ESCUELA POLITECNICA NACIONAL

37 | T-F3

FACULTAD DE INGENIERIA ELECTRICA

TESIS DE GRADO

MODELACION DIGITAL DE UN GENERADOR DE INDUCCION EN ESTADO DINAMICO

TESIS PREVIA A LA OBTENCION DEL TITULO DE INGENIERO EN ELECTRONICA Y CONTROL

EDGAR GUSTAVO SALAZAR VENEGAS

QUITO, MARZO DE 1990

Certifico que el presente trabajo ha sido realizado por el señor Edgar Gustavo Salazar Venegas.

Nors

Ing. Jorge Mora.

DEDICATORIA

,

A mis padres. Sebastián y Josefina. en agradecimiento por su bondad y comprensión.

AGRADECIMIENTO

Dejo constancia de mi más sincero agradecimiento al señor Ing. Jorge Mora, Director de Tesis, quien con su valiosa ayuda ha permitido terminar con éxito este proyecto.

.

INDICE

Pág.

INTRODUCCION

CAPITULO I : EL GENERADOR DE INDUCCION 1.1 GENERALIDADES DE LA MAQUINA DE INDUCCION 1 1.1.1 Modos de operación 2 1.1.2 Ecuaciones generales 4 1.1.2.1 Voltajes y corrientes en el estator 5 1.1.2.2 Circuito equivalente 7 1.2 OPERACION DE LA MAQUINA DE INDUCCION COMO GENERADOR 9 1.2.1 Diagramas fasoriales de la Máguina de Inducción 9 1.2.2 Balance de Potencia Activa 10 1.2.3 El Generador de Inducción acoplado a una Barra Infinita 12 1.2.4 El Generador de Inducción Autoexcitado 12 Producción de la autoexcitación 1.2.5 14 1.3 COMPENSADORES DE POTENCIA REACTIVA 15 CAPITULO II · MODELACION · MATEMATICA 2.1 ECUACIONES DE LA MAQUINA DE INDUCCION EN LOS EJES a.b.c. 18 2.1.1 Ecuaciones de voltaje 20 2.1.2 Ecuaciones de la Máguina de Inducción referidas al estator 22 2.1.3 Ecuación del Torque Electromagnético 22 2.2 TRANSFORMACION DE LAS ECUACIONES DE LA MAQUINA DE INDUCCION A UN SISTEMA DE EJES ARBITRARIOS DE REFERENCIA g,d.o. 23

2.2.1	Ejes q.d	24
2.2.2	El Eje Cero	26
2.2.3	Ecuaciones de transformación Directa e Inversa	26
2.2.4	Ecuaciones de la Concatenaciones de Flujo	27
2.2.5	Ecuaciones de Voltaje en variables qdo	29
2.2.6	Ecuaciones del Torque Electromgnético	32
2.3	ECUACIONES DE LA MAQUINA DE INDUCCION EN FUNCION	
	DE LAS CONCATENACIONES DE FLUJO	33
2.4	MODELACION DEL COMPENSADOR DE POTENCIA REACTIVA	35
2.5	MODELACION DE LAS CARGAS DEL GENERADOR	37
2.5.1	Modelación de la carga resistiva	37
2.5.2	Modelación de la carga inductiva - resistiva	38
2.5.3	Modelación de la carga capacitiva - resistiva	39
2.6	MODELO DEL GENERADOR EN CONDICIONES BALANCEADAS DE CARGA	40
261	El generador en vacío	42
2.0.1	El generador con carga resistiva	43
2.0.2	El generador con carga inductiva - resistiva	43
2.0.5	E^{1} generador con carga capacitiva - registiva	40
2.0.4	El denerador con carga capaciciva - resistiva	.4-4
2.0.0	balanceadas de carga	46
2.7	MODELO PARA CORTOCIRCUITO TRIFASICO	46
2.8	MODELO PARA CORTOCIRCUITO FASE - TIERRA	47
2.8.1	"Generador en vacío	51
2.8.2	Generador con carga resistiva	51
2.8.3	Generador con carga inductiva - resistiva	51
2.8.4	Generador con carga capacitiva - resistiva	52
2.8.5	Ecuaciones para el generador cuando se produce	
	un cortocircuito fase — tierra	52
2.9	MODELO PARA CORTOCIRCUITO DOS FASES TIERRA	53

2.10	MODELO PARA CORTOCIRCUITO DOS FASES	55
2.11	MODELO PARA APERTURA SIMULTANEA DE LAS TRES	
	FASES	58
2.12	ESTUDIO DEL COMPORTAMIENTO ELECTROMECANICO	60
2.12.1	Estudio del Torque Electromagnético	60
2.12.2	Estudio del Torque Mecánico de entrada	61
2.12.3	Ecuaciones del comportamiento electromecánico	62
CAPITUL	D III: PROGRAMA DIGITAL	
Э.1	METODO DE SOLUCION	63
3.1.1	Ecuaciones diferenciales en por unidad	63
3.1.2	Las condiciones iniciales	63
3.1.2.1	Estado estable del generador	63
3.1.2.2	Estado estable del motor de corriente continua	64
3.1.2.3	Condiciones iniciales para fallas asimétricas	65
3.1.3	Conexiones de la máguina de inducción, conden 5a -	
	dores de excitación y carga	66
3.1.4	Método de solución del programa digital	67
3.2	DESCRIPCION DE LOS ALGORITMOS	67
3.2.1	Programa principal	69
3.2.2	Subrutina ESTABLĚ	70
3.2.3	Subrutina FRECUEXM	70
3.2.4	Subrutina SISTECUAFXM	70
3.2.5	Subrutina CONDINICIAL	70
3.2.6	Subrutina INTEGRACION	70
3.2.7	Subrutina RUNGEKUTTA	73
3.2.8	Subrutina ECUADIF	73
3.2.9	Subrutina QDOABC	73
3.2.10	Subrutina GRAFICOS	73
3.2.11	Subrutina XCMINIMO	74
3.2.12	Subrutina COEDCI	74
3.2.13	Subrutina INGCARGA	74
3.2.14	Subrutina MAQUINA	75

3.2.15	Subrutina MOTRIZ	75
3.2.16	Subrutinas PREMAQUI y PREMOTRIZ	75
3.2.17	Subrutina PARAGRAF	75
3.3	PROGRAMA DIGITAL	75
CAPITUL	O IV : PARTE EXPERIMENTAL Y SIMULACION	
4.1	MEDIDA DE LOS PARAMETROS DE LAS MAQUINAS DE	
	INDUCCION	77
4.1.1	Resumen de los parámetros de los grupos motor -	
	generador	78
4.1.2	Metodología de las pruebas en el sistema	79
4.2	PRUEBAS DE VARIACIONES BRUKAS DE CARGA	80
4.2.1	Variación de carga resistiva a inductiva	81
4.2.2	Variación de carga resistiva a vacío	81
4.2.3	Variación de carga inductiva a resistiva	82
4.2.4	Varíación de carga inductiva a vacío	82
4.2.5	Variación de vacío a carga resistiva	83
4.2.6	Variación de vacío a carga inductiva	83
4.2.7	Simulaciones de Variación Brusca de Carga	84
4.3	PRUEBAS DE CORTOCIRCUITO TRIFASICO	90
4.3.1	Generador con carga resistiva	90
4.3.2	Generador con carga inductiva	91
4.3.3	Simulaciones de Cortocircuito Trifásico	92
4.4	PRUEBAS DE CORTOCIRCUITO FASE - TIERRA	97
4.4.1	Generador con carga resistiva	<u>9</u> 7
4.4.2	Generador con carga inductiva	98
4.4.3	Generador en vacío	98
4.4.4	Simulaciones de Cortocircuito fase - tierra	99
4.5	PRUEBAS DE CORTOCIRCUITO DOS FASES TIERRA	104

4.5.1	Generador con carga resistiva	104
4.5.2	Generador con carga inductiva	105
4.5.3	Generador en vacío	105
4.5.4	Simulaciones de Cortocircuitos dos fases tierra	106
4.6	PRUEBAS DE CORTOCIRCUITO DOS FASES	111
4.6.1	Generador con carga resistiva	111
4.6.2	Generador con carga inductiva	112
4.6.3	Generador en vacío	113
4.6.4	Simulaciones de Cortocircuitos dos fases	114
4.7	PRUEBAS DE APERTURA SIMULTANEA DE LAS TRES FASES	120
4.7.1	Generador con carga resistiva	120
4.7.2	Generador en vacío	121
4.6.4	Simulaciones de Apertura Simultánea de las tres	
	fases	122
CAPITUL	O V : ANALISIS Y COMPARACION DE RESULTADOS	
5.1	CONSIDERACIONES Y LIMITACIONES DEL ESTUDIO	127
5.2	VARIACIONES BRUSCAS DE CARGA	128
5.3	CORTOCIRCUITOS	130
5.4	APERTURA SIMULTANEA DE LAS TRES FASES	132
CONCLUS	IONES	139
RECOMEN	DACIONES	145
APENDIC	E A : DETERMINACION DE LA FRECUENCIA Y REACTANACIA EN EL GENERADOR DE INDUCCION AUTOEXCITADO	MUTUA
APENDIC	E B : OBTENCION DEL CONDENSADOR MINIMO PARA LA AU CITACION	TOEX-
APENDIC	E C : ALGORITMO DE RUNGE - KUTTA DE CUARTO ORDEN PA	RA LA

SOLUCION NUMERICA DE UN SISTEMA DE ECUACIONES

DIFERENCIALES

- APENDICE D : METODO DE NEWTON PARA LA SOLUCION NUMERICA DE ECUACIONES SIMULTANEAS NO LINEALES
- APENDICE E : ECUACIONES DIFERENCIALES DEL SISTEMA MOTOR GENE-RADOR EN POR UNIDAD
- APENDICE F : MEDIDA DE LOS PARAMETROS DE LA MAQUINA DE INDUC-CION
- APENDICE G : MEDIDA DEL MOMENTO DE INERCIA
- APENDICE H : MEDIDA DE LOS PARAMETROS DE LOS MOTORES DE CO-RRIENTE CONTINUA
- APENDICE I : GUIA DE USO DEL PROGRAMA DIGITAL

BIBLIOGRAFIA

à

Las máquinas de inducción tienen una gran variedad de aplicaciones, debido a su versatilidad, confiabilidad, facilidad de control y bajo costo. Por lo que son objeto de estudios e investigaciones, para obtener un conocimiento amplio sobre su comportamiento, sea este en estado estable o dinámico y la influencia que pueden ejercer sobre el sistema del cual forman parte.

Una aplicación de las máquinas de inducción es su funcionamiento como generador. Para este tipo de trabajo, se requiere de una fuente de potencia reactiva, y además hacer girar al rotor a una velocidad superior a la sincrónica. De este hecho parten las dos formas de funcionamiento como generador; la una cuando se acopla a una barra infinita, que proporciona la potencia reactiva necesaria; y la otra cuando funciona como generador autoexcitado, necesitándose condensadores conectados en sus terminales que proporcionen la potencia reactiva necesaria.

El objetivo primordial de este trabajo, es realizar un estudio acerca del comportamiento dinámico del generador de inducción, cuando trabaja como autoexcitado, en momentos que se presenten eventualidades como: variaciones de carga, cortocircuitos o apertura simultánea de las tres fases. Para esto, se ha hecho uso de una herramienta matemática muy útil, que es la transformación de ejes abc a qdo, aplicando también a los condensadores y carga, resultando un método sumamente apropiado para cumplir con los objetivos propuestos.

En este trabajo se incluyen métodos para determinar las condiciones en estado estable del generador, cálculo del condensador mínimó para mantener la autoexcitación. Se incluye también el comportamiento de un motor de corriente continua con excitación independiente, que para este caso es la máguina motriz.

Para una correcta validación del modelo matemático propuesto, se contrastan los resultados con los presentados de pruebas realizadas en el Laboratorio de Máquinas Eléctricas de la Facultad de Ingeniería Eléctrica, tanto en una máquina de rotor bobinado, como en una de rotor jaula de ardilla.

CAPITULO I

EL GENERADOR DE INDUCCION

1.1 GENERALIDADES DE LA MAQUINA DE INDUCCION [1]

El generador de inducción es una máguina convertidora de energía, compuesta por devanados estatóricos y devanados rotóricos, separados por un entrehierro. Al alimentar a los devanados del estator con una corriente alterna, éste induce corrientes en el rotor de forma similar a lo que ocurre en un transformador, transmitiéndose potencia entre estator y rotor.

Cuando se excita con una corriente alterna polifásica se creará en el entrehierro un campo magnético rotativo gue gira a la velocidad sincrónica ns , determinada por el número de polos y por la frecuencia f aplicada al estator, dada por:

$$ns = 2 \pi f [rad.eléc. / s.]$$
(1.1)

$$ns = \frac{2 \pi f}{P / 2} [rad.mec. / s.]$$
(1.2)

$$ns = \frac{120 f}{P} [RPM]$$
(1.3)

donde:

f = frecuencia del sistema [Hz]

P = número de polos

El rotor puede ser uno de los dos tipos que a continuación se citan:

- a) Rotor Bobinado, con un devanado polifásico similar al del estator y con el mismo número de polos, los terminales del rotor se conectan a anillos rozantes aislados, montados sobre el eje, en los que se apoyan escobillas de carbón, con lo que dichos terminales resultan accesibles.
- b) Rotor jaula de ardilla cuyo devanado está formado por varillas conductoras alojadas en ranuras aplicadas en el hierro del propio rotor, y cortocircuitadas en ambos extremos mediante dos platos conductores dispuestos en cada lado del rotor. La gran sencillez y robustez de la

construcción en jaula de ardilla constituye una relevante ventaja de las máguinas de inducción.

La máquina de inducción basa su funcionamiento en la interacción electromagnética entre el campo magnético giratorio y los voltajes y corrientes inducidas en el rotor, cuando dicho campo cruza sus conductores. De esta manera, las corrientes del estator y rotor crean en el entrehierro una onda de fuerza magnetomotriz (f.m.m.) resultante y un flujo principal o mutuo ¢m giratorio a velocidad sincrónica que concatena con los dos devanados de la máguina.

La interación electromagnética entre estator y rotor es posible sólo cuando la velocidad del campo magnético giratorio ns y la velocidad del rotor nr son distintas. Si ambas velocidades fueran iguales, el campo sería inmóvil con respecto al rotor y no habría ningún efecto de inducción en el devanado rotórico.

La velocidad con la que el campo magnético corta a los conductores del rotor es igual a la diferencia entre la velocidad sincrónica y la velocidad del rotor, diferencia que se conoce con el nombre de deslizamiento s:

$$ns - nr$$

$$s = ------ (1.4)$$
ns

1.1.1 Modos de operación

La máquina de inducción puede funcionar como: transformador, motor, freno electromagnético o generador.

Al conectar al estator a un sistema polifásico de corriente y con el rotor en reposo (nr = 0 ó s = 1) abierto o cortocircuitado, la máquina de incudción representará un transformador. El campo magnético del estator gira a una velocidad ns e induce en el devanado del rotor una fuerza electromotriz (f.e.m.) Er que tiene la misma frecuencia f del sistema y la dirección determinada por la regla de la mano derecha.

Partiendo de las condiciones anteriores y con el circuito rotórico cortocircuitado, por el devanado del rotor circulará

una corriente Îr cuya componente activa tiene igual sentido que la f.e.m. Er. El efecto de interacción del flujo creado por esta corriente (línea de trazos en la Fig. 1.1.a) con el flujo del estator, formará un flujo resultante representado en la Fig. 1.1.b. En estas condiciones, la fuerza Fo sobre el conductor <u>a</u> crea en el eje de la máquina un torque que tiende a girar al rotor en el mismo sentido de giro del flujo. El conjunto de torques creados en los conductores, forma uno resultante de rotación que al vencer el par de frenado del eje pondrá en giro al rotor hasta una velocidad nr. En este caso la conversión de energía es de eléctrica aplicada al estator a energía mecánica en el eje.

La velocidad del motor de inducción depende de su carga, y para este caso se debe cumplir:

ns > nr > 0

o en función del deslizamiento:

0 < s < 1

Fig 1.1 PRINCIPIOS DE FUNCIONAMIENTO DE LA MAQUINA DE INDUCCION

Si por un medio motriz externo el rotor gira en sentido contrario al del campo magnético, la máquina recibe energía desde el sistema (eléctrica) y desde el medio motriz externo (mecánica). Este funcionamiento se llama freno electromagnético, comprendiendo teóricamente la velocidad del rotor entre:

 $0 > nr > -\infty$

y su deslizamiento entre:

1 < 5 < 00

Si por cualquier medio motriz externo se lleva al rotor cortocircuitado de la máguina de inducción, cuyo estator está conectado a un sistema polifásico, a una velocidad rotórica superior a la sincrónica, el deslizamiento se hace negativo y el sentido de la rotación del flujo con respecto al rotor cambia con relación al sentido que tiene la máguina cuando funciona como motor. Con esto se cambian el sentido de la f.e.m. y de la corriente en el conductor <u>a</u>, y también el signo del torque eje (Fig. 1.1.c). Por lo tanto, el torque desarrollado en el por la máquina de inducción se convierte en frenado con respecto al torque del medio motriz externo. En estas condiciones la máquina de inducción funciona como generador, convirtiendo la energía mecánica aplicada al eje en energía eléctrica entregada al sistema.

Por lo tanto, la condición para que la máquina de inducción funcione como generador es:

∞ > nr > ns

o en función del deslizamiento:

 $0 > s > -\infty$

El generador de inducción puede funcionar independientemente de un sistema exterior. Para esto necesita de la conexión de adecuados condensadores a los terminales del estator y poner el rotor de la máguina en rotación a una velocidad también adecuada. Esta forma de operación, llamada generador de inducción autoexcitado, precisa de la existencia de un flujo remanente en el hierro del rotor o de una corriente momentánea en el estator desde alguna fuente exterior, para que se produzca la autoexcitación de la máquina y terminar en un estado estable de funcionamiento.

1.1.2 Ecuaciones Generales

1.1.2.1 Voltajes y Corrientes en el Estator

Al estar conectado el estator de la máquina de inducción a un sistema polifásico de voltaje terminal $\overline{V}t$ por fase y frecuencia f, el flujo principal giratorio Φ m induce f.e.m. en los devanados del estator y del rotor.

A rotor blogueado las f.e.m. están dadas por las siguientes ecuaciones generales:

Es	-	4.44	f	Ns	Kdevs	Φ	[V]	(1.5)
Er	=	4.44	f	Nr	Kdevr	Φ	[V]	(1.6)

donde:

Es, Er : valor eficaz de los voltajes inducidos por fase en los devanados del estator y rotor. Ns, Nr : número de espiras por fase en el estator y rotor.

ile, il i ilamoro do oppilas por laso en el ostator , reter

Kdevs, Kdevr : factores de bobinado del estator y rotor.

flujo principal por polo [Mx].

Más generalmente, el rotor de la máquina de inducción puede girar a cualquier velocidad nr, y lo hace en un campo magnético que a su vez gira a una velocidad ns. Esto es equivalente a considerar como si el flujo principal ¶m girase a una velocidad n respecto al rotor inmóvil, donde:

$$n = ns - nr \tag{1.7}$$

por lo gue la frecuencia-en el devanado rotórico es:

$$fr = \frac{P n}{2 \ 60}$$
(1.8)

Reemplazando las ecuaciones (1.3), (1.4), (1.7) en (1.8) se tiene: '

 $fr = s f \tag{1.9}$

La f.e.m. en los devanados del rotor, incluyendo su rotación, queda de la siguiente forma:

Esr	=	4.4	14	s .	f.	Nr.	Kdevr	Φ	(1.	10)
Esr		s.	. E	r					(1.	11)

Es decir, que la f.e.m. inducida en rotación E_{sr} es igual a s veces la f.e.m. inducida con el rotor inmóvil Er.

De acuerdo al funcionamiento de la máquina de inducción, s puede variar idealmente entre +∞ y -∞, determinando la variación de la fase de la f.e.m. inducida.

Las corrientes Is e Ir que circulan por el estator y rotor producen flujos de dispersión que inducen f.e.m dadas en forma fasorial por:

Ēls	=	j	Īs	Xls	(1.	12)
Ēlr	=	j	Īr	Xlrs	(1.	13)

donde: Ēls, Ēlr : f.e.m. de dispersión por fase del estator y rotor. Īs. Īr : corrientes por fase del estator y rotor. Xls, Xlrs : reactancias de dispersión por fase del estator y rotor en movimiento.

A su vez:

 $Xls = 2 \pi$. f. Ls(1.14) $Xlrs = 2 \pi$. fr. Lr = 2π . s. f. Lr(1.15)Xlrs = s. Xlr(1.16)

donde:

Ls. Lr : inductancias de dispersión por fase del estator y rotor.

Xlr : reactancia de dispersión por fase del rotor inmóvil.

Tomando en cuenta la influencia como caídas de tensión de la resistencia óhmica y el flujo de dispersión de cada devanado, las ecuaciones de equilibrio de voltajes escritas en forma fasorial - compleja para cada devanado por fase son:

 $\overline{V}t = \overline{E}s + \overline{I}s (rs + j Xls)$ (1.17) $0 = \overline{E}rs - \overline{I}r (rr + j Xlrs)$ (1.18) donde:

rs, rr : resistencia por fase del estator y rotor.

La ecuación (1.18), en función de los parámetros a rotor inmóvil queda:

$$0 = \overline{E}r - \overline{I}r (rr/s + j Xlr)$$
(1.19)

1.1.2.2 Circuito Equivalente

Al igual que en los transformadores, la determinación del circuito equivalente de la máguina de inducción por fase consiste en sustituir idealmente el circuito rotórico por otro. cuyo número de fases, espiras por fase y factor de devanado sean iguales a los del circuito del estator; se distinguen mediante apóstrofes los parámetros del rotor reducidas al estator. Designando por Ke y Ki los factores de reducción de las tensiones y de las corrientes respectivamente, en lo referente a tensiones se tiene:

 $Ke = \frac{Es}{Er} = \frac{E'r}{Er} = \frac{4.44 \text{ f Ns Kdevs } \Phi}{4.44 \text{ f Nr Kdevr } \Phi} = \frac{Ns \text{ Kdevs}}{Nr \text{ Kdevr}}$ (1.20) $E'r = Ke \cdot Er = Es$ (1.21)

Expresando que la f.m.m. del rotor reducido F'r se conserva igual a la del original Fr para así determinar la misma f.m.m. resultante se tiene:

0.45 gr Kdevr Nr Ir / P = 0.45 gs Kdevs Ns I'r / P

de donde Ki resulta ser:

$$Ki = \frac{Ir}{I'r} = \frac{qs \ Kdevs \ Ns}{qr \ Kdevr \ Nr}$$
(1.22)
$$I'r = \frac{1}{Ki} Ir \qquad (1.23)$$

donde:

qs, qr : número de fases del estator y rotor.

La reducción de la resistencia y reactancia de dispersión del rotor se obtienen observando que son cocientes de caídas de tensión para corrientes, por lo tanto:

Aplicando las ecuaciones de reducción a la ecuación (1.19) de equilibrio de voltajes del circuito rotórico, el cual es primero reducido al reposo y luego al estator, se tiene:

$$0 = \overline{E}'r - \overline{I}'r (r'r/s + j X'lr)$$
(1.26)
$$\overline{E}'r = \overline{I}'r (r'r/s + j X'lr)$$
(1.27)

Para tomar en cuenta por separado a las pérdidas óhmicas en el circuito rotórico se puede hacer el siguiente reemplazo:

$$r'r 1 - s
 --- = r'r + r'r ----- (1.28)
 s s$$

por lo que:

 $\overline{E}'r = \overline{I}'r (r'r + r'r - - - + j X'lr)$ (1.29)

El circuito equivalente se completa al considerar al flujo principal Φ m en el entrehierro como una reactancia Xm llamada de magnetización y su voltaje Vg llamado de entrehierro (Vg = $\overline{E}s = \overline{E}'r$). En este punto y por simplificación de análisis no se toman en cuenta a las pérdidas en el hierro del estator al no introducirse mayor error. Así, la corriente de estator $\overline{I}s$ se descompone en dos componentes: la corriente del rotor reducida $\overline{I}'r$ (o de carga) y la de magnetización $\overline{I}m$.

Combinando estos dos últimos aspectos. los correspondientes a los de reducción del circuito rotórico (1.19) y (1.29).

permiten representar a la máquina de inducción por fase con el circuito de la Fig. 1.2.

Fig.1.2 CIRCUITO EQUIVALENTE DE LA MAQUINA DE INDUCCION POR FASE

La cantidad I'r² r'r representa la potencia absorvida en el circuito de rotor. la cantidad I'r² r'r (1-s)/s es la potencia transferida a través del entrehierro desde el estator al rotor. En un motor de inducción todas estas cantidades son positivas, en cambio en el generador, por ser el deslizamiento negativo. la potencia transferida es negativa, por lo tanto la dirección de transferencia de potencia es ahora desde el rotor al estator o desde el eje a los circuitos del rotor y estator.

1.2 OPERACION DE LA MAQUINA DE INDUCCION COMO GENERADOR [1]

1.2.1 Diagramas Fasoriales de la Máguina de Inducción

Los diagramas fasoriales de la máguina de inducción son trazados de acuerdo al circuito equivalente de la Fig. 1.2 y se toma el voltaje terminal $\overline{V}t$ como referencia.

El,diagrama fasorial de la máquina de inducción como motor se muestra en la Fig. 1.3. El voltaje terminal $\overline{V}t$ en el estator es la suma del voltaje del entrehierro $\overline{V}g$ y las caídas de tensión en la resistencia y reactancia de dispersión del estator. A su vez $\overline{V}g$ es igual a la suma de las caídas de tensión en la resistencia y reactancia de dispersión reducidas del rotor. La corriente del estator $\overline{I}s$ está compuesta por la corriente de

magnetización $\overline{I}m$ y por la corriente reducida del rotor \overline{I} 'r. En este régimen la máguina de inducción recibe potencia activa y reactiva del sistema, lo que corresponde a ángulos de retraso Os menor a 90° de \overline{I} s respecto a \overline{V} t y Or menor a 90° de \overline{I} 'r respecto a Vg.

Fig. 1.3 DIAGRAMA FASORIAL DEL MOTOR DE INDUCCION

En la Fig. 1.4 se muestra el diagrama fasorial para el caso de la máquina de inducción funcionando como generador. Debido al cambio de dirección de rotación del flujo principal con respecto al rotor. el signo del deslizamiento s se hace negativo. Este hecho se refleja en la corriente del rotor reducida \overline{I} 'r cuyo signo de su componente reactiva se conserva. mientras su correspondiente componente activa cambia con relación al régimen del motor. El ángulo Θ r entre $\overline{V}g$ e \overline{I} 'r es mayor a 90°. La corriente de estator $\overline{I}s$, como resultado de sus componentes $\overline{I}m$ e \overline{I} 'r también tiene un ángulo Θ s mayor a 90° respecto al voltaje terminal $\overline{V}t$, es decir, que la potencia activa de la máquina es negativa o fluye del rotor al estator.

1.2.2 Balance de Potencia Activa

El generador de inducción transforma la energía mecánica aplicada a su eje, en energía eléctrica que se entrega a la red: la transmisión de esta energía es de rotor a estator por medio del campo magnético del entrehierro, y se relacionan con fuerzas electromagnéticas que se desarrollen en el rotor.

Fig. 1.4 DIAGRAMA FASORIAL DEL GENERADOR DE INDUCCION

Fig. 1.5 BALANCE DE POTENCIA ACTIVA DEL GENERADOR DE INDUCCION

El proceso de transformación de energía es la siguiente: la máguina recibe potencia mecánica Pm a su eje. a ésta se y de ventilación Pv. y las descuentan las pérdidas mecánicas pérdidas adicionales en el hierro del rotor Pa (debido a la influencia de armónicos de orden superior y desplazamiento de su corriente), para obtener potencia mecánica útil Pent, parte se consume en el cobre del circuito rotórico Pcur. de ésta quedando la potencia electromagnética Pem. que se transmite por el entrehierro. Restando de esta última las pérdidas en el cobre del circuito estatórico Pcus y las pérdidas en el hierro del estator Pfe (debido a las corrientes de Foucault y fenómeno de histérisis) obtenemos la potencia de salida o entregada a la red. En la Fig. 1.5 se representa el balance de potencia del generador de inducción.

Aceptando un flujo de potencia activa positiva del rotor al estator se tienen las siguientes relaciones:

Pent = Pm - Pv - Pa(1.30)Pem = Pent - Pcur(1.31)Psal = Pem - Pcus - Pfe(1.32)

1.2.3 El Generador de Inducción acoplado a una Barra Infinita

La máquina de inducción puede funcionar ya sea acoplado a una barra infinita o en forma aislada en paralelo con condensadores. En ambos casos la máquina demanda de potencia reactiva para mantener sus flujos. La máquina de inducción operando como un generador acoplado a una barra infinita es manejada por una máquina motriz por sobre la velocidad sincrónica, el deslizamiento es negativo y la resistencia equivalente r'r/s del circuito del rotor es negativa.

El generador de inducción no tiene posibilidad de controlar ni su volataje terminal, ni su frecuencia. tampoco puede generar potencia reactiva. Por esta razón aparece la denominación de generador acoplado a una barra infinita, al ser la barra la que determina el voltaje terminal, la frecuencia y proporciona la potencia reactiva.

1.2.4 El Generador de Inducción Autoexcitado

Ahora, la máquina de inducción funciona aisladamente y sus terminales del estator van conectados a los condensadores y a la carga.

Un condensador sin pérdidas y conectado a una red, se lo puede considerar como un receptor de corriente en adelanto de 90° respecto a la tensión de la red o como un generador de corriente en atraso de 90° respecto a la tensión de la red. Por lo tanto es factible sustituir, total o parcialmente, el suministro de corriente en atraso que demanda el generador de inducción para la excitación de su circuito magnético, con la corriente generada por condensadores conectados a sus termina-

les estatóricos.

Si toda la corriente en atraso de la máquina procede de condensadores de excitación, el funcionamiento del generador de inducción se dice que es autónomo al ser capaz de operar aisladamente de un sistema. Su voltaje y frecuencia generados son función de la velocidad aplicada al eje, condensadores y carga. La potencia activa es suministrada por medio de una máguina motriz y la potencia reactiva es suministrada tanto al generador como a la carga por medio de los condensadores.

En la Fig. 1.6 se representa una máguina de inducción jaula de ardilla, configurada para funcionar como generador de inducción autoexcitado.

Fig. 1.6 CONFIGURACION DEL GENERADOR AUTOEXCITADO

El circuito equivalente del generador de inducción autoexcitado en estado estable es básicamente el circuito equivalente de la máguina de inducción de la figura 1.2. En paralelo a los terminales del estator por fase se incluyen los condensadores de excitación y la impedancia de carga (Fig. 1.7). Circuito que acepta un régimen de frecuencia de operación f variable, en el cual se redefinen los parámetros que dependan de ésta.

En la Fig. 1.7 los parámetros, representan: rs, Xls : resistencia y reactancia de dispersión del estator r'r, X'lr : resitencia y reactancia de dispersión del rotor (referidos al estator).

- Xm : reactancia de magnetización.
- RL. Xl : resistencia, reactancia inductiva o capacitiva de carga.
- Xc : reactancia capacitiva del condensador de excitación C.
- IL : corriente de carga.
- Ic : corriente del condensador de excitación.

Los parámetros están definidos a la frecuencia de operación f.

Fig. 1.7 CIRCUITO EQUIVALENTE POR FASE DEL GENERADOR DE INDUCCION AUTOEXCITADO

1.2.5 Producción de la Autoexcitación

El proceso electromagnético por el cual aparece un voltaje a los terminales estatóricos de la máquina de inducción en paralelo con condensadores, es llamado autoexcitación. Comienza desde el reposo, cuando es indispensable la existencia de un flujo remanente en el hierro del rotor.

En wacío al hacer girar al rotor a velocidades superiores a la sincrónica (para una frecuencia dada), el flujo remanente inducirá en los devanados del estator débiles f.m.m. (\overline{Vg}) a una frecuencia proporcional a la velocidad del rotor. Bajo la acción de este voltaje alterno inducido, por los condensadores circulará una corriente en adelanto \overline{Ic} , la misma corriente circulará por los devanados del estator con una reacción de inducido magnetizante que amplificará el fluio remanente inicial de la máguina. Como consecuencia aumentarán las magnitudes de la f.e.m. inducida y a su vez la de la f.m.m magnetizante.

Si el condensador y la velocidad del rotor son de valores adecuados, el proceso de aumento de la corriente estatórica y voltaje inducido continuarán hasta alcanzar un estado estable que es impuesto por la saturación del circuito magnético de la máguina.

1.3 COMPENSADORES DE POTENCIA REACTIVA

Existen algunas configuraciones para compensar la potencia reactiva. necesaria para mantener excitado al generador de inducción: a continuación se presenta tres configuraciones para compensar potencia reactiva.

En el funcionamiento del generador de inducción acoplado a una barra infinita. la potencia reactiva es suministrada por la red. Esta configuración tiene la desventaja de bajar el factor de potencia del conjunto, un esquema de esta configuración se presenta en la Fig. 1.8. Se puede considerar que la red en este caso es proveedora de la potencia reactiva necesaria para la excitación del generador. [1]

Figura 1.8 GENERADOR ACOPLADO A UNA BARRA INFINITA

El compensador de potencia reactiva basicamente es un condensador por fase puesto en los terminales de la máguina.

Para funcionamiento del generador en el que se desee controlar el voltaje terminal y el factor de potencia del sistema para variaciones eventuales en la velocidad del rotor existem configuraciones de condensadores e inductancias como las mostradas en la Fig. 1.9, que representa un circuito por fase del sistema, en la cual controlando el ángulo de disparo de los tiristores, se puede variar el consumo de la componente reac tiva de la inductancia, con lo cual se controla el voltaje de salida y el factor de potencia.[2]

Fig. 1.9 CIRCUITO EQUIVALENTE POR FASE DE COMPENSADOR ESTATICO DE POTENCIA REACTIVA

Fig. 1.10 CONFIGURACION DE UN GENERADOR AUTOEXCITADO ACOPLADO A UNA BARRA INFINITA POR MEDIO DE UN SISTEMA CONVERSOR - INVERSOR

Una configuración en la cual se puede hacer un acople a

una barra infinita. eliminando el problema de tener velocidades superiores a la sincrónica. es el mostrado en la Fig. 1.10, en la cual se tiene un generador de inducción autoexcitado. un rectificador controlado, una reactancia de encadenamiento do v un inversor controlado de conmutación a línea. La variación del voltaje y la frecuencia del generador de inducción frente a variaciones en la velocidad del rotor, es controlada por medio del ángulo de disparo en el rectificador y en el inversor con el objeto de extraer la máxima potencia posible desde la turbina, con un mínimo de potencia reactiva consumida por el generador.[3]

En general este esquema controla a la vez potencia activa y reactiva, y voltaje terminal en el generador de inducción, volviendo al conjunto como una fuente de energía económica.

CAPITULO II

MODELACION MATEMATICA

2.1 ECUACIONES DE LA MAQUINA DE INDUCCION EN LOS EJES a.b.c. [4]

El modelo matemático desarrollado para la máquina de inducción es lineal, se asume la máquina simétrica e ideal, no se considera la saturación magnética, armónicas en la onda de fuerza magnetomotriz (f.m.m): u otros fenómenos que carezcan de linealidad.

En el modelo matemático se llega a determinar ecuaciones diferenciales de voltaje, concatenaciones de flujo. corrientes en la carga, y velocidad angular del sistema compuesto por: máguina motriz. máguina de inducción, condensadores de excitación y carga: ecuaciones que sirven para determinar el comportamiento dinámico del conjunto.

Considerar a la máquina de inducción como ideal y simétrica. supone las siguientes características:

- .- Entrehierro uniforme.
- Circuito lineal magnético (despreciar la saturación y la histérisis)
- .- Los devanados del estator y del rotor deben ser simétricos y distribuidos de tal forma que produzcan una fuerza magnetomotriz de distribución senoidal en el entrehierro.
- .- Las inductancias propias de los devanados del estator y rotor son independientes de la posición del rotor.
- .- No se considera la alteración en la resistencia. debido a cambios de temperatura y frecuencia.

Teniendo en cuenta las consideraciones mencionadas en el párrafo'anterior, se puede hacer el siguiente análisis para determinar las ecuaciones diferenciales de la máquina de inducción en los eje a,b,c.

Se considera a la máquina como un conjunto de circuitos lineales acoplados, en los cuales los voltajes son proporcionales a las corrientes que las producen.

Fig. 2.1 MAQUINA SIMETRICA TRIFASICA DE DOS POLOS

Se facilita el análisis, al representar una máquina trifásica de dos polos (Fig. 2.1.a), donde los devanados del estator se hallan desfazados 120° eléctricos entre sí, de igual manera para el rotor, siendo Or el desplazamiento angular entre los ejes magnéticos del estator y rotor.

2.1.1 Ecuaciones de voltaje.

Del circuito de la Fig. 2.1.b se lluega a la siguiente ecuación para el voltaje en cualquiera de las tres fases:

 $v = r * i + p\lambda \tag{2.1}$

donde:

- v : voltaje por fase
- i : corriente por fase
- r : resistencia de cada bobina
- λ : concatenaciones de flujo totales de una bobina
- p : operador d/dt

En forma matricial para los devanados del estator y del rotor los voltajes fase-neutro serán:

Donde las submatrices tienen la siguiente forma:

$$[Vabcs] = \begin{bmatrix} Vas \\ Vbs \\ Vcs \end{bmatrix} ; [Vabcr] = \begin{bmatrix} Var \\ Vbr \\ Vcr \end{bmatrix}$$
(2.3)
$$[iabcs] = \begin{bmatrix} iab \\ ibs \\ ics \end{bmatrix} ; [iabcr] = \begin{bmatrix} iar \\ ibr \\ icr \end{bmatrix}$$
(2.4)
$$[\lambda abcs] = \begin{bmatrix} \lambda as \\ \lambda bs \\ \lambda cs \end{bmatrix} ; [\lambda abcr] = \begin{bmatrix} \lambda ar \\ \lambda br \\ \lambda cr \end{bmatrix}$$
(2.5)

$$[rs] = \begin{bmatrix} rs & 0 & 0 \\ 0 & rs & 0 \\ 0 & 0 & rs \end{bmatrix} ; [rr] = \begin{bmatrix} rr & 0 & 0 \\ 0 & rr & 0 \\ 0 & 0 & rr \end{bmatrix}$$
(2.6)

Se define las concatenaciones de flujo tanto para el estator como para el rotor de la siguiente manera:

$$\lambda = L . i$$
 (2.7)

En forma matricial:

$$[\lambda] = [L][i]$$
 (2.8)

Donde [L] es una matriz de inductancias propias y mutuas de los dos devanados.

Desarrollando la ecuación anterior para cada devanado se tiene:

$$\begin{bmatrix} [\lambda abcs] \\ ----- \\ [\lambda abcr] \end{bmatrix} = \begin{bmatrix} [Ls] & [Lsr] \\ ----- \\ [Lsr] & [Lr] \end{bmatrix} \begin{bmatrix} [iabcs] \\ ----- \\ [iabcr] \end{bmatrix}$$
(2.9)

donde [Ls], [Lr] y [Lsr] tienen la siguiente forma:

$$[Ls] = \begin{bmatrix} Ls & 0 & 0 \\ 0 & Ls & 0 \\ 0 & 0 & Ls \end{bmatrix}; [Lr] = \begin{bmatrix} Lr & 0 & 0 \\ 0 & Lr & 0 \\ 0 & 0 & Lr \end{bmatrix}$$
(2.10)

$$Ls = Lls + Lms$$

$$Lr = Llr + Lmr$$
(2.11)

Lls y Llr : inductancias de dispersión del estator y rotor. Lms y Lmr : inductancias de magnetización del estator y rotor.

[Lsr] es la matriz de inductancias mutuas entre el devanado del rotor y estator, su valor depende de la posición del rotor. El valor de los elementos de esta matriz varía con el coseno del angulo θr. al desarrollarla se llega a:

$$[Lsr] = Lsr \begin{bmatrix} \cos(\theta r) & \cos(\theta r + 2\pi/3) & \cos(\theta r - 2\pi/3) \\ \cos(\theta r - 2\pi/3) & \cos(\theta r) & \cos(\theta r + 2\pi/3) \\ \cos(\theta r + 2\pi/3) & \cos(\theta r - 2\pi/3) & \cos(\theta r) \end{bmatrix}$$

$$(2.12)$$

donde:

- Lsr : magnitud del acoplamiento mutuo entre los devanados del estator y estator y rotor.
- Or : desplazamiento angular entre el eje del estator y rotor.
- 2.1.2 Ecuaciones de la Máquina de Inducción referidas al Estator.

Se puede referir las ecuaciones del rotor al estator multiplicando por la relación de espiras.

> [i'abcr] = (Nr/Ns) [iabcr][V'abcr] = (Ns/Nr) [Vabcr] (2.13) [r'r] = (Ns/Nr)² [rr]

Aplicando la transformación a la ecuación (2.9) resulta:

$$[\lambda'abcr] = (Ns/Nr) [\lambda abcr]$$

 $[Lms] = (Ns/Nr) [Lsr]$ (2.14)
 $[L'r] = (Ns/Nr)^{2} [Lr]$

El superíndice T indica la transpuesta de la matriz o vector.

2.1.3 Ecuación de Torque Electromagnético

La ecuación del Torque Electromagnético se puede obtener a partir de la energía instantánea almacenada en el campo magnético que es:

$$W = ([i]^T[L][i])/2$$
 (2.16)

donde:

$$\{i\} = \begin{bmatrix} iabcs \\ \hline \\ (i'abcr \end{bmatrix}$$
(2.17)

La matriz de inductancias es:

$$\{L\} = \begin{bmatrix} \frac{\{Ls\} & \{Lms\}}{\dots} \\ \frac{\{Lms\}^{T} & \{L'r\}}{(L'r)} \end{bmatrix}$$
(2.18)

El torque electromagnético se define como:

en donde P es el número de polos.

Sustituyendo la ecuación (2.16) en la (2.19). se tiene:

$$Te = (1/2)*(P/2)*[i]^{T}*[\delta L/\delta \Theta r]*[i]$$
(2.20)

Desarrollando esta ecuación se llega a la siguiente expresión:

2.2 TRANSFORMACION DE LAS ECUACIONES DE LA MAQUINA DE INDUC-CION A UN SISTEMA DE EJES ARBITRARIOS DE REFERENCIA q.d.o. [4] 2.2.1 Ejes q.d.

En el desarrollo del párrafo anterior, se observa que las inductancias mutuas son función de la posición del rotor (Or). Por lo que el análisis matemático se vuelve compleio, por esta razón se usa un sistema de ejes arbitrarios de referencia para eliminar este problema.

El método consiste en referir todas las variables del estator y del rotor a un sistema de referencia que gira a una velocidad angular arbitraria w, en tanto que los ejes del estator están fijos y los del rotor giran a una velocidad wr.

Las ecuaciones de transformación son escritas en base a relaciones trigonométricas existentes entre los ejes del rotor y estator con el sistema ortogonal arbitrario como lo indica en la Fig. 2.2. La representación es de vectores espaciales y no fasoriales.

Se observa que es una transformación de un sistema trifásico a un bifásico, es decir. las tres bobinas de los ejes a,b,c se representan con dos bobinas en los ejes q,d. Por esta razón las dos bobinas deben tener el mismo número de espiras que las bobinas trifásicas, para producir una f.m.m. de amplitud igual a la del sistema trifásico. La corriente que circulará por cada una de las bobinas será 3/2 veces la corriente de cualquiera de las bobinas reales de la máguina.

Fig. 2.2 SISTEMA DE EJES ARBITRARIOS
Con relaciones que se obtienen de la Fig. 2.2 y con lo anotado anteriormente se deducen las siguientes ecuaciones: Por definición f.m.m. = N * i (2.22)

N : número de espiras de la bobina real de la máguina.

En forma matricial se tiene que:

pero:

$$\begin{bmatrix} fmmqs \\ fmmds \end{bmatrix} = (3/2) * N \begin{bmatrix} iqs \\ ids \end{bmatrix}$$
(2.24)

Reemplazando la ecuación (2.24) en (2.23) gueda:

Donde Θ es el desplazamiento angular del sistema arbitrario de referencia y se define como:

$$\theta = \int_{0}^{t} w \, dt + \theta_{0} \qquad (2.26)$$

Generalizando la transformación quedará:

donde: f puede ser voltaje, corriente o concatenaciones de

flujo.

2.2.2 El Eje Cero.

El eje cero tiene una particularidad única v es que no aparece en este eje la velocidad a la que gira el sistema arbitrario de referencia, debido a que las variables en este eje no están asociadas a la transformación y sólo se presentan en el sistema donde son originadas. El eje cero existe sólo donde hay asimetría, y esta dado por la siguiente ecuación:

fo = (fa + fb + fc) / 3 (2.28)

2.2.3 Ecuaciones de Transformación Directa e Inversa.

La transformación en forma matricial para los tres ejes queda:

$$[fqdos] = [As] [fabcs]$$

(2.29)

Con un desarrollo similar se llega a las ecuaciones de transformación para el rotor. se tiene la siguiente ecuacion referida al estator:

$$\{f'qdor\} = \{Ar\}[f'abcr]$$

(2.30)

En donde: $\beta = \Theta - \Theta r y \Theta r$ se define como:

$$\Theta r = \int_{\Omega}^{t} wr \, dt + \Theta r_{\Theta} \qquad (2.31)$$

Se nombra [As] a la matriz de transformación del estator. [Ar] a la del rotor y por [A3] a la matriz de transformación general. es decir:

$$\{A3\} = \begin{bmatrix} [As] & [0] \\ \hline [0] & [Ar] \end{bmatrix}$$
(2.32)

Por lo tanto se tiene que:

$$[fqdosr] = [A3][fabcsr]$$
(2.33)

En la cual:

 $[fqdosr] = [fqs fds fos f'qr f'dr f'or]^{T}$ $[fabcsr] = [fas fbs fcs f'ar f'br f'cr]^{T}$

Para una transformación inversa se tiene:

$$[fabcsr] = [A3^{-1}][fqdosr]$$
 (2.34)

[A3⁻¹] es la matriz de transformación inversa, tiene la forma:

$$[A3^{-1}] = \begin{bmatrix} [As^{-1}] & [0] \\ \hline & \\ [0] & [Ar^{-1}] \end{bmatrix}$$
(2.35)

donde:

$$[As^{-1}] = \begin{bmatrix} \cos\theta & Sen\theta & 1\\ \cos(\theta - 2\pi/3) & Sen(\theta - 2\pi/3) & 1\\ \cos(\theta + 2\pi/3) & Sen(\theta + 2\pi/3) & 1 \end{bmatrix}$$
(2.36)

$$[Ar^{-1}] = \begin{bmatrix} \cos\beta & \sin\beta & 1\\ \cos(\beta - 2\pi/3) & \sin(\beta - 2\pi/3) & 1\\ \cos(\beta + 2\pi/3) & \sin(\beta + 2\pi/3) & 1 \end{bmatrix}$$
(2.37)

2.2.4 Ecuaciones de las Concatenaciones de Flujo.

Se aplica la matriz de transformación (2.32) a la matriz

general de concatenaciones de flujo (2.8).

$$[A3][\lambda] = \langle [A3][L][A3^{-1}] \rangle [A3][i]$$
(2.38)

Se obtiene los siguientes resultados en variables g.d.o.

$$[\lambda q dosr] = [Lq dosr][iq dosr]$$
(2.39)

donde:

$$[Lqdosr] = [A3][L][A3^{-1}]$$

 $[\lambda qdosr] = [A3][\lambda abcsr]$ (2.40)
 $[iqdosr] = [A3][iabcsr]$

Desarrollando esta ecuación, se llega a determinar la matriz de inductancias [Lgdosr] siguiente:

donde:

```
Ls = Lls + Lms (2.43)
Lr = L'lr + L'mr (2.44)
```

Con las ecuaciones (2.9) a (2.11) se obtiene:

Lms = L'mr M = (3/2) * Lms (2.45) Lms = (Ns/Nr) * Lsr

Reempazando (2.45) en (2.44) resulta:

$$Ls = Lls + M$$

$$L'r - L'Lr + M$$
(2.46)

Las ecuaciones (2.43) y (2.44) indican la independencia de la matriz de inductancias de la posición del rotor y del tiempo. Además las submatrices de inductancias propias (Ls) y (L'r) no sufren ninguna modificación, manteniendo sus valores originales.

2.2.5 Ecuaciones de Voltaje en variables qdo.

A la ecuación (2.2) se la puede escribir de la siguiente manera:

$$[Vabcsr] = [R] [iabcsr] + p [\lambda abcsr]$$
(2.47)

En la cual [R] tiene la forma:

$$[R] = \frac{[rs] ; [0]}{[0] ; [r'r]}$$
(2.48)

{rs} y (r'r) definidos en las ecuaciones (2.6)

A la ecuación (2.47) se aplican las ecuaciones de transformación (2.32) y se tiene:

 $[A3] [Vabcsr] = [A3] [R] [iabcsr] + [A3]p[\lambda abcsr] (2.49)$ [Vgdosr] = [A3] [R] [A3-1] [iqdosr] + [A3]p[A3⁻¹] [\lambdaqdosr] (2.50)

En (2.50) las matrices $[A3^{-1}]$ y $[\lambda q dosr]$ son funciones del tiempo, en cambio la matriz [R] no lo es. Con estos criterios se puede hacer el siguiente desarrollo:

```
 [R] = [A3][R][A3^{-1}] 
 [A3]p{[A3^{-1}][\lambdaqdosr]]} = p[\lambdaqdosr] + [A3]{p[A3^{-1}]}[\lambdaqdosr] 
 (2.51) 
 Reemplazando (2.51) en (2.50) y realizando operaciones resulta
```

la siguiente ecuación:

 $[Vqdosr] = {[R] + p[Lqdosr] + ([A3]p[A3^{-1}])[Lqdosr]}[iqdosr]$ (2.52)

donde:

$$[\mathbf{A3}]\mathbf{p}[\mathbf{A3^{-1}}] = \begin{bmatrix} 0 & \mathbf{p}\Theta & 0 & : & 0 & 0 & 0 \\ -\mathbf{p}\Theta & 0 & 0 & : & 0 & 0 & 0 \\ 0 & 0 & \mathbf{0} & : & 0 & 0 & 0 \\ -\mathbf{p}\Theta & 0 & 0 & : & 0 & 0 & 0 \\ 0 & 0 & \mathbf{0} & : & 0 & \mathbf{p}B & 0 \\ 0 & 0 & 0 & : & -\mathbf{p}B & 0 & 0 \\ 0 & 0 & 0 & : & 0 & 0 & 0 \end{bmatrix}$$
(2.53)

Desarrollando la ecuación matricial (2.52) en todos sus términos se tienen las siguientes ecuaciones de voltaje:

Vqs = rs iqs + $p\lambda qs$ + $\lambda ds p\theta$ Vds = rs ids + $p\lambda ds$ - $\lambda qs p\theta$ Vos = rs ios + $p\lambda os$ (2.54) V'qr = r'r i'qr + $p\lambda'qs$ + $\lambda'dr p\beta$ V'dr = r'r i'dr + $p\lambda'ds$ - $\lambda'qr p\beta$ V'or = r'r i'or + $p\lambda'or$

Las ecuaciones de flujo totales están expresadas de la siguiente manera:

```
\lambda qs = Ls iqs + M i'qr
\lambda ds = Ls ids + M i'dr
\lambda os = Lls ios
\lambda'qr = L'r i'qr + M iqs
\lambda'or = L'r i'dr + M ids
\lambda'or = Ll'r i'or
Reemplazando (2.46) en (2.55) se tiene:
\lambda qs = Lls iqs + M (iqs + i'qr)
\lambda ds = Lls ids + M (ids + i'dr)
\lambda os = Lls ios
\lambda'qr = L'lr i'qr + M (iqs + i'qr)
(2.56)
\lambda'qr = L'lr i'dr + M (ids + i'dr)
```

$$\lambda$$
'or = L'lr i'or

Las ecuaciones (2.54) y (2.56), sugieren los circuitos equivalentes mostrados en la Fig. 2.3.

Fig. 2.3 CIRCUITOS EQUIVALENTES QDO DE UNA MAQUINA SIMETRICA TRIFASICA CON REFERENCIA FIJA EN EL ESTATOR

Las ecuaciones (2.54) y (2.56) representan las ecuaciones

generales de la máguina, se las obtienen en un sistema de referencia arbitrario que gira a una velocidad cualquiera w.

Los sistema más usados son los siguientes:

- 1.- Sistema de referencia fijo en el estator (w = 0). por lo tanto $p\theta = 0$ y $\beta = -\theta r$.
- 2.- Sistema de referencia fijo en el rotor (w = wr), en este caso $p\beta = 0$.
- 3.- Sistema de referencia girando a la velocidad sincrónica (w = we). En este sistema se tiene $\Theta = \Theta e \vee \beta = \Theta e - \Theta r$.

Los términos $\lambda qs p\theta$, $\lambda ds p\theta$, $\lambda' qr p\beta$, $\lambda' dr p\beta$ representan voltajes de velocidad debido a la rotación de los ejes. Los términos p λqs . p λds , p $\lambda' qr$, p $\lambda' dr$ son los voltajes de transformación.

2.2.6 Ecuaciones del Torque Electromagnético.

Se obtiene la ecuación del Torque Electromagnético en variables gdo, aplicando la matriz de transformación (2.35) a la ecuación (2.21) resultando la siguiente relación para el torque:

$$Te = (n/2)*(P/2)*M*(igs i'dr - ids i'gr)$$
(2.57)

En función de las concatenaciones de flujo se tiene:

$$Te = (n/2)^{*}(P/2)^{*}(\lambda'qr \ i'dr - \lambda'dr \ i'gr)$$
(2.58)

donde:

n es el número de fases. P es el número de polos.

2.2.7 Ecuaciones del Torque Electromecánico.

La ecuación del comportamiento electromecánico del genera-

dor de inducción está dado por la ecuación:

$$(Te + Tm) = (J p + D) wr$$
 (2.59)

donde:

J	:	momento de inercia de la máquina.
D	:	coeficiente angular de fricción viscosa.
J pwr	:	Torque de aceleración.
D wr	:	Torque de amortiguamiento mecánico.
Tm	:	Torgue mecánico de entrada.
Te	:	Torque electromagnético.

Para el caso de generador de inducción Tm tiene signo positivo y Te es negativo.

2.3 ECUACIONES DE LA MAQUINA DE INDUCCION EN FUNCION DE CONCA-TENACIONES DE FLUJO, [4]

Si a las ecuaciones (2.56) se les multiplica por la velocidad angular eléctrica we, las relaciones quedan de la siguiente manera:

donde:

Xls = we Lls X'lr = we L'lr Xm '= we M Ψ = we λ

Ψ son las concatenaciones de flujo "por segundo".

En las ecuaciones (2.60) se realiza el siguiente reemplazo:

```
\Psimg = Xm (igs + i'gr)
     \Psimd = Xm (ids + i'dr)
                                                          (2.61)
Por lo gue las ecuaciones (2.60) resultan ser:
     ¥qs = Xls iqs + ¥mq
     Hds = Xls ids + Hmd
     \Psios = Xls ios
                                                          (2.62)
     \Psi'gr = X'lr i'gr + \Psimg
     \Psi'dr = X'lr i'dr + \Psimd
     \Psi'or = X'lr i'or
Despejando las corrientes de las ecuaciones (2.62)
     iqs = (¥qs - ¥mq) / Xls
     ids = (\Psi ds - \Psi md) / Xls
                                                         (2.63)
     ios = ¥os / Xls
     i'qr = (\Psi'qr - \Psi mq) / X'lr
     i'dr = (\Psi'dr - \Psi md) / X'lr
     i'or = \Psi'or / X'lr
Se tiene en (2.63) las corrientes expresadas en funcion de las
concatenaciones de flujo.
Si se reemplaza (2.63) en (2.62) se tiene:
     \Psimq = Xmq ( \Psiqs / Xls + \Psi'qr / X'lr )
     \Psimd = Xmd (\Psids / Xls + \Psi'dr / X'lr)
                                               (2.64)
donde :
     Xmg = Xmd = 1 / (1/Xm + 1/Xls + 1/X'lr) (2.65)
     Para expresar las ecuaciones de voltaje (2.54) en función
de las 'concatenaciones de flujo "por segundo", se multiplica
ambos miembros por we y se reemplaza (2.66).
     \Theta q = w
     p\beta = w - wr.
                                                         (2.66)
```

El generador de inducción autoexcitado, no tiene definido

explícitamente la frecuencia de operación, ya que ésta depende de la velocidad angular del rotor. de los condensadores de excitación y de la carga, por estas razones el modelo se restringe a la referencia fija en el estator, es decir, w = 0. Además en el estudio se considera el voltaje aplicado en el rotor igual a cero. En las ecuaciones (2.54) en forma de concatenaciones de flujo.

se reemplaza el grupo (2.67).

$$w = 0$$

 $V'qr = 0$
 $V'dr = 0$
 $V'or = 0$ (2.67)

Y despejando las derivadas de los flujos con respecto al tiempo se tiene:

p \mathfrak{U} qs = we Vqs + we rs \mathfrak{U} mq / Xls - we rs \mathfrak{U} qs / Xls p \mathfrak{U} ds = we Vds + we rs \mathfrak{U} md / Xls - we rs \mathfrak{U} ds / Xls p \mathfrak{U} os = we Vos - we rs \mathfrak{U} os / Xls p \mathfrak{U} 'qr = wr \mathfrak{U} 'dr + we r'r \mathfrak{U} mq / X'lr - we r'r \mathfrak{U} 'qr / X'lr p \mathfrak{U} 'dr = - wr \mathfrak{U} 'qr + we r'r \mathfrak{U} md / X'lr - we r'r \mathfrak{U} 'dr / X'lr p \mathfrak{U} 'or = - we r'r \mathfrak{U} os / X'lr (2.68)

2.4 MODELACION DEL COMPENSADOR DE POTENCIA REACTIVA. [4]

EL compensador de <u>p</u>otencia reactiva para sistema estudiado está formado por condensadores instalados en los terminales del estator de la máquina de inducción, en la configuración mostrada en Fig 2.4.

La relación entre el voltaje y la corriente en un condensador es:

i = C dV / dt (2.69)

relación que se cumple para cada fase.

Reemplazando a d /dt por p y despejando el voltaje se tiene:

pV = i / C (2.70)

Fig. 2.4 COMPENSADOR DE POTENCIA REACTIVA

Para las tres fases:

$$p[Vabcs] = 1/C [iabcc] \qquad (2.71)$$

Aplicando las ecuaciones de transformación a los ejes qdo se tiene:

[As] p [Vabcs] = 1/C [As] [iabcc]

Aplicando la transformación inversa dentro del operador se tiene:

 $[As] p { [As^{-1}] [Vqdos] } = 1/C [iqdoc]$

derivando el producto y multiplicando:

$$[As] p \{As^{-1}\} = [B] = \begin{bmatrix} 0 & w & 0 \\ -w & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
(2.72)

se llega a:

[B] $\{Vgdos\} + p \{Vgdos\} = 1/C \{igdoc\}$

pero (B) depende de la velocidad de los eies qdo, que es cero, entonces:

p [Vqdos] = 1/C [iqdoc]

Si se reemplaza Xc = 1 / we C se tiene:

p [Vqdos] = we Xc [iqdoc] (2.73)

donde Xc es la reactancia de los condensadores por fase a la frecuencia we.

En forma más explícita la ecuación (2.73) queda:

$$p \begin{bmatrix} Vas \\ Vds \\ Vos \end{bmatrix} = we Xc \begin{bmatrix} iqc \\ idc \\ ioc \end{bmatrix}$$
(2.74)

2.5 MODELACION DE LAS CARGAS DEL GENERADOR

2.5.1 Modelación de la carga resistiva.

En la Fig. 2.5 se muestra la configuración de la carga resistiva que será alimentada por el generador.

La relación entre el voltaje y la corriente en una resistencia es:

V = R1 i (2.75)

para las tres fases:

.

```
[Vabcs] = RI [iabcl] (2.76)
```


Fig 2.5 CARGA RESISTIVA

Aplicando las ecuaciones de transformación (2.29) y despejando la corriente de carga se tiene:

$$[iqdol] = (1 / Rl) [Vqdos]$$
 (2.77)

la ecuación (2.77) en forma más explícita es la siguiente:

 $\begin{bmatrix} iql\\ idl\\ iol \end{bmatrix} = (1 / Rl) \begin{bmatrix} Vqs\\ Vds\\ Vds\\ Vos \end{bmatrix}$ (2.78)

2.5.2 Modelación de carga inductiva-resistiva.

En la Fig. 2.6 se muestra la configuración de la carga inductiva-resistiva que será alimentada por el generador.

La ecuación diferencial que se cumple para un circuito inductivo-resistivo es la siguiente:

V = Rli i' + Li di / dt (2.79)

Para las tres fases y usando el operador p se tiene:

 $[Vabcs] = Rli [iabcl] + Li \cdot p [iabcl]$ (2.80)

Fig. 2.6 CARGA INDUCTIVA-RESISTIVA

Siguiendo un proceso similar al del párrafo 2.4 a la ecuación (2.80) se lluega a la siguiente ecuación para el comportamiento de la carga inductiva.

en donde Rli y Xli son la resistencia y la reactancia de la carga inductiva-resistiva a la frecuencia we.

2.5.3 Modelación de carga capacitiva-resistiva.

En la figura 2.7 se muestra la configuración de la carga capacitiva-resistiva que será alimentada por el generador. La ecuación diferencial que se cumple para un circuito capacitivo-resistivo es la siguiente:

$$ic = Cl dVc / dt$$
 (2.82)

Reemplazando el operador p y el valor de la corriente:

p Vc = (1 / Cl Rlc) (Vs - Vc)

Fig. 2.7 CARGA CAPACITIVA-RESISTIVA

Para las tres fases tiene:

 $p [Vabcc] = (1 / Cl Rlc) \{ [Vabcs] - [Vabcc] \}$ (2.83)

Siguiendo un proceso similar al del párrafo 2.4 a la ecuación (2.83) se lluega a la siguiente ecuación para el comportamiento de la carga capacitiva-resistiva.

$$p \begin{bmatrix} Vqc \\ Vdc \\ Voc \end{bmatrix} = (we Xlc / Rlc) \begin{bmatrix} Vqs - Vqc \\ Vds - Vdc \\ Vos - Voc \end{bmatrix}$$
(2.84)

en donde Xlc es la reactancia de la carga capacitiva-resistiva a la frecuencia we.

2.6 MODELO DEL GENERADOR EN CONDICIONES BALANCEADAS DE CARGA.

El circuito equivalente por fase en el estator del generador funcionando con condiciones balanceadas se muestra en la Fig. 2.8.

Tomando en cuenta el sentido de las corrientes, se tiene que para cada fase se cumple:

is + ic + il = 0 (2.85)

Fig. 2.8. CIRCUITO EQUIVALENTE POR FASE PARA EL ESTATOR EN CONDICIONES BALANCEADAS DE CARGA

Para las tres fases y en forma de vector se tiene:

[iabcs] + [iabcc] + [iabcl] = [0] (2.86)

A la ecuación (2.86) se aplica la matriz de transformación [As], entoncos:

 $[As](iabcs] + [As](iabcc] + [As][iabc1] = [0] {igdos} + [igdoc] + {igdol} = [0]$

De donde [igdoc] es igual a:

En forma explícita (2.87) se expresa en la siguiente manera:

$$\begin{array}{c} iac \\ idc \\ idc \\ ioc \end{array} - \begin{array}{c} ias \\ ids \\ ios \end{array} - \begin{array}{c} ial \\ idl \\ iol \end{array}$$
 (2.88)

En (2.88) se reemplaza (2.63) y (2.74). se llega a las siguientes tres ecuaciones: $(1 / we X_c) p Vqs = -(1 / Xls) (Hqs - Hmq) - iql$ (1 / we X_c) p Vds = -(1 / Xls) (Hds - Hmd) - idl (1 / we X_c) p Vos = -(1 / Xls) Hos - iol (2.89)

despejando las derivadas de los voltajes:

que son las ecuaciones diferenciales para los voltajes del estator del generador.

2.6.1 El generador en vacío.

El circuito equivalente por fase para esta condición de funcionamiento es el mostrado en la Fig. 2.9.

Fig. 2.9 CIRCUITO EQUIVALENTE POR FASE PARA EL GENERADOR EN VACIO.

La condición de vacío obliga a una corriente de carga nula, por tanto:

iql = 0 : idl = 0 ; iol = 0 (2.91)

reemplazando (2.91) en (2.90) se tiene:

p Vas = - (we Xc / Xls) (¥as - ¥ma) p Vas = - (we Xc / Xls) (¥as - ¥ma) p Vos = - (we Xc / Xls) ¥os (2.92)

2.6.2 El generador con carga resistiva.

El circuito equivalente por fase para esta condición de funcionamiento es el mostrado en la Fig. 2.10.

Fig. 2.10 CIRCUITO EQUIVALENTE POR FASE PARA GENERADOR CON CARGA RESISTIVA

Reemplazando (2.78) en (2.90) se tiene:

p Vqs = - (we Xc / Xls) (¥qs - ¥mq) - (we Xc / Rl) Vqs p Vds = - (we Xc / Xls) (¥ds - ¥md) - (we Xc / Rl) Vds p Vos = - (we Xc / Xls) ¥os - (we Xc / Rl) Vos (2.93)

2.6.3 El generador con carga inductiva-resistiva.

El circuito equivalente por fase para esta condición de funcionamiento es el de la figura 2.11.

Hay que recordar:

 $\Psi = i / we L = i / Xli$ (2.94)

Xli : reactancia de carga a la frecuencía we.

Fig. 2.11 CIRCUITO EQUIVALENTE PARA GENERADOR CON CARGA INDUCTIVA-RESISTIVA

Para este caso, las concatenaciones de flujo por segundo en las inductancias de carga son las variables de estado del modelo. Por tanto, para los voltajes las ecuaciones quedan idénticas (2.90): añadiendo las ecuaciones para las corrientes, que resultan de expresar en sus componentes la ecuación (2.81), y además reemplazando (2.94), queda el siguiente grupo de ecuaciones diferenciales:

p Vqs = - (we Xc / Xls) ($\mathfrak{U}qs - \mathfrak{U}mq$) - (we Xc / Xli) $\mathfrak{U}ql$ p Vds = - (we Xc / Xls) ($\mathfrak{U}ds - \mathfrak{U}md$) - (we Xc / Xli) $\mathfrak{U}dl$ p Vos = - (we Xc / Xls) $\mathfrak{U}os -$ (we Xc / Xli) $\mathfrak{U}ol$ p $\mathfrak{U}ql$ = we Vqs - (we Rli / Xli) $\mathfrak{U}ql$ p $\mathfrak{U}dl$ = we Vds - (we Rli / Xli) $\mathfrak{U}dl$ p $\mathfrak{U}ol$ = we Vos - (we Rli / Xli) $\mathfrak{U}dl$ (2.95)

donde: ¥ql. ¥dl. ¥ol son las concatenaciones de flujo por segundo en la parte inductiva de la carga.

2.6.4 El generador con carga capacitiva-resistiva.

El circuito equivalente por fase para esta condición de funcionamiento es el de la Fig. 2.12.

Fig. 2.12 CIRCUITO EQUIVALENTE PARA GENERADOR CON CARGA CAPACITIVA-RESISTIVA

Para este caso los voltajes en los condensadores de carga son las variables de estado del modelo. La corriente de carga en este caso es:

 $il = (V_{S} - V_{C}) / Rlc$ (2.96)

para las tres fases se tiene:

[iabcl] = ([Vabcs] - [Vabcc]) / Rlc

realizando la transformación qdo se tiene:

 $[iqdol] = \{ [Vqdos] - [Vqdoc] \} / Rlc$ (2.97)

se reemplaza las componentes de (2.97) en (2.90) se tiene las ecuaciones en el estator para carga capacitiva, además se incluyen las componentes de la ecuación (2.84), con lo que se obtiene el siguiente grupo de ecuaciones diferenciales:

p Vqs = - (we Xc / Xls) (Uqs - Umq) - (we Xc / Rlc) (Vqs - Vqc) p Vds = - (we Xc / Xls) (Uds - Umd) - (we Xc / Rlc) (Vds - Vdc) p Vos = - (we Xc / Xls) Uos - (we Xc / Rlc) (Vos - Voc) p Vqc = (we Xlc / Rlc) (Vqs - Vqc) p Vdc = (we Xlc / Rlc) (Vds - Vdc) p Voc = (we Xlc / Rlc) (Vos - Voc) (2.98)

2.6.5 Ecuaciones para el generador con condiciones balanceadas de carga.

Cuando en generador funciona con condiciones balanceadas de carga, no existe la componente cero al realizar la transformación de ejes, por lo tanto no se debe incluir en el modelo las componentes en este eje. Tomando en cuenta esto, las ecuaciones diferenciales para el comportamiento del sistema generador-carga; sin incluir la parte mecánica guedan de la siguiente manera:

p Mgs = we Vgs + we rs Mmg / Xls - we rs Mgs / Xls p Wds = we Vds + we rs Wmd / Xls - we rs Wds / Xls p \u03c4'qr = wr \u03c4'dr + we r'r \u03c4mg / X'lr - we r'r \u03c4'qr / X'lr $p \Psi' dr = -wr \Psi' dr + we r'r \Psi m d / X' lr - we r'r \Psi' dr / X' lr$ Ecuaciones adicionales para generador en vacío: p Vas = - (we Xc / Xls) ($\Psi as - \Psi ma$) p Vds = - (we Xc / Xls) (Uds - Umd)Ecuaciones adicionales para generador con carga resistiva: p Vqs = - (we Xc / Xls) ($\Psi qs - \Psi mq$) - (we Xc / Rl) Vqs p Vds = - (we Xc / Xls) (Wds - Wmd) - (we Xc / Rl) Vds Ecuaciones adicionales para generador con carga inductiva-resistiva : p Vqs = - (we Xc / Xls) ($\Psi qs - \Psi mq$) - (we Xc / Xli) Ψql p Vds = - (we Xc / Xls) (Yds - Ymd) - (we Xc / Xli) Ydl p Щql = we Vqs - (we Rli / Xli) Щql p #dl = we Vds - (we Rli / Xli) #dl Ecuaciones adicionales para generador con carga capacitivaresistiva : $p Vqs = -(we Xc / Xls) (\Psi qs - \Psi mq) - (we Xc / Rlc) (Vqs - Vqc)$ p Vds = - (we Xc / Xls) ($\Psi ds - \Psi md$) - (we Xc / Rlc) (Vds - Vdc) p Vqc = (we Xlc / Rlc) (Vqs - Vqc)p Vdc = (we Xlc / Rlc) (Vds - Vdc)(2.99)En las cuales Ymg y Ymd vienen definidas por las ecuaciones (2.64) y (2.65).

2.7 MODELO PARA CORTOCIRCUITO TRIFASICO.

Se produce la unión física de los terminales del estator, como se indica en la Fig. 2.13.

Fig. 2.13 CORTOCIRCUITO TRIFASICO

Se deduce de la Fig. 2.13 que hacia el generador, no hav aporte de corrientes de los condensadores y de la carga, además los voltajes de fase en el estator son cero, por lo cual:

$$V_{qs} = 0$$
; $V_{ds} = 0$; $V_{os} = 0$ (2.100)

También el resto de variables de estado dejan de serlo, para quedar en la parte eléctrica con el siguiente grupo de ecuaciones diferenciales:

p Ψqs = we rs Ψmg / Xls - we rs Ψqs / Xls p Ψds = we rs Ψmd / Xls - we rs Ψds / Xls p Ψ'qr = wr Ψ'dr + we r'r Ψmg / X'lr - we r'r Ψ'qr / X'lr p Ψ'dr = - wr Ψ'gr + we r'r Ψmd / X'lr - we r'r Ψ'dr / X'lr (2.101)

En las cuales Ψ mg y Ψ md vienen definidas por las ecuaciones (2.64) y (2.65).

2.8 MODELO PARA CORTOCIRCUITO FASE-TIERRA.

Se produce la unión física de la fase A del estator a la línea

de tierra. El circuito en el momento de la falla se lo puede observar en la figura 2.14.

Fig. 2.14 CORTOCIRCUITO FASE-TIERRA

Las ecuaciones (2.29) y (2.36) para w = 0 quedan de la siguiente manera:

$$[As] = \begin{bmatrix} 2/3 & -1/3 & -1/3 \\ 0 & -\sqrt{3}/3 & \sqrt{3}/3 \\ 1/3 & 1/3 & 1/3 \end{bmatrix}$$
(2.102)
$$[As^{-1}] = \begin{bmatrix} 1 & 0 & 1 \\ -1/2 & -\sqrt{3}/2 & 1 \\ -1/2 & \sqrt{3}/2 & 1 \end{bmatrix}$$
(2.103)

Los voltajes, corrientes o concatenaciones de flujo en el estator (f) en los eje abc, en función de las componentes en los ejes quo se los calcula con la siguiente ecuación:

$$[fabcs] = [As^{-1}][fqdos]$$

$$\begin{bmatrix} fas \\ fbs \\ fcs \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 \\ -1/2 & -\sqrt{3}/2 & 1 \\ -1/2 & \sqrt{3}/2 & 1 \end{bmatrix} \begin{bmatrix} fqs \\ fds \\ fos \end{bmatrix}$$
(2.104)

Las condiciones de la falla deducidas de la Fig. 2.14 son:

Vas = 0(2.105)ibs + ibc + ibl = 0(2.106)ics + icc + icl = 0(2.107)ial = 0(2.108)

Igualando la componente Vas a cero en la ecuación (2.104) y despejando Vos se tiene:

$$Vos = -Vqs \tag{2.109}$$

Igualando la componente ial a cero en la ecuación (2.104) y despejando iol se tiene:

$$iol = -igl \qquad (2.110)$$

Las ecuaciones (2.106) y (2.107) expresadas en forma matricial con todas las componentes abc, se las puede escribir de la siguiente manera:

$$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \{ \{ \text{iabcs} \} + \{ \text{iabcc} \} + \{ \text{iabcl} \} \} = \{ 0 \}$$

$$(2.111)$$

A la ecuación (2.111) se aplica la transformación de ejes:

$$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} [As^{-1}] [As] ([iabcs] + [iabcc] + [iabcl]] = [0]$$
(2.112)

En (2.112) se reemplaza (2.103) v se realiza la multilpicación , llegando a:

$$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 \\ -1/2 & \sqrt{3}/2 & 1 \\ -1/2 & \sqrt{3}/2 & 1 \end{bmatrix} \{ \{iqdos\} + \{iqdoc\} + \{iqdol\}\} = \{0\}$$

multiplicando las matrices:

$$\begin{bmatrix} 0 & 0 & 0 \\ -1/2 & -\sqrt{3}/2 & 1 \\ -1/2 & \sqrt{3}/2 & 1 \end{bmatrix} \{ [iqdos] + [iqdoc] + [iqdol] \} = \{0\}$$
(2.113)

desarrollando esta expresión en sus componentes se tienen las siguientes igualdades:

-1/2 iqs - $\sqrt{3}/2$ ids + ios -1/2 iqc - $\sqrt{3}/2$ idc + ioc -1/2 iql - $\sqrt{3}/2$ idl + iol = 0 (2.114) -1/2 iqs + $\sqrt{3}/2$ ids + ios -1/2 iqc + $\sqrt{3}/2$ idc + ioc -1/2 iql + $\sqrt{3}/2$ idl + iol = 0 (2.115) se reemplaza (2.74), (2.109) y (2.110) en (2.114) v (2.115) luego despejando los voltajes se llega a: (1/(2 we Xc)) (-3 p Vgs - $\sqrt{3}pVds$) = 1/2 igs + $\sqrt{3}/2$ ids - ios

 $- \frac{1}{2} \text{ igl} + \frac{\sqrt{3}}{2} \text{ idl}$ (2.116) (1/(2 we Xc)) (-3 p Vgs + $\sqrt{3}$ pVds) = 1/2 igs - $\sqrt{3}/2$ ids - ios - 1/2 igl - $\sqrt{3}/2$ idl (2.117)

sumando (2.116) con (2.117) y despejando p Vqs se obtiene:

p Vgs = - (we Xc / 3) igs + (2 we Xc / 3) ios - we Xc igl (2.118) restando (2.117) de (2.116) v despejando p Vds se obtiene:

```
p Vds = -we Xc ids - we Xc idl (2.119)
```

en las ecuaciones (2.118) y (2.119) se reemplaza (2.63) y se obtiene:

p Vqs = - (we Xc / 3 Xls) (\u03c4qs- \u03c4mq) + (2 we Xc / 3 Xls) \u03c4os - we Xc iql p Vds = - we Xc (\u03c4ds - \u03c4md) - we Xc idl (2.120)

Con estas últimas ecuaciones de puede analizar para cada tipo

de carga. las ecuaciones diferenciales que den el comportamiento del generador en esta falla.

2.8.1 Generador en vacío.

Para este caso la corriente de carga il en las fases es cero, por tanto :

iql = 0 : idl = 0 : iol = 0

las ecuaciones (2.120) guedan de la siguiente manera:

p Vqs = - (we Xc / 3 Xls) (\u03c4qs-\u03c4mq) + (2 we Xc / 3 Xls) \u03c4os p Vds = - we Xc (\u03c4ds - \u03c4md) (2.121)

2.8.2 Generador con carga resistiva.

En (2.120) se reemplaza (2.78) y se obtienen las siguientes ecuaciones diferenciales:

p Vas = - (we Xc / 3 X1s) (Was - Wma) + (2 we Xc / 3 X1s) Was - (we Xc / R1) Vas p Vds = - we Xc (Wds - Wmd) - (we Xc / R1) Vds (2.122)

2.8.3 Generador con carga inductiva-resistiva.

En este caso las concatenaciones de flujo en las inductancias de carga son las variables de estado, por lo que en las ecuaciones (2.120) se reemplaza (2.94) y se toman las componentes q y d de la ecuación (2.81) para completar el modelo. Con estos antecedentes se tiene el siguiente grupo de ecuaciones para esta falla con este tipo de carga:

51

2.8.4 Generador con carga capacitiva-resistiva.

En este caso los voltajes en los condensadores de carga son las variables de estado. Si la carga y el condensador de excitación de la fase a no aporta corriente al sistema en el momento de la falla, entonces se puede concluir que:

$$Vcc = 0$$
 (2.124)

por tanto, se llega a:

 $Voc = -Vqc \qquad (2.125)$

Reemplazando las componentes q y d de (2.97) en (2.120), y adjuntando las componentes q y d de (2.84) se llega al siguiente grupo de ecuaciones para este tipo de falla con carga capacitiva-resistiva.

p Vqs = - (we Xc / 3 Xls) (\u03c0 qs - \u03c0 mq) + (2 we Xc / 3 Xls) \u03c0 vos - (we Xc / Rlc) (Vqs - Vqc) p Vds = - we Xc (\u03c0 ds - \u03c0 md) - (we Xc /Rlc) (Vds - Vdc) P Vqc = (we Xlc / Rlc) (Vqs - Vqc) P Vdc = (we Xlc / Rlc) (Vds - Vdc) (2.126)

2.8.5 Ecuaciones para el generador cuando se produce un cortocircuito fase-tierra.

A continuación se presenta el grupo de ecuaciones diferenciales, que rigen el comportamiento dinámico en su parte eléc trica del generador de inducción; frente a una falla fase-tierra.

p±qs = we Vqs + we rs ±mq / Xls - we rs ±qs / Xls
p±ds = we Vds + we rs ±md / Xls - we rs ±ds / Xls
p±os = - we Vqs - we rs ±os / Xls
p±'qr = wr ±'dr + we r'r ±mq / X'lr - we r'r ±'qr / X'lr
p±'dr = - wr ±'qr + we r'r ±md / X'lr - we r'r ±'dr / X'lr
Ecuaciones adicionales para generador en vacío.
p Vqs = - (we Xc / 3 Xls) (±qs - ±mq) + (2 we Xc / 3 Xls) ±os

p Vds = - (we Xc / Xls) ($\Psi ds - \Psi md$) Ecuaciones adicionales para generador con carga resistiva. p Vas = - (we Xc / 3 Xls) (Mas - Mma) + (2 we Xc / 3 Xls) Mos - (we Xc / Rl) Vas p Vds = - (we Xc / Xls) (Wds - Wmd) - (we Xc / Rl) Vds Ecuaciones adicionales para generador con carga inductiva-resistiva. p Vgs = - (we Xc / 3 X1s) (Mgs - Mmg) + (2 we Xc / 3 X1s) Mes - (we Xc / Xli) Yal p Vds = - (we Xc / Xls) (Uds - Umd) - (we Xc / Xli) Udlp ¥ql = we Vas - (we Rli / Xli) ¥ql p Wdl = we Vds - (we Rli / Xli) Wdl Ecuaciones adicionales para generador con carga capacitivaresistiva. p Vqs = - (we Xc / 3 Xls) (¥qs - ¥mg) + (2 we Xc / 3 Xls) ¥os - (we Xc / Rlc) (Vgs - Vgc) p Vds = - (we Xc / Xls) ($\Psi ds - \Psi md$) - (we Xc /Rlc) (Vds - Vdc) p Vqc = (we Xlc / Rlc) (Vqs - Vqc) P Vdc = (we Xlc / Rlc) (Vds - Vdc)(2.127)En las cuales ¥mq y ¥md vienen definidas por las ecuaciones (2.64) y (2.65). 2.9 MODELO PARA CORTOCIRCUITO DOS FASES TIERRA. Se produce la unión física de las fases a y b del estator a la tierra. El circuito en el momento de la falla se muestra en la figura 2.15. De la figura se pueden sacar las siguientes relaciones: Vas = 0(2.128)Vbs = 0(2.129)ics + icc + icl = 0(2.130)

ial = 0(2.131)ibl = 0(2.132)

para el caso de carga capacitiva: Vac = 0 (2.133) Vbc = 0 (2.134)

Fig. 2.15 CORTOCIRCUITO FASE-FASE-TIERRA

Aplicando la ecuación (2.102) se llega a las siguientes igualdades:

Vds	= - 13 Vas	(2.135)
Vos	= - Vqs	(2.136)
idl	= - √3 iql	(2.137)
iol	= - iql	(2.138)
Vdc	= - 13 Vqc	(2.139)
Voc	= - Vqc	(2.140)

La ecuación (2.130) en forma matricial se la puede escribir de la siguiente manera:

 $\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ {[iabcs] + [iabcc] + [iabc1]} = [0] (2.141) (2.141)

Realizando un desarrollo similar al párrafo 2.8 con las ecuaciones (2.135) ... (2.140), se llega al siguiente grupo de ecuaciones: que rigen el comportamiento dinámico del generador de inducción para una falla dos fases tierra en la parte eléctrica:

p Ψqs = we Vqs + we rs Ψmq / Xls - we rs Ψqs / Xls

p Ψ ds = $-\sqrt{3}$ we Vqs + we rs Ψ md / Xls - we rs Ψ ds / Xls p Yos = - we Vas - we rs Yos / Xls р Ψ'qr = wr Ψ'dr + we r'r Ψmq / X'lr - we r'r Ψ'qr / X'lr $p \Psi' dr = -wr \Psi' dr + we r'r \Psi md / X' lr - we r'r \Psi' dr / X' lr$ Ecuaciones adicionales para generador en vacío. $p Vqs = (we Xc/Xls) ((-\mathbb{U}qs + \mathbb{U}mq)/6 + \sqrt{3} (\mathbb{U}ds - \mathbb{U}md)/6 + \mathbb{U}os/3)$ Ecuaciones adicionales para generador con carga resistiva. $p Vqs = (we Xc/Xls) ((-\mathbb{U}qs + \mathbb{U}mq)/6 + \sqrt{3} (\mathbb{U}ds - \mathbb{U}md)/6 + \mathbb{U}os/3)$ - (we Xc / Rl) Vqs Ecuaciones adicionales para generador con carga inductiva-resistiva. $p Vqs = (we Xc/Xls) ((-\u03c4qs + \u03c4mq)/6 + \sqrt{3} (\u03c4ds - \u03c4md)/6 + \u03c4os/3)$ - (we Xc / Xli) Lql p ¥ql = we Vqs - (we Rli / Xli) ¥ql Ecuaciones adicionales para generador con carga capacitivaresistiva. $p Vqs = (we Xc/Xls) ((-\mathbb{U}qs + \mathbb{U}mq)/6 + \sqrt{3} (\mathbb{U}ds - \mathbb{U}md)/6 + \mathbb{U}os/3)$ - (we Xc / Rlc)(Vqs - Vqc) p Vqc = (we Xlc / Rlc)(Vqs - Vqc)(1.142)

En las cuales Ψ mg y Ψ md vienen definidas por las ecuaciones (2.64) y (2.65).

2.10 MODELO PARA CORTOCIRCUITO DOS FASES.

Se produce la unión física de las fases <u>a y</u><u>b</u> del estator. El circuito en el momento de la falla se muestra en la Fig. 2.16. De la figura se pueden sacar la siguientes relaciones:

Vas = Vbs(2.143)ias + ibs + iac + ibc + ial + ibl = 0(2.144)ics + icc + icl = 0(2.145)

Aplicando la 'ecuación (2.102) se llega a las siguientes igualdades:

 $Vds = -\sqrt{3} Vqs$ (2.146)

Fig. 2.16 CORTOCIRCUITO FASE-FASE

Las ecuaciones $(2.144) \vee (2.145)$ en forma matricial se la puede escribir de la siguiente manera:

$$\begin{bmatrix} 0 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \{ \{iabcs\} + \{iabcc\} + \{iabc1\} \} = \{0\}$$
(2.147)

Realizando un desarrollo similar al párrafo 2.8 con las ecuaciones (2.146) y (2.147), se llega al siguiente grupo de ecuaciones que rigen el comportamiento dinámico del generador de inducción: para una falla dos fases en la parte eléctrica:

p Hqs = we Vqs + we rs Hmq / Xls - we rs Hqs / Xls
p Hds = -J3 we Vqs + we rs Hmd / Xls - we rs Hds / Xls
p Hos = we Vos - we rs Hos / Xls
p H'qr = wr H'dr + we r'r Hmq / X'lr - we r'r H'qr / X'lr
p H'dr = - wr H'qr + we r'r Hmd / X'lr - we r'r H'dr / X'lr
Ecuaciones adicionales para generador en vacío.
p Vqs = (we Xc / Xls)((Hmq - Hqs) + J3 (Hds - Hmd))/4
p Vos = - we Xc Hos / Xls
Ecuaciones adicionales para generador con carga resistiva.
p Vqs = (we Xc / Xls)((Hmq - Hqs) + J3 (Hds - Hmd))/4
- (we Xc / Xls)((Hmq - Hqs) + J3 (Hds - Hmd))/4
p Vos = - we Xc Hos / Xls

Ecuaciones adicionales para generador con carga inductivaresistiva. p Vqs = (we Xc / Xls)((Ymq - Yqs) + J3 (Yds - Ymd))/4 + (we Xc / 4 Xli) (√3 Wdl - Wgl) p Vos = - we Xc Wos / Xls - (we Xc / Xli) Wol p Щgl = we Vas - (we Rli / Xli) Щgl $p \ \text{#dl} = -\sqrt{3} \text{ we Vqs} - (\text{we Rli} / \text{Xli}) \ \text{#gl}$ p Wol = we Vos - (we Rli / Xli) Wol Ecuaciones adicionales para generador con carga capacitivaresistiva. p Vqs = (we Xc / Xls) ((\2mg - 2qs) + 13 (2ds - 2md))/4 - (we Xc / Rlc)(Vgs - Vgc/4 + J3 Vdc/4) p Vos = -we Xc Uos / Xls -(we Xc / Rlc) (Vos - Voc)p Vqc = (we Xlc / Rlc)(Vqs - Vqc) $p Vdc = (we Xlc / Rlc)(-\sqrt{3} Vgs - Vdc)$ p Voc = (we Xlc / Rlc)(Vos - Voc)(2.148)

Se puede observar las ecuaciones diferenciales de las componentes en el eje cero sólo tienen interrelación entre ellas. no intervienen con las q y d. Además teniendo en cuenta que en un sistema trifásico la suma algébrica de los valores de cualquier magnitud sea voltaje, corriente o concatenaciones de flujo es cero en cualquier instante: y aplicando la transformación de ejes con la ecuación (2.32) se llega a la conclusión de que los valores iniciales de las variables de estado que son componentes en el eje cero son nulas, por tanto, estas ecuaciones no influyen en el modelo, retirándolas del mismo. Entonces el grupo de ecuaciones diferenciales para esta falla queda conformado de la siguiente manera:

p ¥qs = we Vqs + we rs ¥mq / Xls - we rs ¥qs / Xls
p ¥ds = -J3 we Vqs + we rs ¥md / Xls - we rs ¥ds / Xls
p ¥'qr = wr ¥'dr + we r'r ¥mq / X'lr - we r'r ¥'qr / X'lr
p ¥'dr = - wr*¥'qr + we r'r ¥md / X'lr - we r'r ¥'dr / X'lr
Ecuaciones adicionales para generador en vacío.
p Vqs = (we Xc / Xls)((¥mq - ¥qs) + J3 (¥ds - ¥md))/4
Ecuaciones adicionales para generador con carga resistiva.
p Vqs = (we Xc / Xls)((¥mq + ¥qs) + J3 (¥ds - ¥md))/4
- (we Xc / Rl) Vqs

En las cuales Ψ mq y Ψ md vienen definidas por las ecuaciones (2.64) y (2.65).

2.11 MODELO PARA APERTURA SIMULTANEA DE LAS TRES FASES.

Se produce la apertura de las tres fases en el mismo instante. El circuito en el momento de la falla se presenta en la figura 2.17.

Fig. 2.17 APERTURA SIMULTANEA DE LAS TRES FASES

Entonces:

ias = 0 : ibs = 0 : ics = 0

(2.150)

Por tanto, las componetes en los eje quo también son cero:

```
ids = 0 (2.151)
ids = 0 (2.152)
ios = 0 (2.153)
```

Las ecuaciones (2.63) definen los valores de igs e ids en función de las concatenaciones de flujo, igualándolas a cero se tiene [5] :

iqs = $(\Psi qs - \Psi mq) / Xls = 0$ (2.154) ids = $(\Psi ds - \Psi md) / Xls = 0$ (2.155)

de donde:

Ada	=	Ψmq	(2.156)
₩ds	-	Ψmd	(2.157)

En la ecuación (2.64) se reemplaza ¥mg por ¥gs:

 $\Psi mq = Xmq (\Psi mq / Xls + \Psi'qr / X'lr)$ (2.158)

Despejando Wmg de (2.158) se llega a:

$$\Psi mq = Xm \Psi' qr / (Xm + X' lr)$$
 (2.159)

De igual forma se procede para el flujo ¥md y se llega a:

 $\Psi md = Xm \Psi' dr / (Xm + X' lr)$ (2.160)

En las ecuaciones diferenciales para \Im y \Im ds de (2.68), se reemplaza (2.156) y (2.157), llegando a las siguientes igualdades : '

```
Vqs = p ¥qs / we (2.161)
Vds = p ¥ds / we (2.162)
```

Se concluye que en el modelo planteado ¥qs y ¥ds dejan de ser variables de estado, ya que dependen directamente de ¥'qr y W'dr respectivamente: lo mismo sucede en el caso de los voltajes Vgs y Vds. que son función de las derivadas de los fluios Wgs y Wds respectivamente. La carga y los condensadores de excitación para este caso no aportan en nada al modelo. Por tanto, el sistema de ecuaciones diferenciales que rigen el comportamiento dinámico del generador: en este tipo de falla queda de la siguinete manera:

p Ψ 'qr = wr Ψ 'dr + we r'r Ψ mq / X'lr - we r'r Ψ 'qr / X'lr p Ψ 'dr = - wr Ψ 'qr + we r'r Ψ md / X'lr - we r'r Ψ 'dr / X'lr (2.163)

2.12 ESTUDIO DEL COMPORTAMIENTO ELECTROMECANICO.

El sistema en estudio se presenta en la Fig. 2.18. En el cual se tiene como máquina motriz un motor de corriente continua de excitación independiente, acoplado mecánicamente a la máguina de inducción.

Fig. 2.18 SISTEMA MOTOR-GENERADOR-CARGA

2.12.1 Estudio del Torque Electromagnético [4].

Si en la ecuación (2.59) se considera despreciable el coeficiente de amortiguamiento mecánico; y despejando la derivada con respecto al tiempo de la velocidad angular, se tiene:

$$p wr = (Te + Tm) / J$$
 (2.164)
en donde :

- wr : velocidad angular del rotor en radianes mecánicos por segundo.
- Te : torque electromagnético.
- Tm : torque mecánico de entrada.
- J : momento de inercia del conjunto máguina motriz y generador de inducción.

2.12.2 Estudio del Torque Mecánico de entrada [6].

El circuito equivalente de un motor de corriente continua es el mostrado en la Fig. 2.19.

Fig. 2.19 CIRCUITO EQUIVALENTE DE UN MOTOR DE CORRIENTE CONTINUA

Del circuito de armadura se deduce la siguiente ecuación:

Vt = Ea + La p ia + Ra ia (2.165)

Donde: '

Vt : ténsión en bornes del circuito de inducido.

Ea : tensión inducida.

La : autoinducción del circuito de inducido

Ra : resistencia del circuito de inducido.

Ea es igual a:

$$Ea = Kf if wr$$

siendo Kf una constante.

El par magnético desarrollado por el motor y entregado al generador es:

$$Tm = Kf if ia$$
(2.167)

Reemplazando (2.166) en (2.165) y despejando la derivada de la corriente ia con respecto al tiempo se tiene:

 $p ia = (Vt - Kf if wr - Ra ia) / La \qquad (2.168)$

Para el caso de excitación independiente. if permanece constante: y además si Vt es voltaje continuo, se puede escribir la ecuación (2.167) y (2.168) de la siguiente manera:

p ia =
$$K1 - K2$$
 wr - $K3$ ia (2.169)
Tm = $K4$ ia (2.170)

donde :

K1	=	۷t	/ La		
К2	=	Kf	if /	La	
кз	=	Ra	/ La		
K4	=	Kf	if		(2.171)

2.12.3 Ecuaciones del comportamiento electromecánico.

A las ecuaciones del comportamiento dinámico en la parte eléctrica, hay que añadir las ecuaciones (2.164) y (2.169) que completan las necesarias para el estudio del sistema motorgeneradór de inducción en estado transitorio de la Fig. 2.18.

p wr = (Te + Tm) / J (2.172) p ia = K1 - K2 wr - K3 ia (2.173)

62

CAPITULO III

PROGRAMA DIGITAL

El programa digital, es uno de los objetivos del trabajo realizado, va que con éste se puede realizar simulaciones de las fallas que se han modelado. En este capítulo se trata exclusivamente el problema de la simulación digital. Las ecuaciones empleadas y los algoritmos que ayudan a resolver dicho problema.

3.1 METODO DE SOLUCION

3.1.1 Ecuaciones diferenciales en por unidad.

El trabajar con sistemas de ecuaciones en por unidad, es muy ventajoso desde el punto de vista aritmético: va que se trabaja en cada magnitud con valores fraccionales de un valor base escojido. Estos valores base, son por lo general los datos de placa de la máguina en estudio.

El desarrollo y la presentación de las ecuaciones en nor unidad usadas en la modelación digital, se lo puede ver en detalle en el apéndice E de este trabajo.

3.1.2 Las condiciones iniciales.

Cualquier algoritmo de integración de las ecuaciones diferenciales. requiere de la determinación de los valores iniciales de las variables de estado que intervienen en el modelo.

3.1.2.1 Estado estable del generador.

El'generador de inducción autoexcitado, funciona a una frecuencia de operación f $\{Hz\}$ y una inductancia mutua Xm $[\Omega]$, que son función de la velocidad angular del generador, del condensador de excitación y de la carga.

Los valores de F, Xm en por unidad se los obtiene según las ecuaciones presentadas en el apéndice A: y el algoritmo de Newton para solución numérica de un sistema de dos ecuaciones con dos incógnitas no lineales, presentado en el apéndice D. Para luego llegar por relaciones volta-amperimétricas a los valores de Vs. Is. Il, Vg. I'r. Te. (Apéndice A).

Los valores en los ejes g y d. para el estado estable de cualquier variable, se puede calcular partiendo del módulo y el ángulo del fasor de la variable [4], mediante las siguientes relaciones:

Para la referencia fija en el estator w = 0.

 $j \theta e$ fgs = Re [Fas e] fds = Re [jFas e] fos = 0. f'gr = Re [F'ar e] f'dr = Re [jF'ar e] f'or = 0. (3.1)

en donde:

Fas y F'ar son las amplitudes de las ondas.

Relaciones con las cuales se calcula los valores en los ejes q y d para los casos de fallas simétricas como variación brusca de carga (funcionamiento balanceado del generador), cortocircuito trifásico, apertura simultánea de las tres fases, para un ángulo θe en el cual se produce la falla.

3.1.2.2 Estado estable del motor de corriente continua.

La necesidad de conocer la variación del torque de la máquina motriz, que en este caso es un motor de corriente continua, hace necesario calcular los valores de las corrientes de armadura ia y de campo if, para una determinada condición de funcionamiento del generador.

Trabajando con las ecuaciones (2.165), (2.166) y (2.167): y tomando en cuenta que se necesitan valores para el estado estable, se puede llegar las siguientes ecuaciones:

64

$$Vt - Ra ia - Kf if wr = 0$$

$$Te = Tm = Kf if ia$$

$$(3.3)$$

en las cuales Vt. wr y Te son conocidos. Te se toma como valor positivo.

De (3.3) se despeja if:

$$\begin{array}{r} \text{Te} \\ \text{if} = ----- \\ \text{Kf ia} \end{array} \tag{3.4}$$

y se reemplaza en (3.2) obteniéndose la siguiente ecuación para la corriente ia:

$$- Ra ia^m + Vt ia - wr Te = 0$$
 (3.5)

ecuaciones con las cuales se calcula el valor de ia e if para una condición dada de funcionamiento del generador.

3.1.2.3 Condiciones iniciales para fallas asimétricas.

Aplicando la matriz de transformación a ejes qdo (2.103) a los voltajes en el estator y corrientes de carga se tiene:

$$\begin{bmatrix} fqs \\ fds \\ fos \end{bmatrix} = \begin{bmatrix} 2/3 & -1/3 & -1/3 \\ 0 & -\sqrt{3}/3 & \sqrt{3}/3 \\ 1/3 & 1/3 & 1/3 \end{bmatrix} \begin{bmatrix} fas \\ fbs \\ fcs \end{bmatrix}$$
(3.6)

en las cuales fas, fbs, fcs son funciones senoidales del tiempo, por lo tanto, según la falla se aplica la ecuación (3.6) de la siguiente manera:

Para cortocircuito fase tierra:

 $Vas^{o+} = 0$ ial^{o+} = 0 $Vqc^{o+} = 0$

(3.7)

Para cortocircuito dos fases tierra:

 $Vas^{\alpha+} = 0$ $Vbs^{\alpha+} = 0$ $ial^{\alpha+} = 0$ $ibl^{\alpha+} = 0$ $Vqc^{\alpha+} = 0$ $Vdc^{\alpha+} = 0$ (3.8)

Para cortocircuito dos fases:

 $Vas^{o+} = Vbs^{o+} = (Vas^{o-} + Vbs^{o-}) / 2$ (3.9)

en donde los superíndices 0- y 0+ indican los valores anteriores y posteriores al instante de la falla.

3.1.3 Conexiones de la máguina de inducción, condensadores de excitación y carga.

La máquina de inducción puede funcionar en dos configuraciones, en conexión Y o en delta. De igual manera los condensadores y la carga puede tener estas configuraciones. En este trabajo, se considera a los condensadores de excitación y a la carga en conexión Y puesto a tierra, y se tiene la opción de escojer para la máquina de inducción en conexión Y o delta.

Por lo tanto en el ingreso para condiciones de carga v condensador de excitación se debe tomar en cuenta, que la impedancia base del sistema cambiará de acuerdo a la conexión de la máguina de inducción.

```
Para conexión Y:
```

3.1.4 Método de solución del programa digital.

El programa digital fue desarrollado para ser usado en forma didáctica, siendo fácilmente manejable por personas que no necesariamente tengan un conocimiento profundo sobre el generador de inducción. El método seguido se describe a continuación.

- Suministro de parámetros de las máquinas de inducción y de corriente de continua.
- Selección del tipo de conexión para la máquina de inducción y del estudio a realizarse.
- Ingreso de valores de: velocidad angular, condensador de excitación y carga del generador antes de la falla.
- Encontrar las condiciones de funcionamiento en estado estable.
- 4. Encontrar las condiciones iniciales según la falla.
- Integrar las ecuaciones diferenciales por el método de Runge - Kutta de cuarto orden.
- Transformación de variables qdo a variables abc en el estator.
- Presentación de resultados en forma gráfica de las variables del sistema.

El proceso descrito se puede visualizar de mejor manera en el diagrama de flujo simplificado mostrado en la Fig. 3.1.

3.2 DESCRIPCION DE LOS ALGORITMOS.

Los algoritmos usados en el programa digital se desarrollan en subprogramas, los cuales son llamados desde el programa principal de acuerdo al tipo de estudio que se desee realizar; tomando en cuenta que un mismo algoritmo puede servir para estudiar diferentes fallas y condiciones de funcionamiento del generador.

67

Fig. 3.1 DIAGRAMA DE FLUJO DEL PROGRAMA DIGITAL

3.2.1 Programa principal.

El programa principal realiza lo siguiente:

- Lectura de los parámetros de las máquinas de inducción y de continua.
- Presentación de un primer menú para impresión o cambio de datos de prámetros de las máquinas, v acceder al menú de simulaciónes o finalizar el programa.
- Presentación de un menú de simulaciónes que contiene:
 - * Requerimientos mínimos de condensador para excitación del generador en estado estable.
 - * Generador en estado estable.
 - * Variaciones bruscas de carga.
 - * Cortocircuito trifásico.
 - * Cortocircuito fase-tierra.
 - * Cortocircuito dos fases-tierra.
 - * Cortocircuito dos fases.
 - * Apertura simultánea de las tres fases.

Por medio del cual podemos escojer el tipo de estudio a realizar.

- Para opción requerimientos mínimos de condensador, se ingresa la carga, velocidad angular, condensador de excitación; y se llama a la subrutina XCMINIMO.
- Para la opción generador en estado estable, se ingresa la carga, velocidad angular, condensador de excitación: v se llama a la subrutina ESTABLE.
- Para el resto de opciones, se ingresa la carga, velocidad angular v condensaddor de excitación. Llama a las subrutinas ESTABLE, para calcular las condiciones de funcionamiento del generador en estado estable, luego a la subrutina CONDINICIAL para condiciones iniciales; y finalmente a la subrutina INTE-GRACION para resolver el grupo de ecuaciones diferenciales.
- El ingreso de carga en cualquiera de las opciones, se lo hace llamando a la subrutina INGCARGA.

3.2.2 Subrutina ESTABLE.

Calcula las condiciones de funcionamiento en estado estable del generador, para lo cual sigue el siguiente procedimiento:

- Llama a la subrutina FRECUEXM para calcular la frecuencia de operación F y reactancia de magnetización Xm.
- Calcula Vg en función de Xm.
- Calcula valores de voltajes, corrientes en estado estable.

3.2.3 Subrutina FRECUEXM

Llama a la subrutina SISTECUAFXM. luego aplica el algoritmo de Newton para resolver un sistema de dos ecuaciones no lineales con dos incógnitas; descrito en el apéndice D.

3.2.4 Subrutina SISTECUAFXM.

De acuerdo al tipo de carga calcula los coeficientes de las ecuaciones A.1, para luego por medio de éstas determinar F y Xm.

3.2.5 Subrutina CONDINICIAL.

- Calcula Xmg. Xmd y las constantes de las ecuaciones E.21
- Ingresa el ángulo de falla en Vas o ias.
- Calcula condiciones iniciales en el motor de corriente continua.
- Calcula voltajes, corrientes del generador 40 ms, antes de la falla.
- Asigna el número de ecuaciones diferenciales y calcula valores iniciales de las variables de estado según la falla a estudiar.

3.2.6 Subrutina INTEGRACION.

En esta subrutina, la magnitud del paso de integración es importante por dos razones. La primera es que, si este paso es excesivamente grande. los resultados de la simulación no serán confiables. En cambio, si es extremadamente negueño se tiene el limitante de la cantidad excesiva de puntos, y una demora en la ejecución del programa. Por lo tanto, se han escolido pasos de integración de 1. 0.8 o 0.5 ms, que se acomodan a las necesidades del programa.

En esta subrutina se realiza lo siguiente:

- Llama a la subrutina COECDI para calcular los coeficientes de las ecuaciones diferenciales.
- Escoje el proceso de integración:
 - 1. Si es una variación brusca de carga.
 - Asigna un paso de integración de 0.8 ms.
 - Llama a la subrutina RUNGEKUTTA.
 - El aiuste de Xm es importante ya que al variar las condiciones de carga, este valor cambia: hay que encontrar la manera óptima de cambiar Xm. Da buenos resultados si se lo hace cada 5 pasos de integración. Para valores de condensador de excitación, carga y velocidad angular, se llama a la subrutina FRECUEXM; se pondera Xm (apéndice A), y luego se calcula los coeficientes de la ecuación E.21.
 - 2. Para cortocircuitos y apertura de las tres fases:
 - Asigna un paso de integración de 0.5 o 1 ms.
 - Llama en cada de integración paso a la subrutina RUNGE-KUTTA.
- Si estamos en el caso de apertura de las tres fases, se deriva los flujos Wmg y Wmd para hallar los voltajes Vgs y Vds.
- Llama a la subrutina QDOABC, para transformar valores de variables gdo a abc.

- Llama a la subrutina GRAFICOS.

El diagrama de flujo simplificado de esta subrutina se presenta en la Fig. 3.2.

Fig. 3.2 DIAGRAMA DE FLUJO DE LA SUBRUTINA INTEGRACION

3.2.7 Subrutina RUNGEKUTTA.

Esta subrutina usa el algoritmo de integración de ecuaciones diferenciales de Runge - Kutta de cuarto orden (Apéndice C). En cada subpaso de integración se llama a la subrutina ECUADIF para la evaluación de los coeficientes A(i.i) necesarios en el algoritmo. También calcula el torque electromagnético del generador de inducción y el torque mecánico.

3.2.8 Subrutina ECUADIF.

La integración de las ecuaciones diferenciales, necesita de la evaluación de dichas ecuaciones, para poder aproximar los valores futuros de las variables de estado. Esta subrutina realiza dicha evaluación según el tipo de estudio que se realice y la condición de carga del generador.

3.2.9 Subrutina QDOABC.

Realiza la transformación de variables qdo a variables abc en el estator. La transformación se hace tomando en cuenta las restricciones con las que fueron desarrolladas las ecuaciones diferenciales según la falla que se estudie. Restriccines que se las puede ver en el capítulo II.

3.2.10 Subrutina GRAFICOS.

Subrutina encargada de presentar los gráficos de corrientes y voltajes en el estator, potencia trifásica instantánea del estator, potencia instantánea en la fase c del estator, torque electromagnético, torque mecánico de entrada, velocidad angular, corriente de carga en la fase c, condiciones del sistema antés de la falla, además de la variación de Xm en el caso de Variación Brusca de Carga. Esto lo realiza de la siguiente manera:

 Presenta un menú de gráficos, con la posibilidad de escojer las variables a graficar y tiempo deseado para el gráfico.

73

- Llama a la subrutina PARAGRAF para encontrar los valores máximo y mínimo de las variables a graficar
- Define la pantalla para gráficos y presenta el transitorio de las variables escojidas.

3.2.11 Subrutina XCMINIMO.

Esta subrutina emplea el procedimiento descrito en el apéndice B, para el cálculo del condensador mínimo para la excitación del generador.

- Para un valor de Xc pequeño, se calcula Xm llamando a la subrutina FRECUEXM. Si para ese valor resultan muchas interaciones, F o Xm valores incongruentes, se incrementa el valor de XC y se repite el proceso.
- Para un valor de Xc grande, se calcula Xm llamando a la subrutinas FRECUEXM. Si para ese valor resultan muchas iteraciones, F o Xm valores incongruentes, se disminuye el valor de XC y se repite el proceso.
- Para un valor medio de Xc entre los anteriores, se calcula en forma similar a lo anterior el Xm.
- Ordena los puntos Xc vs Xm.
- Calcula las rectas:

Xc = m1 Xm + b1Xc = m2 Xm + b2

- Para el valor de Xmmáx evalua el valor de Xc. y luego C.

3.2.12 Subrutina COEDCI.

En la subrutina RUNGEKUTTA se necesita evaluar las ecuaciones diferenciales cuatro veces en cada paso de integración. por lo cual, para evitar la repetición innecesaria de calcular los coeficientes que acompañan a las variables de estado, se calculan una sola vez en esta subrutina.

3.2.13 Subrutina INGCARGA.

74

Es utilizada para ingresar la carga que alimentará el generador. Los valores que recibe son en por unidad y las reactancias están expresadas a la frecuencia base. Da la posibilidad de escoier los distinos tipos de carga: resistiva. inductiva-resistiva. capacitiva-resistiva.

3.2.14 Subrutina MAOUINA.

Es utilizada para ingresar los parámetros de la máguina de inducción Xls. X'lr. rs. r'r. H. fB. P. VB. IB. datos para la curva Vg - vs - Xm. La subrutina cheguea que los valores ingresados sean congruentes a valores reales en por unidad. Además graba en un archivo los valores de los parámetros.

3.2.15 Subrutina MOTRIZ.

Es utilizada para ingresar los parámetros del motor de corriente continua, voltaje y corriente de armadura nominales, Ra, La, Kf. La subrutina chequea que los valores ingresados sean congruentes a valores reales. Además graba en un archivo los valores de los parámetros.

3.2.16 Subrutinas PREMAQUI y PREMOTRIZ.

Presenta los parámentros de la máquina de inducción o del motor de corriente continua a la pantalla, con la posibilidad de imprimir dichos valores.

3.2.17 Subrutina PARAGRAF.

Para los valores de una variable del sistema, encuentra el valor máximo y mínimo, que serán usados para definir la pantalla de gráficos, volviendo variable los valores del eje vertical.

3.3 PROGRAMA DIGITAL.

El programa digital fue desarrollado para ser usado en computadores personales IBM XT, AT, PS o compatibles, en lenquaje BASIC, utilizando el paquete de programas QUICK BASIC ver. 4.0 de Microsoft. Para usarlo consultar el apéndice I.

,

.

CAPITULO IV

PARTE EXPERIMENTAL Y SIMULACION

Las diferentes pruebas de laboratorio realizadas y anotadas en este capítulo, permiten determinar los parámetros de las máquinas de inducción trifásica y de corriente continua, que con las pruebas de las diferentes fallas servirán para la validación del modelo matemático propuesto en los capítulos anteriores.

4.1 MEDIDA DE LOS PARAMETROS DE LAS MAQUINAS DE INDUCCION.

Se realizaron pruebas en dos sistemas compuestos por motor de corriente continua y generador de inducción, acoplados mecanicamente. Los datos de placa de las máquinas son los siguientes:

Máquina de Inducción #1: Máquina de inducción de rotor bobinado. Marca: CETEL Bruxelles Type: S611 № 17 60 Hz V : 220/380 A : 7/4.04 Tmin : 1800 CV : 2 PH : 3 Rot 130 V. Ex. R.Pul 110 V.

Máquina de Inducción #2: Máquina de inducción jaula de ardilla. Marca: CETEL Bruxelles Type: S611 № 16 60 Hz V : 220/380 A : 11/6.5 Tmin : 1800 CV : 4 PH : 3

Motor de Corriénte Continua #1: Marca: CETEL Bruxelles Type : S622 № 4 Ex : 110 V. V : 110 A : 22.7 Tm : 1800 Cv : W : 2500

Motor de Corriente Continua #2:

Marca: CETEL Bruxelles Type : S611 Nº 16 Ex : 110 V. V : 110 A : 18.2 Tm : 1800 Cv : W : 2000

Los parámetros de las máquinas de inducción trifásica XIs. rs. X'lr. r'r y Xm. se determinan mediante las pruebas de vacío y de rotor bloqueado. La curva de saturación se determina mediante una prueba de vacío. a voltaje variable v velocidad sincrónica. En los gráficos E.1 y E.2 se puede observar la curva Vg -vs- Xm. la cual ha sido aproximada a tres rectas definidas por los puntos P1 : (XM1.VG1). P2 : (XM2.VG2). P3 : (XM3.VG3). Las pruebas para encontrar todos estos parámetros están descritas en el apéndice F.

La constante de inercia H puede ser calculada por dos métodos:

1) Método físico del movimiento de rotación.

2) Método electromecánico.

Para encontrar H, se sigue el método electromecánico, descrito en el apéndice G. Los parámetros de las máquinas de corriente continua Ra, La, Kf se determinan mediante las pruebas descritas en el apéndice H.

4.1.1 Resumen de parámetros de los grupos motor-generador

En la simulación digital, se deben ingresar los siguientes datos del sístema en estudio.

SISTEMA # 1 :

MAQUINA 'DE INDUCCION Nº 1Parámetros del circuito equivalente:Xls = 0.11714rs = 0.03057Frecuencia base:fB = 60Número de polos:P = 4Voltaje nominal por fase:V = 220 V.

Corriente nominal por fase: I = 4.04145 A. Puntos de la curva Vo - vs - Xm P1 : (1.00 , 1.7), P2 : (0.94 , 2.13), P3 : (0.60 , 2.37) Constante de inercia del sistema: H = 0.54882MOTOR DE CORRIENTE CONTINUA Nº 1 Voltaje de Armadura Nominal = 110 V. Corriente de Armadura Nominal = 22.7 A. Resistencia de Armadura: Ra = $0.853 \ \Omega$. Inductancia de Armadura: La = 13,8975 mH. Constante Kf = 1.582 V . s / A. SISTEMA # 2 : MACUINA DE INDUCCION Nº 2 Parámetros del circuito equivalente: X1s = 0.0617X' lr = 0.1435r'r = 0.05256rs = 0.05773fB = 60Frecuencia base: P = 4Número de polos: Voltaie nominal por fase: V = 220 V. Corriente nominal por fase: I = 6.35085 A. Puntos de la curva Vo - vs - Xm P1 : (1.08 . 2.15), P2 : (0.94 , 2.87) : P3 : (0.5 . 3.78) H = 0.62003Constante de inercia del sistema : MOTOR DE CORRIENTE CONTINUA Nº 2 Voltaje de Armadura Nominal = 110 V. Corriente de Armadura Nominal = 18.2 A. Resistencia de Armadura: Ra = $0.9784 \ \Omega$. Inductancia de Armadura: La = 18,5475 mH. Constante Kf = 1.5056 V . s / A.

4.1.2 Metodología de las pruebas en el sistema.

En la modelación matemática y en el programa digital se propone estudiar al generador con carga resistiva, inductiva o capacitiva, pero por limitaciones del laboratorio, no se realizaron pruebas con carga capacitiva. La configuración del estator en las máguinas de inducción, condensadores de excitación y carga se realiza en conexión Y. Se hacen pruebas que sirvan para la validación del modelo digital, por lo cual, no se realizan todas las posibles variaciones bruscas de carga.

De igual forma para fallas. solo se toman las pruebas representativas, y se puede ver en el desarrollo de éstas, que para ambos sistemas y para las distintas cargas; no se realizan la totalidad de las fallas que se puede estudiar. En el laboratorio se procede de la siguiente manera:

- * Se arranca el motor DC.
- * Se pone en funcionamiento al generador en vacío.
- * Se pone carga y se estabiliza al sistema antes de la falla.
- * Se mide las variables del generador y de la máguina de continua.
- * Se procede a realizar la falla, grabando al mismo tiempo las ondas de voltaje o corriente en un osciloscopio; para luego pasar esta señaleun grafizador.
- * Para cada prueba se presenta las condiciones antes de la falla: el valor de condensador (C), carga por fase del generador (R1, R1i, X1i), voltaje en la armadura del motor (Vdc), velocidad del rotor (RPM), voltaje de línea (Vab), corriente de línea en el generador (Ias), el período (T), la frecuencia (f) del sistema, el ángulo en el que se produce la falla (gias en ias, gvas en Vas) y gráfico de onda de corriente (ias) o voltaje (Vas) según sea el caso.
- * Hay que anotar, que por limitaciones en el grafizador, solamente se puede pasar una onda a los gráficos.

4.2 PRUEBAS DE VARIACIONES BRUSCAS DE CARGA.

Para este caso se realizan los siguientes tipos de variaciones de carga : resistiva a inductiva, resistiva a vacío, inductiva a resistiva, inductiva a vacío, vacío a resistiva, vacío a inductiva. Estas pruebas se realizan en el Sistema Motor-Generador Nº 2. 4.2.1 Variación de carga resistiva a inductiva. Experimental. Sistema #2.

ZB = 34.641 Ω . C = 40 uF. RPM = 1700, Vdc = 120 V. Rl = 2.0207 p.u., Vab = 345 V. Ias = 3.9 A. T = 17 ms. f = 58.82 Hz. Se pasa a Rli = 2.0207. Xli = 1.4039 p.u. α ias = -150°.

El transitorio de la onda ias se presenta en el gráfico 4.1.

Gráfico 4.1

4.2.2 Variación de carga resistiva a vacío. Experimental. Sistema #2.

ZB = 34.641 Ω ., C = 40 uF., RPM = 1700, Vdc = 122 V. R1 = 2.0207 p.u., Vab = 345 V., Ias = 3.9 A., T = 17 ms. f = 58.82 Hz., α vas = 180°.

El transitorio de la onda Vas se presenta en el gráfico 4.2.

Gráfico 4.2

4.2.3 Variación de carga inductiva a resistiva. Experimental. Sistema #2. ZB = 34.641 Ω .. C = 40 uF., RPM = 1920, Vdc = 130 V. Rli = 2.0207. Xli = 1.4039, Vab = 305 V., Ias = 2 A. T = 15.25 ms.. f = 65.57 Hz. Se pasa a Rl = 2.0207 p.u. cias = 180°

El transitorio de la onda ias se presenta en el gráfico 4.3.

Gráfico 4.3

4.2.4 Variación de carga inductiva a vacío. Experimental. Sistema #2.

ZB = 34.641 Ω ., C = 40 uF., RPM = 2000. Vdc = 127 V. Rli = 1.8, Xli = .8 p.u., Vab = 330 V., Ias = 3 A. T = 15 ms.. f = 66.66 Hz., α vas = 0" El transitorio de la onda Vas se presenta en el gráfico 4.4.

Gráfico 4.4

4.2.5 Variación de vacío a carga resistiva. Experimental. Sistema #2. ZB = 34.641 Ω ., C = 40 uF., RPM = 1700, Vdc = 132 V. Vab = 445 V., Ias = 3.5 A., T = 17.75 ms., f = 56.34 Hz. Se pasa a Rl = 8.0829 p.u., α ias = -60° El transitorio de la onda ias se presenta en el gráfico 4.5.

Gráfico 4.5

4.2.6 Variación de vacío a carga inductiva. Experimental. Sistema #2.

ZB = 34.641 Ω ., C = 40 uF.. RPM = 1780, Vdc = 135 V. Vab = 500 V., Ias = 4. A., T = 17 ms., f = 58.82 Hz. Se pasa a Rli = 4.0414. Xli = 2.7207 p.u.. α ias = -150° El transitorio de la onda ias se presenta en el gráfico 4.6.

Gráfico 4.6

4.2.7 Simulaciones de Variación Brusca de Carga.

A continuación se presenta los resultados de la simulación digital para los gráficos 4.1 al 4.6. En los cuales se puede observar, la onda en estudio 40 ms. antes de producirse la variación, y luego el comportamiento en estado transitorio de la variable comparada.

simulaciones presentadas están hechas de tal forma. Las obtenidos. que permita comparar los resultados con la parte los gráficos 4.1 al 4.6. Pero cada curva expeexperimental de rimental tiene diferentes condiciones iniciales: en la simulación para una sola condición de falla se obtiene doce curvas. que muestran el comportamiento de las diferentes variables del pueden ser observadas en conjunto. A continuación sistema: que se presentan los resultados en forma completa, que la simulación digital entrega, usando el caso de la del gráfico 4.1., en donde se tiene una variación de carga. Además. se debe indicar aue las curvas se pueden obtener en forma similar para las diferentes fallas estudian, y que se que se presentan en el apartado correspondiente. Las condiciones iniciales v demás cálculos, son impresos con el mismo programa v se muestran previo a las curvas.

GENERADOR EN CONDICIONES ESTABLES :

CONDENSADOR DE EXCITACION [uF] = 40 RPM = 1700, FRECUENCIA [Hz] = 55.15407 DESLIZAMIENTO s = -2.742495E-02 TORQUE ELECTROMAGNETICO [N.m] = -12.26765 POTENCIA DEL ACTIVA DEL GENERADOR [W] = -2013.931 CONDENSADORES, CARGA Y GENERADOR EN CONEXION Y

```
VALORES BASE:
SB [VA] = 1397.187 , TB [N.m] = 11.11846
VB [V] = 220, IB [A] = 6.35085, ZB [OHMNIOS] = 34.64103
VALORES EN POR UNIDAD (LAS REACTANCIAS A LA FRECUENCIA BASE)
Xm = 2.6222
RI = 2.0207 RESISTIVA
FASOR EN POR UNIDAD. FASE EN GRADOS
Vg : fasor = .9881833 . fase = 3.188912
Is : fasor = .6794413 , fase = -135.8634
I'r : fasor = .514401 , fase = 7.126288
Im : fasor = .4099638 , fase = -86.81114
Vs : fasor = .985338 , fase = 0
Ic : fasor = .4731441 . fase = 90
Il : fasor = .4876221 , fase = -1.600825E-05
VOLTAJE DEL MOTOR DC [V] = 120
CARGA ANTES DE LA FALLA :
RI = 2.0207 RESISTIVA
CARGA LUEGO DE LA FALLA :
Rli = 2.0207, Xli = 1.4039 INDUCTIVA RESISTIVA
ANGULO DE FALLA EN LA CORRIENTE DE FASE A = -150 GRADOS
ULTIMO VALOR DE LA FRECUENCIA = 61.96396 [Hz]
LOS VALORES QUE TOMA Xm CADA 16 ms. SON:
NUMERO DE VALORES - 25
2.6222, 2.751569, 2.866483, 2.968556, 3.059225, 3.139762,
3.2113, 3.274845, 3.33129, 3.381427, 3.425962, 3.465522,
3.50066. 3.531873. 3.559598. 3.564225. 3.578963. 3.56752.
3.555281, 3.542559, 3.52963, 3.516646, 3.503822, 3.491246.
3.478967
```

Las curvas que entrega la modelación, para las diferentes variables se las puede observar a continuación:

88

ст.

6B

4.3 PRUEBAS DE CORTOCIRCUITO TRIFASICO -

4.3.1 Generador con carga resistiva. Experimental. Sistema #1.

ZB = 54.4358 Ω ., C = 30 uF., RPM = 1750, Vdc = 115 V. Rl = 2.5718 p.u., Vab = 375 V., Ias = 2.75 A., T = 17.25 ms. f = 57.97 ms., α ias = 161*

El transitorio de la onda ias se presenta en el gráfico 4.7.

Gráfico 4.7

Sistema #2. 🕐 🕚

ZB = 34.641 Ω , C = 40 uF., RPM = 1750, Vdc = 120 V. R1 = 2.0207 p.u., Vab = 363 V., Ias = 4.3 A., T = 17 ms. f = 58.82 Hz., gias = - 80°

El transitorio de la onda ias se presenta en el gráfico 4.8.

Gráfico 4.8

4.3.2 Generador con carga inductiva. Experimental. Sistema #1. ZB = 54.4358 Ω ., C = 40 uF., RPM = 1800, Vdc = 102 V. Rli = 1.7736 , Xli = 1.6413 p.u., Vab = 380 V., Ias = 2.35 A. T = 17 ms., f = 58.82 Hz., α ias = -175*

El transitorio de la onda ias se presenta en el gráfico 4.9.

Gráfico 4.9

Sistema #2.

ZB = 34.641 Ω ., C = 40 uF., RPM = 2020, Vdc = 128 V. Rli = 2.0207, Xli = 1.4039 p.u., Vab = 390 V., Ias = 2.55 A. T = 15.25 ms., f = 65.57 Hz., α ias = - 90° El transitorio de la onda ias se presenta en el gráfico 4.10.

Gráfico 4.10

4.3.3 Simulaciones de Cortocircuito Trifásico.

A continuación se presenta los resultados de la simulación digital para los gráficos 4.7 al 4.10. En los cuales se puede observar, la onda en estudio 40 ms. antes de la falla, y luego el comportamiento en estado transitorio de la variable comparada.

Para el gráfico 4.8. :

A continuación, se presenta para el caso mostrado en el apartado 4.3.1, gráfico 4.7, los resultados en forma completa que la simulación digital entrega, en forma similar a lo presentado en el apartado 4.2.7, pero hay que tomar en cuenta que no es necesario ajustar el valor de Xm; para fallas como cortocircuitos o apertura de fases.

GENERADOR EN CONDICIONES ESTABLES CONDENSADOR DE EXCITACION [uF] = 30RPM = 1750 . FRECUENCIA [Hz] = 55.94497 DESLIZAMIENTO s = -4.269131E-02TOROUE ELECTROMAGNETICO [N.m] = -6.336937 POTENCIA DEL ACTIVA DEL GENERADOR [W] = -1073.195CONDENSADORES. CARGA Y GENERADOR EN CONEXION Y VALORES BASE : SB [VA] = 889.119, TB [N.m] = 7.075385VB[V] = 220, IB[A] = 4.04145, ZB[OHMNJO5] = 54.43591VALORES EN POR UNIDAD (LAS REACTANCIAS A LA FRECUENCIA BASE) Xm = 1.933164R1 = 2.5718 RESISTIVA FASOR EN POR UNIDAD, FASE EN GRADOS Vq : fasor = .9674659 , fase = 3.61806 Is : fasor = .7052837 , fase = -124.1119I'r : fasor = .4321066 , fase = 6.414241 Im - fasor = .5367321 . fase = -86.38187 Vs : fasor = 1.017226 . fase = 0 Ic : fasor = .5839354 , fase = 90Il : fasor = .3955306 , fase = 2.561321E-06VOLTAJE DEL MOTOR DC [V] = 115 ANGULO DE FALLA EN LA CORRIENTE DE FASE A = 161 GRADOS

Las formas de onda para esta falla se presentan a continuación:

4.4 PRUEBAS DE CORTOCIRCUITO FASE - TIERRA 4.4.1 Generador con carga resitiva. Experimental. Sistema #1. ZB = 54.4358 Ω ., C = 30 uF.. RPM = 1750, Vdc = 116 V. Rl = 2.5718 p.u., Vab = 375 V., Ias = 2.75 A., T = 17.25 ms., f = 57.97 Hz., α ias = 105° El transitorio de la onda ias se presenta en el gráfico 4.11.

Gráfico 4.11

Sistema #2.

ZB = 34.641 Ω . C = 40 uF., RPM = 1700, Vdc = 126 V. Rl = 2.0207 p.u., Vab = 345 V., Jas = 3.9 A., T = 17 ms. f = 58.82 Hz., α vas = -110*

El transitorio de la onda Vbs se presenta en el gráfico 4.12.

Gráfico 4.12

4.4.2 Generador con carga inductiva. Experimental. Sistema #2. ZB = 34.641 Ω ., C = 40 uF.. RPM = 2000. Vdc = 128 V. Rli = 2.0207. Xli = 1.4039 p.u., Vab = 380 V.. Ias = 2.5 A. T = 15.25 ms.. f = 65.57 Hz., α ias = 115*

El transitorio de la onda ias se presenta en el gráfico 4.13.

Gráfico 4.13

4.4.3 Generador en vacío. Experimental. Sistema #1. ZB = 54.4358 Ω.. C = 30 uF.. RPM = 1700. Vdc = 120 V. Vab = 410 V.. Ias = 2.45 A.. T = 17.75 ms., f = 56.33 Hz. gias = - 135°

El transitorio de la onda ias se presenta en el gráfico 4.14.

4.4.4 Simulaciones de Cortocircuito fase - tierra.

A continuación se presenta los resultados de la simulación digital para los gráficos 4.11 al 4.14. En los cuales se puede observar, la onda en estudio 40 ms. antes de la falla, y luego el comportamiento en estado transitorio de la variable comparada.

Para el gráfico 4.11. :

Para el gráfico 4.12. :

Para el gráfico 4.13. :

Para el gráfico 4.14. :

A continuación, se presenta para el caso mostrado en el apartado 4.4.2: los resultados en forma completa que la simulación digital entrega, en forma similar a lo presentado en el apartado 4.2.7.

GENERADOR EN CONDICIONES ESTABLES :

CONDENSADOR DE EXCITACION [uF] = 40

RPM = 2000FRECUENCIA [Hz] = 65.53262DESLIZAMIENTO s = -1.730516E-02TORQUE ELECTROMAGNETICO [N.m] = -5.044168POTENCIA DEL ACTIVA DEL GENERADOR (WI = -1000.048CONDENSADORES, CARGA Y GENERADOR EN CONEXION Y VALORES BASE: SB [VA] = 1397.188 . TB [N.m] = 11.11847 VB [V] = 220, IB [A] = 6.350852, ZB [OHMNIOS] = 34.64102VALORES EN POR UNIDAD (LAS REACTANCIAS A LA FRECUENCIA BASE) Xm = 3.017642Rli = 2.0207, Xli = 1.4039 INDUCTIVA RESISTIVA FASOR EN POR UNIDAD, FASE EN GRADOS Vg : fasor = .8686162 , fase = 2.320127 Is : fasor = .398479 , fase = -133.3877I'r : fasor = .2856082, fase = 5.274164 Im : fasor = .263546, fase = -87.67943Vs ; fasor = .8716167 , fase = 0 Ic : fasor = .4972946 , fase = 90 Il : fasor = .3436144 , fase = -37.19207VOLTAJE DEL MOTOR DC [V] = 128

ANGULO DE FALLA EN LA CORRIENTE DE FASE À = 105 GRADOS

Las formas de onda para esta falla se presentan a continuación:

4.5 PRUEBAS DE CORTOCIRCUITO DOS FASES - TIERRA. 4.5.1 Generador con carga resistiva. Experimental. Sistema #1. ZB = 54.4358 Ω ., C = 30 uF., RPM = 1720, Vdc = 116 V. Rl = 2.5718 p.u., Vab = 365 V., Ias = 2.75 A., T = 17.75 ms. f = 56.33 Hz., α ias = - 85° El transitorio de la onda ias se presenta en el gráfico 4.15.

Gráfico 4.15

Sistema #2.

ZB = $34.641 \ \Omega$.. C = 40 uF, RPM = 1700, Vdc = 126 V. R1 = 2.0207 p.u., Vab = 345 V., Ias = 3.9 A., T = 17 ms. f = 58.82 Hz.. $\alpha vas = -20^{\circ}$

El transitorio de la onda Vcs se presenta en el gráfico 4.16.

4.5.2 Generador con carga inductiva. Experimental. Sistema #2. ZB = 34.641 Ω ., C = 40 uF.. RPM = 2000. Vdc = 128 V. Rli = 2.0207. Xli = 1.4039 p.u.. Vab = 382 V.. Ias = 2.55 A. T = 15.12 ms.. f = 66.13 Hz., α ias = - 85° El transitorio de la onda ias se presenta en el gráfico 4.17.

4.5.3 Generador en vacío. Experimental. Sistema #1. ZB = 54.4358 Ω., C = 30 uF., RPM = 1700, Vdc = 120 V. Vab = 410 V., Ias = 2.5 A., T = 17.75 ms., f = 56.33 Hz. gias = 145°

El transitorio de la onda Ias se presenta en el gráfico 4.18.

4.5.4 Simulaciones de Cortocircuito dos fases - tierra.

A continuación se presenta los resultados de la simulación digital para los gráficos 4.15 al 4.18. En los cuales se puede observar, la onda en estudio 40 ms. antes de la falla, y luego el comportamiento en estado transitorio de la variable comparada.

Para el gráfico 4.15. :

Para el gráfico 4.18. :

A continuación, se presenta para el caso mostrado en el apartado 4.5.3; los resultados en forma completa que la simulación digital entrega, en forma similar a lo presentado en el apartado 4.2.7.

GENERADOR EN CONDICIONES ESTABLES

CONDENSADOR DE EXCITACION [uF] = 30

RPM = 1700FRECUENCIA [Hz] = 56.60306DESLIZAMIENTO s = -1.12375E-03TOROUE ELECTROMAGNETICO [N,m] = -.1761367POTENCIA DEL ACTIVA DEL GENERADOR [W] = 0 CONDENSADORES. CARGA Y GENERADOR EN CONEXION Y VALORES BASE: SB [VA] = 889.119, TB [N.m] = 7.075385VB [V] = 220, IB [A] = 4.04145, ZB [OHMNIOS] = 54.43591VALORES EN POR UNIDAD (LAS REACTANCIAS A LA FRECUENCIA BASE) Xm = 1.708606GENERADOR EN VACIO FASOR EN POR UNIDAD. FASE EN GRADOS Vg : fasor = .9987991 , fase = 1.086932 Is : fasor = .6197784 . fase = -90.00002I'r : fasor = 1.175657E-02. fase = 1.161462 Im : fasor = .6196516, fase = -88.91311 Vs : fasor = 1.067112 . fase = 0 Ic : fasor = .6197784 , fase = 89.99999 VOLTAJE DEL MOTOR DC [V] = 120

ANGULO DE FALLA EN LA CORRIENTE DE FASE A = 145 GRADOS

Las formas de onda para esta falla se presentan a continuación:

4.6 PRUEBAS DE CORTOCIRCUITO DOS FASES4.6.1 Generador con carga resistiva. Experimental.

Sistema #2.

 $ZB = 34.641 \ \Omega$, $C = 40 \ uF$, RPM = 1750, $Vdc = 119 \ V$.

R1 = 2.0207 p.u., Vab = 365 V., Ias = 4.3 A.

 $T = 17 \text{ ms.}, f = 58.82 \text{ Hz.}, \alpha \text{ias} = 75^{\circ}$

El transitorio de la onda ias se presenta en el gráfico 4.19.

Gráfico 4.19

Sistema #2.

ZB = 34.641 Ω . C = 40 uF., RPM = 1750. Vdc = 120 V. RI = 2.0207 p.u., Vab = 365 V., Ias = 4.3 Å. T = 17 ms., f = 58.82 Hz., α vas = -140* El transitorio de la onda Vbs se presenta en el gráfico 4.20.

4.6.2 Generador con carga inductiva. Experimental. Sistema #2. $ZB = 34.641 \ \Omega$. $C = 40 \ uF$. RPM = 2020. $Vdc = 128 \ V$. Rli = 2.0207. Xli = 1.4039 p.u.. Vab = 390 V.. Ias = 2.55 A. $T = 15.25 \text{ ms.}, f = 65.57 \text{ Hz.}, \alpha \text{ias} = 50^\circ$

El transitorio de la onda ibs se presenta en el gráfico 4.21.

Gráfico 4.21

Sistema #2.

 $ZB = 34.641 \Omega$. C = 40 uF. RPM = 2020. Vdc = 128 V. Rli = 2.0207. XII = 1.4039 p.u., Vab = 390 V., Ias = 2.55 A. $T = 15.25 \text{ ms.}, f = 65.57 \text{ Hz.}, \alpha \text{vas} = 155^{\circ}$ El transitorio de la onda Vbs se presenta en el gráfico 4.22.

4.6.3 Generador en vacío. Experimental. Sistema #2. ZB = 34.641 Ω., C = 40 uF., RPM = 1630. Vdc = 132 V. Vab = 400 V., Ias = 3 A., T = 18.5 ms., f = 54.05 Hz. gias = -165°

El transitorio de la onda ibs se presenta en el gráfico 4.23.

Gráfico 4.23

Sistema #2.

 $ZB = 34.641 \Omega$. C = 40 uF., RPM = 1630, Vdc = 132 V. Vab = 400 V., Ias = 3 A., T = 18.5 ms., f = 54.05 Hz. avas = 155°

El transitorio de la onda Vbs se presenta en el gráfico 4.24.

4.6.4 Simulaciones de Cortocircuito dos fases.

A continuación se presenta los resultados de la simulación digital para los gráficos 4.19 al 4.24. En los cuales se puede observar, la onda en estudio 40 ms. antes de la falla, y luego el comportamiento en estado transitorio de la variable comparada.

Para el gráfico 4.19. :

Para el gráfico 4.20. :

Para el gráfico 4.24. :

A continuación, se presenta para el caso mostrado en el apartado 4.6.2, gráfico 4.21: los resultados en forma completa que la simulación digital entrega, en forma similar a lo presentado en el apartado 4.2.7.

GENERADOR EN CONDICIONES ESTABLES

CONDENSADOR DE EXCITACION [uF] = 40RPM = 2020 FRECUENCIA [Hz] = 66.19394DESLIZAMIENTO s = -1.721288E-02TORQUE ELECTROMAGNETICO [N.m] = -5.430045POTENCIA DEL ACTIVA DEL GENERADOR [W] = -1086.739CONDENSADORES. CARGA Y GENERADOR EN CONEXION Y

VALORES BASE: SB [VA] = 1397.188 , TB [N.m] = 11.11847 VB [V] = 220', IB [A] = 6.350852 , ZB [OHMNJOS] = 34.64102

VALORES EN POR UNIDAD (LAS REACTANCIAS A LA FRECUENCIA BASE)

Xm = 2.935769
Rli = 2.0207 , Xli = 1.4039 INDUCTIVA RESISTIVA

VOLTAJES Y CORRIENTES EN POR UNIDAD, FASE EN GRADOS

Vg : fasor = .9082005 , fase = 2.342016
Is : fasor = .4189035 . fase = -132.7392
I'r : fasor = .2970276 . fase = -132.7392
Im : fasor = .2804102 . fase = 5.309927
Im : fasor = .2804102 . fase = -87.65797
Vs : fasor = .911972 , fase = 0
Ic : fasor = .5255699 , fase = 90
Il : fasor = .3581986 , fase = -37.46948

VOLTAJE DEL MOTOR DC [V] = 128

ANGULO DE FALLA EN LA CORRIENTE DE FASE A = 50 GRADOS

Las formas de onda para esta falla se presentan a continuación:

4.7 PRUEBAS DE APERTURA SIMULTANEA DE LAS TRES FASES 4.7.1 Generador con carga resistiva. Experimental. Sistema #1. ZB = 54.4358 Ω .. C = 40 uF.. RPM = 1650. Vdc = 108 V. Rl = 1.7736 p.u.. Vab = 375 V., Ias = 3.75 A. T = 18.37 ms.. f = 54.43 Hz.. gvas = 100° El transitorio de la onda Vas se presenta en el gráfico 4.25.

Gráfico 4.25

Sistema #2.

 $ZB = 34.641 \ \Omega$., C = 40 uF., RPM = 1750. Vdc = 118 V. Rl = 2.0207 p.u., Vab = 365 V., Ias = 4.3 A. T = 17.25 ms.. f = 57.97 Hz., $\alpha vas = 0^{\circ}$ El transitorio de la onda Vas se presenta en el gráfico 4.26.

Gráfico 4.26

4.7.2 Generador en vacío. Experimental. Sistema #1. ZB = 54.4358 Ω ., C = 30 uF., RPM = 1710, Vdc = 118 V. Vab = 420 V., Ias = 2.5 A., T = 17.5 ms., f = 57.14 Hz. α vas = - 100°

El transitorio de la onda Vas se presenta en el gráfico 4.27.

المعجوريون ومحمومهم والمواجد الم

Gráfico 4.27

Sistema #2.

ZB = 34.641 Ω , C = 40 uF., RPM = 1660, Vdc = 134 V. Vab = 395 V., Ias = 3 A., T = 18.5 ms., f = 54.05 Hz. α vas = -70°

El transitorio de la onda Vas se presenta en el gráfico 4.28.

4.7.3 Simulaciones de Apertura Simultánea de las tres fases.

A continuación se presenta los resultados de la simulación digital para los gráficos 4.25 al 4.28. En los cuales se puede observar, la onda en estudio 40 ms, antes de la falla, y luego el comportamiento en estado transitorio de la variable comparada.

Para el gráfico 4.25. :

Para el gráfico 4.26. :

-1.514MAX= 1.513 : HIN=

Para el gráfico 4.28. :

1.557 MAX= : H1N= -1.557

A continuación, se presenta para el caso mostrado en el apartado 4.7.2, gráfico 4.28; los resultados en forma completa que la simulación digital entrega. en forma similar a lo presentado en el apartado 4.2.7.

GENERADOR EN CONDICIONES ESTABLES :

CONDENSADOR DE EXCITACION [uF] = 40

```
RPM = 1660
FRECUENCIA [Hz] = 55.29227
DESLIZAMIENTO s = -7.427153E-04
TORQUE ELECTROMAGNETICO [N.m] = -.3913837
POTENCIA DEL ACTIVA DEL GENERADOR \{W\} = 0
CONDENSADORES, CARGA Y GENERADOR EN CONEXION Y
VALORES BASE:
SB [VA] = 1397.188. TB [N.m] = 11.11847
VB [V] = 220, IB [A] = 6.350852, ZB [OHMNIOS] = 34.64102
VALORES EN POR UNIDAD (LAS REACTANCIAS A LA FRECUENCIA BASE)
Xm = 2.1944
GENERADOR EN VACIO
VOLTAJES Y CORRIENTES EN POR UNIDAD. FASE EN GRADOS
Vq : fasor = 1.071366 . fase = 1.636643
Is : fasor = .53004 . fase = -90.00001
I'r : fasor = 1.513924E-02 , fase = 1.74371
Im : fasor = .5297954, fase = -88.36327
Vs : fasor = 1.101066 . fase = 0
Ic : fasor = .53004 , fase = 90
VOLTAJE DEL MOTOR DC \{V\} = 134
ANGULO DE FALLA EN EL VOLTAJE DE FASE A = -70 GRADOS
```

Las formas de onda para esta falla se presentan a continuación: • ,

CAPITULO V

ANALISIS Y COMPARACION DE RESULTADOS

INTRODUCCION

El análisis y comparación de resultados, se hace en base a la comparación entre los resultados obtenidos experimentalmente y los proporcionados por la simulación digital.

Se han realizado cuadros para comparar los resultados y analizar sus diferencias a través del cálculo de errores. El programa digital, como se anotó anteriormente, da resultados en forma numérica y gráfica. Para ambos casos se compara con lo obtenido en la parte experimental.

5.1 CONSIDERACIONES Y LIMITACIONES DEL ESTUDIO.

- Hay que tener en cuenta las consideraciones matemáticas que se han hecho en la modelación, por ejemplo, considerar circuito lineal magnético en la máquina: despreciando la saturación e histérisis. En este trabajo no se ha incluído en la simulación digital, los efectos de la saturación.
- Una limitación se presenta en variacines de carga, debido al algoritmo usado para el ajuste gradual del valor de Xm.
- De igual forma, en la simulación para el caso del cálculo del condensador mínimo para matener la autoexcitación, al no ser éste el objetivo del trabajo, hace una aproximación de la curva Xc - vs - Xm a dos rectas; y entrega un valor aproximado de C mínimo.
- Limitaciones en el laboratorio, por ejemplo, no se tiene condensadores con una variación continua, se dispone de uno con valores discretos de 10, 20, 30 y 40 uF.
 Deterioro de los rodamientos en una de las máguinas, lo que puede generar comportamientos no tomados en cuenta en la modelación y errores en los resultados.

A continuación se presenta un ejemplo de entre las pruebas del capítulo IV, para probar la validez del algoritmo propuesto para calcular el valor del condensador mínimo.

SISTEMA # 1

MAQUINA DE INDUCCION. CONDENSADORES DE EXCITACION Y CARGA EN CONEXION Y RPM = 1750 IMPEDANCIA BASE ZB [OHMNIOS] = 54.43591 R1 = 2.5718 (pu) RESISTIVA CONDENSADOR MINIMO = 2.494121E-05 FARADIOS

El ejemplo corresponde a la prueba presentada en el apartado 4.3.1, gráfico 4.7: en la cual se tiene un condensador de excitación de 30 uF., superior a los 24.9 uF. Por lo tanto se prueba la validez del algoritmo usado, a pesar de las limitaciones antes expuestas.

5.2 VARIACIONES BRUSCAS DE CARGA.

Al observar los gráficos del 4.1 al 4.6 y los de las simulaciones, se puede ver que los resultados experimentales coinciden con los de la simulación digital.

En todos los casos se observa la tendencia del sistema en alcanzar su nuevo estado, en tiempos que dependen de la máquina de inducción, nueva condición de carga, y del comportamiento de la máquina motriz. Para el caso de tener como máquina motriz un motor de corriente continua, la variación del torque mecánico entregado al generador es importante considerarla, ya que dependiendo de este valor y del torque electromagnético generado en la máquina de inducción, se llegará a una nueva condición de funcionamiento del sistema. En todo caso, se nota que la variación del torque generado en el motor de corriente continua es más lenta que la variación del torque generado en la máquina de inducción, esto se justifica debido a los valores de los parámetros de cada una de las máquinas, y a las constantes de tiempo involucradas en cada caso.

El motor de corriente continua, se acomoda a los requerimientos de potencia y torque exijidos por la carga del generador, cuando no se excede sus límites de operación.

Se comprueba en las pruebas experimentales y simulación, que al aumentar carga el voltaje del generador disminuve. lo contrario sucede al disminuir la carga. Se producen aumentos excesivos en el voltaje del estator al pasar de carga elevada a vacío. La corriente tiene un comportamiento que depende de las condiciones de carga antes y después de la variación y sus cambios son cualitativamente más bruscos que los de voltaje. especialmente cuando de trata de cargas inductivas.

El comportamiento de las curvas de torque electromagnético y potencia trifásica son similares. y nos indican el flujo de potencia en el sistema. De la máquina motriz hacia los condensadores y carga o viceversa. Para el caso de variación de carga a vacío, hay pequeñas fluctuaciones en la curva justamente en la falla, en las que existe una pequeña cantidad de potencia, que fluye al estator desde los condensadores, y que desaparece cuando se estabiliza, esto se puede ver en la simulación de carga a vacío en el computador.

En el experimento presentado en el gráfico 4.1 se ve el comportamiento de las curvas de torque y potencia trifásica. debido al transitorio producido en el cambio de carga, para este caso las oscilaciones son más pronunciadas debido a que se trata de carga inductiva, pero se ve que en ningún momento la máguina recibe potencia desde los condensadores de excitación. Para casos de variación de carga a carga y de vació a carga, por lo general el generador en el transitorio siempre entrega potencia.

Una evaluación de los errores se presenta en el Cuadro Comparativo NQ 1. Se lo realiza comparando entre los valores medidos en el sistema en estado estable, con los simulados. Para este caso se diferencian los valores en la amplitud de la onda simulados y experimentales, cuando la variable observada tiende a estabilizarse. En la simulación del transitorio, se

.

han obtenido errores con un promedio del 8%, esto se justifica ya que en este trabajo se han realizado mediciones de parámetros de las máquinas, de las cargas, de los condensadores, y en cada proceso de medida se cometen pequeños errores que para la simulación se vuelven acumulativos, pero que en general no distorcionan los resultados experimentales y simulados que se presentan, y no restan validez a la modelación.

En los cuadros comparativos del Nº 1 al Nº 6 se observan los valores medidos y calculados para el sistema antes de producirse la falla, obteniéndose errores con un promedio de 4.57 %.

Cabe anotar, que para los casos de variación de carga, la simulación es mejor, dando buenos resultados cuando se presenten las siguientes condiciones:

- * Datos de carga congruentes, con valores que se tiene en situaciones reales, por ejemplo: factores de potencia mayores a 0.7 sea capacitivo o inductivo.
- * Variaciones de carga para las cuales el valor de Xm antes y después del cambio sean cercanos.
- * Variaciones de carga en las cuales, los valores de corriente y voltaje en el estator permanezcan en rangos aceptables para el funcionamiento de la máguina.

Para casos en los cuales, no se cumplan las condiciones anteriores, las formas de onda resultantes adolecen de errores en sus magnitud, pero en general se observa el comportamiento del generador frente a la falla.

5.3 CORTOCIRCUITOS.

٠

Se puede observar los oscilogramas de los gráficos 4.7 al 4.24 y los presentados en la simulación comprobándose que coinciden en características como: forma de la onda, tiempos. valores máximos o mínimos que alcanzan, cruces por cero de la onda comparada. Lo que prueba la validez del modelo planteado para el estudio de estas fallas.

Para cortocircuitos o apertura de fases. se puede afirmar que el valor que tome la impedancia Xm en el transcurso de la falla no afecta significativamente a la simulación, ya que excede en muchas unidades a Xls, X'lr, rs y r'r, razón por la cual, se toma para la simulación el valor antes de producirse la falla.

Existen variables importantes que denotan el comportamiento del sistema frente a estas fallas, como por ejemplo, se debería observar el torque electromagnético, voltajes o corrientes presentadas en el mismo gráfico obtenido experimentalmente: pero como se indicó, por limitaciones del laboratorio no se las pudo observar. En la simulación, se puede ver el comportamiento transitorio de todas las variables involucradas en el sistema.

En el comportamiento del sistema para estas fallas, no tiene una influencia decisiva el valor del torque mecánico entregado al generador por el motor DC, debido al tiempo que dura el transitorio en la máguina de inducción, es decir, hasta gue pierda excitación, gue**se he**fijado como máximo en 150 ms. En todo caso, el modelo digital prevee la variación del torque de la máguina motriz, a pesar de que en otros trabajos sobre estas fallas se considera al valor del torque mecánico constante mientras dura la falla.

Para todas las fallas de cortocircuito analizadas, se observa que en el momento de la falla, se produce gran crecimiento del torque electromagnético en sentido negativo, para luego hacerse cero, en algunos casos de fallas incluso este torque oscila antes de anularse, esto depende del tipo de cortocircuito y del sistema en estudio.

El comportamiento de las corrientes en las fases que se cortocircuitan es alcanzar picos elevados, por lo general de valores con el mismo signo que tienen en el instante de la falla, es decir, si la corriente tiene signo positivo, será un

pico positivo. Esto depende también del sistema en estudio y la carga antes de la falla. Al igual que el torgue. la corriente se hace cero en poco tiempo, depeniendo del sistema y de la falla que se analice. Para algunos casos la corriente se hace cero oscilando, esto se ha visto más a menudo en el caso del sistema #2.

El valor de los picos de corriente dependen de: la carga antes de la falla y el ángulo en la corriente para el cual se produce. Si la onda de corriente está en el semiciclo positivo o negativo, en la mayoría de los casos se produce un pico máximo o mínimo: siendo mayores cuando la onda de corriente está entre los 60° y 120° o -60° y -120° aproximadamente, para el caso de la máguina Nº 1, para el caso de la máguina Nº 2 esto no se produce en la totalidad de los casos.

Para estas fallas, se calcula y presenta en los cuadros comparativos del Nº 2 al Nº 5, los errores de observación entre los resultados experimentales y los simulados. Se han obtenido errores con un promedio de 4.9, 11.72, 10.6 y 6.114%, que se justifican por las mismas razones expuestas en el apartado 5.2.

5.4 APERTURA SIMULTANEA DE LAS TRES FASES.

Se observa que los gráficos del 4.25 al 4.28 y sus correspondientes simulaciones, son de iguales características. en forma de las ondas su tendencia y tiempo para llegar a un voltaje cero.

Se producen picos en los voltajes de fase, ya que se forza la corriente a cero en una bobi na, siendo un fenómeno previsto para este tipo de fallas. Además se observa también que tanto el torque, como la potencia en el momento de la falla se hacen cero.

Para esta falla. se calcula y presenta en el cuadro comparativo de Nº 6; los errores de observación entre los resultados experimentales y los simulados. se ha obtenido un promedio de error del 7.97 %, que de igual manera es justificable por lo expuesto en el apartado 5.2.
VARIACIONES BRUSCAS DE CARGA

S	G]	estaix	ESTAP	LE				ESTADO T	RANSIT	ORIO	N.
S #	A		Is			٧s		F	RECUEN	CIA	VARIABLE			
E M A	I C O	M	S	E	м	S	E	м	S	E	ANALIZADA	м	S	E
2	4.1	0.61	0.67	9.8	0.91	0.98	7.6	0.98	0.92	-6.1	ias	0.49	0.48	-2.0
2	4.2	0.61	0.67	9.8	0.91	0.98	7.6	0.98	0.92	-6.1	vas	2.0	1.85	7.5
2	4.3	0.31	0.31	0.0	0.8	0.69	-13.7	1.1	1.05	-4.5	ias	0.85	0.94	10.5
2	4.4	0.47	0.45	-4.2	0.86	0.72	-8.1	1.1	1.08	-1.8	Vas	2.3	1.6	20.0
2	4.5	0.55	0,55	0.0	1.17	1.12	-4.3	0.94	0.94	0.0	ias	0.65	0.69	6.1
2	4.6	0.63	0.6	-4.7	1.3	1.16	-10.7	0.98	0,99	1.0	ias	0.5	0.51	2.0
				4.75			8.66			3.25				8.01

Nota : M = valor medido S : Valor simulado E = porcentaje de error.

133

CORTOCIRCUITO TRIFASICO

ST	G			. 1	ESTADO	ESTAB	LE				ESTADO T	RANSITO	RIO	
S T	A		Is			¥ø		F	RECUEN	CIA	VARIAELE			
E M A	I C O	H	S	E	н	S	E	M	S	E	ANALIZADA	м	s	E
1	4.7	0.68	0.71	4.4	0.99	1.02	3	0.97	0.93	-4.1	ias máxima	3.31	3.1	-6.3
2	4.8	0.68	0.71	4.4	0.96	1.01	5.2	0.98	0.94	4	ias minimo	-7.2	-6.94	-3.6
1	4.9	0.58	0.60	3.4	1.0	0.99	-1	0.98	0.97	-1	ias mínimo	-3.1	-2.95	-4.8
2	4.10	0.4	4.42	5	1.03	0.91	-10.7	1.09	1.1	-1	ias minimo	-6.35	-6.04	-4.9
				4.3			4.97			2.55				4.9

CORTOCIRCUITO FASE - TIERRA

S	G	• •			ESTADO	ESTAB	LE				ESTADO T	RANSITO	RIO	
S	A		Is			٧s		F	RECUEN	CIA	VARIABLE			
E M A	I C O	м	S	E	В	s	E	м	S	E	ANALI ZADA	м	s	E
1	4.11	0.68	0.71	4.4	0.99	1.02	3.0	0.97	0.93	-4.1	ias máximo	8.9	8.1	-8.9
2	4.12	0.61	0.68	11.5	0.91	0.98	7.6	0.98	0.92	-6.1	vbs (*)	0.76	0.85	11.8
2	4.13	0.39	0.4	2.5	1.0	0.87	-13	1.09	1,09	0	ias máximo	7.5	6.19	-17.4
1	4.14	0.61	0.62	1.6	1.08	1.07	1	0.94	0.94	0	ias minimo	-9.0	-8.2	-8.8
		der mit bestellt gestellt und eine stellen bestellte bestellte der stellte so		5.0			6.15			2.55				11.72
								and a contract of the second se						

135

CORTOCIRCUITO FASE - FASE - TIERRA

S	Gp			. 1	ESTADO	ESTABI	LE				ESTADO TR	ANSITOR	10	
л С	A F	-	Is			٧s		F	RECUEN	CIA	VARIABLE			
E M A	I C O	M	S	E	М	S	E	м	s	E	ANALI ZADA	M	s	E
1	4.15	0.68	0.69	1.4	0.96	1.0	4.1	0.94	0.92	-2.1	ias minimo	-8.5	-7.55	-11.1
2	4.16	0.61	0.68	11.4	0.91	0.98	7.6	0.98	0.92	-6.1	ves (*)	-0.55	-0.57	3.6
2	4.17	0.39	0.4	2.5	1.0	0.87	-13	1.09	1.09	0	ias minimo	-8.1	-6.96	14
1	4.18	0.62	0.62	0	1.08	1.06	-1.8	0.94	0.94	0	ias máximo	8.5	7.33	13.7
				3.82			6.62			2.05				10.6
									×					

CORTOCIRCUITO FASE - FASE

S	G			. 1	ESTADO	ESTAB	LE				ESTADO T	RANSITO	RIO	
S	A F		Is			٧s		F	RECUEN	CIA	VARIAELE			
E M A	I C O	H	S	E	м	s	E	M	s	E	ANALI ZADA	M	S	E
2	4.19	0.68	0.71	4.4	0.96	1.01	5.2	0.98	0.94	- 4	ias máximo	6.59	6.2	5.9
2	4.20	0.68	0.71	4.4	0.96	1.01	5.2	0.98	0.94	-4	vbs (*)	0.55	0.54	1.8
2	4.21	0.4	0.42	5	1.03	0,91	-11.6	1.09	1.1	1	ibs minimo	-6.3	-5.5	-12.6
2	4.22	0.4	0.42	5	1.03	0.91	-11.6	1.09	1.1	1	vbs (*)	0.44	0.47	6.8
2	4.23	0.47	0.51	8.5	1.05	1.08	2.8	0.9	0.9	0	ibs máximo	7.29	6.72	7.8
2	4.24	0.47	0.51	8.5	1.05	1.08	2.8	0.9	0.9	0	vbs (*)	0.55	0.54	1.8
			:	5.96			6.53			2.0				6.11

137

•

APERTURA SIMULATANEA DE LAS TRES FASES

S	G			F	ESTAIN	ESTAB	LE				ESTADO TR	ANSITOR	10	
1 S	R A	_•	Is	_		٧s		F	RECUEN	CIA	VARIABLE			
E M A	I C O	н	S	E	М	S	E	м	ន	E	ANALIZADA	м	S	E
1	4.25	0.93	0,94	1	0.97	1.04	7.2	0.91	0.86	-5.4	vas (*)	0.44	0.45	2.2
2	4.26	0.68	0.71	4.4	0.96	1.01	5.2	0.98	().94	-4	vas (*)	0.72	0.66	-8.3
1	4.27	0.62	0.63	1.6	1.11	1.07	-3.6	0.95	0.95	0	vas (*)	0.45	0.4	11.1
2	4.28	0.47	0.53	12.7	1.04	1.1	5.7	0.90	0.92	2.3	vas (*)	0.58	0.5	-10.3
				4.92			5.42			2.92				7.97

CONCLUSIONES

El trabajo presentado ha cumplido con la meta fijada. como es el desarrollo de un modelo matemático que permita simular distintas fallas en sistemas motor - generador de inducción autoexcitado. Este trabajo ha tratado al sistema desde el punto de vista transitorio, por lo que un análisis de las características de funcionamiento en estado estable, como son curvas de torque, velocidad, corrientes en el estator, voltajes generados, deslizamiento, potencia entregada no se ha hecho. Además para las distintas pruebas realizadas, no se tienen las mismas condiciones iniciales antes de la falla, ni se ha partido de una condición de funcionamiento del generador a plena carga, por dos limitantes, necesidad de condensadores mayores que 40 uF, y de una máquina motriz de mayor potencia para el caso del sistema 2.

Se han hecho pruebas para la validación del modelo y así generador en condiciones de plena carga, especialsimular al mente en lo que tiene que ver con cortocircuitos y apertura de fases. Desde este punto de vista se ve el alcance de este trabajo, ya que partiéndo de la validez del modelo digital y su simulación, se puede simular otros sistemas con características similares, pero de mayor potencia, considerando en el programa el torque de la máquina motriz constante en el momento de la falla. Para el caso de variación de carga, debido a que el torque de la máquina motriz no permanecerá constante indefinidamente, al simular casos como estos, los resultados serán válidos para un corto tiempo mientras pueda ser considerado el torque de entrada constante.

Modelación matemática y la simulación.-

.

Se comprueba las facilidades que presta la transformación de ejes abc a gdo para una modelación de este tipo. El trabajo está destinado a observar el comportamiento dinámico del sistema motor - generador, para cuando se produce una variación de carga y cualquiera de las fallas estudiadas, para el caso cuando el generador se encuentra aislado: funcionando en la condición de autoexcitado. Esto ha obligado a desarrollar modelos matemáticos particulares para cada falla, además, al no tener definida una frecuencia de operación, se restringe el modelo de condiciones balanceadas a una referencia fija en el estator w =0. De esta manera, se obtiene directamente las formas de onda de los voltajes o corrientes, sin tener que realizar una integración en los ángulos de giro de los ejes arbitrarios de referencia qdo.

El algoritmo empleado para determinar la frecuencia de operación y la reactancia de magnetización, resulta muy apropiado, debido a que en pocas iteraciones se llega a estos valores, volviendo más rápida la ejecución del programa, especialmente en los casos de Cálculo del Condensador Mínimo para la Autoexcitación y Variaciones Bruscas de Carga. Pero tiene la desventaja en comparación con el algoritmo expuesto en la referencia [1], de no determinar los polos y ceros del sistema, con los cuales se puede tener una idea más clara de la estabilidad del sistema.

Se ha comprobado los planteamientos teóricos para el funcionamiento del generador de inducción autoexcitado. Como por ejemplo, la total dependencia de voltaje, corriente y frecuencia generados de los valores de carga, condensador de excitación y velocidad angular de la máguina.

Debido al deslizamiento negativo al que funciona el generador, es de esperarse que la frecuencia generada siempre será menor que la velocidad del rotor (radianes eléctricos / segundo). por lo tanto. si se desea generar a una determinada frecuencia, a la máguina hay que hacerla girar a una velocidad superior a dicha frecuencia; es decir, que se controla la frecuencia con la velocidad angular.

La impedancia de magnetización, para el caso de funcionamiento balanceado del generador, representa la pendiente de la parte lineal de la curva de saturación del entrehierro, y de acuerdo a este valor, depende el voltaje del entrehierro. El valor de esta reactancia depende de las condiciones de carga del generador, velocidad angular, volviéndose este cálculo de

suma importancia para la modelación: especialmente en el caso de variación brusca de carga. Se puede concluir que la simulación tiene mayor exactitud: cuando los valores de Xm antes v después de la variación de carga no difieren grandemente, igual para cuando en la simulación no se sobrepasen en gran medida los valores nominales de corriente y voltaje.

Se ha probado un algoritmo para el cálculo del condensador mínimo para la autoexcitación del generador, que ocupa tres puntos para la aproximación de la curva Xc - vs - Xm: haciendo que el cálculo no requiera de una considerable cantidad de puntos, y se tenga una presición aceptable, de esta forma se realizan las simulaciones sin tener el inconveniente de ignorar el valor mínimo para dicho condensador.

Modelación de fallas.-

Para cortocircuitos, se ha comprobado plenamente la validez del modelo matemático, ya que en todas las pruebas y correspondientes simulaciones: se observa que las formas de onda son iguales en el estado transitorio, el tiempo en el cual permanece el generador excitado. Los valores de los picos máximos o mínimos para la corriente, son similares, adolecen de errores que se los puede justificar debido a la acumulación de éstos, desde la medición de parámetros, funcionamiento en estado estable y luego, la obtención de la onda en estado transitorio.

Una conclusión importante, para el generador de inducción en cortocircuitos, es que a diferencia de las máguinas sincrónicas: al producirse la falla en el generador de inducción. la corriente de cortocircuito se hace cero: esto se debe a que el generador de inducción no posee excitación interna, que si lo tienen las máguinas sincrónicas. manteniendo estas corrientes de cortocircuito.

Para la máquina de inducción Nº 1, las ondas de corriente tienden a mantenerse con valores positivos o negativos, lo contario sucede para la máquina de inducción Nº 2, el la cual la corriente de falla oscila tomando valores positivos y negativos en la mayoría de los casos. Esto se debe a las diferentes características de las máquinas, ya que la NQ 1 es de rotor bobinado y la NQ 2 es de rotor jaula de ardilla. Los tiempos para los cuales el generador pierde excitación en las fallas son diferentes para las dos máguinas; siendo mavores para la máguina de rotor jaula de ardilla.

En el caso de apertura simultánea de las tres fases, se puede observar con más claridad, que los tiempos de pérdida de excitación difieren entre las dos máquinas. Este tiempo depende mucho de la condición de carga antes de producirse la falla. En las pruebas experimentales se las hizo con y sin carga: observándose que para el mismo generador cuando se hace la prueba funcionando en vacío se demora menos en perder excitación; que cuando se hace la prueba con carga. Esto se debe a la cantidad de energía almacenada en la reactancia del rotor y la de magnetización, que es mayor para los casos de funcionamiento con carga.

Al producirse la apertura brusca de las fases, se produce un fenómeno que matemáticamente significa realizar una derivada en una discontinuidad; en este caso la corriente. Por lo tanto, se producirán picos de voltaje elevados en las fases, siendo mayores cuando se tengan valores de corriente máximos. Esto se observa en la simulación, pero este pico simulado depende mucho del paso de integración: y será mayor aparte de la corriente, cuando se tenga un paso de integración muy pequeño. En todo caso se comprueba plenamente este fenómeno en la simulación.

Para cortocircuitos y apertura de fases, si físicamente se mantuviera constante el torque de la máquina motriz: se embalaría el sistema, pero debido a que la máquina motriz es un motor DC, para cortocircuitos, la máquina baja de velocidad y sube el torque: luego sube de velocidad y baja el torque, repercutiendo esto en un crecimiento más lento de la velocidad: evitándose el embalamiento. Esto se puede observar debido a que se incluyó en la modelación el comportamiento de la máquina DC. Se concluye que el embalamiento no se produce debido al motor

DC. Para los casos de apertura de las tres fases, el sistema sube de velocidad, pero baja el torque de la máquina motriz, con lo cual el crecimiento de velocidad se hace mas lento,

Flujos de potencia.

Flujo de potencia en el sistema estudiado es desde la máquina motriz hacia la carga: esto se puede ver al observar en la modelación el signo negativo de la potencia.

De las curvas de potencia trifásica instantánea, se puede comprobar el hecho que el generador de inducción no tiene posibilidad de generar potencia reactiva, siendo necesario que esta provenga de una barra infinita o de condensadores.

La diferencia fundamental entre un generador de inducción y un sincrónico, radica en que el primero no posee una fuente interna de excitación, por lo cual se hace necesario esta fuente, que para el caso estudiado son condensadores instalados en los terminales de la máguina de inducción. En cambio, al poseer la máguina sincrónica, bobina de campo, ésta es su excitación interna. Esto hace que entre otras cosas el generador de inducción baje el factor de potencia del sistema, por ejemplo al estar acoplado a una barra infinita, o no mantenga corriente de falla, ya que en el caso de autoexcitado, los voltajes en los condensadores se hacen cero rápidamente.

La estabilidad con carga de los dos generadores es diferente, para el de inducción su funcionamiento es condicionado a la potencia reactiva disponoble en el estator, si se excede en carga puede perder excitación, además funciona mejor para factores de potencia cercanos a 1. en el caso del generador sincrónicó se tiene más estabilidad, y puede funcionar a factores de potencia bajos.

Debido a los costos elevados de las máquinas sincrónicas en comparación a las de inducción, y teniendo en cuenta el rendimiento de cada máquina al funcionar como generador, los de inducción presentan ventajas desde el punto de vista económico. Pero algunos inconvenientes desde el punto de vista técnico, como los ya enunciados anteriormente, por ejemplo la frecuencia de operación.

1

.

-

•

RECOMENDACIONES

Las máquinas de inducción y las sincrónicas pueden funcionar como generadores, cada una con ventajas y desventajas desde el punto de vista técnico y económico. Conviene entonces hacer estudios de factibilidad y comparativos, especialmente desde el punto de vista económico, para introducir en el país sistemas de generación basados en máguinas inducción o en combinación con máguinas sincrónicas.

El generador de inducción presenta algunas ventajas con respecto al sincrónico, como son bajo costo, poco mantenimiento. Esto lo hace muy atractivo para funcionamiento acoplado a una barra infinita; se hace necesario entonces un estudio acerca del comportamiento en estado estable y dinámico del generador en estas condiciones, por lo cual, se sugiere este estudio en futuras investigaciones.

En los generadores de inducción se presentan problemas de distinta índole como por ejemplo:

- Al depender el voltaje generado de la potencia reactiva disponible a los terminales del generador, se debe hacer un control de esta potencia para mantener voltaje y corriente del generador. Esto se logra instalando compensadores estáticos de potencia reactiva en el estator del generador.
- Las máquinas de inducción presentan modos de oscilación entre ellas, similares a las máquinas sincrónicas; estas pueden ser amortiguadas usando señales auxiliares en los controles del compensador estático de potencia reactiva.
- En los generadores de inducción existe la posibilidad de que se produzcan resonancia subsincrónica, tanto en la corriente como en el voltaje, dependiendo esta de los parámetros del circuito equivalente. Para solucionar este problema, se diseña compensadores estáticos que funcionen como filtros dinámicos de corrientes subsincrónicas en

caso donde ellas entren en resonancia.

- Hay casos en los que se tiene acceso a las bobinas del rotor, existe pues la posibilidad de realizar un control sobre la corriente del rotor, variando las condiciones de funcionamiento del generador. Y en forma completa se puede hacer el control tanto en el rotor como en el estator, control con elementos estáticos.

Se sugiere estos temas para futuras investigaciones, teniendo en cuenta el gran desarrollo que se ha logrado en el campo de la electrónica de potencia, y la reducción de los costos que se logran en los componentes estáticos necesarios para este tipo de trabajo.

APENDICE A

DETERMINACION DE LA FRECUENCIA Y REACTANCIA MUTUA EN EL GENERA-DOR DE INDUCCION AUTOEXCITADO [7].

La figura A.1 muestra el circuito equivalente por fase, para el estado estable de un generador de inducción autoexcitado con condensador, bajo carga resistiva, inductiva o capacitiva.

Fig. A.1 CIRCUITO EQUIVALENTE DEL GENERADOR DE INDUCCION AUTOEXCITADO

Donde:

- V : relación entre la velocidad angular de la máquina de inducción sobre velocidad angular base.
- F : relación entre la frecuencia del generador y la frecuencia base.

Las reactancias Xls. X'lr. Xm. Xc. Xli y Xlc vienen definidas a la frecuencia base.

De la figura se puede determinar la ecuación de lazo para la corriente del estator:

```
Zs Is = 0 \tag{A.1}
```

Donde Zs es la impedancia de lazo vista por la corriente Is.

Bajo condiciones de autoexcitación, en estado estable la corriente Is es distinta de cero, por lo tanto, para cumplir la ecuación (A.1) la impedancia_z Zs dede ser cero, y por ser compleja, tanto la parte real como la imaginaria de esta impedancia deben ser nulas.

Desarrollando con los valores de resistencia y reactancias la impedancia Zs, e iqualando las partes real e imaginaria a cero, se puede llegar a dos ecuaciones no lineales que tienen por incógnitas F y Xm:

parte real:

 $P(Xm,F) = (C1(1) + C2(1) Xm) F^{m} + (C1(2) + C2(2) Xm) F^{n} + (C1(3) + C2(3) Xm) F^{m} + (C1(4) + C2(4) Xm) F^{m} + (C1(5) + C2(5) Xm) F + (C1(6) + C2(6) Xm)$ (A.2)

parte imaginaria:

```
G(Xm,F) = (D1(1) + D2(1) Xm) F^{\Xi} + (D1(2) + D2(2) Xm) F^{4}
+ (D1(3) + D2(3) Xm) F^{\Xi} + (D1(4) + D2(4) Xm) F^{2}
+ (D1(5) + D2(5) Xm) F + (D1(6) + D2(6) Xm)
(A.3)
```

Donde los coeficientes C1(i), C2(i), D1(i), D2(i) para el generador alimentando a los diferentes tipos de carga son:

Generador en vacío :

C1(1) = 0 C2(1) = 0 C1(2) = 0 C2(2) = 0 C1(3) = -Xls * X'lr C2(3) = -(Xls + X'lr) C1(4) = V * Xls * X'lr C2(4) = V * (Xls + X'lr)

C1(5) = Xc * X' lr + rs * r'rC2(5) = XcC1(6) = -V * Xc * X' lrC2(6) = -V * XcD1(1) = 01 D2(1) = 0D1(2) = 0D2(2) = 0D1(3) = 0D2(3) = 0D1(4) = rs * X' lr + r'r * XlsD2(4) = r'r + rsD1(5) = -V * rs * X' lrD2(5) = -V * rsD1(6) = -Xc * r'rD2(6) = 0(A.4) Generador con carga resistiva : C1(1) = 0C2(1) = 0C1(2) = -R1 * Xls * X'lrC2(2) = -R1 * (X1s + X'1r)C1(3) = V * Rl * Xls * X'lrC2(3) = V * R1 * (X1s + X'1r)Cl(4) = Rl * (Xc * X'lr + rs * r'r)+ Xc * (rs * X'lr + r'r * Xls) C2(4) = Xc * (R1 + rs + r'r)C1(5) = -V * Xc * X' lr * (Rl + rs)C2(5) = -V * Xc * (rs + R1)C1(6) = 0C2(6) = 0D1(1) = 0D2(1) = 0D1(2) = 0 $D_2(2) = 0$ D1(3) = X' lr * (Xc * Xls + Rl * rs) + Rl * r'r * XlsD2(3) = R1 * (rs + r'r) + Xc * (Xls + X'lr)D1(4) = -V * X' lr * (rs * Rl + Xc * Xls)

```
D2(4) = -V * (Xc * (Xls + X'lr) + rs * Rl)
D1(5) = -r'r * Xc * (rs + R1)
D2(5) = 0
D1(6) = 0
D2(6) = 0
                                                       (A.5)
                             ť
Generador con carga inductiva-resistiva :
C1(1) = 0
C2(1) = 0
C1(2) = -Xls * (r'r * Xli + Rli * X'lr) - rs * Xli * X'lr
C2(2) = -Rli * (X'lr + Xls) - Xli * (rs + r'r)
C1(3) = V * X' lr * (rs * Xli + R)i * Xls)
C2(3) = V * (Rli * (Xls + X'lr) + rs * Xli)
C1(4) = Xc * (r'r * (Xli + Xls) + X'lr * (rs + Rli))
        + rs * r'r * Rli
C2(4) = Xc * (rs + r'r + Rli)
C1(5) = -V * X' lr * Xc * (rs + Rli)
C2(5) = -V * Xc * (rs + Rli)
C1(6) = 0
C2(6) = 0
D1(1) = -Xls * Xli * X'lr
D_2(1) = -X_1 i * (X'_1r + X_1s)
D1(2) = V * Xli * Xls * X'lr
D_2(2) = V * Xli * (Xls + X'lr)
D1(3) = Xli * (Xc * X'lr + rs * r'r)
        + Rli * (rs * X'lr + r'r * Xls) + Xc * Xls * X'lr
D_2(3) = X_c * (X_{1s} + X'_{1r} + X_{1i}) + R_{1i} * (r_s + r'_r)
D1(4) = -V * X' lr * (Xc * (Xli + Xls) + rs * Rli)
D2(4) = -V * (Xc * (Xls + X'lr + Xli) + rs * Rli)
D1(5) = -r'r * Xc * (rs + Rli)
D2(5) = 0
D1(6) = 0
                                                       (A, 6)
D2(6) = 0
Generador con carga capacitiva-resistiva :
C1(1) = -R1c * Xls * X'lr
C2(1) = -Rlc * (Xls + X'lr)
```

C1(2) = V * Rlc * Xls * X'lrC2(2) = V * Rlc * (Xls + X'lr)C1(3) = X' lr * (Xc * (Rlc + rs) + rs * Xlc)+ r'r * (Xls * (Xc + Xlc) + rs * Rlc)C2(3) = Xc * (Rlc + rs + r'r) + Xlc * (rs + r'r)C1(4) = -V * X' lr * (rs * (Xc + Xlc) + Rlc * Xc)C2(4) = -V * (rs * (Xc + Xlc) + Rlc * Xc)C1(5) = -r'r * Xc * XlcC2(5) = 0C1(6) = 0 $C_{2}(6) = 0$ D1(1) = 0D2(1) = 0D1(2) = X'lr * (rs * Rlc + Xls * (Xc + Xlc)) + r'r * Rlc * Xls $D_2(2) = X' lr * (X_c + X_{lc}) + X_{ls} * (X_c + X_{lc}) + R_{lc} * (r_s + r'r)$ D1(3) = -V * X' lr * (Xls * (Xc + Xlc) + rs * Rlc)D2(3) = -V * (X'lr * (Xlc + Xc) + Xls * (Xc + Xlc) + rs * Rlc)D1(4) = -Xlc * (Xc * X'lr + rs * r'r) - r'r * Xc * (rs + Rlc)D2(4) = -Xc * X1cD1(5) = V * Xc * Xlc * X'lr $D_{2}(5) = V * X_{C} * X_{C}$ D1(6) = 0(A.7)D2(6) = 0

Las ecuaciones (A.2) y (A.3) son resueltas numéricamente, y se obtiene la reactancia de magnetización Xm y la frecuencia de operación F en por unidad.

La curva que relaciona Vq -vs+ Xm en la máquina de inducción se presenta en la Fiq. A.2. De esta figura se puede obtener el voltaje del entrehierro Vq/F para un valor de Xm. v con éste los voltajes y corrientes del circuito [1].

donde:

$$Z = \frac{Z1(-jXc/F^2)}{Z1 - jXc/F^2}$$

,

Fig. A.2 CARACTERISTICA Vg/F - vs - Xm

$$V_{S} = (r_{S}/F + j X_{ls}) I_{S} + V_{g}/F$$
 (A.9)

$$ic = \frac{Vs/F}{-jXc/F^2}$$
(A.10)

$$i'r = \frac{-Vg/F}{(r'r/(F-V)) + jX'lr}$$
 (A.11)

$$il = -is - ic$$
 (A.12)

im = is + i'r (A.13)

$$\begin{array}{c} F - V \\ S - - - - - - \\ F \end{array}$$
 (A.14)

Tem = $(P / 4\pi F)$ q1 i'r² r'r /s (A.15)

P : número de polos.g1 : número de fases.

VARIACION DE Xm AL PRODUCIRSE UN CAMBIO BRUSCO DE CARGA.

El cálculo de Xm en los diferentes instantes, en el estado transitorio cuando se produce una variación brusca de carga, es de suma importamcia para simular el comportamiento del generador y llegar a una nueva condición de funcionamiento que cumpla con las ecuaciones (A.1) ... (A.15). En el algoritmo de integración de las ecuaciones diferenciales para el caso de variación de carga se ha probado la siguiente forma de determinar el valor de Xm:

 * Existe una constante de tiempo asociada a la máquina de inducción [11], definida por la ecuación;

Donde:

- we : es la frecuencia angular eléctrica a la que fueron definidos los parámetros de la máquina.
- * Para la nueva condición de carga se aplica las condiciones de la ecuación (A.1) y se determina Xm.
- * Se calcula T'o para Xm antes y después de la variación v se hace un promedio entre los valores.
- * De acuerdo a T'o se espera que la variación de Xm sea rápida o `lenta, se ha probado que en el algoritmo da buenos resultados variar a Xm aplicando la ecuación (A.1) en cada 4 ms, con la siguiente relación:

 $-K i / T' \circ$ Xm = (Xmo - Xmi)* e + Xmi (A.17)

Donde :

- Xmo : es la impedancia de magnetización antes de la variación de carga.
- Xmi : es la impedancia de magnetización en el momento i.
- K : es una constante.

El valor de K para un ajuste de Xm de cada 4 ms., se define de acuerdo al valor de la carga y debe estar entre los fijados por las curvas de alta y baja carga, presentado en la figura A.3, en la cual T'o está en milisegundos.

Figura A.3 DETERMINACION DE K

Los puntos por los que pasan las curvas son: • Para baja carga o vacío: (33 , 1); (45 , 0.4); (55 , 0.1): (120 , 0.006): (150 , 0.0025) Para alta carga:

(33, 1): (45, 0.1): (55, 0.01); (110, 0.005): (150, 0.001)

APENDICE B

OBTENCION DEL CONDENSADOR MINIMO PARA LA AUTOEXCITACION. [1]. [7]

La obtención del condensador mínimo, que se debe poner en cada fase para lograr excitar al generador de inducción, se sigue el siguiente procedimiento:

- Par una determinada carga y velocidad angular del generador, se asume un valor de condensador. C grande y se reemplaza este valor en las ecuaciones de equilibrio (A.2) y (A.3), para encontrar el correspondiente valor de Xm.
- Gradualmente se decrece el valor de C en pasos y se calcula Xm correspondiente a cada C. Obteniendo de esta manera un gráfico de C en función de Xm.
- 3. El valor de C mínimo (Cmín), se obtiene en la intersección de la curva de C en función de Xm con la curva Xm = Xmmáx, que es el valor de la máxima reactancia de magnetización de la máguina, obtenida de la curva Vg - vs - Xm de la máguina (Fig. A.2).

Si en lugar de tener una curva de C -vs- Xm obtenemos una de Xc -vs- Xm, se tendría el procedimiento idéntico al descrito anteriormente, pero con Xcmáx, para luego obtener Cmím con la siguiente relación:

 $Cmin = \frac{1}{\text{we Xcmax}}$ (B.1)

A continuación se muestran curvas de Xc -vs- Xm para un generador de indución con los siguientes parámetros [1]:

Vs = 220 V. Is = 9.4108 A. fB = 60 Hz. 4 polos

Valores en por unidad.

rs = 0.040979	Xls = 0.112373
r'r = 0.0744309	X'lr = 0.112373
Vq(1) = 1.22727	Xm(1) = 1.582727
Va(2) = 1	Xm(2) = 2.395479
Va(3) = 0.7363	Xm(3) = 2.73769

Generador en vacío:

rpm = 1700.

Xm	Xc
0.4715	0.5
1.0182	1.0
1.5752	1.5
2.1341	2.0
2.6937	2.5
3.2537	3.0

Tabla B.1

Llevando los puntos de la tabla B.1 a los ejes cartesianos, se obtiene el gráfico B.1.

Generador con carga resistiva:

RI = 2 pu. ; rpm = 1700.

Xm -	Xc
0.5956	0.5
1.2698	1.0
1.9988	1.5
2.772	2.0
3.6082	2.5
4.4966	3.0

Tabla B.2

Llevando los puntos de la tabla B.2 a los ejes cartesianos se. obtiene el gráfico B.2.

B.3

Generador con carga inductiva:

Rli = 1.399, Xli = 1.4282 pu., rpm = 1700

Χm	Xc
0.7124	0.5
2.0433	1.0
4.9227	1.5

Tabla B.3

Llevando los puntos de la tabla B.3 a los ejes cartesianos se, obtiene el gráfico B.3.

Generador con carga capacitiva:

Rlc = 1.399. Xlc = 1.4282 pu., rpm = 1700.

Xm	Xc
0.4466	0.5
0.806	1.0
1.0889	1.5
1.3138	2.0
1.4965	2.5
1.6477	3.0

Tabla B.4

Llevando los puntos de la tabla B.4 a los ejes cartesianos se. obtiene el gráfico B.4.

Endontrar para cada Xc un Xm, es un proceso iterativo que demora mucho tiempo en un computador, por lo cual en el programa para encontrar el Cmín se realiza una aproximación de la curva Xc -vs- Xm a dos rectas, como se muestra en el gráfico B.5, por lo cual. el problema se reduce a encontrar tres puntos que definen las rectas. y luego aplicar el criterio de la intersección con Xm = Xmmáx.

B.5

Esta aproximación a dos rectas se instifica, ya que al observar los gáficos B.1, B.2, B.3 o B.4. estas curvas se las puede aproximar de esa manera. Se debe tomar muy en cuenta, que el valor de Cmín encontrado por este procedimiento, es apróximado y para ser usado en la simulación debe por seguridad ser aumentado en un porcentaje pequeño, que asegure que el generador bajo esas condiciones de carga y velocidad angular efectivamente se excitará.

Gráfico B.5

APENDICE C

ALGORITMO DE RUNGE - KUTTA DE CUARTO ORDEN PARA LA SOLUCION NUMERICA DE UN SISTEMA DE ECUACIONES DIFERENCIALES. [8]

Se tiene el sistema de n **e**cuaciones diferenciales de primer orden de la forma:

x'1 = F1(x1, x2,..., xn, t) x'2 = F2(x1, x2,..., xn, t) .x'n = Fn(x1, x2,..., xn, t) (C.1)

donde x'i es la derivada con respecto a t de xi, i = 1,2...,n.

Puede ser resuelto numéricamente por el método de integración descrito en el siguiente algoritmo:

 $x1_{3+1} = x1_{+} + (A_{31} + 2 A_{32} + 2 A_{33} + A_{34}) / 6$ $x2_{3+1} = x2_{4} + (A_{221} + 2 A_{222} + 2 A_{233} + A_{24}) / 6$. $xn_{3+1} = xn_{3} + (A_{221} + 2 A_{222} + 2 A_{233} + A_{24}) / 6$ (C.2)

Los coeficientes A_{11} , A_{12} , A_{13} , A_{14} se calculan de la siguiente manera:

```
\begin{array}{l} A_{13} = h \ F1(x1_3, \ x2_3, \ldots, \ xn_3, \ t_3) \\ A_{23} = h \ F2(x1_4, \ x2_3, \ldots, \ xn_3, \ t_3) \\ \\ A_{n1} = h \ Fn(x1_4, \ x2_3, \ldots, \ xn_3, \ t_3) \\ A_{12} = h \ F1(x1_4 + A_{11}/2, \ x2_3 + A_{23}/2, \ldots, xn_4 + A_{n3}/2, \ t_4 + h/2) \\ \\ A_{22} = h \ F2(x1_3 + A_{13}/2, \ x2_3 + A_{23}/2, \ldots, xn_4 + A_{n3}/2, \ t_4 + h/2) \\ \\ \\ A_{n2} = h \ Fn(x1_3 + A_{13}/2, \ x2_3 + A_{23}/2, \ldots, xn_4 + A_{n3}/2, \ t_3 + h/2) \\ \\ A_{n2} = h \ Fn(x1_3 + A_{12}/2, \ x2_3 + A_{22}/2, \ldots, xn_4 + A_{n2}/2, \ t_3 + h/2) \\ \\ A_{n3} = h \ F1(x1_3 + A_{12}/2, \ x2_3 + A_{22}/2, \ldots, xn_4 + A_{n2}/2, \ t_4 + h/2) \\ \\ A_{23} = h \ F2(x1_3 + A_{12}/2, \ x2_3 + A_{22}/2, \ldots, xn_4 + A_{n2}/2, \ t_4 + h/2) \\ \\ A_{n3} = h \ Fn(x1_3 + A_{12}/2, \ x2_3 + A_{22}/2, \ldots, xn_4 + A_{n2}/2, \ t_4 + h/2) \\ \\ \\ A_{n3} = h \ Fn(x1_3 + A_{12}/2, \ x2_3 + A_{22}/2, \ldots, xn_4 + A_{n2}/2, \ t_4 + h/2) \\ \\ \\ A_{n4} = h \ F1(x1_3 + A_{12}, \ x2_3 + A_{23}, \ldots, xn_4 + A_{n3}, \ t_4 + h) \end{array}
```

APENDICE D

METODO DE NEWTON PARA LA SOLUCION NUMERICA DE ECUACIONES SIMUL-TANEAS NO LINEALES. [8]

Se tiene el sistema de ecuaciones de la forma:

$$f(x,y) = 0$$

 $q(x,y) = 0$ (D.1)

Sea (xo,yo) una aproximación a una raíz (xr,yr) del sistema de ecuaciones mostrado en (D.1). Se generan aproximaciones sucesivas a partir de las fórmulas recurrentes:

$$\begin{bmatrix} \mathbf{x}_{k+1} \\ \mathbf{y}_{k+1} \end{bmatrix} = \begin{bmatrix} \mathbf{x}_{k} \\ \mathbf{y}_{k} \end{bmatrix} - \begin{bmatrix} \mathbf{f}_{k} (\mathbf{x}_{k}, \mathbf{y}_{k}) & \mathbf{f}_{v} (\mathbf{x}_{k}, \mathbf{y}_{k}) \\ \mathbf{g}_{k} (\mathbf{x}_{k}, \mathbf{y}_{k}) & \mathbf{g}_{v} (\mathbf{x}_{k}, \mathbf{y}_{k}) \end{bmatrix}^{-1} \begin{bmatrix} \mathbf{f} (\mathbf{x}_{k}, \mathbf{y}_{k}) \\ \mathbf{g} (\mathbf{x}_{k}, \mathbf{y}_{k}) \end{bmatrix}$$
(D.2)

donde:

 $\begin{array}{l} x_{k_{k}+1}: a proximación k + 1 del valor xr.\\ y_{k+1}: a proximación k del valor xr.\\ x_{k}: a proximación k del valor xr.\\ y_{k}: a proximación k del valor yr.\\ f_{x}(x_{k},y_{k}): derivada parcial de la función f con respecto\\ a x evaluada en (x_{k},y_{k})\\ f_{v}(x_{k},y_{k}): derivada parcial de la función f con respecto\\ a y evaluada en (x_{k},y_{k})\\ g_{x}(x_{k},y_{k}): derivada parcial de la función g con respecto\\ a x evaluada en (x_{k},y_{k})\\ g_{v}(x_{k},y_{k}): derivada parcial de la función g con respecto\\ a y evaluada en (x_{k},y_{k})\\ g_{v}(x_{k},y_{k}): derivada parcial de la función g con respecto\\ , & y evaluada en (x_{k},y_{k})\\ f(x_{k},y_{k}): derivada parcial de la función g con respecto\\ , & y evaluada en (x_{k},y_{k})\\ f(x_{k},y_{k}): función f evaluada en (x_{k},y_{k})\\ g(x_{k},y_{k}): función g evaluada en (x_{k},y_{k})\\ \end{array}$

El jacobiano J(f,g) es:

$$J(\mathbf{f},\mathbf{g}) = \mathbf{f}_{\mathbf{x}}(\mathbf{x}_{\mathbf{\nu}},\mathbf{y}_{\mathbf{\nu}}) \quad \mathbf{g}_{\mathbf{y}}(\mathbf{x}_{\mathbf{\nu}},\mathbf{y}_{\mathbf{\nu}}) - \mathbf{g}_{\mathbf{x}}(\mathbf{x}_{\mathbf{\nu}},\mathbf{y}_{\mathbf{\nu}}) \quad \mathbf{f}_{\mathbf{y}}(\mathbf{x}_{\mathbf{\nu}},\mathbf{y}_{\mathbf{\nu}})$$
(D.3)

Cuando esta iteración converge, lo hace cuadráticamente.

Un conjunto de condiciones suficientes para asegurar la convergencia es el siguiente:

- f, g y todas sus derivadas hasta el segundo orden son continuas y acotadas en una región R que contiene (xr.yr).
- 2. El jacobiano J(f,g) no se anula en R.

.

3. La aproximación inicial (xo,yo) se escoje suficientemente cercana a la raíz (xr,yr).

APENDICE E

ECUACIONES DIFERENCIALES DEL SISTEMA MOTOR - GENERADOR - CARGA EN POR UNIDAD

E.1 Valores base. [4]

Los valores base son:

SB : potencia aparente base por fase.
VB : voltaje base en voltios por fase.
fB : frecuencia base en hertz.

De estos valores se puede obtener los siguientes valores base:

Corriente base : IB = SB / VB [amperios](E.1)Impedancia base: ZB = VB / IB [ohmnios](E.2)Frecuencia angular base: $WB = 2 \pi fB$ [rad / s.](E.3)Inductancia base: LB = ZB / WB [henrios](E.4)Concatenaciones de flujo base: $\Delta B = LB IB$ (E.5)

Si a (E.5) se le multiplica por la frecuencia angular base WB se tiene:

 $\Psi B = X B I B$ (E.6)

pero XB = ZB entonces se tiene:

$$\Psi \mathbf{B} = \mathbf{V} \mathbf{B} \tag{E.7}$$

Torque base:

donde P es el número de polos.

E.2 Valores en por unidad. [4]

El valor en por unidad viene dado por la siguiente relación:

El voltaje en por unidad en función de las concatenaciones de flujo se puede ver con el siguiente desarrollo:

 $V = p \lambda \qquad (E.10)$

multiplicando por WB la ecuación anterior:

WBV = pΨ

Aplicando la relación (E.9) se demuestra:

 $WB Vpu = p \Psi pu \tag{E.11}$

La última ecuación indica que en el sistema en por unidad todas las magnitudes son adimensionales, sin embargo de que la ecuación (E.11) tiene dimensión segundos, es por el hecho de que no se ha tomado un tiempo base. Para que ambos miembros de la ecuación (E.11) tengan la misma dimensión se debe tomar las concatenaciones de flujo por segundo.

El pasar al sistema en por unidad es simple, ya que aplicando la relación (E.9) se llega a las mismas ecuaciones originales del capítulo II, con la particularidad de que sus valores serán en por unidad, además se suprime el subíndice pu para ahorrar nomenclatura, y se hace el cambio de we por WB que es la frecuencia a la cual están definidos los parámetros.

E.3 Ecuaciones de torque electromagnético en por unidad. [4]

Dividiendo la ecuación (2.180) para los valores base respectivos, se tiene la siguiente expresión para el torque electromagnético:

 $Te = \Psi' gr i' dr - \Psi' dr i' gr \qquad (E.12)$

en la cual las magnitudes están en por unidad.

Reemplazando los valores de i'dr e i'gr definidos en (2.63), expresados en por unidad en la ecuación (E.12), se lluega a la siguiente expresión para el torque electromagnético:

E.4 Ecuación del torque electromecánico en por unidad. [4]

La constante de inercia del sistema H, viene dada por la siquiente definición:

La constante H puede ser calculada con la siguiente fórmula:

$$5.48 * J * Ws^{2} * 10^{-4}$$

H = ----- [s] (E.15)

donde:

J : momento de inercia de la máquina en Kg m².

Ws : velocidad sincrónica de la máquina en rpm.

Sn : potencia aparente nominal de la máguina en kVA.

La constante de inercia H tiene su unidad en segundos en el sistema en por unidad, lo que quiere decir que, la unidad de energía es squal a la unidad de potencia en un segundo, por lo tanto la constante de inercia es numéricamente igual a la energía almacenada en por unidad [4].

Al acelerar uniformemente la máquina desde el reposo hasta la velocidad sincrónica, en el tiempo de un segundo, el torque será igual a J Ws. La energía almacenada producida por la potencia debido a este torque a la velocidad media Ws/2 será igual a J Ws /2 por lo tanto:

 $H = J W_S / 2$ (E.16)

Despejando J. y reemplazando en la ecuación (2.170) se tiene la ecuación diferencial de la velocidad que en por unidad es:

$$p wr = (Te + Tm) / (2H)$$
 (E.17)

A la ecuación de la corriente de armadura (2.168), no se la transforma al sistema en por unidad, con las relaciones (2.167) y (E.8) se calcula el torque mecánico en por unidad en el momento que sea neceario para el correcto funcionamiento de la simulación digital. Quedando dichas ecuaciones de la siquiente manera:

p ia = K1 - K2 wr - K3 ia (E.18)

Tm = K4 ia / TB (en por unidad) (E.19)

Para poder tener en (E.18) la variable de estado wr en por unidad. K2 debe multiplicarse por la velocidad angular base en radianes mecánicos por segundo. Por tanto, las constantes de la última ecuación quedan expresadas de la siguiente manera:

K1 = Vt / La K2 = (Kf if WB) / (La P) K3 = Ra / La K4 = Kf if (E.20)

En cambio ia. if, Vt. Kf. Ra. La conservan sus unidades respectivas en la simulación.

E.5 Relaciones entre flujos y corrientes en por unidad. [4]

Xmd = Xmd = 1 / (1/Xm + 1/Xls + 1/X'lr) $\Psimq = Xmq'(\Psiqs / Xls + \Psi'qr / X'lr)$ $\Psimd = Xmd'(\Psids / Xls + \Psi'dr / X'lr)$ iqs = (Ψ qs - Ψ mq) / Xls ids = (Ψ ds - Ψ md) / Xls ios = Ψ os / Xls i'qr = (Ψ 'qr - Ψ mq) / X'lr

$$i'dr = (\Psi'dr - \Psi md) / X'lr$$

 $i'or = \Psi'or / X'lr$ (E.21)

E.6 Ecuaciones diferenciales para funcionamiento balanceado del generador.

El sistema de ecuaciones diferenciales en por unidad, para el funcionamiento balanceado del generador, tomando en cuenta los efectos eléctricos y electromecánicos es el siguiente:

p ¥gs = WB Vgs + WB rs ¥mg / Xls - WB rs ¥gs / Xls p Ψds = WB Vds + WB rs Wmd / Xls - WB rs Wds / Xls р Щ'gr = WB wr Щ'dr + WB r'r Щmg / X'lr - WB r'r Щ'gr / X'lr p Ψ'dr = - WB wr Ψ'gr + WB r'r Ψmd / X'lr - WB r'r Ψ'dr / X'lr p wr = (Te + Tm) / (2H)p ja = K1 - K2 wr - K3 ia Ecuaciones adicionales para generador en vacío: p Vgs = - (WB Xc / Xls) (Hgs - Hmg)p Vds = - (WB Xc / Xls) (¥ds - ¥md) Ecuaciones adicionales para generador con carga resistiva: p Vgs = -(WB Xc / Xls)(Wgs - Wmg) - (WB Xc/Rl) Vgsp Vds = - (WB Xc / Xls) (Yds - Ymd) - (WB Xc/R1) Vds Ecuaciones adicionales para generador con carga inductiva-resistiva: p Vgs = - (WB Xc / Xls) (Ygs - Ymg) - (WB Xc / Xli) Ygl p Vds = - (WB Xc / Xls) (Wds - Wmd) - (WB Xc / Xli) Wdl p ∰gl = WB Vas - (WB Rli / Xli) ∰gl p ¥dl = WB Vds - (WB Rli / Xli) ¥dl Ecuaciones adicionales para generador con carga capacitivaresistiva: p Vqs = -(WB Xc / Xls)(Wqs - Wmq) - (WB Xc / Rlc)(Vqs - Vqc)p Vds = - (WB Xc / Xls) (Mds - Mmd) - (WB Xc / Rlc) (Vds - Vdc) p Vqc = '(WB X1c / R1c) (Vqs - Vqc) p Vdc = (WB X1c / R1c) (Vds - Vdc) (E.22)

E.7 Ecuaciones diferenciales para cortocircuito trifásico.

El sistema de ecuaciones diferenciales en por unidad, para cortocircuito trifásico del generador, tomando en cuenta los
efectos eléctricos y electromecánicos es el siguiente:

p \Re gs = WB rs \Re mg / Xls - WB rs \Re gs / Xls p \Re ds = WB rs \Re md / Xls - WB rs \Re ds / Xls p \Re 'gr = WB wr \Re 'dr + WB r'r \Re mg / X'lr - WB r'r \Re 'gr / X'lr p \Re 'dr = - WB wr \Re 'gr + WB r'r \Re md / X'lr - WB r'r \Re 'dr / X'lr p \Re r = (Te + Tm) / (2H) p ia = K1 - K2 wr - K3 ia (E.23)

E.8 Ecuaciones para el generador cuando se produce un cortocircuito fase - tierra.

El sistema de ecuaciones diferenciales en por unidad, para cortocircuito fase-tierra del generador, tomando en cuenta los efectos eléctricos y electromecánicos es el siguiente:

p¥qs = WB Vqs + WB rs ¥mq / Xls - WB rs ¥qs / Xls pyds - WB Vds + WB rs ymd / X1s - WB rs yds / X1s ptos = - WB Vgs - WB rs tos / Xls p#'gr = WB wr #'dr + WB r'r #mg / X'lr - WB r'r #'gr / X'lr p\U'dr = - WB wr \U'gr + WB r'r \Umd / X'lr - WB r'r \U'dr / X'lr p wr = (Te + Tm) / (2H)p ia = K1 - K2 wr - K3 iaEcuaciones adicionales para generador en vacío. p Vgs = - (WB Xc / 3 Xls) (Mgs - Mmg) + (2 WB Xc / 3 Xls) Mos p Vds = - (WB Xc / Xls) (Uds - Umd)Ecuaciones adicionales para generador con carga resistiva. p Vgs = - (WB Xc / 3 Xls) (Wgs - Wmg) + (2 WB Xc / 3 Xls) Wos - (WB Xc / Rl) Vas p Vds = - (WB Xc / Xls) (Wds - Wmd) - (WB Xc / Rl) VdsEcuaciones adicionales para generador con carga inductiva-resistiva. p Vgs ='- (WB'Xc / 3 Xls) (Mgs - Mmg) + (2 WB Xc / 3 Xls) Mos - (WB Xc / Xli) Wgl p Vds = - (WB Xc / Xls) (Yds - Ymd) - (WB Xc / Xli) Ydl p ¥ql = WB Vqs - (WB Rli / Xli) ¥ql p ¥dl = WB Vds - (WB Rli / Xli) ¥dl Ecuaciones adicionales para generador con carga capacitivaresistiva.

E.9 Ecuaciones diferenciales para cortocircuito fase - fasetierra.

El sistema de ecuaciones diferenciales en por unidad, para cortocircuito dos fases tierra del generador, tomando en cuenta los efectos eléctricos y electromecánicos es el siguiente:

p Yqs = WB Vqs + WB rs Ymq / Xls - WB rs Yqs / Xls p Yds = -J3 WB Vqs + WB rs Ymd / Xls - WB rs Yds / Xls p Yos = - WB Vqs - WB rs Yos / Xls р Щ'gr = WB wr Щ'dr + WB r'r Щmg / X'lr - WB r'r Щ'gr / X'lr р Щ'dr = - WB wr Щ'qr + WB r'r Щmd / X'lr - WB r'r Щ'dr / X'lr p wr = (Te + Tm) / (2H)p ia = K1 - K2 wr - K3 iaEcuaciones adicionales para generador en vacío. $p Vqs = (WB Xc/Xls) ((-\mathbb{U}qs + \mathbb{U}mq)/6 + \sqrt{3} (\mathbb{U}ds - \mathbb{U}md)/6 + \mathbb{U}cs/3)$ Ecuaciones adicionales para generador con carga resistiva. p Vgs = (WB Xc/Xls) ((-Ψgs + Ψmg)/6 + √3 (Ψds - Ψmd)/6 + Ψos/3) - (WB Xc / Rl) Vgs Ecuaciones adicionales para generador con carga inductiva-resistiva. $p Vqs = (WB Xc/Xls) ((-\mathbb{W}qs + \mathbb{W}mq)/6 + \sqrt{3} (\mathbb{W}ds - \mathbb{W}md)/6 + \mathbb{W}os/3)$ - (WB Xc / Xli) Hgl p #gl = WB Vgs - (WB Rli / Xli) #gl Ecuaciones adicionales para generador con carga capacitivaresistiva. $p Vqs = (WB Xc/Xls) ((-\mathbb{U}qs + \mathbb{U}mq)/6 + \sqrt{3} (\mathbb{U}ds - \mathbb{U}md)/6 + \mathbb{U}os/3)$ - (WB Xc / Rlc)(Vqs - Vqc) p Vqc = (WB Xlc / Rlc)(Vqs - Vqc)(E.25)

E.10 Ecuaciones diferenciales para cortocircuito dos fases.

El sistema de ecuaciones diferenciales en por unidad, para

cortocircuito dos fase del generador, tomando en cuenta los efectos eléctricos y electromecánicos es el siguiente: p Wgs = WB Vgs + WB rs Wmg / Xls - WB rs Wgs / Xls p Wds = -J3 WB Vqs + WB rs Wmd / Xls - WB rs Wds / Xls р Щ'qr = WB wr Щ'dr + WB r'r Щmq / X'lr - WB r'r Щ'qr / X'lr p W'dr = - WB wr W'gr + WB r'r Wmd / X'lr - WB r'r W'dr / X'lr p wr = (Te + Tm) / (2H)p ia = K1 - K2 wr - K3 ia Ecuaciones adicionales para generador en vacío. p Vgs = (WB Xc / Xls)((Ymg - Ygs) + J3 (Yds - Ymd))/4 Ecuaciones adicionales para generador con carga resistiva. $p Vqs = (WB Xc / Xls)((\Psimq + \Psiqs) + \sqrt{3} (\Psi ds - \Psi md))/4$ - (WB Xc / Rl) Vqs Ecuaciones adicionales para generador con carga inductiva-resistiva. p Vgs = (WB Xc / Xls)(-\24 gs + \22 mg)/4 + \73 (\22 ds - \22 md)/4 - (WB Xc / 4 Xli)(√3 ¥dl - ¥ql) p ∰gl = WB Vqs - (WB Rli / Xli) ∰gl p ∰dl = - √3 WB Vqs - (WB Rli / Xli) ∰ql Ecuaciones adicionales para generador con carga capacitivaresistiva. $p Vgs = (WB Xc / Xls) ((-\Psi gs + \Psi mg)/4 + \sqrt{3} (\Psi ds - \Psi md)/4)$ -(WB Xc / Rlc)(Vqs - Vqc/4 + J3 Vdc/4) p Vqc = (WB Xlc / Rlc)(Vqs - Vqc)(E.26) $p Vqc = (WB Xlc / Rlc)(-\sqrt{3} Vqs - Vdc)$

E.11 Ecuaciones diferenciales para apertura simultánea de las tres fases.

El sistema de ecuaciones diferenciales en por unidad, para la apertura simultánea de las tres fases del generador, tomando en cuenta los efectos eléctricos y electromecánicos es el siguiente:

Solo para este caso, no se cumplen las relaciones de fluio mutuo en los ejes q x d expresadas en las ecuaciones (E.21), se debe calcular con las siguientes relaciones:

Luego de integrar las ecuaciones (E.27), se puede econtrar los voltajes de vacío en los eje q v d derivando los fluios mutuos, v aplicando las siguientes relaciones:

Vqs = p ¥qs / WB Vds = p ¥ds / WB (E.29)

.

APENDICE F

MEDIDA DE LOS PARAMETROS DE LA MAQUINA DE INDUCCION

F.1 Parámetros de la Máguina de Inducción Nº 1. [9]

Medida de rs:

Para determinar este valor. al estator se aplica un voltaje continuo, se mide voltaje y corriente, con estos datos se determina el valor de rs. Las cantidades promedio de esta prueba son:

> V = 3.75 V. I = 2.2533 A.

entonces:

```
rs = 1.6642 \ \Omega.
```

Para el determinar Xls, X'lr, Xm y r'r. se tiene las pruebas de vacío y rotor bloqueado:

Prueba de Rotor Bloqueado:

```
P_{FCR} = 309 W.

V_{FCR} = 57.5 V.

I_{FCR} = 7 A.
```

Prueba de Vacío:

 $P_{VACID} = 160 W.$ $V_{VACID} = 220 V.$ $I_{VACID} = 3.2 A.$

Con estos datos se obtienen los parámetros de la máquina de inducción con rotor bobinado que se escriben a continuación: rs = 1.6642Ω . Xls = 6.3768Ω . r'r = 5.19725Ω . X'lr = 6.3768Ω . Xm = 111.67207Ω .

El valor de la impedancia base se obtiene dividiendo el voltaje base 220 V. para la corriente base por fase $7.04/\sqrt{3}$ A. que da:

 $ZB = 54.4358 \Omega$.

Valor con el cual se determina los parámetros de la máguina en por unidad, que resultan ser:

rs = 0.03057Xis = 0.1171r'r = 0.09547X'lr = 0.11717Xm = 2.0514

Para determinar la curva Vg - vs - Xm, se hace girar a la máquina de inducción a la velocidad sincrónica o muy cerca de ella, con el objeto de tener la condición de vacío, se aplica voltaje trifásico al estator, se mide la corriente y el voltaje en el estator. Con estos valores se procede de la manera expuesta a continuación. $\{1\}$, $\{6\}$

El circuito equivalente por fase para esta prueba es el de la Fig. F.1.

Fig. F.1 CIRCUITO EQUIVALENTE EN VACIO

Entonces:

```
Vs = Is (rs + j (Xls + Xm))
|Z| = |Vs|/|Is|
Z^{2} = rs^{2} + (Xls + Xm)^{2}
de donde se obtiene:

Xm = (Z^{2} - rs^{2})^{m} - Xls
Vg = Xm |Is|
en las cuales:

Vs : voltaje por fase.
Is : corriente por fase.
```

Las medidas fueron tomadas, con la máguina en conexión delta, se mide la corriente de línea, por lo tanto, para los cálculos:

Is = $11/\sqrt{3}$

.

Los datos tomados para esta máguina a la velocidad angular de 1800 rpm y los cálculos realizados se presentan en la tabla F.1.

Vs	Il	Xm	Vq
V.	A.	pu.	pu.
250	4.3	1.7324	1.0642
240	3.8	1.8921	1.0271
230	3.5	1.9735	0.9867
220	3.2	2.0704	0.9463
210	3.0	2.1099	0.9042
200	2.8	2.1553	0.8621
190	2.6	2.2304	0.8204
180	2.4	2.2690	0.7779
170	2.25	2.2867	0.7350
160	2.1	2.3069	0.6920
150	1.95	2.3302	0.6491
140	1.75	2.4281	0.6070
130	1.67	2.3953	0.5629
120	1.55	2.3460	0.5194
110	1.375	2.4281	0.4769
100	1.275	2.3782	0.4331
90	1.125	2.4281	0.3902
80	0.505	4.9232	0.3551
70	0.355	6.1567	0.3122
60	0.22	8.5604	0.2690
40	0.045	28.165	0.1810

Tabla F.1

Con los datos de las columnas Vg y Xm (valores en por unidad) se obtiene la curva del gráfico F.1. y por medio de una aproximación se llega a las rectas de la característica de vacío de la máquina. Al programa ingresan como datos los siquientes puntos tomados de esta curva:

Va	Xm
pu.	pu.
1.00	1.70
0.94	2.13
0.60	2.37

Tabla F.2

Gráfico F.1

F.2 Parámetros de la Máguina de Inducción № 2.

El procedimiento es el mismo que en el caso anterior.

Medida de rs:

V = 12 V.I = 6 A.

entonces:

 $rs = 2 \Omega$.

Prueba de Rotor Bloqueado:

 $P_{FCP} = 452 W.$ $V_{FCP} = 51 V.$

```
IFF = 11 Å.

Prueba de Vacío:

P_{VOCID} = 210 W.

V_{VOCID} = 220 V.

INOCID = 4 Å.
```

Con estos datos se obtienen los parámetros de la máquina de inducción con rotor jaula de ardilla que se escriben a continuación:

```
rs = 2 \Omega.
Xls = 2.1356 \Omega.
r'r = 1.8207 \Omega.
X'lr = 4.9710 \Omega.
Xm = 88.1256 \Omega.
```

El valor de la impedancia base se obtiene dividiendo el voltaje base 220 V. para la corriente base por fase $11/\sqrt{3}$ A.. que da:

 $ZB = 33.8461 \Omega$.

Con este valor se determina los parámetros de la máquina en por unidad, que resultan ser:

```
rs = 0.05773
Xls = 0.0617
r'r = 0.05256
X'lr = 0.1435
Xm = 2.5439
```

Los datos para determinar la característica Vg - vs - Xm de esta máguina se muestran en la Tabla F.3. la velocidad del rotor 1800 rpm.

Vs	Il	Xm	Va
٧.	Α.	pu.	pu.
V. 244 230 220 210 200 190 180 170 160 150 140 130 120	A. 5.5 5.3 4.45 4.0 3.6 3.25 3.05 2.8 2.55 2.28 2.125 1.85 1.78 1.6	pu. 2.1557 2.2017 2.5219 2.6876 2.8543 3.0141 3.0525 3.1520 3.2711 3.4465 3.4672 3.7216 3.5895 3.6878 2.6878	pu: 1.0778 1.0608 1.0202 0.9773 0.9341 0.8906 0.8463 0.8023 0.7583 0.7583 0.7143 0.6698 0.6259 0.5808 0.5364
110 100 90 80 70 60 49 40	$ \begin{array}{r} 1.425 \\ 1.325 \\ 1.15 \\ 0.99 \\ 0.915 \\ 0.86 \\ 0.72 \\ 0.52 \\ \end{array} $	3.7975 3.7114 3.8509 3.9782 3.7629 3.4261 3.3405 3.7840	0.4919 0.4470 0.4025 0.3580 0.3130 0.2678 0.2186 0.1788

Tabla F.3

Con los datos de las columnas Vg y Xm (valores en por unidad) se obtiene la curva del gráfico F.2, y por medio de una aproximación se llega a las rectas de la característica de vacío de la máguina. Al programa ingresan como datos los siguientes puntos tomados de esta curva:

Va	Xm
pu.	pu.
1.08 0.94 0.50	2.15 2.87 3.78

Tabla F.4

Gráfico F.2

•

.

APENDICE G

MEDIDA DEL MOMENTO DE INERCIA. [10]

Para encontrar el momento de inercia del sistema motorgenerador, aplicamos el método electromecánico, que se basa en el siguiente planteamiento teórico.

Si las fuerzas de rozamiento, fricción del aire e inercia, fuese todo lo que está presente, la ecuación del funcionamiento es la siguiente:

 $J p Wr + A Wr^2 = 0 \tag{G.1}$

despejando J se obtiene :

 $J = -A Wr^{2} / pWr \quad [m^{2} Kg] \qquad (G.2)$

donde:

A Wr^x : es la fuerza de rozamiento y fricción del aire. p Wr : es la parte lineal de la curva de desaceleración.

G.1 PRUEBA DE VACIO DEL SISTEMA MOTOR-GENERADOR.

Las pérdidas mecánicas (Pm) de la máquina, pueden ser separadas de las pérdidas del hierro del estator midiendo la potencia de entrada (Po), la corriente de línea y el voltaje de la fuente con el sistema girando sin carga. Se alimenta la máquina de inducción con voltaje trifásico a frecuencia constante y voltaje nominal. Luego se baja el voltaje en forma lenta y se toma datos de corriente, voltaje y potencia de entrada. Siguiendo este procedimiento, las pérdidas mecánicas son aproximadamente constantes e independientes de la velocidad.

A la potencia de entrada (Po), se corrige retirando las pérdidas del cobre del estator (P_{ENEM}) de la siguiente manera:

 $Pc = Po - P_{max}$ (G.3)

G.1

Donde la potencia de entrada (Po), es igual a las pérdidas del motor en vacío.

 $P_{0} = P_{\text{max}} + P_{\text{max}} + P_{\text{max}} + P_{\text{max}} + P_{\text{max}}$ (G.4) $P_{\text{max}} = I^{2} rs$ (G.5)

donde:

I : es la corriente de línea del estator. P_{n+r} : pérdidas de histérisis y Foucault. P_{m+w} : pérdidas por fricción y ventilación. P_{mment} : pérdidas en el hierro por la rotación.

Se grafica en los ejes cartesianos el voltaje de alimentación en el horizontal y las pérdidas corregidas Pc en el vertical, se puede obtener por extrapolación el punto donde el voltaje sea cero las pérdidas mecánicas (Pm) o pérdidas por rozamiento y fricción del aire del sistema.

Con este dato se puede determinar la fuerza de rozamiento y fricción del aire por medio de la siguiente relación:

 $A Wr^2 = Pm / Wr [m^2 Kq / s^2]$ (G.6)

donde Wr : es la velocidad angular en rad / s.

G.2 PRUEBA DE DESACELERACION DEL SISTEMA MOTOR-GENERADOR.

Al sistema se hace girar con la máguina de inducción como motor y la de continua como generador en vacío. Para un valor de velocidad angular v corriente de campo, se toma la señal de voltaje de armadura en un osciloscopio. Se interrumpe el voltaje de entrada del motor de inducción, y se se graba la señal del voltaje del generador en el osciloscopio. La forma de esta señal se muestra en el gráfico G.1. En el cual se puede medir la pendiente de la curva aplicando la siguiente relación:

 $p Wr = (W2 - W1) / (t2 - t1) [rad / s^2]$ (G.7)

Gráfico G.1 PRUEBA DE DESACELERACION wr - vs - t

G.3 CALCULO DE LA CONSTANTE DE INERCIA H.

La constante de inercia H se calcula con la relación:

$$H = (5.48 \times 10^{-6} \text{ J Ws}^2) / \text{Sn}$$
 (G.8)

Donde :

Ws : revoluciones por minuto sincrónica.

- Sn : potencia aparente nominal en KVA.
- G.4 MEDIDA DEL MOMENTO DE INERCIA PARA EL SISTEMA MOTOR-GENERADOR Nº 1.

G.4.1 Prueba de Vacío del sistema.

Los datos para determinar las pérdidas mecánicas se mues-

G.3

tran en la tabla G.1.

V	I	Po	Petrom	Pc
V .	A.	W.	W.	W.
220 210 200 190 180 170 160 150 140 130 120 110 100 90 80	3.85 3.60 3.30 3.20 2.80 2.65 2.40 2.25 2.10 1.90 1.75 1.70 1.55 1.50	292 256 232 224 216 204 196 186 180 172 166 156 152 146 140	24.6676 21.5680 18.1231 17.0414 14.9778 13.0473 11.6868 9.5857 8.4250 7.3391 6.0077 5.0966 4.8095 3.9982 3.7444	267.3323 234.4319 213.8768 206.9585 201.0222 190.9526 184.3131 176.4142 171.5749 164.6608 159.9922 150.9033 147.1904 142.0017 136.2555

Tabla G.1

G.4

```
La curva de Pc - vs - V se muestra en el gráfico G.2. del
cual se obtiene Pm = 128 W.
      Pm = 128 W.
      rom = 1700
      Wr = 178.0235 \text{ rad } / \text{s.}
Aplicando (G.6) se obtiene:
      A Wr^2 = 0.7527 [m<sup>2</sup> Kg / s<sup>2</sup>]
G.4.2 Prueba de desaceleración.
      Los valores de velocidad y de tiempo tomados en esta prue-
ba para el sistema № 1 son los siguientes:
      rpm2 = 1700
      rpm1 = 0
      t2 = 19.5 s.
      t1 = 0 s.
entonces :
     W2 = 178.0235 \text{ rad /s.}
      W1 = 0 rad /s.
Aplicando (G.7) se obtiene:
     p Wr = -9.1294 \text{ [rad / <math>s^2]}
G.4.3 Cálculo de J y H.
      A Wr^2 = 0.7527 [m^2 Kg / s^2]
      p Wr = -9'.1294 \text{ [rad / s<sup>2</sup>]}
Aplicando (G.2) se obtiene el momento de inercia J:
     J = 0.08244 [m<sup>2</sup> Kg]
```

```
Aplicando (G.8) se obtiene la constante de inercia H:
```

H = 0.548819 [s]

G.5 MEDIDA DEL MOMENTO DE INERCIA PARA EL SISTEMA MOTOR-GENERADOR Nº 2.

G.5.1 Prueba de Vacío del sistema.

Los datos para determinar las pérdidas mecánicas se muestran en la tabla G.2.

La curva de Pc -vs-V se muestra en el gráfico G.3, del cual se obtiene Pm = 250 W.

Pm = 250 W. rpm = 1790Wr = 187.4483 rad / s.

Aplicando (G.6) se obtiene:

```
A Wr^2 = 1.3337 [m^2 Kg / s^2]
```

V V.	I A.	Po W.	₽ _{≂ъкчв} ₩.	Pc W.
220	3.70	378	27.38	350.62
210	3.55 .	378	25.20	352.79
200	3.25	352	21.19	330.80
190	3.00	340	18.00	322.00
180	2.80	340	15.68	324.32
170	2.50	368	12.50	355.50
160	2.40	323	11.52	311.68
150	2.25	312	10.12	301.87
140	2.02	301	8.20	293.39
130	2.00	297	8.00	288.80
120	2.00	303	8.00	294.80
110	1.85	301	6.84	294.75
100	1.85	285	6.84	278.75
90	1,90	271	7.22	263.98
80	2.10	264	8.82	255.18

```
Tabla G.2
```


G.5.2 Prueba de desaceleración.

Los valores de velocidad v de tiempo tomados en esta prueba para el sistema Nº 2 son los siguientes:

```
rpm2 = 1760
rpm3 = 0
t2 = 21 s.
t1 = 0 s.
entonces :
W2 = 184.3067 rad /s.
W1 = 0 rad /s.
```

```
Aplicando (G.7) se obtiene:
    p Wr = -8.9261 [rad / s<sup>2</sup>]
G.5.3 Cálculo de J v H.
    A Wr<sup>2</sup> = 1.3337 [ m<sup>2</sup> Kg / s<sup>3</sup>
    p Wr = -8.9261 [rad / s<sup>2</sup>]
Aplicando (G.2) se obtiene el momento de inercia J:
    J = 0.1494 [m<sup>2</sup> Kg]
Aplicando (G.8) se obtiene la constante de inercia H:
```

H = 0.62003 [s]

,

APENDICE H

MEDIDA DE LOS PARAMETROS DE LOS MOTORES DE CORRIENTE CONTINUA

Se deben medir los valores de Kf. Ra y La. El valor de Kf se lo obtiene haciendo funcionar a la máguina de continua como generador. Se aplica una corriente de campo (If), a una determinada velocidad. y se mide el voltaje generado en vacío.

El valor de Ra se obtiene realizando una prueba de carga en la máguina de continua funcionando como generador. Para un valor de corriente de campo, se mide el voltaje generado y la corriente de carga. El circuito equivalente para esta prueba, es el presentado en la figura H.1, de la cual se puede obtener la siguiente relación para Ra:

$$Ra = (Kf If wr - Va) / Ia$$
(H.1)

Fig. H.1 PRUEBA DE CARGA PARA GENERADOR DE DC.

El valor de La se lo obtiene, graficando el transitorio de corriente que se produce al aplicar un voltaje en la armadura de la máquina. El diagrama de esta prueba se presenta en la Fig. H.2.

La respuesta transitoria de esta prueba obedece a la siquiente ecuación para la corriente:

Fig. H.2 ESOUEMA PARA DETERMINAR La

CORRIENTE [A]

TIEMPO [9]

-(R/La) t1i = (V/R) (1 - e) (H.2)

donde: R = Rx + Ra

La forma de onda que genera la ecuación de i es de la forma del gráfico H.2. en el cual se indica en que punto se debe tomar el valor de t1.

Realizando operaciones en la ecuación de la corriente se llega a la siguiente igualdad para determinar La:

La = t1 (Ra + Rx) (H.3)

H.1 MEDIDA DE LOS PARAMETROS DEL MOTOR DE CORRIENTE CONTINUA Nº1

(H, 4)

ł

Medida de Kf:

Kf = Va / (If wr) Va en voltios If en amperios wr en rad/s.

If	Va	rpm	Kf
A.	V.		Vs∕A
0.3	93	- 1720	1.721
0.4	104	1720	1.443

Tabla H.1

Haciendo un promedio se tiene Kf = 1.582 V s / A

Medida de Ra: 1

.

Valores medidos:

If = 0.3 A.rpm = 1710 Va = 82 V.Ia = 3.5 Å.

Aplicando la ecuación (H.1) se obtiene:

Ra = 0.853 Ω .

Medida de La:

 $Rx = 1 \Omega.$ t1 = 7.5 ms.

Aplicando la ecuación (H.3) se obtiene:

La = 13.8975 mH.

H.2 MEDIDA DE LOS PARAMETROS DEL MOTOR DE CORRIENTE CONTINUA Nº2

Medida de Kf:

∫f	Va	rpm	Kf
A.	V.		V.s/A
0.35	104	1760	1.5056
0.4	111	1760	1.6122

Tabla H.2

Haciendo un promedio se tiene Kf = 1.5589 V . s / A

Medida de Ra:

If = 0.39 A. rpm = 1780 Va = 105 V.Ia = 4.55 A.

Aplicando la ecuación (H.1) se obtiene:

APENDICE I

GUIA DE USO DEL PROGRAMA DIGITAL

I.1 INGRESO AL PROGRAMA .-

El programa digital está diseñado para ser elecutado en equipos que acepten una de las siguientes instrucciones BASIC: SCREEN 2,0.0 o SCREEN 3.0,0, por lo que, si no se tiene esta posibilidad el programa no se ejecuta. Para el caso de tarjeta Hercules, se debe correr antes del ingreso al programa el archivo QBHERC.COM y acepta la instrucción SCREEN 3.0.0.

El programa no tiene un algoritmo gue de la posibilidad de pasar las curvas del sistema a un impresor, ni genera archivos de datos para ser leídos por otros programas que puedan graficar e imprimir las curvas. Pero, ejecutando el programa PIZAZZ, gue sirve para pasar gráficos mostrados en la pantalla a un impresor, se soluciona el problema. Esto se lo realiza ejecutando antes de ingresar al Quick Basic el archivo PZ.COM, que redefinde la tecla PrtSc.

Instrucciones para ejecutar el programa en equipos que tenga tarjeta Hercules:

A >PZ A >QBHERC A >QB

Instrucciones para ejecutar el programa en equipos que tenga tarjeta CGA:

A>PZ A>OB/B .

Se carga al Quick Basic el archivo GIAED.BAS y luego se lo ejecuta con la instrucción SHIFT + F5

El programa digital genera resultados y datos en dos for-

mas numéricos y gráficos. Para poder imprimir los numéricos, se prevee una habilitación de la impresión, que es lo primero que pregunta al ejecutarse el programa.

El programa solicita los datos de las máguinas de inducción y de continua. Este ingreso puede ser desde el teclado o desde un archivo que contenga los datos.

I.2 PRIMER MENU.

El PRIMER MENU es el principal y en torno a éste, se trabaja en el programa, su presentación es:

PRIMER MENU

M .- PRESENTAR DATOS DE LA MAQUINA MOTRIZ

D .- CAMBIAR DATOS DE LA MAQUINA MOTRIZ

P .- PRESENTAR DATOS DE LA MAQUINA DE INDUCCION

C .- CAMBIAR DATOS DE LA MAQUINA DE INDUCCION

S .- REALIZAR SIMULACIONES

H .- IMPRESION DE RESULTADOS HABILITADO : NO

F .- FINALIZAR

ARCHIVO DE LA MAQUINA DE INDUCCION : MAQUINA1.MI3 ARCHIVO DE LA MAQUINA MOTRIZ : MOTOR1.MDC

escoja su opción

Opciones:

- M Presenta los datos de la máguina motriz. (Vdc. Ia, Ra. La, Kf)
- D Cambia los datos de la máquina motriz, ingresándolos desde el teclado o leyéndolos desde un archivo. Para cualquiera de los casos el programa presta facilidades, en lo que se

refiere a las magnitudes de los parámetros y grabado de datos para el ingreso por teclado, o para lectura y comprobación de datos leídos desde un archivo. Los archivos tienen la extension *.MDC.

- P Presenta los datos de la máquina de inducción.(Xls. rs. X'lr. r'r. H. P. fB, puntos de la curva Vg - vs -Xm, vo]taje y corriente nominal por fase)
- C Cambia los datos de la máquina de inducción, de manera similar a la opción D. Los archivos tienen la extensión *.MI3.
- S Se pasa a realizar las simualciones, pide un nombre para la simulación, con el que saldrán todos los resultados numéricos y gráficos, luego solicita el tipo de conexión en la máguina de inducción Y o delta, y se llega a MENU DE SIMULACIONES.
- H Habilita la impresión de resultados numéricos, solo en este menú se puede hacer esta habilitación, por lo que, si se desea imprimir resultados necesariamente antes de pasar a las simulaciones se debe habilitar la impresión. En todas las partes del programa en los cuales se obtenda resultados posibles de impresión: si se tiene habilitada la impresión el programa pregunta si se desea o no pasar a la impresora lo mostrado en la pantalla, se puede repetir la cantidad de impresiones que se necesite.
- F Finaliza la ejecución del programa, pero antes de salir se confirma o se regresa al primer menú.

En el pie del menú, se presenta también los nombres de los archivos en los cuales están los datos de las máquinas.

I.3 MENU DE SIMULACIONES.

En este menú se puede escojer el tipo de falla que se desee simular, ver las condiciones de estable del generador, o calcular el valor del condensador mínimo. Su presentación es:

National State

. ... -

MENU DE SIMULACIONES Archivos: MAQUINA1.MI3 MOTOR1.MDC Exp. = GRAF 4.7La máquina de inducción en conexión Impresión habilitada : NO Q .- REQUERIMIENTOS DE CONDENSADOR E .- GENERADOR EN ESTADO ESTABLE .- VARIACIONES BRUSCAS DE CARGA V .- CORTOCIRCUITO TRIFASICO Т O .- CORTOCIRCUITO DOS FASES D .- CORTOCIRCUITO DOS FASES - TIERRA . - CORTOCIRCUITO FASE - TIERRA F A .- APERTURA DE LAS TRES FASES R .- REGRESO AL PRIMER MENU

escoja su opción Nota: Condensadores de excitación y carga en conexión Y

Opciones:

- Q Calcula el valor del condensasor, para lo cual solicita la carga y la velocidad angular, presenta los resultados y regresa al PRIMER MENU.
- E Calcula las condiciones de funcionamiento en estado estable del generador, para lo cual solicita la carga, la velocidad y el valor del condensador de excitación por fase, si los datos son congruentes presenta los resultados y regresa al PRIMER MENU: si no lo son congruentes se puede cambiar los valores de velocidad y condensador de excitación o regresar al PRIMER MENU.
- V Simula variaciones bruscas de carga, sigue el siguiente proceso:
 - * Se pasa al menú de VARIACION BRUSCA DE CARGA, donde se puede escojer variación de vacío a carga, carga a carga, carga a vacío o regresar al PRIMER MENU.

- * Según el caso escojido en el menú VARIACION DE CARGA, para antes de la falla, se ingresa datos de carga, condensador de excitación por fase y velocidad angular: calcula las condiciones en estado estable del sistema, v presenta los resultados, en forma similar a la opción E.
- * Se ingresa la nueva carga
- * Se escoje variación o no del torque de la máquina motriz, en el caso afirmativo pide el valor del voltaje de armadura del motor DC.
- * Se ingresa el ángulo en el cual se produce la variación, que puede ser en el voltaje o en la corriente de la fase a.
- * Se define el tiempo de estudio luego de la variación, si no se tiene variación del torque de la máguina motriz, se asume un tiempo de 150 ms., caso contrario ingresa el tiempo, que puede variar de 100 a 400 ms.
- T. O. D. F. A En cualquiera de estas opciones el procedimiento es similar.

El ingreso de datos es el siguiente:

- * Para antes de la falla, se ingresa datos de carga. condensador de excitación por fase y velocidad angular: calcula las condiciones en estado estable del sistema antes de la falla. y presenta los resultados en forma similar a la opción E.
- * Se escoje variación o no del torque de la máquina motriz, en el caso afirmativo pide el valor del voltaje de armadura del motor DC.
- * Se ingresa el ángulo en el cual se produce la falla, que puede ser en el voltaje o en la corriente de la fase a.

R - Regresa al PRIMER MENU.

Se presenta además, los nombres de los archivos en los cuales están los datos de las máquinas, el nombre que se da a la simulación y el tipo de conexión del generador. Para conexión delta, no se puede simular cortocircuito fase - tierra o cortocircuito dos fases - tierra.

Después de ingresados los datos necesarios el programa integra las ecuaciones diferenciales y pasa a el menú de gráficos.

I.4 MENU DE GRAFICOS

Con este menú se puede observar las gráficas de las formas de onda de las distintas variables del sistema. Para escoier cualquier opción se hace presionando el número deseado y luego <ENTER>. Su presentación es:

_			
Į.			MENU DE GRAFICOS
	1		TORQUE ELECTROMAGNETICO
l	2	. –	CORRIENTE EN LA FASE A DEL ESTATOR
	з	. –	CORRIENTE EN LA FASE B DEL ESTATOR
	4		CORRIENTE EN LA FASE C DEL ESTATOR
11	5	. –	VOLTAJE EN LA FASE A DEL ESTATOR
]	6	. –	VOLTAJE EN LA FASE B DEL ESTATOR
	7	. –	VOLTAJE EN LA FASE C DEL ESTATOR
	8	. –	POTENCIA TRIFASICA
	9		VELOCIDAD ANGULAR
1	10	. –	POTENCIA EN LA FASE C DEL ESTATOR
1	1	. –	TORQUE DE LA MAQUINA MOTRIZ
1	.2	. –	CORRIENTE DE CARGA FASE C
1	13	. –	TIEMPO GRAFICO [s] = .14
1	4	. –	CARGA Y ANGULO DE FALLA
1	15	. –	VARIACION DE Xm
1 1	6	. –	NUMERO DE CURVAS : 1
-	-1,	. –	REGRESAR AL PRIMER MENU

Opciones:

- 1 a 12 Se presenta a la pantalla la gráfica de la variable deseada, en el cual se puede ver la onda 40 ms. antes de producirse la falla y luego el transitorio. Para regresar al MENU DE GRAFICOS, se debe presionar cualquier tecla.
- 13 Se escoje el valor del tiempo para graficar la onda, este puede variar de 10 ms. al valor de tiempo que fue escojido para integrar las ecuaciones diferenciales.
- 14 Presenta datos como: tipo de falla estudiada, condensador de excitación, valores base de los gráficos, carga antes de la falla, carga luego de la falla para el caso de vacuación de carga, ángulo de falla.
- 15 Solo para el caso de variación brusca de carga, se presentan los valores que va tomando Xm cada 16 ms, en la integración de la ecuaciones diferenciales, también el valor de la frecuencia resultante en el último proceso de ajuste de Xm en la integración.
- 16 El programa tiene la posibilidad de presentar una o dos curvas de las variables del sistema, con esta opción se puede escojer el número de curvas a presentar.
- -1 Regresa al primer menú, pero pide que se confirme, ya que si se regresa se pierden los datos de la simulación realizada.

En el programa cuando se tiene la gráfica en la pantalla. presionando cualquier tecla se puede regresar a MENU DE GRAFI-COS, pero si ha ejecutado PZ.COM al presionar PrtSc. se ingresa al programa PIZAZZ de impresión de gráficos.

BIBLIOGRAFIA

- 1.- RIVERA FREDDY. La Máguina de Inducción como generador. Tesis de Grado. Escuela Politécnica Nacional. Quito 1987.
- 2.- SALGADO CARLOS, Generación Estática de Potencia Reactiva. Tesis de Grado. Escuela Politécnica Nacional. Quito 1987.
- NATARAJAN K., SHARAF A.M., SIVAKUMAR S., NAGANATHAN S., "Modeling and Control Design for Wind Energy Power Conversion Scheme using Self - excited Induction Generator", IEEE Transactions on Energy Conversion, Vol EC-2, No. 3, pp 506 - 512, September 1987.
- 4.- MANCERO FERNANDO, Comportamiento dinámico de Motores de Inducción con capacitores serie y paralelo. Tesis de Grado. Escuela Politécnica Nacional, Quito 1983.
- 5.- KRAUSE P.C., THOMAS C.H., "Simulation of Symetrical Induction Machinery". IEEE Transactions on Power Apparatus and Systems. Vol PAS-84, No. 11, pp 1038 -1053, November 1965.
- 6.- FITZGERALD A.E., KINGSLEY C.H., KUSKO A., "Teoría y Análisis de las Máguinas Eléctricas", Editorial Hispano Europea, Barcelona 1975.
- 7.- MALIK N.H., MAZI A.A., "Capacitance requirements for Isolated Self Excited Induction Generators". IEEE Transactions on Energy Conversion. Vol EC-2. No. 1. pp 62 - 69. March 1987.
- 8.- CONTE S.D., CARL DE BOOR, "Análisis Numérico Elemental". Editorial Mc Graw - Hill, México 1979.
- 9.- ALMEIDA JULIO, Métodos para determinar los Parámetros del Circuito Equivalente de las Máguinas de Inducción Polifásicas. Tesis de Grado, Escuela Politécnica Nacional. Quito 1980.
- 10.- BONILLA ANGEL, Transitorios en la Reconexión de Motores de

Inducción. Tesis de Grado, Escuela Politécnica Nacional. Quito 1981.

- 11.- DE MELLO F.P., FELTES J.W., HANNETT L.N., WHITE J.C., "Application of Induction Generators in Powers Systems", IEEE Transactions on Powers Apparatus and Systems, Vol PAS-101, No. 9, pp 3385 - 3393, September 1982.
- 12.- YEGNA NARAYANAN S.S. JOHNNY V.J., "Contributions to the Steady State Analysis of Wind - Turbine Driver Self-Excited Induction Generators". IEEE Transactions on Energy Conversion, Vol EC-1, No. 1, pp 169 - 175. March 1986.
- 13.- OUAZENE L., McPHERSON G., "Analysis of the Isolated Induction Generator", IEEE Transactions on Powers Apparatus and Systems, Vol. PAS-102, No. 8, pp 2793 - 2798, August 1983.
- 14.- ARRILLAGA J., TECH M. Sc., WATSON D.B., "Static power conversion from self-exited induction generators", PROC IEE, Vol 125, No. 8, pp 743 -746, August 1978.
- 15.- BARKLE J.E., FERGUSON R.W., "Induction Generator Theory and Application". AIEE Transactions, Vol 73. pp 12 - 19. February 1954.
- 16.- BRENNEN M.B., ABBONDANTI A., "Static Exciters for Induction Generators". IEEE Transactions on Industry Applications. Vol IA-13. No. 5. pp 422 - 428. September/Octuber 1977.
- 17.- NAILEN R., "Watts from Waste Heat-Induction Generators for the Process Industries". IEEE Transactions on Industry Appilcation. Vol. IA-19. No. 3. pp 470 - 475. May / June 1983.