^{s^*} = Ld^s i_d^s - \Delta Xi$

Anora se pasará a encontrar las demás condiciones iniciales, según el caso de perturbación.

Caso 1: Variación brusca de torque en generador con excitación Independiente.

Debido a que en el laboratorio se usa una resistencia de campo RF, en el programa también hay que incluirla. Las demás condiciones iniciales serán consecuencia del estado estable, es decir, utilizando las mismas ecuaciones ya deducidas haciendo las derivadas iguales a cero encontramos: λ_q^r , ω^r , Te y T^r inicial; • el T^r final entra como dato y es obtenido de las mediciones en el laboratorio.

Caso 2: Cortocircuito en generador Shunt (derivación)

Calcula iguales variables que en el caso 1, hay que incluir la resistencia de campo RF.

Caso 3: Arranque con carga en motor Shunt.

En este caso, inicialmente la máquina está desenergizada, luego, todos los datos iniciales son iguales a cero.

Es necesario, introducir una resistencia de arranque RX, y una resistencia de campo RF.

La simulación de la carga se lo hace en el programa principal.

Caso 4: Variación brusca de carga en motor Shunt

Se calcula i_q^r , λq^r , r , T^r inicial y T^r final es dato obtenido del laboratorio.

- Subrutina -SATURA

Esta subrutina se encarga de encontrar \triangle Xi para el programa prin cipal, específicamente en las ecuaciones diferenciales. Utiliza iguales ecuaciones para \triangle Xi, que la de subrutina COINI. Se establece un valor de λ ex crítico, sobre el cual se procede a encontrar \triangle Xi, dato que pasará al programa principal en donde se evalúa $\lambda = \frac{1}{2}$ Si aún se conservan las relaciones lineales A Xi es igual a cero.

- Subrutina GRAFO

Grafiza los resultados, cada variable puede tener hasta 100 puntos, puede graficar hasta cinco variables en forma simultánea, pero se prefirió graficar solo una cada vez.

- Subprograma de función RUNGE

Tiene implementado el método de RUNGE - KUTTA de cuarto orden para la resolución de ecuaciones diferenciales. Se calcula cuatro puntos, de los cuales se obtiene un promedio ponderado (8).

En cada uno de los subpasos vuelve al programa principal para calcular l^as derivadas e introducir la saturación, utilizando para ello a la subrutina SATURA, luego de esto se realiza un nuevo subpaso, hasta completar un paso de integración con cuyos resultados procederá a evaluar las variables a graficarse.

Hecho lo anterior se vuelve a un nuevo paso de integración.

3.2. Diagrama de Flujo del Programa Digital

- Programa Principal

- SUBRUTINA SATURA

·

3.3. Restricciones Impuestas Al Modelo

En el modelo matemático desarrollado y por tanto en el programa digital descrito se impuso las siguientes restricciones:

- No se toma en cuenta los efectos de la histéresis.
- La curva de saturación parte del origen, es decir, se deprecia el magnetismo remanente.
- Se desprecia la reacción de armadura en cuanto a sus efectos no lineales.
- Los devanados de interpolos y compensación como se dijo anteriormente están conectados en serie al devanado de armadura sus efectos no se incluye en el modelo desarrollado.

CAPITULO IV

APLICACIONES DEL PROGRAMA

El efecto de la saturación magnética, se introduce por medio de la curva de magnetización de la figura 2,2., perteneciente a la máquina en estudio, obtenida a partir de datos experientales, esta se encuentra en la figura 4.1.

Para la utilización en el modelo matemático, la curva de magnetización fue ajustada, teniendo en cuenta la condición de circuito abierto:

 $Va = \omega^r \lambda ex$

Para tal efecto, en ordenadas se dividió para $\overset{\mathbf{T}}{\boldsymbol{\omega}}$, velocidad angular a la cual se obtuvo la curva de magnetización.

Por tanto en ordenadas se tendrá: $\lambda \, \exp \frac{Va}{\omega}$, para la parte lineal sin sobrepasar el codo de la curva ω $\lambda \, \exp \lambda$ ex .

- 50 -

FIG. 41 CURVA DE MAGNETIZACION DE	LA NAQUINA MESTINGIOUSE
• • • • • • • • • • • • • • • • • • • •	and the second s
· · · · · · · · · · · · · · · · · · ·	
i i i i i i i i i i i i i i i i i i i	· · · · · ·
	•
	<u>نا</u> ع
	· · · · · · · · · · · · · · · · · · ·
	Ka
	and the second sec
	4
K 42	
	and the state many of the first first operation of the state operation operation of the state operation

- 31 -

·

En abscissé se tenía corriente de excitación i_d s, a ésta se lo multiplica por G_{od}^{rs} y se tiene:

 G_{qd}^{rs} $i_d s = \lambda ex$

Llegando a obtener la curva de la figura 4.2.

 G_{qd}^{rs} se lo encuentra de la parte lineal de la curva de magnetización de la figura 4.1.

De la curva de la figura 4.2 se obtiene la curva de la figura 4.3, $\triangle Xi$ como función de $\lambda \stackrel{*}{ex}$, 14 que fue linealizada e introducida como tres segmentos de recta que se indicaⁿ a continuación:

Recta No. 1 - Para valores mayores o iguales a λ ex crítico
 y menores a λ ex = 0.41 la recta se expresa por:

 $\Delta X_i = 2.1331 \quad \lambda ex = 0.6246$

Recta No. 2 - Para valores de λ ex en el intervalo de
0.41 y 0.578, la ecuación de la recta es:

- $\Delta Xi = 3.8182 \lambda ex - 1.3155$

- Recta No. 3 - Para valores de $\lambda \in \lambda$ mayores que 0.578 la ecuación es:

 $\Delta Xi = 11.7895 \lambda ex - 5.8989$

Estas ecuaciones de recta son utilizadas tanto en las condiciones iniciales como en la subrutina satura.

Para la resolución numérica de las ecuaciones diferenciales se ha creído conveniente utilizar un intervalo de tiempo de 0.001 seg, para valores más pequeños se corre el riesgo de introducir ruido en las operaciones y obtener resultados erioneos.

El programa digital fue usado en cuatro perturbaciones en coexignes diferentes: Variación brusca de torque en generador con excitación independiente, cortocircuito en generador Shunt, arranque con carga en motor Shunt y variación brusca de carga en motor shunt.

4.1. Variación Brusca de Torque en Generador con Excitación Independiente

Físicamente se tiene un generador de contínua excitado independientemente, entregando energía a una carga resistiva y absorviendo energía de la máquina impulsora a una velocidad constante.

Repentinamente se produce incremento de torque de la máquina impulsora, motivo por el cual se produce un conjunto de transformaciones en el sistema electromecánico hasta encontrar nuevamente el equilibrio.

En este estudio se va a centrar la atención en vairaciones que se producen en lo corriente de excitación y de armadura, velocidad, torque electromagnético y voltaje terminal, es decir, el programa entregará y grafizará estos resultados. Es necesario indicar que si se requieren otras varialbes para ser analizadas, no existe ningún problematen su obtención.

Anteriormente habíamos notado que el generador entrega energía a una carga resistiva. La simulación de esta carga resistiva se la hace de acuerdo a la ley de Ohm, es decir:

$$V_q^r = i_q^r Rc$$

Rc es la resistencia de la carga y que se la puede medir en el laboratorio, para luego entregarla como dato al computador.
Los resultados obtenidos en la simulación digital son los in dicados en las figuras 4.4, 4.5, 4.6, 4.7, 4.8.

La figura 4.4. muestra la corriente de excitación en función del tiempo, como era de esperarse la corriente no sufre ninguna alteración, pues su circuito está alimentado por una fuente

- 56 -

independiente y está en un eje en cuadratura de aquel que se produce la perturbación que no experimenta variación alguna en el proceso simulado.

La figura 4.5 muestra la corriente de armadura en función del tiempo, se observa claramente como la corriente aumenta en comparación con el valor original de estado estable.

La figura 4.6 indica el incremento de la velocidad angular, por efecto de aumentar el torque impulsor.

La figura 4.7 muestra el incremento en el torque electromagnético, resultado lógico, pues si aumenta la corriente de armadura, aumentará el torque electromagnético también.

Finalmente, el aurento del voltaje terminal es mostrado en la figura 4.8, si la corriente de armadura aumenta V_q^r aumentará también.

De los gráficos expuestos se puede observar que no se logra apr<u>e</u> ciar la estabilización a la que deberá llegar la máquina luego de la perturbación, la respuesta a esta inquietud se la encuentra al hacer las pruebas en el laboratorio. Los resultados de los os-

- 57 -

cilogramas (que se, incluirán en el próximo capítulo) nos indican como la máquina demora varios segundos (aprox. 6 segundos) en alcanzar un nuevo punto de funcionamiento, mientras que el programa muestra solamente 1 segundo de este comportamiento dinámico. La razón para haber simulado solamente: un segundo es debido a que el tiempo de computación aumenta considerable mente. Además la experiencia indica que, un tiampo de un segundo de comportamiento dinámico que se simule en el computador es más que suficiente para valorar el buen funcionamiento del modelo propuesto.

FIG 4.4 CORRIENTE DE EXCITACION id^s

- 59 -

					••••••••••••••••••••••••••••••••••••••		СОНЯ	LENTE DE EX	CITACION	· · · · · · ·	Υ.
TIENFO ((Segs)	0.0	0.3	0.0 +	0.9 	1,2	1.5		2.1	2.4	2.7	3.0 ' \
						1 1 1 1 1 1 1 1 1					~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.1080 00		I I I I I I I I I I I									~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
•2280 00 -		1		I I I I I I I I I	1 1 1 1 1 1 1 1 1 1 1 1						~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.3.60 00	L L L L L L L L L L L L L L L				L I I I I I I I I I						~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.468D 00											~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.5880 00									I I I I I I I I I I I I I I		~~~~~
											~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
											~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
9480 00 +		•					· · ·				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
											~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

# FIG.4.5. CORRIENTE: DE ARMADURA i r

.

•

	0.0	0.5	1.0	1.5	2.0	215 1	3.0 .	(AMPS) 3.5	4.0	4.5	5.0
•		+	*			+		t	+	· · · · · · · · · · · · · · · · · · ·	+
	1.7.7										+ 1.000 1 3.000 1 3.000 1 3.012 1 3.012 1 3.021 1 3.021 1 3.021 1 3.021 1 3.021
											1 3.050 1 3.056 1 3.056 1 3.056 1 3.056 1 3.050 1 3.050 1 3.052 1 3.052 1 3.058
00											+, 3,109 4 3,115 1 3,120 1 3,120 1 3,121 1 3,130 1 3,130 1 3,147 1 3,152
00											1 3.162 3.167 1 3.172 1 3.177 1 3.177 1 3.177 1 3.167 1 3.167 1 3.167 1 3.201
•••							*	Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι			1 3.211 3.215 1 3.224 1 3.224 1 3.224 1 3.229 1 3.229 1 3.229 1 3.231 1 3.240
											1 3.254 3.259 3.267 3.267 3.271 3.271 3.271 3.275 3.275 3.275 3.275 3.275 3.225 4.3.275 1.3.225 1.3.225 1.3.227 1.3.225 1.3.259 1.3.259 1.3.259 1.3.259 1.3.259 1.3.259 1.3.259 1.3.259 1.3.259 1.3.267 1.3.267 1.3.267 1.3.267 1.3.271 1.3.275 1.3.271 1.3.275 1.3.271 1.3.275 1.3.271 1.3.275 1.3.275 1.3.271 1.3.275 1.3.275 1.3.275 1.3.275 1.3.275 1.3.275 1.3.275 1.3.275 1.3.275 1.3.275 1.3.275 1.3.275 1.3.275 1.3.275 1.3.275 1.3.275 1.3.275 1.3.275 1.3.275 1.3.275 1.3.275 1.3.275 1.3.275 1.3.275 1.3.275 1.3.275 1.3.275 1.3.275 1.3.275 1.3.275 1.3.275 1.3.275 1.3.275 1.3.275 1.3.275 1.3.275 1.3.275 1.3.275 1.3.275 1.3.275 1.3.275 1.3.275 1.3.275 1.3.275 1.3.275 1.3.275 1.3.275 1.3.275 1.3.275 1.3.275 1.3.275 1.3.275 1.3.275 1.3.275 1.3.275 1.3.275 1.3.275 1.3.275 1.3.275 1.3.275 1.3.275 1.3.275 1.3.275 1.3.275 1.3.275 1.3.275 1.3.275 1.3.275 1.3.275 1.3.275 1.3.275 1.3.275 1.3.267 1.3.267 1.3.267 1.3.267 1.3.267 1.3.267 1.3.267 1.3.267 1.3.267 1.3.267 1.3.267 1.3.267 1.3.267 1.3.267 1.3.267 1.3.267 1.3.267 1.3.267 1.3.267 1.3.267 1.3.267 1.3.267 1.3.267 1.3.267 1.3.267 1.3.267 1.3.267 1.3.267 1.3.267 1.3.267 1.3.267 1.3.267 1.3.267 1.3.267 1.3.267 1.3.267 1.3.267 1.3.267 1.3.267 1.3.267 1.3.267 1.3.267 1.3.267 1.3.267 1.3.267 1.3.267 1.3.267 1.3.267 1.3.267 1.3.267 1.3.267 1.3.267 1.3.267 1.3.267 1.3.267 1.3.267 1.3.267 1.3.267 1.3.267 1.3.267 1.3.267 1.3.267 1.3.267 1.3.267 1.3.267 1.3.267 1.3.267 1.3.267 1.3.267 1.3.267 1.3.267 1.3.267 1.3.267 1.3.267 1.3.267 1.3.267 1.3.267 1.3.267 1.3.267 1.3.267 1.3.267 1.3.267 1.3.267 1.3.267 1.3.267 1.3.267 1.3.267 1.3.267 1.3.267 1.3.267 1.3.267 1.3.267 1.3.267 1.3.267 1.3.267 1.3.267 1.3.267 1.3.267 1.3.267 1.3.267 1.3.267 1.3.267 1.3.267 1.3.267 1.3.267 1.3.267 1.3.267 1.3.267 1.3.267 1.3.267 1.3.267 1.3.267 1.3.267 1.3.267 1.3.267 1.3.267 1.3.267
											1 3.294 3.298 3.209 3.205 3.309 3.310 3.310 3.320' 3.320' 3.320'
											1 3.320 3.333 3.327 3.340 1 3.340 1 3.347 1 3.347 1 3.350 1 3.350
									<u>`````````````````````````````````````</u>		( 3,343 , 2,246 , 3,349 3,372 , 3,275 , 3,276 , 3,476 , 3,476 , 3,476 , 3,4
	,	· · · · ·									3.395 3.395 3.398 3.400 1.400 1.3.406 1.3.406

- 60 -

.

• .

FIG. 4.6 VELOCIDAD ANGULAR  $\omega$ 

-

· ·					بدين معامد معمد د			THAD ANGUL	AR •		
LEMPO Secs)	0.0 4	ə.0 5	U.U. 7	5.0 10	0.0 12	5.0 15	0.0 L	20 75.0 20	0.0 22	5.0 25	0.0
						I I I I I I I I I I				1 1 1 1 1 1 1	+ 153.652 1 153.052 1 153.652 1 153.652 1 154.661 1 154.661 1 154.661 1 155.321 1 155.045
		1 1 1 1 1 1 1 1			1 1 1 1 1 1 1 1 1	L T I I L T			1 1 1 1 1 1 1 1	L I I L I I I I	I 156.284 I 156.549 I 156.549 I 157.710 I 157.524 I 157.524 I 154.125 I 158.710
2240 00											4 1 159.795 1 159.580 1 159.602 1 100.141 1 100.414 1 100.492 1 101.92 1 101.95 1 101.858
3480 00 											1 62.622 1 62.240 1 62.240 1 62.747 1 62.747 1 62.747 1 62.724 1 63.537 1 63.537 1 64.017
* E B D U U ·		, ,		1							1 104,402 1 104,957 1 104,957 1 105,187 1 105,414 1 105,637 1 105,01 1 105,01 1 105,01
					•						166.730 166.730 167.451 167.359 167.768 167.768 167.768 167.70 168.169 168.207
		1 			• • •						168.756 168.94A 169.13A 169.513 169.513 169.697 169.40 170.060 170.239
											170.552 170.766 170.434 171.104 171.277 171.444 171.610 171.773 171.436
VA AU 00				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	·						172.255 172.41J 172.564 172.723 172.723 172.723 173.027 17J.177 17J.177 17J.472
1070 01			··· 1								173.761 173.904 174.045 174.185 174.323 174.461 174.461 174.131 174.731

متعادية هندو بعاية ودارية

- 61 -

(P() (S)	o.o	0.2	0.4	0.0	0.8	1.0	TJROVE ELE (5 1.2	CTPC#AGNET 1-4 +	1Cn 1.6	1.8 2.4
	+ [ 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1	• ~~~~~ [ [ ] ] ] ] ] ] ] ] ]		t I I I I I I I I	F I I I I I I I I I I I		1	• 1 1 1 1 1 1 1 1	
, oo		(		• • • • • • • • • • • • • •	+ I I I I I I I I I I I I I	 			• • • • • • • • • • • • • • • • • • •	
D 00	1  1 1 1 1 1 1 1 1 1 1 1 1 1	1 , 		<u>\</u> ,	4  1 1 1 1 1 1 1 1 1 1 1 1			 		
00 J		L 			L L L L L L L L L L L				, ,	
3D 00					1 ~ 1 1 ~ 1 1 ~ 1 1 ~ 1 1 ~ 1 1 ~ 1 1 ~ 1					
8D 00 • ·	T T T T T T T T T T T T T T									
id 00 ·			-						· · · · · · · · · · · · · · · · · · ·	
000			••	⁻ .	•			· · · · · · · · · · · · · · · · · · ·		
D 01		- <u>`</u>	· · · ·		, ·	``			1 -	

- 62 - '

2

FIG. 4.8 VOLTAJE TERMINAL Vqr

	0.0	ಕ-0 1 +	u.0 2	4.0 3	2.0	0.0	VOLT	AJE TERMINAL (VCLT5) 56+0 6 +	• • 0 7 •	2.0 . 90	)•0 i
		L I I I I I I I I I I I I I I I I I I I		L L L L L L L L L L L L L L L L L L	+ 4 1 1 1 1 1 1 1 1 1 1 1 1		1 1 1 1 1 1 1 1 1 1		ξ · · · · · · · · · · · · · · · · · · ·		46,500 46,500 46,500 46,500 46,502 46,705 46,705 46,705 46,705 46,705 40,925
080 00 1											47.27/ 47.372 47.45/ 47.560 47.550 47.550 47.550 47.745 47.745 47.425 47.425 440.014
280 00					L L L L L L L L L L L L L	I I I I I I I I I I I I I I I I I I I				1 1 1 1 1 1 1 1 1 1	<ul> <li>48.270</li> <li>48.270</li> <li>48.272</li> <li>48.440</li> <li>48.120</li> <li>48.453</li> <li>48.655</li> <li>48.555</li> </ul>
14BD 00	1 1 1 1 1 1 1 1 1 1	 1 1 1 1 1 1 1 1 1 1		 l l l l l l l l l l l l l	T T T T T T T T			I I I I I I I I I I I I I			49.017 49.055 49.173 49.173 49.209 49.209 49.401 49.475 49.401 49.475 49.475
6HD 00			 			+ L L L L L L L L					49.776 49.726 49.727 49.727 49.727 50.727 50.724 50.711 50.724 50.724 50.714
	L . L . L . L L L L L L L				 L L L L L L L L L L L L L					l l l l l l l l l l	50.444 50.504 50.572 50.645 50.665 50.665 50.759 50.789 50.789 50.781
		L L L L L L L L L L L L L L L						             			- - - - - - - - - - - - - -
					L L L L L L L L L L L L L L L L L L L	1 1 1 1 1 1				1 ( 1 1 1 1 1 1 1 1 1 1 1 1 1	- - - - - - - - - - - - - -
••BD 00			t t t t t t t t t			+ I I L L L I I I I I					52.120 52.100 52.215 52.202 52.300 52.300 52.300 52.300 52.400 52.400
070 01						t 1 1 1 1 1 1 1 1 1 1 1					2 - 577 5 - 670 5 - 670 5 - 670 5 - 670 5 - 767 5 -

-63

#### 4.2 Cortocircuito en Generador Shunt

Esta aplicación del programa es muy representativa dados las características de la conexión y dado que el generador autoexcitado es inherentemente no lineal (2).

Físicamente el generador se encuentra operando en vacío, luego súbitamente se produce un cortocircuito en los terminales del mismo, lo cual origina un conjunto de transformaciones como se verás en los gráficos

En el programa hay que modificar  $Rd^{s}$ , puesto que es necesario incluir una resistencia de campo RF, luego la resistencia total de eje directo será  $R_{ds} + RF$ .

En el computador, luego de trabajar un pequeño tiempo en estado estable se efectuó la perturbación cumpliendo la condición de que  $V_q r = V_d s = 0$  en el cortocircuito.

En las figuras 4.9, 4.10, 4.11 y 4.12 se muestran los transitorios en corriente de excitación, corriente de armadura, velocidad angular, y torque electromagnético respectivamente.

-64-

La corriente de excitación decrece en forma exponencial hasta llegar a cero, en un tiempo relativamente corto.

La corriente de armadura, luego de la perturbación aumenta hasta un valor máximo para despues de crecer exponencialmente hasta cero, el tiempo en que se produce este proceso es un tanto mayor que el de la corriente de excitación.

La velocidad angular disminuye ligeramente en el momento del cortocircuito para luego aumentar hasta encontrar un nuevo punto de equilibrio.

La figura 4.12 muestra el torque electromagnético, como es una función directa de las corrientes de armadura y excitación, era de esperarse que aumente hasta un cierto valor y decrezca en forma exponencial hasta un valor mínimo que es zero.

#### 4.3. Arranque con carga motor Shunt

Otro de las más importantes aplicaciones del programa es el arranque y más aún si es con carga. Al incluir carga, es necesario simularla en el programa digital.

	· .			· · · · · · · · · · · · · · · · · · ·						-	2.0
						1					
										-	
						-			-	-	· · · · · · · · · · · · · · · · · · ·
:		· · · ·									•••
· · · · · · · · · · · · · · · · · · ·					· · · ·	· · · · · · · · · · · · · · · · · · ·					5
-	· · · · ·										CORRIE
											ATE DE LXC
					•		••••	, , , , , ,			11 ACT 04
•		•									5
	000000000000000000000000000000000000000	000000000	000000000	000000000000000000000000000000000000000	000000000	000000000	000000000	000000000			0

- 66 -
FIG. 4.10 CURPLENTE DE ARMADURA iq^r

-	2.0	u. 0	2.0	4.0	6.0	8.0	10.0 1	(AMPS) 2+0 I	4+0 1	6.0
s i	+	+	·+	·•	+	*	- •	+	+	· •
	(   .	· . ,	·	· ·	1 !	1	1 .	1		
				;	1				ן ני נ	1 1
	· ·			i			i s	I I	í t	1
10-00	1 +	1 +	1 +	· +	[ +	1 +	·	·	r +	+
• •	i . i .		i	Ĩ	i ·	1	. مجر	ί τ Ι	i , ,	i ·
• ,	1 I 1	4 1 1			ι. (		1 1			
•	i i	1		1		-			1	i t
00-01				÷		+		t	•	+
			1.   ·		1	t t		1	1 [	
	t i		i			į.	l I	i '	i .	
	1 1	1 1		1 L	[ f	[ [	1.	1 1	1 [	t I
00-01	i		· · · · · · · · · · · · · · · · · · ·	·		<u>.</u>	i	÷		
				1 1 1	r T t	1	T ·	1 1 1	[ [' ]	1
-	I I	. ,	1.	1	· ·	i . (i		· · ·	1 1	i .
	, 1 1	/			ι, ι,		I I I			· ·
0 00	+ ( 1 1		•	[ .	+	+- <b></b>	+	•	•	! !
	{ ·	- /		i	1	I I		t t		
	1.						1		t.	1
				1	l t			i .	1	i .
0 00	1			+	+ == = = = = = = = = = = = = = = = = =	t	( + - +	+	1	+
	1	: .		Ì	1	· ·	i	ļ		
			1 . L		1 [ ]			1 . · 3	1	
	1 [	· ·		1	· ·	1	1	1	1	
0 00	l [	-  -	1	1 1	[ [	[ [ ·	1	[	l	1
			1					1	l 1 ·	[   
•		:	1	i i	i I	i .	i I	i I	i . i	i .
000	[ [ +	· · .	1 1 . +	· · · · · · · · · · · · · · · · · · ·	[ { *	[ [ •	1 . 1 +	, , ,	l 	l   
	[ [.			1	· ·	t .	1		[ /	· ·
			1 1		(		i	1		· · ·
	t t		ί 1	ļ · .	1 [	[ t		1	i ,	
D 00 -	i 		i 	i 	i 		i 	i i		
			1 1 1	1 1. 1		t •	1 I I			1
•	[ [		1	L .	[		L L	l I .		
			· ·	i i	· · .	i 	i	i i -		t. 1
0 0 0			1 *	l •	! 	[ +	·			1
	i i		i .	Î	t t	t 1	i .	1 ·		l I I
			[ [ ,	I		( i 1	1	1 I I		
				i I	r •	, . ,	1	t,		i
0 00			[ • • • • • • • • • • • • • • • • • • •	1			[ +	1		l

- 67 -

•

• • •	,			• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •	VELUC	IDAC ANGULA			-
[[[[]]] []]]]]]]]]]]]]]]]]]]]]]]]]]]]	0,00 T	0.0 0	0.0 1	0.0	0.0 . 15	0.0 140	יי) וק 0.0	0.0 240	.0 27	0.0 •	. 0
	+ 4 1 1 1 1 1 1 1 1 1 1 1 1 1	+	1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 ,						, ,		A4.01 184.01 184.01 183.80 183.60 183.41 183.15 183.15 183.25 182.92
					1 1 1 1 1 1 1 1 1 1 1 1 1 1				•		182.49 182.94 183.04 183.31 183.31 183.31 183.48 183.66 184.05
					 [ [ [ ] ] ] ]						184.47 164.08 184.90 185.12 195.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 185.34 18
· · · · · · · · · · · · · · · · · · ·											1 86.07 1 85.85 1 87.12 1 87.12 1 87.12 1 87.75 1 87.75 1 88.01 1 88.24 1 88.46
				1 1 4 1 1 1 1 1							188.91 189.13 189.36 189.58 189.80 190.03 190.03 190.25 190.47 190.76
											151.14 151.30 151.54 151.64 191.41 192.24 152.76 152.70 152.92 152.92
									· . :		193.37 193.61 193.61 193.61 194.04 194.04 194.02 194.02 194.02
	1 1 1 1 1 1 1 1								· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	155.59 155.81 196.03 196.29 196.48 196.70 196.02 196.02 197.14 157.36
										· · · · ·	197.80 198.02 198.25 198.47 198.91 198.91 199.13 199.35 199.57
,2670 00											200.01 200.23 200.45 200.47 200.47 201.11 201.34 201.54 201.54 201.78

•--

- -

- 68 -

. . .

.

FIG. 4.12 TORQUE ELECTROMAGNETICO Te

• .

· -	1.0.	v.s	0.0	0.5	1.0	1.5 +	۲۸) ۲.0	2.5	3.0	3.5	•••
65)		+	·	;t	·	• • •	•	•			• 0.425
-								• 1 1 1 1 1			1 0.4/5 1 1.370 1 1.633 / 1 1.761 1 1.755
 BOD-01	1 ( ;	1 1 +	[   			·	· · · · · · · · · · · · · · · · · · ·	1 1 •	i i i	 	I 1.675 I 1.546 +
.'		4 1 1 1 1 1 1 1 1 1 1 1 1									1 1,210 1 0,943 1 0,943 1 0,943 1 0,943 1 0,959 1 0,959 1 0,959 1 0,953
400-01	i 1 1	¦ ,	1	   	+	+   . 	۰ــــــ ۱۰	1 1 1	 [ [	·	· · · · · · · · · · · · · · · · · · ·
•.	[ 1 [ ] ] ]		,			         		4               	· · · · · · · · · · · · · · · · · · ·		I • 0.171 I 0.142 I 0.117 I 0.057 I 0.057 I 0.066
00-01	1 +	1 +	↓ ↓ ↓	1 + 1 L	; ; · · ·		• I I		+ 1 1		
`-	2 1 1 1 1 1 1 1			1 1 1 1 1 1			· · · · · ·	ί 1 1 1 1 1 1 1 1	5 5 5 5 7 7 7 7 7	1 4 7 7	I 0.025 I 0.025 I 0.017 I 0.014 I 0.014 I 0.009 I 0.009
00-01	/ [		···.·			[ 1 1 I I I	[ ]  [ ] 	I I I I I I	I I I I	1 1 1 1	+ 1 0.005 1 0.004 1 0.003 1 0.002
					ř 1		1 1 1	1 [ [	r r r	1 1 1	1 0.002
		-, 1 . 1 1 1 1				L L L L L	 1 1 1 1			       	I 0.CCI I 0.CCI I 0.CCI I 0.CCO I 0.COO
				•	t t , t			Γ. Γ. Γ. Γ.			L 0.000 1 0.000 L 0.000 1 0.000
3D 00		   ,     		•			·			1 1 1 1 1 1 1	• • • • • • • • • • • • • • • • • • •
		L     					[ [ [				200.0 000.0 1000.0 1000.0
80 00	· .		• •		, , , , ,						0.000     0.000     0.000     0.000     0.000     0.000     0.000     0.000     0.000     0.000     0.000     0.000     0.000     0.000     0.000     0.000     0.000
00 (16					t 		 			 	
	•					•					0.000 0.000 0.000 0.000 0.000 0.000 0.000
BD 00 1											1 0.000 1 0.000 1 0.000
				-						4 1 1 1 1	1 0.(00 1 0.(00 1 0.(00 1 0.(00) 1 0.(00) 1 0.(00)

•

- 69 -

De mediciones realizadas en el laboratorio, haciendo trabajar a la misma máquina como motor, teniendo acoplado a su eje una carga mecánica, se puede obtener una curva de torque <u>al eje</u> en función de la velocidad.

Esta curva fue aproximada a dos segmentos de recta y sus ecuaciones introducidas en el programa, estas son:

Para valores de  $r_{\omega}$  menores que 60, la ecuación de  $T_r = f(r_{\omega})$  es:

$$T^{r} = 0.011167 . \omega^{r}$$

Para valores de  $\omega$  mayores de 60, la ecuación es:

 $T^{\hat{r}} = 0.00429$   $\omega^{\hat{r}} + 0.41253$ 

La curva de  $T^r = f( \begin{array}{c} r \\ \omega \end{array})$  se encuentra en la figura 4.13. Antes de arrancar la máquina ésta se encuentra desenergizada, físicamente el arranque se lo hace conectando la máquina a un voltaje en los terminales de ella, el mismo procedimiento se siguió en el programa, es decir mediante una función paso el voltaje sube desde cero hasta un valor constante.

n

Ϊ ω

-----

-----• •.

0.67

212-( 52-14 11-11

28

27

30

50

24

23

5

20

6

0)

5

9

3

4

ü

2

Ξ

9

a

g

8

å

En los motores de continua es necesario introducir una resistencia en el circuito de armadura, para limitar esta corriente ya que adquiere valores muy altos en el arranque.

En el programa se siguió la misma secuencia, es decir, se incluyó la resistencia de arranque RX, y también una resistencia en el circuito de campo RF.

Los resultados obtenidos son indicados en las figuras 4.14, 4.15, 4.16, 4.17 y muestran corriente de excitación, corriente de ar madura, velocidad angular y torque electromagnético.

La corriente de excitación sube rápidamente desde cero hasta unvalor en el cual queda constante.

La corriente de armadura aumenta aceleradamente hasta un valor máximo: para decrecer luego en forma lenta.

La velocidad angular como es lógico en el arranque desde cero sube hasta lograr un punto de equilibrio.

El torque electromagnético tiene una forma similiar a la de la corriente de armadura.

- 72 -

FIG. 4.14 CORRIENTE DE EXCITACION id^s

- 73 -

·

											<u>.</u>
(P1)	1.0 -		U.U	1. U.5	1.0	1.5	* , C		ENTE DE EX (AMPS) 2.5	CITACICN 3.0	3 • 5 +
й		•		+	•	t	1	<b>_ _</b>	•	t	i .
	1 1 1 1					1 1 1 1 1 1		}.		1 1 1 1 1	1 1 1 1
)-01 1	1 1 1	+   			t 1 1	 1 1 1	1 1 1		1 1 1 1	; 1 1 1	i ! ! . ,
	1 7 7 7	1 1 1 1 1 1			1 · ·	[ [ [ ] ]	1 1 1 1		1 C C 1 .	T . T . T . T	L I I I
0-01	i i i	 1 1	• 1 1 .	·	+ I I	·	l l l.		I I I I	+ 1	•
		1 1 1 1 1	1 1 1 1 1 1	1 1 1 1 1 1		l 1 1 1 1 1 1			1 1 1 1 1 1 1 1 1	( ( ( ( 1	
00	1 1 1	+ الم ا ا	+	1. 1. 1. 1.	+ [ t 1	+	I I I		+ I I I	+	t
•						L . T . T L . C	1 [ 1 [		1 4 1 1 -	1 1 1 1 1	l J T 1
00	+		f	t '	I I I I I				+       		I
			1 [ [ ]			,					
, 00°	·					 . <i>,</i>	 1 1		f		 ! !
				L L I I L	T , Z L L	•				,	1         
0 0 0 0	1 1 1 1	1 1 1		1			1 1 1		+		+ <b></b>
•	1 1 1 1 1					,, ,		•			f 1 1 1 1
	     	1 · · · · · · · · · · · · · · · · · · ·		· · ·		· ·	I I. I				 [ . ]
•	[ [ ] [ ] ] .										1 1 1
00				····		• .	1			•	1 1 1
	1 1 1 1 1	• • ₂									
00					· · · · · · · · · · · · · · · · · · ·		•         				• <u>-</u>
		•				,					
, 00	· +										

· •

•

FIG. 4.15 CURRIENTE DE ARMADURA iq^r

· · •										• •••••	••
		••	•			~ · · ·	- ' CORRIC	NTE DE APPA	CURA .	• • •	
1 - F MPO	1.0	U.0 I	1.0	2.0	3.0		, ñ'0 .	0.0	.0	e.o	9. - •
0	1	1.	1	*		·'	+			! !	-+-!
•			1. 1. 1		1 1 . 1		I I I	1		I I I	-¦
	1 1 1		r t L	1 1, [,] t ,	I I I		1 I . I /	1 1 1	ļ.		1
4500-01	l	1	l +	1 +	t +	l + l	1 +	! *		( •	1 +- 1
	{ · ·	1 .		1	1 1 · . 1	[ [ [	¦ :		·	; ,·	1
••	j. * (	ί. Ι. Ι	L 1	I	1	1 1 -	1		1		1
, 9500-01	i t +	i i ·		i i +	i i · · ·	· · ·	I I +	t t	·	· · · · · · · · · · · · · · · · · · ·	1
			1				· · · ·	I I .	.}	t 1 1	1
•	i .	i .			i, [ .		T I	t 1	1		i
	i .	1		1 .							i
145D 00	+	• •		·				/		·	-+ !
	1,		· ·	1 .				]		t 1	L L
-		1 1 1		1	ι Γ.	L 1 [	[ [		•	1	1
1950 00	·	· · · · · · · · · · · · · · · · · · ·	1 1 +	¦ · , ¦	l 1 •	[ 	1 [ +	[		[ ] +	1 1 -+
•	I I - I	-			{ [, ]	1 , 1 , t ,	[   . 	· . [		1 1 T	1 1 1
•		1 1 - 1			t T 1 )	[ [ [	[ ] [ .	[``, ]	•	: i. i	1 1 1
•			1 1		t t • t	ξ [	I I	4.		ŀ.	1
2450 00	+ I I	 ! .	1 ·	+	l l l	 1 1	+	·		t	-+
	· ·		· · ·	1		1	L 1 1	1 1 .	•	1.	1
	1	i		1	t t						i
2950 00				;		i 		· j		!	-i
• .			· · ·	1 1 1		t . /				1	Ĩ
· .		4 1 - 1	1 1 1	1 1	1 · · · I	L L	1 1 1		L I I	I .	t I
•				1 1	l I , l ,	[ [ ]	1 1 1			, ,	1
3450 00	+	   			+	l	1 I	1		1	I
		   	1. 1. 1.		t t 1	1 L .				I I	1
			1		1 L · L	[ [ ]			•	l L - 1	1
3950 00	1		l t	· · · · · · · · · · · · · · · · · · ·	l +	t 	+	}		1	-+ 1
		4 1 1	L L	1 1.	L - E	L L 1		L I	4		1
		L 1 1			t ' t	t 1 1	[ , ]	1 C T		1 1. t	l I I
AASD 001	i	i i	1	i .	1	i i i		   		   	1 1 +-
			1	L 1			1		•		1
		•	· ·	1		l L	.]	1		i r	1
	t t	1	1	i c	1	1			-	1	i l
495n 00	1		l +	L +	l +	·	·;L_	+		·	-+

43

- 74 -

FIG. 4.16 VELOCIDAD ANGULAR w

			•.	• •	· · · ·	· · ,· ,	VELOC	10AD ANGUL AD/SEG)	A#		· · · · · · · · ·
-50	0.0 -2 +	5.0 +	y . 0 2 +	5.0 5 +	v.o. +?	5.0 10 +	+	5.0 15 +	• • • • • • • • • • • • • • • • • • •		-+ 0.0
	L L Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z			1 1 1 1 1 1 1	( 1 1 1 1 1 1				1 1 1 1 1 1 1 1		L 0.21 L 1.2 L 2.6 L 4.3 L 5.6 L 5.6 L 7.5 L 5.6 L 10.7
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	· · · · · · · · · · · · · · · · · · ·		L I I L L L L L			1 1 1 1 1 1 1 1	4 1 2 4 1 1 1 1		1 13.5 1 15.5 1 15.5 1 17.0 1 18.5 1 20.1 1 21.1 1 23.1 1 24.5 1 26.0
-01		1 1 1 1 1 1 1 1 1 1									-+ 1 28.81 1 20.31 1 31470 1 31470 1 31470 1 31470 1 35.45 1 35.45 1 35.45 1 39.45
	-			·							- 1 42.44 1 43.7 1 45.00 1 45.00 1 45.00 1 45.00 1 45.00 1 45.00 1 45.00 1 45.00 1 52.00
	· · ·			· · · ·					· ·		-+ [ 54,70 [ 55,5] [ 57,0] [ 58,2] [ 58,2] [ 58,2] [ 58,2] [ 58,2] [ 58,2] [ 67,0] [ 60,0] [ 60,0] [ 60,0] [ 63,8]
											-+ 1 60.0 1 67.0 1 68.1 1 69.2 1 70.2 1 70.2 1 71.3 1 72.3 1 73.4 1 73.4 1 73.4
			, , , ,			i i i i			````		-+ 1 76.51 1 77.55 1 78.59 1 79.54 1 80.55 1 81.55 1 79.55 1 80.55 1 80.55
	·					te i	4		1	· .	-+ L 84.31 [ #7.12 ] #8.20 [ #9.20 [ \$9.12 ] 91.00 [ \$2.89 ] \$3.80
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		, •		1 1 1 1 1 1 1 1 1	·					•	-+ 55.00 56.47 1 55.00 1 55.00 1 55.00 1 55.00 1 55.00 1 100.00 1 100.75 1 102.55 1 102.55
+ UO 1 1 1	i i i i i i i i			 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			 e] •]				-+ 1 104.20 1 105.00 1 105.00 1 105.00 1 106.75 1 107.57 1 108.30

•

.

•

- د، د،	0.5	v.o /	v.s	1.0 +	1.5	2.0	2.5	3.0	3 • 5	4.0	4.5 .+
											L 1.373 I 3.013 I 3.502 I 3.645 I 3.667 I 3.667 I 3.653 I 3.610
-				1 1 1 1 1 1 1 1 1 1 1	I I I I I I I I	I I I I I I I I I				1 1 1 1 1 1 1 1 1 1 1	1 3.612 1 3.558 1 3.558 1 3.558 1 3.557 1 3.557 1 3.5516 1 3.505
10-01		+ l l l l l l l l l l l l l		+ l l l l l l l	t 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	•	+ 1 1 1 1 1 1 1 1 1 1 1 1 1		 t · t t t t t t t		1 3.479 1 3.456 1 3.454 1 3.454 1 3.454 1 3.429 1 3.429 1 3.429 1 3.429 1 3.425 1 3.353 1 3.353
D 00		+ 1 1 1 1 1 1 1 1 1 1 1 1 1	+ I I I I I I I I I	•	t I I I I I I I I I I I I I I I I I I I	+ I I I I I I I I I	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				1 J.358 1 J.3247 1 J.3247 1 J.3247 1 J.324 1 J.324
ια οο										1 2 1 1 1 1 1 1 1 1 1 1 1 1 1	+ 3.248 1 3.228 1 3.227 1 3.217 1 3.217 1 3.127 1 3.147 1 3.177 1 3.167
		L L L L L L L L L L L L L L L L L L L	1 · · · · · · · · · · · · · · · · · · ·			•					+ 1 3.148 3.129 1 3.129 1 3.110 1 3.100 1 3.001 1 3.073
. 00 0						· .			· .		+ I 3.054 I 3.045 I 3.045 I 3.045 I 3.045 I 3.045 I 3.010 I 3.010 I 3.001 I 3.001 I 3.021 I 3.021 I 3.021 I 3.021 I 3.021 I 3.021 I 3.025 I 3.025
		-				1		١.			+ 1 2.567 1 2.5450 1 2.950 1 2.950 1 2.952 1 2.925 1 2.901 1 2.901 1 2.901
00 0			·.	· · · · ·		•. •			•		+ 1 7.885 1 7.85 1 2.85 1
000	· · ·			• ,	,					+ 1 1 1 1 1 1 1 1 1 1 1 1 1	+ I 2.807 I 2.793 I 2.793 I 2.795 I 2.795 I 2.774 I 2.774 I 2.756

Es menester recalcar que en el programa no se logra apreciar el muevo punto de funcionamiento que deben adquirir las variables graficadas, como ya se dijo, se debe a la máquina necesita mucho más tiempo para estabilizarse, que el simulado en el com putador. Pero los valores ya obtenidos son suficientes para realizar una buena comparación, que se la hará en el próximo capítulo.

## 4.4. Variación brusca de carga en motor Shunt

En principio, la máquina se encuentra funcionando como motor en derivación, trabajando en estado estable. El computador gráfico una pequeña porción de este estado. Subitamente au= menta el torque de la carga mecánica acoplado al motor. En el programa este efecto se consigue mediante una función paso.

Se produce un conjunto de transformaciones electromecánicas que inciden en el comportamiento de la máquina, hasta alcan zar un nuevo punto de equilibrio y de esta manera conseguir nuevamente el estado estable aunque con condiciones diferentes a las iniciales.

Estas transformaciones se muestran en las figuras 4.18,4.19,4.20 y 4.21

- 77 -

FIG. 4.18 CORRIENTE DE EXCITACION i

					П. Й	1.9		2.0	•	2.4	ENTE DE EX (AMPS) 2.8	CITACICN	1.6	
	T (CH/O (SEGS)			+	+	+	·	÷			+		·	- 2 100
					· · · ·			[ ] ] ] ] ] ] ] ] ] ] ] ] ] ] ]		1 1 1 1 1 1 1	1 1 1 1 1 1 1	L .	L T T J J L J	2 · 190 1 2 · 190
		•				1 1 1 1 1 1 1 1 1 1 1 1		 L L L L L L L L L L L L L L L L L	· · ·					L 2.150 L 2.150
0.4440 00 0.4600 00	0,2250	00	1 1 1 1 1	 1 1 1 1 1 1 1 1 1 1 1 1		· · · · · · · · · · · · · · · · · · ·	 t t t t t t t t	+ 1 1 1 1 1 1 1 1 1	 	L L L L L L L L L	E I I I I I I I I I I I I I		t t I I I I I I I I I I I I I	1 2.190 1 2.190 1 2.190 1 2.190 1 2.190 1 2.190 1 2.190 1 2.190 1 2.190
0. 36HD 00 0. 36HD 00 0. 70 dD 00 0. 70 dD 00 0. 42 dD 00 0. 42 dD 00 0. 1070 01 0.	0.34AD	00				1 1 1 1 1 1 1 1 1 1	+ 1 1 1 1 1 1 1 1 1 1 1 1 1			·			+ I I I I I I I I I I I I I	+ 1 2.150 1 2.150 1 2.150 1 2.150 1 2.150 1 2.150 1 2.150 1 2.150 1 2.150 1 2.150
2.1560 00 0.700D 00 0.700D 00 0.426D 00										1 1 1 1 1 1 1 1 1 1	T T T T T T T T T T			· · · · · · · · · · · · · ·
D. 428D 00 D. 428D 00				1 1 1 1 1 1 1 1 1						1 1 1 1 1 1 1 1				L 2.150 L 2.150 L 2.150 L 2.150 L 2.150 L 2.150 L 2.150 L 2.150 L 2.150
0.13280 00 			L L L L L L L		L L L L L L L L L L							· -	,	L 2.140 L 2.140 L 2.140 L 2.140 L 2.140 L 2.140 L 2.140 L 2.140 L 2.140 L 2.140
			۰.								•	• •		2 · 1 50 1 7 · 1
											e.			L 2.150 L 2.150
	• 1070 ( •	)     												I 2.190 I 2.190 I 2.190 I 2.190 I 2.190 I 2.190 I 2.190 I 2.190 I 2.190

- 78 -

•

.

FIG 4.19 CORRIENTE DE ARMADURA i r

		•			• '		сояк:с	NTE DE ALVA	CURA	. • •	
E P P D E G S }	0.0	+	1.2 · +	1.6	2.4	3.0	3.6	4.2	• 8	5 + 4	6.G
Q	•   	+	·	l i i	+		L .	t		1 1 1	+ 1.500 1 3.500 1 3.500 1 4.504
	1 1 1 . 1				i .			1 1 1			1 3.514 1 3.524 1 3.138
1080 00	1 1 1	¦ ; ;	(   		[ 	   	l / /	1   +	· .	¦	1 J.548 1 J.557 1 J.557
			1 1 1 .	1 1 1	, , , ,			 	,		I 3.586 I 3.586 I 3.555 I 3.604
· .	I . I	1 1 1	1 · 1 ·		1 [ [	1 [ ] .	r F	L 1 1		1 1 1	1 3.613 1 3.622 1 3.622
280 00 ·	1 ' [ +	[ [ +	i 	i 	I I I I	   {		· · · · · · · · · · · · · · · · · · ·		I I I	1 3.(40 1 3.(49 +
		1 1 1				i i . i				i . 1	1 3.675 1 3.683 1 3.683
	1 t t			L L .	L L L	1 1 1		1 • 1			1 3,749 1 3,769 1 3,716
48D 00	i 	i 	l 	i 	i	i 	i  + +-	! +		i i i	3.752
	1 t .	· ·		L L L	[ [ . ]						3.755 3.763 3.770
	1 1 1					I I I		i . I .			1 3.777 1 3.785 1 3.792 1 3.792
68D 00	i +		 	L , , L	i . 	, , ,		l 		·	1 · 3.807
		1 · . (	1 . 1 1	£ L I	1 2 1	1. 1. 1.			. •		1 3.F28 1 3.F34 1 1.H41
					[ [ -					[ [	1 J. P55 1 J. P61 1 J. P61
880 OJ .		! 	   	l 	! !	l + l		l + +		¦	1 J.874 + 1 J.667
•		1		1	L L I I						1 3.900
	i i i	1	i . ·	l 1 1		t · t ·					1 J.417 1 J.424 1 J.570
00 080	! ! !	! !	   	; 	נ +→	[ + 1 	 	I +		 {	1 3.926 + 1 3.947
				i i .		i 1 1			•	I I	1 3.9499 1 3.974 1 3.970
•	i i				(   			t t ,	•	r 1 1	1 3.579 1 3.981 1 3.980
280 00	+	     .			 1 1		[				+   4.002   4.007
•	•.			L L	t , . I	l 1 . 1				1	4.012 4.017 4.022
		1	1		1 . 1 . 1	1				1 1 1	t 4.03/ t 4.03/
46D OV		   	1		t t	 [ !		( [ ]		t	4.051 4.051
					1 1 1 1						1 4.070 1 4.00% 1 4.074
	l t	l .			t t			1 4			1 4.078 1 4.078 1 4.022
070 01	•	i			+ I I	·				1	+ [ 4.0\$5 [ 4.100
								ι, τ,			4.10H 4.112 1 4.116
	i t .	i .	i i - i	i i i .	l 1 f	t . I t					1 4.120 1 4.124 1 4.124

.

- 79 -

· · · · ·

## FIG 4,20 VELOCIDAD ANGULAR O

÷

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	۰۰ ، ، ، ، ، ، ، ، ، ، ، ، ، ، ، ، ، ،	··· ·· ·: ;: 0.05	u.o 9		0.0 15	0.0 18	VELCC (P 0.0 21	1040 ANGLU AC/SEC} 0+0 740		۵.0 JC	0.0
(SEGS) 0.0					t t t t t t t t t t	+    				• I I I I I I I I	+ 211.962 1 213.962 1 213.962 1 213.962 1 213.962 1 213.962 1 213.962 1 213.962 1 213.751 1 212.253 1 211.751 1 211.211 1 210.678
											+ 1 200.020 1 200.104 1 204.045 1 204.045 1 204.045 1 205.555 1 205.024
					I I I I I I I I I I				· •		+ 1 2C4.673 1 2C4.704 1 2C3.740 1 2C3.281 1 2C7.2.0 1 2C7.2.0 1 2C7.2.0 1 2C1.710 1 2C1.052
v+3480 00				1 1 1 1 1 1 1 1 1 1					1		I 200.151 1 159.76A I 159.76A I 159.348 I 158.522 I 158.521 I 158.114 I 157.710 I 157.710 I 157.211
						1 1 1 1 1 1 1 1 1 1 1					* 1 156.137 1 155.754 1 155.374 1 154.526 1 154.526 1 154.525 1 153.853 1 153.174
					 L L L L L L L L L L L L L	I I I I I I I I I				I I I I I I I I I I	+ I IS2.464 I IS2.122 I IS1.437 I IS1.437 I IS0.744 I IS0.112 I IS0.112 I IE4.76M
0.7080 00	1 1 1 1 1 1 1 1 1 1 1 1 1 1				L						+ [ 169.15] 1 124.27 [ 124.27 [ 124.27 [ 127.314 [ 127.314 [ 127.314 [ 127.314 ] 126.726
0 0480 00									• . •		1 LEO.149 1 LED.565 1 LED.584 1 LED.200 1 LED.757 1 LEO.477 1 LEO.477 1 LEO.420 1 LED.55
			/         						-		1 163.433 1 163.176 1 162.522 1 162.522 1 162.421 1 167.421 1 167.421 1 161.929 1 161.947 1 161.449
0.1190 01										1 1 2 1 1 1 1 1	1 1+0.576 1 1+0.744 1 1+0.513 1 1+0.746 1 1+0.660 1 179.437 1 179.416 1 179.416

.

.

FIG. 4.21 TORQUE ELECTROMAGNETICO Te

. .

LEMP0 SPG5)		U.4 +	с.н	1.2	1.6	z.o +	TOROUE ELEC	CTROMAGNET (	1 CO 1' 3 . 2' 	3.6	<b>4 •</b> 0 [·] -+
.0		+ 1 1 1 1 1 1 1 1 1 1 1 1 1				+ L L L L L L L L L L L L L L L L L			+ I I I I I I I I I I I I I	· · · · · · · · · · · · · ·	
1080 00		4 4 1 1 1 1 1 1 1		1 1 1 1 1 1 1 1 1 1 1 1		 [ 1 1 1 1 1 1 1 1 1		•	 l l l l l l l	1 1 1 1 1 1 1 1 1 1 1	
240 00				1 8 1 1 1 1 1 1 1 1 1 1 1 1			1 	· , · ,	 	!  ! ! ! ! ! !	
34HD 00	••• ;							۰ ۰	 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
468D 00		4 4 1 1 1 1 1 1 1 1		L L L L L L L L					 1 1 1 1 1 1 1 1 1 1 1		
5860 00								,			
							 1 1				
ABD 00	· · · ·							۰.	L L L L L L L L L L		
1070 01						, , ,			1 , • 1 1 1 1 1 1 1 1 1		
	·,					· · ·				1 1 1 2 2 2 2 2 2 4 4 4 4 4 4 4 4 4 4 4	

-81 -

## CAPITULO V

ANALISIS Y COMPARACION DE RESULTADOS

El programa digital desarrollado se aplicó al estudio de la máquina generalizada marca Westinghouse de dos polos existente en el laboratorio de máquinas eléctricas de la Escuela Politécnica Nacional, h cual tiene las siguientes limitaciones de carga:

Máquina Generalizada Enrollados del rotor: 230 Voltios, 8 Amperios AC o DC. Enrollados del estator: 230 Voltios, 3.6 Amperios AC o DC. (serie)

115 Voltios, 7.2 Amperios AC o DC (paralelo)

Motor de Accionamiento

Armadura: 240 Voltios, 10.8 Amperios DC. Cámpo: 240 Voltios 0.562 Amperios DC.

Velocidad

La unidad no debe sobrepasar 4000 rpm .

82 -

El motor de accionamiento tiene acoplado un tacómetro DC para dar referencia de velocidad, el motor puede ser usado como generador cuando la máquina generalizada opera como motor.

Una mención particular de la máquina generalizada Westighouse es que, puede ser operada en todos los modos básicos de maquinaria eléctrica.

Si se desea mayor información acerca de la máquina usada buscar en la referencia (12).

5.1. Comprobación experimental de las perturbaciones analizadas en forma digital

En esta sección se indica la manera como se llevaron a cabo experimentalmente las pruebas usadas en la aplicación del programa.

- Incremento brusco de torque en la máquina impulsora del Generador con excitación independiente

El procedimiento seguido en la experimentación fue el siguiente:

1. Hacer las conexiones eléctricas, para que la máquina generali zada funcione como generador con excitación independiente.

- 2. Conectar el circuito de campo del generador a una fuente variable D.C y conseguir una corriente de excitación de 2 amperios. Hay que destacar que la no linealidad de la cur va de saturación comienza en 1.4 Amp., luego las pruebas se realizarán en una parte afectada por la saturación.
- Conectar una resistencia de 1 5 Ω en los terminales del generador; con ello se tiene la carga resistiva que fue simulada en el programa.
- 4. Arrancar el motor de accionamiento, obtener una velocidad de 1800 rpm .
- 5. Enviar señales de corriente, voltaje y velocidad al osciloscopio.
- 6. Incrementar bruscamente el torque en la máquina impulsora.
- 7. Conseguir todos los datos para calcular el torque antes y después de la perturbación.
- 8. Para reducir las: componentes de alta frecuencia del tacómetro de velocidad se construyó un filtro (ver figura 5.1.)

En la figura 5.1 aparecen los esquemas de conexión hechos en el laboratorio.

El aumento brusco de torque en el motor de accionamiento se consiguió conectando previamente a la perturbación una resistencia de 5 $\Omega$  al circuito de armadura de esta máquina. Para que se incremente el torque y por tanto la velocidad, es necesario cortocircuitar a la resistencia de 5 $\Omega$  lo más bruscamente posible, lo cual se consigue mediante un contactor. El contactor además envía la señal al osciloscopio.

Para calcular el torque antes y después de la perturbación en el motor de accionamiento, se hicieron las siguientes mediciones y cálculos:

Dado que la resistencia de armadura varía en forma no lineal con la corriente de armadura debido a que la resistencia de contactos de las escobillas es variable; se consiguió una curva de resistencia de armadura incluída escobillas en función de la corriente de armadura, todo esto en el motor de accionamiento, dicha curva es ha de la fig. 5.2.

а



-86-





Conocida la resistencia de armadura es posible determinar la potencia electromagnética ya que:

 $Pe = Va Ia - Ra Ia^2$  (5.1)

Siendo Va la tensión en bornes del inducido e la la corriente que la atraviesa.

Luego en un motor:

Peje = Pe - Pérdidas debid²s al movimiento (5.2)

Las pérdidas debidas al movimiento las podemos considerar constantes y se las puede calcular de los datos proporcionados por el fabricante (12).

Pentrada = If². Rf + Pend escobillas + la² Ra + Perd. deb. al movim + Peje

Las  $p \neq r'$  escobillas + La² Ra por razones expuestas anteriormente serán una sola (La²Ra).

Por lo tanto ,

P erd deb al mov. = Pentrada -  $\frac{12}{12}$  f Rf -  $\frac{1}{2}a^2$  Ra - Peje

De datos del fabricante (nominales) Peje nominal = 3 H.P. I f. n = 0.562 A I an = 10.8 A Curva fig. 5.2 Ra = 2  $\Omega$ 

Vnom = 240 V $\dot{Rf} = 338_{\Omega}$  de donde:

Pérd. debido al mov. = 240 x 10.8  $-(0.562)^2$  x 338  $-(10.8)^2$  x 2 - 3 x 746 = 13.96

Perd deb al mov. = 14 WATT

Por lo tanto el torque en el eje será.

 $Teje = \frac{Peje}{mr}$ (5.3)

En el laboratorio se obtuvo los siguientes datos

Antes de la perturbación

Motor de accionamiento:

Ia = 5.2 A curva fig. 5.2 Ra = 2.4  $\Omega$ 

.. Va = 57 Volt  
n = 1800 rpm  
Pe = 57 x 5.2 - 
$$(5.2)^2 x 2.4 = 231.904$$
 WATT  
Peje = 217.904 - 14 = 217.904 WATT  
T^r =  $217.904 = 1.387$  N-m  
 $\frac{2x \text{ tr} x 1800}{60}$ 

Generador excit. indep

$$V_q^r = 46.5 V_q^r = 3 A_{1a}^s = 2.A_{1a}^s$$

Después de la perturbación

Motor

 $L_a = 6.2 \text{ A}$  curva fig. 5.2 Ra = 2.1_{$\Omega$}

n = 2,154 rpm

Va = 78 V

 $Pe = 78x \ 6.2 \ -(6.2)^2 x \ 2.1 = 402.876 \ WATT$ 

Peje = 402.876 - 14 = 388.876 WATT

 $T^r = \frac{388.876}{2 \pi 2154} = 1.724 \text{ N} - \text{m}$ 

· Este último valor de torque entra como dato al programa dígital.

Generador Excit indep.

$$V_q r = 62 V$$

$$j_q r = 4 A$$

$$j_d s = 2 A$$



El fenómeno transitorio se ha captado en las fotos 1,2, y 3





- 91 -



- 92

Foto 3 Velocidad con un tiempo/div. menor en escalas horizontales

De los oscilogramas se puede concluir que:

1. La corriente de excitación permanece constante

- 2. La corriente de armadura experimienta un incremento hasta adquirir un nuevo valor de estado estable
- 3. El voltaje terminal se incrementa un tanto, hasta obtener el nuevo equilibrio.
- 4. La velocida aumenta en cierto grado para luego del femómeno quedar constante.

- Cortocircuito en Generador Shunt

En la misma máquina generalizada del caso anterior, pero con conexión en derivación, se procede de las siguiente manera:

- 1. Realizar la conexión del generador derivación en vacío
- Hacer funcionar el motor de accionamiento hasta una velocidad de 1800 rpm.
- 3. Variar la resistencia de campo hasta obtener una corrien te de campo de 2 Amp. Como el generador está en vacío  $i_d s = i_q r$ . Mantener la velocidad en 1800 rpm.
- 4. Enviar señales de corriente de excitación, de armadura y velocidad .
- 5. Efectuar el cortocircuito sostenido, en terminales del generador por intermedio de un contactor.

Los circuitos del laboratorio están en la Fig. 5.3.

- 93

- 94 =-



Maquina generalizada conectada como generador Shunt

FIG. 5.3 CONEXIONES EN EL LABORATORIO PARA CCC. EN GENERADOR SHUNT

En el generador, antes de la perturbación se obtuvo los siguientes datos:

 $V_q r = 58 V$   $V_d s = 58 V$   $i_q r = i_d s = 2.A$ n = 1800 rpm

Despues de la perturbación

$$V_{d}r = V_{d}^{s} = OV$$

$$i_q r$$
 (pico) = 10 A  $i_q r$  (estable) 0.A

 $\mathbf{j}_{d}$ s (estable) = 0.A . n = 2080 rpm



Los resultados transitorios se muestran en las fotos 4,5,6, 7







- 95 -



Foto 6. Corriente de excitación.





De los oscilogramas se puede observar:

- 1. La corriente decrece en forma exponencial, hasta cero en un tiempo relativamente corto aprox 0.1 seg.
- La corriente de armadura se incrementa hasta 10A y decrece en forma exponencial en un tiempo mayor que el de la co Friente de excitación (aprox 12 seg).
- 3. La velocidad decrece muy ligeramente en el momento del C.C para luego aumentar a un valor mayor al anterior.
- 4. En la foto 4 casi no se puede apreciar el aumento de la velocidad, no así en la foto 7 que tiene mayor tiempo/div. que la 4.
- .5. La velocidad sigue aumentando aún después de haber realizado el cortocircuito y de que las corrientes llegaran a cero.
  El tiempo que demora en estabilizarse es aproximadamente 11seg.

- Arranque con carga en Motor Shunt

Los pasos seguidos en el laboratorio son:

- 1. Hacer las conexiones necesarias para que la máquina generalizada trabaje como motor én derivación
- 2. Conectar la máquina impulsora de los casos anteriores como generador con excitación independiente.
- 3. En los terminales del generador ubicar una resistencia variable de 20  $\Omega$
- Obtener señales de corriente de excitación de armadura y velocidad en el motor Shunt, y enviar al osciloscopio.
- 5. Mediante un contactor conectar la alimentación, en terminales del motor, con lo cual se efectuó el arranque.

Las conexiones mencionadas están en la figura 5.4

- 98 -

FIGURA 5.4 ESQUEMAS DE CONEXION DEL ARRANQUE CON CARGA



NOTA: El circuito de control es igual.

Previamente al arranque se realizó todas las mediciones necesarias para obtener una curva de torque aleje en función de la velocidad, para ello se consiguió una curva de resistencia de armadura en función de la corriente de armadura (como la fig. 5.2)





Se toman datos de corriente de armadura y voltaje a sterminales de la misma, haciendo correr al motor Shunt a diferentes velocidades. De esta manera es factible determinar la Potencia electro magnética luego el torque electromagnético y como el fabricante incluye un torque de pérdidas (que se la puede asumir constante); se puede conocer el torque al eje y por consiguiente la curva de -  $T^{r} = f(\frac{r}{\omega})$ . de la figura 4.13 del capítulo anterior.

 $Ra = -0.35 I_a + 3.25$ 

La potencia electromagnética era "

 $Pe = Va Ia = Ia^2 Ra$ 

El torque electromagnético

Te =  $\frac{\text{Pe}}{\omega}$ 

El dato de torque de pérdidas dedo por el fabricante es:

T pérd. = 0.19 New - m En un motor  $T^{T}$  = Te - T pérd.

En la tabla No. 1 se incluyen todos los datos medidos y calculados para determinar la fig. 4.13

TABLA	1

Va	Ia	Ra	Pe	ωr	Tr
(V)	<b>(</b> A)	(٩)	(W)	(rad/seg)	(N-m)
7.4	2,95	2.22	2.5	25,05	0,29
16	3.2	2.13	29.150	60,73	0.67
29.7	3.5	2.025	79.2	109,96	0.91
48.9	3,68	1.96	153.43	168.6	1.1
99.4	3.8	1.92	349.72	253,42	1.57

La figura de  $T^{r} = f(\omega^{r})$  es incluido en el programa digital para simular la carga mecánica aplicado al eje del motor Shunt.

Antes del arranque todas las variables del motor son iguales a cero.

El voltaje de alimentación que arrancará la máquina es:

 $V_q r = V_d s = 148V$
La resistencia de arranque colocado en la armadura es:

Rx = 17.55Ω

La de campo es:

 $Rf = 61.55 \Omega$ 

Después de la perturbación

 $I_q^r$  (pico) = 6.5 A  $I_q^r$  (estable) = 3.2 A

 $I_ds$  (estable) = 2.2 A

n = 1800 rpm









Foto 9 Corrientes de excitación y de armadura ampliado escala - . vertical



Foto 10. Velocidad con tiempo/div. mayor en escala horizontal

- 104 -

En los oscilogramas se concluye que:

- 1. La corriente de excitación se eleva rápidamente hasta un valor en el cual queda constante.
- La corriente de armadura sube hasta un valor máximo y decrece lentamente.
- 3. La velocidad crece aceleradamente
- 4. La velocidad y la corriente de armadura se demoran un tiempo relativamente largo en alcanzar el estado estable (aprox.6 segundos).
- Incremento brusco de carga en motor Shunt

En el laboratorio se prosiguió de la siguiente manera:

- Dejar la máquina generalizada con la conexión motor Shunt, moviendose a una velocidad de 2050 rpm.
- 2. Incluir dos resistencias de 10 n en los terminales del generador.

- 3. Mantener cortocircuitado la resistencia de 10 n por medio de un contacto N.C. del contactor de control
- 4. Enviar señales de corriente de excitación de armadura y velocidad al osciloscopio.
- 5. Energizar al contactor, con ello, el contacto N.C. se abre y se incremente la carga en el generador y por consiguiente el torque al eje del motor Shunt.

Los diagramas usados en el laboratorio están en la figura 5.6 Las condiciones antes de la perturbación eran:

$$V_{q}r = V_{d}s = 140 V$$
  
 $\lambda_{q}r = 3.5 A$   
 $i_{d}s = 2.19$   
II = 5.69  
 $n = 2050 \text{ rpm}$   
II = corriente de línea  
Después de la perturbación:  
 $V_{q}r = V_{d}s = 140 V$   
 $i_{q}r = 4.5 A$   
 $i_{d}s = 2.19 A$   
I I = 7 A

n = 1500 rpm

 $T^{r} = 1.78$ 





b) Generador con excitación independienteNOTA: El circuito de control es igual

Los resultados de la perturbación fueron captados en las fotos 11,12 y 13



Foto 11: Corriente de excitación de armadura y velocidad.

-107-



-- --

..........

.



•

10.5 seg.

De los oscilogramas se concluye:

1. La corriente de excitación permanece constante .

- 2. La corriente de armadura se incrementa en aproximadamente 1 Amp.
- 3. La velocidad disminuye.
- 4. El tiempo que la máquina demora en alcanzar el nuevo equilibrio es 5 seg.

# 5.2. Compraración de Resultados Obtenidos en el Programa Digital con los experimentales

En la simulación digital existe bastante flexibilidad para obtener resultados ante cualquier tipo de perturbación, no así en el laboratorio. La falta de dispositivos para detectar en el laboratorio transitorios de torque, obligó a no comparar este parámetro.

Los resultados motivo de comparación serán: corriente de excimación, de armadura, voltajes (para el primer caso de perturba ción) y velocidad.

El voltaje solamente se compara en el caso de generador con excitación independiente, en los · otros casos el voltaje varía bruscamente a cero (cc. Shunt) o se mantiene constante.

109 .

La falta de un grafizador en el computador, hace que se utilice el impresor de línea para el gráfico. Esta particularidad hace que los puntos obtenidos en el computador no muestren una continuidad adecuada, para salvar este problema se trazó una curva contínua manualmente.

 a) Incremento brusco de torque en Generador con excitación independiente. Habiéndose explicado convenientemente la simulación y la experimentación en las secciones precedentes, aquí se presentan los resultados del computador y los experimentales.



- 110 -

- El tiempo que demora el voltaje en estabilizarse experimentalmen= te es aprox. 6 seg, razón por la cual no se lo aprecia en las figura. a. 1.
- En el computador se simula 1.2 seg. del compostamiento dinámico
- Para el espacio comparado de 1.2 seg, el osciloscopio da 53.9 V







- Esta corriente se mantiene constante debido a que el flujo de eje directo no sufre ninguna alteración en todo el proceso, es decir, el devanado de campo es excitado independientemente y como el flujo del eje directo está perpendicular al flujo de cuadratura, no es afectado. La alteración se pro duce en el torque al eje, esto afecta a la velocidad, y la variación de velocidad afecta al flujo de cuadratura solamen te.





FIG. a, 3; CORRIENTE DE ARMADURA

_ Después de 1.2 seg. la corriente de armadura en el oscilograma es 3.47 A, en el computador da 3.414



FIG. a.4. VELOCIDAD

A 1.2 seg el oscilograma da 1725 rpm el computador da 1670 rpm.
b) Cortocircuito en Generador Shunt

Esta perturbación es más representativa, pues el fenómeno transi-

- 113 -

torio y sis efectos en corrientes son rápidos, razón por la cual se puede observar en forma eficiente y completa las transformaciones que sufren estas variables, tanto en el computador como en el laboratorio.





FIG. b.1. CORRIENTE DE EXCITACION

- 114 -

- Las figuras coinciden en forma magnitud y tiempo (antes de la perturbación la corriente es de 2.A en los dos gráficos).
- En la foto, hasta que la corriente llegue a cero, trancurre un tiempo de 0.1 seg, en el computador demora 0.11 seg.





FIG. b.2. CORRIENTE DE ARMADURA

- El oscilograma muestra una corriente de pico de 10 A, el computador da 10.9 A.
- El tiempo en el cual la corriente se hace cero es: para el oscilograma 0.2 seg., en el computador 0.23 seg.



FIG. b.3. VELOCIDAD

- Después de 0.3 seg. que es el espacio simulado, el oscilograma da 1903 rpm, el computador 1926 rpm.

c) Armanque con carga en motor Shunt..

La gran mayoría de efectos experimentales han sido captados en la simulación como se aprecia en los gráficos.





### FIG. c.1. CORRIENTE DE EXCITACION

- El pequeño rizado que se observa en la foto no aparece en el resultado simulado ( en la simulación se hicieron algunas restricciones)
- En el oscilograma la corriente se estabiliza en 2.2. A, en el computador en 2.32 A.





FIG. c.2. CORRIENTE DE ARMADURA

- 118 -

- La corriente de pico en el oscilograma es de 6.5 A, en el computador da 7.7A.
- Después de 0.5 seg el oscilograma da 5.5 A y el computador 5.74 A







- 119 -

- En 0.5 seg. la velocidad en el oscilogram a es de 986.3 rpm, el computador da 1058 rpm.
- d) Incremento de carga en motor shunt

Esta perturbación experimental, también dura un mayor tiempo que el simulado, pero las comparaciones para el espacio de tiempo son muy convenientes y aproximad²s.





FIG. d.1 CORRIENTE DE EXCITACION



lograma como para el computador.



FIG. d.2. CORRIENTE DE ARMADURA

- Después de 1.2 seg. la corriente llega en el oscilograma a 3.92 A en el computador a 4.1. A ,



- En 1.2 seg. la velocidad en el oscilograma ha decaído a 1808 rpm en el computador es de 1711 rpm. La última inquietud que se presentó fue determinar como se comportaría la simulación digital para tiempos mayores a los utilizados. Con esta finalidad se realizó el incremento del torque en generador con. excitación independiente, pero con un tiempo de 4 seg. A continuación aparecen algunos de los r<u>e</u> sultados.





Los gráficos muestran como los valores adquieren un incremento mas lento cada vez, es decir la máquina se acerca a un nuevo punto de funcionamiento. A pesar del tiempo relativamente grande para comportamiento dinámico, (4 seg) usado en este caso, aún no se lle ga al estado estable, lo que concuerda con la experimentación pues en el laboratorio la máquina demora aproximadamente 6 seg. en estabilizarse.

Los gráficos como hemos visto tienen una similitud bastante aproximada, la mayoría de efectos que produce el funcionamiento transitorio han sido captados en la simulación digital.

Los resultados del computador en sú totalidad, se acercan en magnitud a los valores reales, lo cual nos demuestra que aún los parámetros eléctricos y mecánicos (apéndice A) que fueron medidos para la máquina generalizada son confiables.

# CAPITULO VI

#### CONCLUSIONES Y RECOMENDACIONES

La simulación presentada predice en forma satisfactoria el comportamiento dinámico de la máquina de corriente contínua

/El introducir la saturación magnética ayuda poderosamente
a la buena respuesta del modelo, pues como se ha discutido,
las máquinas de corriente contínua están afectadas fuertemen
te por la no linealidad de la saturación.

El desarrollo del modelo matemático en función de concatenaciones de flujo, presentó la ventaja de introducir con facili dad la saturación magnética, es decir al utilizar concatenaciones de flujo, el esfuerzo matemático para encontrar fórmulas y métodos de resolverlas es mayor, pero es compensado c on la disminución del tiempo de computación.

Sin una representación acertada de la saturación, no es posible obtener respuestas adecuadas en la conexión Shunt, por sus características inherentemente no lineales. El modelo que utiliza la "máquina primitiva" como base, incluída la saturación, asegura la aplicación de cualquier ti po de conexión en las máquinas de contínua; con solo va riar las condiciones operacionales, cualquier combinación de bs devanados de las máquinas de contínua es factible, sea esta excitación independiente derivación o serie, tanto pa ra generador como para motor.

Aunque el tema desarrollado se refiere al comportamiento din<u>á</u> mico, el programa no tiene ninguna dificultad en represen tar el estado estable, más aún, la mayoría de gráficos pre sentados incluyen una cierta proción del estado estable.

/Los métodos utilizados para la medición de parámetros eléctr<u>í</u> comecánicos son muy confiables y tienen la característica de dar valores para fenómenos transitorios.

El hecho de haber experimentado las perturbaciones en regiones no lineales de la curva de saturación y de haber conseguido respuestas similares en el computador, cumpliendo las mismas condiciones, comprueban la veracidad del método desarrollado en esta tésis.

En estudios recientes, concretamente del mes de mayo de 1981, apareció un artículo (10), en el cual se hace un análisis del comportamiento transitorio del motor serie, para ello efectuan una comparación entre el modelo lineal y el no lineal. El modelo no lineal incluye la saturación y reacción de armadura; los resultados muestran una gran diferencia en la respuesta transitoria para los dos modelos e indical la nece sidad de usar el modelo no lineal si se desea dar una simulación aproximada de este motor.

Este artículo verifica la importancia que tiene el introducir la saturación magnética en la simulación de las máquinas de con tínua, a pesar de que solamente trata la conexión serie y específicamente como motor.

Debido a que la revista en la cual se incluye dicho artículo 11egó cuando se concluía la presente tesis, no se efectuaron comparaciones con los resultados de tal artículo. Pero como se indico anteriormente el modelo incluído la saturación, expue<u>s</u> to en esta tesis es muy general, en el, la conexión serie es solamente una aplicación. Además los resultados de este trabajo son comparados con los experimentales, mientras los del artículo no.

Con el presente tema se podrá simular reguladores de velocidad y de voltaje que den respuestas acertadas y de esta manera incluir en la modelación de las máquinas sincrónicas con lo cual, se irá concatenando el conjunto de proyectos inpulsados por el departamento de Potencia de la Facultad de Ingeniería Eléctrica.

#### RECOMENDACIONES

- 1. Incluir los efectos no lineales de la reacción de armadura -
- 2. Introducir devanados de compensación e interpolos.
- 3. Incluyendo un mayor número de devanados en el modelo, se puede representar con bastante acierto la amplidina, con ello se entrará directamente a la simulación del sistema de control, que utiliza a la amplidina como amplificador de error.
- 4. Ultimamente ha aparecido un nuevo método de integración numérica, "Algoritmo de Linealización Local", es comparado con el método de Runge-Kutta de cuarto orden y se concluye el que es más rápido y fácil. Se recomienda revisar, y si es posible, aplicarlo en la simulación de las máquinas electricas, con este fin se lo incluye en la referencia bibliográfica 13.

5. Finalmente se recomienda adquirir dispositivos que faciliten la medición de torque para estados transitorios, de esta manera se podrá comparar resultados referentes a este parámetro. /

# APENDICE A

131

# MEDICION DE LOS PARAMETROS ELECTRICOS Y MECANICOS DE LAS MAQUINAS DE CONTINUA

Los diferentes parámetros fueron determinados en la máquina generalizada Westinghouse del laboratorio de máquinãs de la Escuela Politécnica Nacional.

MEDICION DE LOS PARAMETROS ELECTRICOS

- Resistencia de armadura.

La resistencia de armadura puede ser obtenida por medio de las pruebas de cortocircuito y de circuito abierto en un generador D.C. (9)

La fig. A.1. muestra la manera de conducir estas prueba



FIG. A.1. LA CORRIENTE I1 ES VARIAD Y DIFERENTES VALORES DE EA E IA SON LEIDOS PARA DIFERENTES VELOCIDADES  $Y_{\omega_1}$ ,  $Y_{\omega_2}$  

FIG. A.2. CURVAS RESULTANTES DE LOS DATOS CONSEGUIDOS DEL CIRCUITO DE LA FIGURA A.1.

Esta prueba debe ser limitada para la porción baja de la curva de saturación donde la reacción de armadura no introduce ninguna desmagnetización en los polos.

- 132 -

Si se cumple esto, las curvas serán necesariamente líneas.rectas en la porción baja. En la figura A.2, a la corriente de campo I11 y a la velocidad  $\omega_1$ .

 $\frac{E_{a1}}{Ia_1} = Ra + Ka \stackrel{(0)}{=} 1$ 

A lo mismo corriente de campo, pero a diferente velocidad  $\omega_2$ .

 $\frac{Ea2}{I_{a2}} = Ra + Ka \omega_2$ 

De donde:

$$\begin{array}{c} \operatorname{Ra} = \underline{1} \\ \omega_{2} = \omega_{1} \end{array} \qquad \begin{pmatrix} \omega_{2} \\ \Xi_{a1} \\ I_{a1} \\ I_{a2} \end{pmatrix} \qquad \begin{pmatrix} u_{1} \\ \Xi_{a2} \\ I_{a2} \\ I_{a2} \end{pmatrix}$$

 $\omega_{2} = \omega_{1} \qquad (\frac{La_{2}}{I_{a_{1}}} - \frac{Ea_{1}}{I_{a_{1}}})$ 

En la máquina generalizada, luego de cumplir con lo anterior, se consiguieron los siguientes datos:

$$I_{11} = 0.41 \text{ A}$$
  
 $n_1 = 1800 \text{ rpm}$   
 $E_{a1} = 158 \text{ V}$   
 $I_{a1} = 6.\text{A}$ 

$$I_{11} = 0.41 \text{ Å}$$
  
 $n_2^2 = 1500 \text{ rpm}$   
 $H_2 = 13.4 \text{ V}$   
 $I_{a2} = 5.5$ 

 $Ra = \frac{1}{1500 - 1800} \quad (\frac{15.8}{6} \times 1500 - \frac{13.4 \times 1800}{5.5})$ 

 $Ra = 1.452 = R_q^r$ 

-> - Resistencia del devanado de campo-

La resistencia del devanado de campo puede ser medida por el

Los datos obtenidos son:

v	I	R
( V)	(A)	()
2.5	· 1	2.5

 $R = 2.5 = R_d^{i}s$ 

Método transitorio para determinar inductancias
 Este método lleva su nombre, porque en la medición de las -

constantes de tiempo usa los oscilogramas que son obtenidos cuando voltajes de paso son aplicados a elementos de circuito

La figura A.3 muestra el circuito necesario para obtener la inductancia de armadura La:



FIG. A.3 METODO TRANSITORIO PARA DETERMINAR LA INDUCTANCIA DE ARMADURA

Manteniendo el rotor bloqueado y cerrando el interruptor se puede conseguir la curva de corriente de la figura A.4



FIG. Á.4. OSCILOGRAMA DE LA CORRIENTE DE ARMADURA

- 135 -

La ecuación que rige el comportamiento de la corriente en el cierre del interruptor, para un circuito serie R-L, cuando se le le aplica un voltaje constante V es:

$$\frac{i = V}{R} (1 - e^{-(Ra/L_a) t_1})$$

La constante de tiempo de una función como la anterior es el tiempo para el cual el exponente de e es igual a la unidad Así para el circuito Rt de la armadura.  $\tau = \frac{L_a}{R_a}$  segundos. Ra Con i  $\tau$  la cantidad dentro del paréntesis es 0.63, es decir alcanza el 63 % de su valor final.

Por lo tanto si  $t_1$  es el tiempo para el cual la corriente de armadura alcanza el 63%.  $\tau = t_1$ , entonces

^t1 <u>=</u> ^La

 $R_a + R_x$ 

Siendo  $R_X$  l^a pequeña resistencia que se incluye para enviar la señal de corriente al osciloscopio  $\rightarrow$ 

De datos del laboratorio:

 $t_1 = 19.5 \times 10^3$  seg. Rx =  $1_{\Omega}$  La = 19.5 x  $10^{-3}$  (1.452 +1) = 0.048  $\approx$  0.5 henrios

 $La = 0.05 = Lq^{T}$ 

- Inductancia de Campo

Siguiendo igual procedimiento, pero cumpliendo el circuito de la Figura A.5 se tienen los siguientes resultados.



FIG. A.5 CIRCUITO PARA DETERMINACION DE LA CORRIENTE DE CAMPO

$$t_1 = 110 \quad 10^{-3} \text{ seg}$$
  
 $L_1 = (R_1 \times R_X) \quad t_1$   
 $L_1 = (2.5 + 1) \quad 110 \times 10^{-3} = 0.385 \quad 350.4 \text{ henrios}$   
 $L_1 = 0.4 = L_d^S$ 

Parámetros Mecánicos

• Coeficiente de roce viscoso

Si se hace trabajar la máquina primitiva como motor Shunt, teniendo acoplado el rotor del motor impulsor y del tacómetro, es posible determinar la potencia mecánica separando la pérdida ya que:

. 5

 $P_m = V_a I_a - R_a I_a^2$ 

Como  $R_a$  varía en forma no lineal con  $I_a$ , es necesaria la curva de la figura 5.5

Vales la tensión en blornes del inducido e la esla corriente que lo atraviera

 $\text{Como Pm} = \text{Tm} \quad \omega^{r}$ 

Se puede calcular Tm si se varía la velocidad se tendrá Tm =  $f({r \atop \omega})$ esta característica será igual a:

 $Tm \left( \begin{array}{c} r \\ \omega \end{array} \right) = D \frac{r}{\omega} + T_{f}$ 

 $T_{f}$  torque de fricción de Coulomb  $\chi$ 

Graficada la función Tm  $(\omega^{r})$  obtenida experimentalmente se la puede aproximar a una recta.
Tomando como puntos de la recta los 2 más extremos.

$$(T_{m1}, \frac{r}{\omega}1) = (0.48, 104.72)$$
  
 $(T_{m2}, \frac{r}{\omega}2) = (0.684, 314.16)$ 

Aplicando la ecuación de la recta:

$$\frac{Tm - T_{m1}}{\frac{Tm}{\omega} - \frac{r_{m1}}{\omega}} = \frac{Tm1 - T_{m2}}{\frac{r_{1} - \frac{r_{2}}{\omega}}{\omega}}$$

De donde:

 $Tm = 0.001 \ \mu^{T} + 0.37$ 

Luego

$$D = 0.001 \frac{N - m}{rad}$$

Tf = 0.37 N-m

Constante de inercia ^J del conjunto máquina generalizada rotor del motor y tacómetro (13).

Para determinar J se realiza la llamada prueba de desacelera ción, que consiste en registrar la variación de  $\omega^{T} = f(t)$  en el osciloscopio con retención de imágen, al interrumpir .el suministro de energía a la máquina cuando está girando a una velocidad  $\omega$ o. La ecuación que rige el movimiento en estas condiciones es:

$$J \stackrel{d}{=} \frac{\mathbf{r}}{\mathbf{dt}} + \mathbf{D} \stackrel{\mathbf{r}}{=} \mathbf{u} + \mathbf{T}_{\mathbf{f}} = 0$$

Como D, Tf y  $\omega^{T}$ o son ya conocidos

Se prosigue a resolver la ecuación diferencial, y

$$J = \frac{D \times t}{\frac{1}{2} \frac{Tf/D + \omega^{To}}{T_{f}/D}}$$

t es el tiempo de detención, es decir el tiempo que demora en llegar a cero la velocidad de la máquina, luego de haberla desenergizado. Este tiempo se obtiene con facilidad en el osciloscopio de la curva  $\overset{\mathbf{r}}{\boldsymbol{\omega}} = \mathbf{f}(t)$ .

Para la máquina generalizada se obtuvo los siguientes datos:

t, = 8 seg.

ω^ro = <u>2 1 x 2500</u> = 261.799 rad/seg 60

Con lo cual J da un valor de:

J = 0.014 kg. m²

# APENDICE B

# MANUAL DE USO Y LISTADO DEL PROGRAMA DIGITAL

A continuación se describe la simbología y descripción de los principales parámetros y variables que utiliza el progrma digital.

# SIMBOLO

### DESCRIPCION

Tamaño del paso de integración
Límite superior de tiempo
Contador que indica la frecuencia con que se
imprimen los resultados
Constante de inercia J
Coeficiente de roce viscoso
Selector del tipo de perturbación a realizarse,
J = 1 hace incremento brusco de torque en genera-
dor con E.I.
J = 2 inace cortocircuito
J = 3 hace arranque
J = 4 hace incremento brusco de carga en motor
shunt
Resistencia del devanado de eje en cuadratura $R_q^r$
Resistencia del devanado de eje directo del esta-
tor R _a s
Resistencia de campo
Resistencia de arranque
Resistencia para simular carga resistiva
Inductancia L _o r
Inductancia L _d s
Inductancia rotacional Grs

SIMBOLO	. DESCRIPCION
YC	Valor crítico de ex, sobre el cual se introduce la saturación
AID	Corriente de campo i _d s
AIQ	Corriente armadura i _j r
AIL	Corriente de línea
VQ	Voltaje terminal V _q r
VD	Voltaje del circuito de campo V _d S
VQ1.	Voltaje necesario para el arranque de la máquina
TMF	Torque final, valor del torque para producir el
	incremento brusco de torque y de carga en genera-
-	dor y motor respectivamente
YMAX	Límite superior de ordenadas en el gráfico
YMIN	Limite inferior de ordenadas
FIG	Arreglo en el cual se guardan resultados
DA	Coeficiente de aproximación
E	Grado de aproximación
Y(L)	Concatenación de eje directo λd ^s
Y(2)	Conestenación de eje en cuadratura スq ^r
Y(3)	Velocidad Wr.
TE	Par electromagnético
TM.	Par exterior aplicado
YEX	Variable utilizada para introducir la saturación $\lambda$ ex
F (1)	Diferencial de la concatenación de eje directo
	$d\lambda d^{s}$
	dt
F(2)	Diterencial de la concatenación de eje en cuadratura d $\lambda q^{-1}$
F(3)	Diterencial de la velocidad $d\omega$
·	dt -*
DXI	Diterencia entre la recta de entrehierro y $\lambda$ ex.

- 142 -

-

:

•

_

### FORMA DE PROPORCIONAR DATOS AL PROGRAMA

Incremento brusco de torque en generador excitación independiente.

Los datos necesarios parar reproducir esta perturbación son:

Corriente de excitación  $i_d^s$ , corriente de armadura  $i_q^r$ , Voltaje terminal  $V_q^r$  ( el funcionamiento como generador se as egura incluyendo el signo negativo en este voltaje), resistencia de campo RF, resistencia para simular car ga resistiva RC y torque exterior aplicado al eje para producir la perturbación T^r (final).

Cortocircuito en Generador Shunt
 Los datos que deben entrar son:
 Corriente de excitación, voltaje terminal y resistencia de campo.

Arranque con carga en motor Shunt:

Hay que especificar:

Voltaje terminal que arrancará a la máquina VQ1 (como la conexión es en derivación VQ1 es igual a VD1), resistencia de campo y resistencia limitadora de corriente RX.

Incremento brusco de carga en motor Shunt
 Los datos necesarios son:

Corrientes de excitación y de línea, voltaje terminal, resistencia de campo, resistencia limitadora de corriente RX, y torque exterior aplicado  $T^{T}$  (final) para producir la pe<u>r</u> turbación.

La manera de introducir estos datos se muestra en las hojas de codificación. Los demás datos que aparecen en cada caso son para dimensionamiento de la escala de ordenadas, en los resultados gráficos que da el programa.

Todos los datos citados fueron determinados en el laboratorio.

#### ESCUELA POLITECNICA NACIONAL

FACULTAD DE INGENIERIA ELECTRICA

· DEPARTAMENTO DE _____ POTENCIA

PROGRAMADO FOR Handel Sandoval Casares PAGINA 1 HOLD DE COUIFICACION _____ Noviembre de 1981 FECHA CDMOC VEHISICADO POR PROGRAMA ... 63 64 65 6C 67 54 63 70 7: 71 76 75 75 77 72 AL 25 AL 25 AL 26 AL Dos tarjetas. . Parámetros de la máquina TMAX. : : lexc, _ 14 - -! TT VO Na 00 ATR μF · · · · :-ALQ RD GOD TMAX YC RQ ALD H М 0. .1. . 1.0 0 2192 8 · · · 1. ÷ • Ł 0.001 0,. i 0. 1. 4521 2. 5 1 05 20:62 : : 4. 1 NCV LA .1. 1. . F r DIM -----· 1 · U YHAY . . . --- i. . 1 1 0 10011 0 0 11 1 : 1 2. Incremento brusco de torque en generador con excitaci on; independiente: Seis Itarietas AID AILT VQ RF V01 ·RX. 11/16 RC AIO MM . 1 12.5 12 . 0 -4 16. 5 3 0 T 1 5. 5 . . . . TMF YMIN YMAX IFREC . VD1 ÷ 1 ------1. 70 4 .13. 1 2 Q 0 b 1. . . . 11 YMIN YMAX 5 0 `o...lo : 1 2 50 .0 , ! 0.0 ----777 ··· --2 ίΟ. 0 t ō .0 - 80. 0: ' . 1 : ÷ f -<del>-</del> -

1.1 Cinco tarjetas. . 3. Cortocircuito en generador shunt: . -+ = + VQ AID 1 1 . . . . RF ·: † ·: · -5.8. -+-. o 2 0; 26.5 ! : : i : 1 YMAX YMIN IFREC 1 1 . -2 Π · · · · 3 Ó . 0 1 1 : 1 • 4 * i -----T ; 1 YMAX : IYMIN . 1 1 1 18 .0 -2. 0 : • • 0. ١. 131 00' .10 0

47 43 44 45 65 47 44 48

51 52 53 54

37 33 30

20 57 51 53 00 8 E2 53 84 65 N 61 76 10 7C 7. 77 72 73 75 77 75 7

123456789

11 12 13 11 15 16 17 18 15 20 21 22 23

24 25 26 27 21 19 30 34

X7 31 34 X0

	c	PAGINA 2	FECTA. Noviembre de 1981.	26 26 20 61 62 63 66 61 64 82 20 71 71 72 2 75 77 75 2 66											TOV	114 0.10										· ·
ESCUELA FOLITECNICA NACIONAL	DEPARTAMENTO DEPOTENCIÀ	PROGRAMAGO POR HANDEL Sandoval Casares	VERIFICADO POR	1 7 2 6 6 7 7 2 8 2 7 7 8 2 7 7 8 5 7 7 7 8 9 4 6 9 4 6 9 4 7 6 6 4 9 6 7 8 7 9 7 9 7 9 7 8 9		tor shunt: Cinco tarjetas.		YMAX	4.0					a en motor shunt: Gindo tarjetas,		5.69	YMAX	φ. α							3. 32 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	•
		HOLN DE CODIFICACION	PROGRAMA CDMQC	1 2 2 4 5 4 3 10 11 12 13 14 73 16 17 10 16 20	4. 0	3. Arranque con carga en mo		Lav 1	1 48. C	NIWX XWX	9: 0	7 50. 0 1 - 20 0. 0	4.5	4. Indremento prusco de carg	· RF	: 61. 4 27. 1. 1. 7. 55.	TMF	1. 88 25 3	YMAX : YMAX :	6. 0	0.00 [5-	0 0			1 2 3 4 2 4 7 9 9 11 12 13 4 5 17 6 12 6 12 9	

ŀ

·

Į

- ر	0	0	0	C	÷.)	69	Ð	9	6	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		9	9	<b>U</b>		U	U,			ر ۱
	1		•	!.	•		!	1	•	- 1;47	-	!		1	1	į	⊆ = <u>,</u> 8	• -	n. e -	·. [
-	:			1	į			l	• !			:		ļ	1		i •	:		!
·		·			:		•	1						:	i ./	1		. •	-	:
	· .		:	1											•					•
777 777 777	, , , , , , , , , , , , , , , , , , ,	11 8/1		:		•				•		:*		1	÷		•			:
111 111 		10		•	:	ł		-	ļ				• .		i	•		. i		:
	1		•	:		•			1		•	:		. •	i	i	ļ			
	:	НОЯ	:	Ì	:					•	;*			ĺ	•		1			;
	, . )	; . , _	• •		!						•	İ		-	ļ	•				
		100		ſ								1			:					i
		2271		:	į						•	i -	•		;		!	•		
000										····· ,	• • •	·   · · ·				i				1
0000	00					• • • •		· · · · · · · · · · · · · · · · · · ·		1.57 6			· •		l	-	• .			
0000	000000	30	•	i			مرورورو. بلجام ^{زر} تدرد		5 il E		15		•	•		•				
NWW WWW	22222			i		• · · ، تدر	. )	. د		· • • • • • •	•		. 1 1		ł				-	
W NNNN V NNNN	22222		•	1	1		Ş.			<n.0.< td=""><td>NOI</td><td></td><td>CIT</td><td></td><td>. 0 </td><td></td><td></td><td></td><td></td><td></td></n.0.<>	NOI		CIT		. 0 					
222		້ພ			: .; -	(j)						, in	ыщ Т	47× 10	ENT.					
00000	00000					X E					U N X	s s	О	LORO	1440					
00000		0000							2		× ×		ENTC							ļ
		U U			≰ ⊐ .	اللل مر 0				× 7 × 6	N	010	JRRI	2 SH	× 2 2 2			.•		· [.
			;			RO							5.	DTOF F6.			•			·
ŬŬ	3999999	jŭ i	I		•π •π	0 X C			RSE	N N N N N N N N N N N N N N N N N N N	NUN Z J Z	x n	X77	¥•)    (    (	2.2	•		•	٦. ۲	:
	• : *	۰. ا				, //2 , //2		۰.	VZ I		08 750 750 750 750						•		///E	
					17 17	<ul> <li>- 1</li> <li>- 2</li> <li>- 2</li> </ul>		Er G	REAL		. 484	, i , i	7.2	- PAR	1× 1				x ) / C	•
9	ر م د د		:-			I NOV			× 2		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			06. A	20.1			oj	13) -YE	
- 00 000	2000 2000 2000 2000	6666	* * V			• В В В В В В В В В В В В В В В В В В В		•	ALD		N N N N N N N N N N			0. A J A O P A D P A D P	10			I / AL		_
	6666	660	SOR	F(3	·> 1	ושר ב			110.	A LAN	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 V	Xn 1	0,0.V			DV.	XQ+	×Ⅲ× ↓×× ↓××	. •
			APRE	Z).				1		2 X 3 X 3 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1		4 L	0 < u	NDN 2NN 2NN 2NN			RAFI	ang	ΑΓΩ + Κ 2	
			4 T V		W I	UC PL CO PL CO PL CO PL CO PL CO PL CO PL CO PL CO PL CO PL CO PL CO PL CO PL CO PL CO PL CO PL CO PL CO PL CO PL CO PL CO PL CO PL CO PL CO PL CO PL CO PL CO PL CO PL CO PL CO PL CO PL CO PL CO PL CO PL CO PL CO PL CO PL CO PL CO PL CO PL CO PL CO PL CO PL CO PL CO PL CO PL CO PL CO PL CO PL CO PL CO PL CO PL CO PL CO PL CO PL CO PL CO PL CO PLC CO PLC CO PLC CO PLC CO PLC CO PLC CO PLC CO PLC CO PLC CO PLC CO PLC CO PLC CO PLC CO PLC CO PLC CO PLC CO PLC CO PLC CO PLC CO PLC CO PLC CO PLC CO PLC CO PLCO PL		:			100	1001		NA I I	X A		I TE	UXI	2007	n
	111 ·		r as	100					TMF TMF	N N N N N N N N N N N N N N N N N N N	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	>< • 11 • 11 • 11	1 5 4 1	TMF. VAR	1 2 1 1 2 1 2		US I	4 U - 6	××1	TU
	56555		RJE	 ສຸ	12 12 1	2 X 1	(00)		1 % N 1 % N	N N N N N N N N N N N N N N N N N N N	0 · · i	ו1	×17	N IC	ž.		R OCH	15	F72	1) 61
2000	200220		I A	A 10 4 A 10 A 10 A 10 A 10 A 10 A 10 A 10 A 10	- 2 C		0-0-7	, U	31.51		3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		6. Z	( + ) ( + ) ( + ) ( + ) ( + )		014= 	ההוו הרגי ייני	1) 19(1)		L HAX
		. Z Z Z	30 <b>v</b>		- 4	 	- C OI	ວ ຟ ພາວ,	UN • 5 • 0 •		- 2-0	111	- H / H		.×4 271	zzz		2411	27- 27- 11-	ני הים ⊣ר וי ר
: 7	777 777 777		I DNE		200°	- A E E E E E E E E E E E E E E E E E E				1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				• <> <> <> <> <> <> <> <> <> <> <> <> <>	000	NU2= 2001 2001 2001 2001 2001 2001 2001 20	Ш К К К К К К К К К К К К К К К К К К К		
727		NN NN H	FÉRE	1100	5000	ZU XI •	z č č č M	-22F	ะ อัง อ		い ま で ま で ま で ま で し に 山 に し い ま で し い し い し い し い し い し い し い し い し い し い し い し い し い し い し い し い し い し い し い し い し い し い し い し い し い し い し い し い し い し い し い し い し い し い し い し い し い し い し い し い し い し い し い し い し い し い し い し い し い し い し い し い し い し い し い し い い い い い し い し い し い し い い い い い い し い し い し い い い い い い い い い い い い い	• U • E	U• ∢ U	n∢	<ั-⊎2 * * * ส			₹0 ²		3282
111		U U U	SANS	•	;	- 2	••		N	m	20	ND		ŝ	-	•	۳) د ا			4 Vî -
		-F ŵ	++TF		i 2 2 2			2 2 2		a a a		:	:			2 3 4	. •	: :: ::	2	3 = "
+-+-	ų (	· · `	Ó	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-Q	1	0

¢	,с		ILF(YJ.LT.66.) GU TU 14 IECUACIONES DE TURQUE DE CARGA,PARA EL ARRANQUE DEL NOYOR SHUNY
0	-'	14	GO TO 1.6 TM=0.011167*Y3
	10 . 1-	, 10	$\frac{1}{10000000000000000000000000000000000$
0	· ·		AIO=Y(2)/ALG TE=GGJ*AIO+AIO
Ð	·• *1	د	GO TU 15
	:• C	36	VARIACION BRUSCA DE TURQUE EN GENERADOR CON EXCITACION INDEP.
0	н. с	· 37	CONTOLINCUITO EN GENERADOR SHUNT
0	יז יי כ		GD TU IS VARIACION BRUSCA DE CARGA EN MOTOR SHUNT
Ğ,	22 71 ·	- 39 15	
Θ	24 75 - ···		FIG(3, N)=Y(3) FIG(4, N)=TE
	76 1 •		F(G(5,N)=VO $IF(N=EO-1eu) GO TO 6$ $F(0) = F(0) F(0) = F(0) F(0) F(0) F(0) F(0) = F(0) F(0) F(0) F(0) F(0) F(0) F(0) F(0)$
	: 17	6	CALL GRAFU(FIG.YMAX.YMIN.NC.NVA.N.TO)
0	32 31	12	FORMAT(2FIU.3) WRITE(3,13)
•	32 37 -	13	FORMAT( //.76X, CORRIENTE DE ARMADURA //85X, (AMPS)) CALL GRAFU(FIG, YMAX, YMIN, NC, NVA, N, TO) NVA=NVA+1
6	,: ,	7	PEAD(1.7) YHAX.YMIN
٢	, ,,	9	FURMAL ( //77X. · VELUCIDAD ANGULAR · /80X. · (RAD/SEG) · )
•	5.0 3.5	8	RVA=RVA+1 READ(1.6)YMAX.YMIN FORMAX.ZMIN
9	43 [°] 43	10	WRITE(3,10) FORMAL( //.72X.*TURQUE ELECTROMAGNETICO*./80X.*(NW-M)*)
6	Q 1.		$\begin{cases} F(J, L_2, I) & J & J \\ G(J, L_2, I) & J \\ G(J, $
6	44 13	50 44	NVAENVAH) RLAD(1.44) YMAX.YMIN FORMAT(2Flu.3)
9	1) 17	45	WRITE(3,45) FORMAT(///76X.*V(LTAJE TERMINAL*/80%,*(VOLTS)*)
ວ່	7 · 57	51	
C)	- # 51	52	50 TU 17 S10P
Ŭ	;; c		UND SUBRUTINA QUE CALCULA CONDICIONES INICIALES SUBRUTINE CUINI
0	34 35	•	1 HPLICIT REAL (3(A-H.0-Z) DIPENDION Y(J),F(J)
$\sim$	5 5 3 ?		COMMUNE THE LEIN, YC. VO. VO. RO,
0	5 · C	1	READ(1,1) RF.RX, RC.AIL, AID, AIO, VO, VO1, VD1, TMF, YMAX, YMIN, IFREC THE THE RECENT THE RECENT OF
C	12 12		
7	• 1		
Ĵ,	•		

7

0	• •		5	IF(YEX.LT.U.41 .AND.YEX.GT.YC) GO TO 2 IF(YEX.LT.J.573.ANJ.YEX.GT.0.41) GO TO 3 DXI=11.7895+YEX-5.8989
0	• .		2	GC TO 4 DXI=2.1331+YEX-U.6246 CO TO 4
	10 12 42	•	3 4	DXI=3.d182*YEX-1.J155 FAD=YEX-GOU+AID+DXI IF(FAD.LE.E) GU TU 6
υ	•	• -		YEX=YLX-DA*FAC GO TO S
Ø	14 15 16	-	6 8	AID=(YEX+DA[]/GUD Y(])=ALD+AID-DA] G0 T0 (20,J0,40,50),J
0	1) ]•	c	20	CONDICIONES INICIALES ADICIONALES PARA VARIACIÓN BRUSCA DE TORQUE, EN GENERASORI CUN EXCLITACIÚN INDEPENDIENTE VD=AID+(Ru+RF)
0	17		-	Y(2)=A/0+ALQ Y(3)=(A/0+KQ-VQ)/YEX TE=GQU+Y(2)+(Y(1)-YEX)/B
Ø	21 72	с		THEDRY(3) THE RETURN CONDICIONES INICIALES ADICIONALES PARA CORTOCIRCUITO EN GENERADOR/SHUNT
Ø	1) 71 75	• • • •	30	VD=A1D*(RD+RF) A1G=A1D+A1L Y(2)=A1O+ALU
0	2••• >'	· · · ••		Y(3)=(ATO RO-VO)/YEX TE=GOU+Y(2)+(Y(4)-YEX)/B TH=D+r(3)+TE RETURN
	77	с	40	COND.INIC. ADICIONALES PARA ARRANQUE EN MOTOR SHUNT
Ø	ינ זו ^י זו		-	X(3)=0.
Ø	1) 14	c,	<b>F</b> A	RETURN COND. INIC. ADICIUNALES PARA VARIACION BRUSCA DE CARGA EN MOTOR SHUNT
٢	35 -0			$\begin{array}{c} VI = A I D + (R U + R X) - VO) / YE X \end{array}$
ឆ	در در در			TC=SOU+Y(2)+(Y(1)-YEX)/B TM=D+Y(3)+TE RETURN
•	47 41	с		END SUBRUTINA DUE INTRUDUCE LA SATURACION ,
0	42 43 · ·	•	۰.	$\begin{array}{c} \text{Subrout ine Satura(Tex, TC, DAT)} \\ \text{Implicit real+b(A-H, O+Z)} \\ \text{YA=DAUS(YEX)} \\ \text{If}(YA, LT, YC) & \text{GUTU} \end{array}$
0	·· ·	. <u>-</u>	1	GO TO 2 DXT = 0.0 RETURN
0	42 41		2	IF(YA.LT.0.41.AND.YA.GT.YC) GD TO 15 IF(YA.LT.0.578.AND.YA.GT.0.41) GO TO 16 DXI=11.7895+YA-5.8989
	49 33		15	DX1#2:1JJ1+YA~U.6246 GD TO 20
O	53 5*	2	16 20	UX1=3.3182+YA-1.3155 RETURN RETURN
0	1 • 1.	с		SUBRUTINA PARA INTEGRACION FUNCTION RUNGE(N,Y,F,T,H) IMPLICIT REAL +3(A-H+0-Z) INTEGRA RUNGI
Ü	85 . 17 .			DINENJION PHI (50), SAVEY (50), Y (3), F (3) DATA H/O/ N=H+1
	1)	с		GO TU(1+2,3,4,5),M PASO 1
Ö	60 61	• •	1	RUNGE= 1 RETURN
~	*2			
$\mathcal{O}$		·		

```
RUNGE=1
         PETURN
        PASO J
         CO 33 J=1.N
      3
         PHI(J)=PHI(J)+2.0*F(J)
      33 Y(J)=SAVEY(J) +0.5+11+F(J)
                                  . .
         RUNCE=1
                                                                             . .
         RETURN
         PASO 4
         DO 44 J=1.N
         PH((J)=PH1(J)+2.0+F(J)
                                                         . .
        Y(J)=SAVEY(J)+H+F(J)
         T=1+0.5#H
         RUNGE=1
         RETURN
         PAS() 5
      5
         DO 55 J=1.H
                                                                                    -----
      55 Y(J)=SAVEY(J)+(PH1(J)+F(J))*H/6.
         M=0
                                                              181 (6) 5
14
         RUNGE=0
         RETURN
         END
         SUBRUTINA DE GRAFICACION
23
         SUBROUTINE GRAFU(FIG, YMAX, YMIN, NC, NVA, NPUN, TO)
         IMPLICIT REAL +d(A-H, 0-2)
         DIMENJION FIG(5, 100), LINEA(101), ORD(11), JSIM(5)
21
         DATA JSIM/5****/.JN.JP.JI.JN.JSU/*-*.***
76
         101,1=1 11 00
         LINEA(J)=JNAD
        CONTINUE
      11
         N=0
                                                                                  (=2.
7%
         DINC=(YMAX-YMIN)/10.
                                            651
                                                                                  5:53
         DO 12 1=1.11
25
         X = 1
                                                                                   6-51
                                                                      ٠...
         ORD(1)=YMIH+(XI-1.)*DINC
37
                                                                                   12 CONTINUE
                                           PD
         WRITE(3.30) (URD(().1=1.11)
      30 FORMAT(9X,11(Fo.1,4X))
                                                                                   Fin
                                           ER
         GO TU 14
35
      13 IF( N.EQ.1) GO TO 14
                                         الترقي .
         IF(N/10-(N-1)/10)17.17.14
                                                                                  673
      14 MN=0
         DO 15 1=1.10
         MN = MII + 1
         LINEA(MN)=JP
        .DO 15 KI=1.9
         MN=MN+1
      15 LINEA(MN)=JN
        LINEA(101)=JP
         IF(N)19.10.19
        WRITE(J.J1)LINEA
     31 FORMAT(2x, 'TIEMPO', 4X, 101A1./, 2X, '(SEGS)')
         60 10 23
      17 DO 18 1=1.101.10
         LINEA(1)=J1
      18 CONTINUE
      19 DO 24 1=NVA.NVA
         JPDS=(NC-1.)+(FIG(1,N)-YMIN)/(YMAX-YMIN)+1.5
         (F(JPUS-101 )20,23,21
      20 IF(JPUS122.22.2J
      21 LINEA(101)=J5U
         60 TU 24
      22 LINEA(1)=J50
         GO TU 24
      23 LINEA(JPOS)=JSIA(1)
                                                                                              -------
      24 CONTINUE
                                                                             - t '
         1F(N.LJ.1) GO TU 26
         TIME=TIME +TU
         IF(N/10-(N-1)/10)27.27.25
                                                                                   25 WRITE( J. 32) TIME, LINEA
      32 FORMAT(1X, E10.3, 1X.101A1, 1X, F7.3)
         GO TO 28
      26 TIME=0.0
         WRITE(J.33) TIHE, LINEA. FIG(NVA .N)
```



۰.

# APENDICE C

# EQUIPO EMPLEADO EN EL LABORATORIO

Máquina generalizada Westinghouse que incluye un primotor D.C. y un tacogenerador D.C.

Osciloscopio

1

1

1

1

1

1

Marca: TEKTRONIX

TYPE: 5649 Storage Osciloscope with auto erase 4 chanels

Cámara fotográfica para osciloscopio Marca: TENTRONIX Rollo ASA 3000

1 Estroboscopio A.C. AEG LBS 141

Tranformador de relación 1/1 para aislamiento

2 Voltimetro D.C. 65-130-260 V.- clase 0.5

Voltimetro D.C. 10-30 V. - clase 0.5

Amperimetros D.C. 1,2, 2.4,6, 12,24 A clase 0.5 Amperimetro D.C. 1 A Reóstatos 10 Ω 5A Reostato para campo 66, C 3.1 A . Reostato  $20 \Omega$  , 5.9 A Reóstato 296 Ω , 1.4 A Reostato para disparo  $2870 \Omega$  , 0.37 Redstatos 3,3  $\Omega$ , 9A para señal del osciloscopio -Contactor 220 V AC Pulsantes

Circuito filtrador, para el tacogenerador D.C.

- 154 -

2

1

4

1

1

1

.1

1

2

1

2

1

#### BIBLIOGRAFIA

- Meisel Jerome, "Principios de Conversión de Energía Electromecánica", Mc Graw - Hill, Madrird, 1966.
- Thaler G.J. y Wilcox M.L, 'Máquinas Eléctricas', Limusa, México, 1974
- Anderson and Fcuad, "Power System Control and Stability", Iowa State University, 1973
- Fitzgerald A.E, Kingsley C. Jr, Kusko A., "Electric Machinery" Mc Graw-Hill, Third Edition, New York, 1971
- 5. Adkins Bernard, "Electrical Machines", Chapman and Hall Ltd. Third Edition, London 1962
- 6. Ruales Luis, "Simulación de Transformadores", Tesis de Grado, Escuela Politécnica Nacional, Quito, 1978.
- Nuñez Galo, "Simulación Digital de la Máquina Sincrónica Para Comportamiento Dinámico", Tesis de Grado, Escuela Politécnica Nacional, Quito, 1981
- 8. Carnahan B., Luther N. A., Wilkes J.O., "Applied Numerical Methods", John Wiley and Sons, Inc., New York, 1969
- Saunders Robert, 'Measurement of D.C. Machine Parameters', AIEE Trans. on Power Apparatus and System, Vol.70, pp 700-706,1951

- Yablon A. And Appelbaum J., "Transient Analysis of a D.C. Series Motor (Linear Versus Nonlinear Models)", IEEE Trans
  on Industrial Electronics and Control Instrumentation, Vol IECI - 28, pp 120-125, May 1981
- McCraken D.D., Dorn W.S., 'Métodos Numéricos y Programación Fortran', Limusa, México 1977.
- Westinghouse Electric Corporation, "Generalized Machine", -Motor and Control Division, New York, 1958
- 13. Cook G. and Lin Ch. F., "Comparison of a local Linearization Algorithm with Stander Numerical Integration Methods for Real Time Simulation", IEEE Trans on Industrial Electronics and Control Instrumentation, Vol. IECI -27, pp 129,-132, Aug.1980

*****