

La versión digital de esta tesis está protegida por la Ley de Derechos de Autor del Ecuador.

Los derechos de autor han sido entregados a la "ESCUELA POLITÉCNICA NACIONAL" bajo el libre consentimiento del (los) autor(es).

Al consultar esta tesis deberá acatar con las disposiciones de la Ley y las siguientes condiciones de uso:

- Cualquier uso que haga de estos documentos o imágenes deben ser sólo para efectos de investigación o estudio académico, y usted no puede ponerlos a disposición de otra persona.
- Usted deberá reconocer el derecho del autor a ser identificado y citado como el autor de esta tesis.
- No se podrá obtener ningún beneficio comercial y las obras derivadas tienen que estar bajo los mismos términos de licencia que el trabajo original.

El Libre Acceso a la información, promueve el reconocimiento de la originalidad de las ideas de los demás, respetando las normas de presentación y de citación de autores con el fin de no incurrir en actos ilegítimos de copiar y hacer pasar como propias las creaciones de terceras personas.

Respeto hacia sí mismo y hacia los demás.

ESCUELA POLITÉCNICA NACIONAL

FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA

DISEÑO E IMPLEMENTACIÓN DE UN SISTEMA DE CONTROL AUTOMÁTICO PARA LA ALIMENTACIÓN DE MATERIAL COMBUSTIBLE AL CALDERO BREMER PARA GENERACIÓN DE VAPOR EN LA EMPRESA CONTRACHAPADOS DE ESMERALDAS S.A.

PROYECTO PREVIO A LA OBTENCIÓN DEL TÍTULO DE INGENIERO EN ELECTRÓNICA Y CONTROL

PEÑA GALLEGOS JORGE ISRAEL isra85_53@hotmail.com

DIRECTOR: ING. JUAN PABLO CEPEDA BONILLA icepeda@pelikano.com

CO DIRECTOR: DR. JORGE ANDRES ROSALES ACOSTA androsaco@gmail.com

Quito, MARZO 2013

DECLARACIÓN

Yo, Jorge Israel Peña Gallegos, declaro bajo juramento que el trabajo aquí descrito es de nuestra autoría; que no ha sido previamente presentada para ningún grado o calificación profesional; y, que hemos consultado las referencias bibliográficas que se incluyen en este documento.

A través de la presente declaración cedemos nuestros derechos de propiedad intelectual correspondientes a este trabajo, a la Escuela Politécnica Nacional, según lo establecido por la Ley de Propiedad Intelectual, por su Reglamento y por la normativa institucional vigente.

JORGE ISRAEL
PEÑA GALLEGOS

Dr. Andrés Rosales

CO-DIRECTOR

CERTIFICACIÓN

Certificamos que el presente trabajo fue desarrollado por Jorge Israel Peña
Gallegos, bajo nuestra supervisión.

Ing. Juan Pablo Cepeda

DIRECTOR

AGRADECIMIENTO

Primeramente agradezco a Dios por ser mi fortaleza y por brindarme sabiduría para salir adelante a todos los problemas y dificultades.

Un especial agradecimiento a mis padres Alba y Ángel, a mis hermanos Miguel y Cecibel por siempre brindarme su amor y apoyo incondicional.

A la Empresa CODESA y en especial al Ing. Juan Pablo Cepeda por darme su confianza y oportunidad de realizar esta tesis, a mi co-director Dr. Andrés Rosales, a doña Soraya Bonilla, a los profesores y a la Escuela Politécnica Nacional por la enseñanza y formación prestada.

¡Gracias!

Jorge Israel Peña

DEDICATORIA

Este trabajo lo dedico a Dios por enseñarme que con paciencia y humildad podemos conseguir las metas deseadas, a mis padres Ángel y Alba, a mis hermanos Miguel y Cecibel que con su ejemplo y amor estuvieron siempre junto a mí a lo largo de mi carrera.

RESUMEN

En el presente proyecto se diseña e implementa un sistema de control para la alimentación de material combustible al caldero Bremer para conseguir una producción constante y continua de vapor en la empresa Contrachapados de Esmeraldas S.A. CODESA.

En este proyecto se procede a sustituir el antiguo sistema de control del silo Zanella y el silo de polvo que funcionaba con un sistema de control ON-OFF y una lógica de control basada en relés, temporizadores, contadores y controladores discretos, por otro completamente nuevo basado en la plataforma MITSUBISHI.

Se desarrolló un control confiable y amigable por medio de una pantalla táctil HMI (Human Machine Interface) la cual es programada a través del software propio de fábrica de los equipos, llamado "GT Designer3. Esta HMI cuenta con diferentes pantallas para el control y supervisión de las distintas etapas del proceso, además se instaló una pequeña pantalla en el silo de polvo de marca Kinco para facilitar el control de modo local, así como la con los PLCs Mitsubishi.

Los objetivos planteados al inicio del proyecto cumplen con todos los requerimientos de operatividad y seguridad y si se presenta alguna falla, el control activará las alarmas respectivas de acuerdo al problema encontrado, por lo que, se terminó a cabalidad con la propuesta en el plan.

Las pruebas realizadas mostraron que tanto el sistema de control, como las HMIs implementadas funcionan de acuerdo a lo esperado, obteniéndose una considerable mejora en la producción de vapor.

PRESENTACIÓN

Contrachapados de Esmeraldas S.A., empresa dedicada a la producción de tableros contrachapados de madera, tiene como meta mejorar la calidad y aumentar la producción de los tableros, razón por la cual decide cambiar y modernizar el sistema de control de transporte de material combustible al caldero Bremer.

Con el presente proyecto se tiene la renovación de los equipos de control del silo Zanella y el silo del Polvillo, mejorando las condiciones de trabajo, seguridad y asegurando una producción constante y continua de vapor.

Para cumplir con dicho propósito, este trabajo se divide en las siguientes secciones, que ayudan a describir de la mejor manera las tareas realizadas:

El primer capítulo describe el proceso operativo y control en la elaboración del tablero contrachapado de madera, una pequeña introducción de la historia de la empresa. Además, se presenta un marco teórico que facilita de mejor manera la comprensión a las soluciones que se presenta en los siguientes capítulos.

En el segundo capítulo se realiza un análisis del proceso de producción de vapor en el caldero Bremer y el sistema de alimentación tanto de agua y de material combustible hacia el caldero, además se presenta una comparación del antiguo sistema de control versus el nuevo sistema de control.

El tercer capítulo presenta el desarrollo y programación del PLC, la realización del sistema de comunicación, así como, el desarrollo de la Interfaz Hombre - Máquina (HMI), para un mejor control y visualización del estado del proceso, la realización del sistema de comunicación entre los PLCs, HMI, variadores de velocidad y los diferentes sensores utilizados.

En el cuarto capítulo se describe la implementación y puesta en marcha del proyecto.

En el quinto capítulo se realizan las pruebas de funcionamiento de los equipos y del sistema de control implementado.

El sexto capítulo presenta las conclusiones y las recomendaciones obtenidas en el proyecto de titulación.

CONTENIDO

DECLARACION			
CERTIFICACION			
AGRA	DEC	IMIENTO	III
DEDIC	CATC	DRIA	IV
RESU	MEN		V
PRES	ENT	ACION	VI
CONT	ENI	00	2
INDIC	E DE	FIGURAS	5
INDIC	E DE	TABLAS	10
CAPIT	ULC	1	
1 DE	ESCF	RIPCIÓN DE LA PLANTA	5
1.1	OE	JETIVO	5
1.2	A٨	ITECEDENTES	5
1.3	IN	TRODUCCIÓN	6
1.4	MA	ARCO TEÓRICO	7
1.4	4.1	SISTEMAS DE CONTROL	7
1.4	4.2	COMUNICACIONES INDUSTRIALES	10
1.4	4.3	PLATAFORMA MISUBISHI	16
1.4	4.4	GENERACIÓN DE VAPOR	18
1.5	PR	OCESO DE ELABORACIÓN DEL CONTRACHAPADO	23
1.	5.1	PRODUCTOS Y SERVICIOS	23
1.	5.2	CAPACIDAD DE PRODUCCIÓN	24
1.	5.3	PROCESOS INTERNOS	24
1.	5.4	PROCESOS DE APOYO	38
2 AN	\ÁLI:	SIS DEL PROCESO DE LA PLANTA (CALDERO BREMER)	40
2.1	GE	NERACIÓN DE VAPOR	40

	2.1.1	SISTEMAS DE ALIMENTACIÓN DE AGUA AL CALDERO BREN 40	1ER
	2.1.2	SISTEMA DE ALIMENTACIÓN DE COMBUSTIBLE AL CALDER	O 43
	2.1.3	GENERACIÓN DE VAPOR Y DISTRIBUCIÓN	46
	2.1.4	CALDERO BREMER	48
		ESCRIPCIÓN DEL SISTEMA DE CONTROL DE LA ALIMENTACIÓ	
	2.2.1	ANTIGUO SISTEMA DE CONTROL	50
	2.2.2	NUEVO SISTEMA DE CONTROL	50
3	DESAF	RROLLO Y PROGRAMACIÓN DEL SOFTWARE Y EL HMI	52
		ECONOCIMIENTO DE LAS VARIABLES QUE INTERVIENEN EN E	
	3.2 PR	ROGRAMACIÓN DEL PLC MITSUBISHI FX3U	53
	3.2.1	CONTROLADOR LÓGICO PROGRAMABLE (PLC)	54
	3.2.2	DESCRIPCIÓN DEL SOFTWARE GXWORKS2	61
	3.2.3	COMPILAR UN PROGRAMA	65
	3.2.4	TIPOS DE COMUNICACIONES MITSUBISHI	70
	3.2.5	PROGRAMA DEL PLC SILO ZANELLA	88
	3.2.6	PROGRAMA DEL PLC POLVILLO	89
	3.3 PR	ROGRAMACIÓN DEL TOUCH PANEL MITUBISHI GOT1055	92
	3.3.1	NECESIDADES DEL OPERADOR	92
	3.3.2	REQUERIMIENTOS DEL PROCESO	92
	3.3.3	EQUIPOS PARA LA REALIZACIÓN DEL HMI	93
	3.3.4	DESCRIPCIÓN DEL SOFTWARE GT DESIGNER3	95
	3.3.5	DISEÑO DE LAS HMI EN EL TERMINAL GOT1055	98
	3.3.6 MITSU	DESCRIPCIÓN DE LAS PANTALLAS EN EL TERMINAL IBISHI	101
	3.3.7	DESCRIPCIÓN DEL SOFTWARE EV5000	120
	3.3.8	DISEÑO DE LAS HMI EN EL TERMINAL MT4201T	. 125
	3.4 INS	STRUMENTACIÓN	. 134
	3.4.1	MEDICIÓN DE NIVEL	. 134
	3.4.2	MEDICIÓN DE TEMPERATURA	143
	3.4.3	SENSOR DE PRESION	148

4	IM 15		MENTACIÓN Y PUESTA EN MARCHA DEL SISTEMA DE CON	TROL
	4.1	MC	NTAJE E INSTALACIÓN	150
	4.2	INS	STALACIÓN DE SENSORES	152
	4.2	2.1	INSTALACIÓN DEL SENSOR DE NIVEL	152
	4.2	2.2	INSTALACIÓN DEL SENSOR DE PRESIÓN	153
	4.2	2.3	INSTALACIÓN DEL SENSOR DE TEMPERATURA	154
	4.2	2.4	CALIBRACIÓN DE LOS SENSORES	156
5	PF	RUEE	BAS Y RESULTADOS	158
	5.1	PR	UEBAS INICIALES	158
	5.	1.1	FUNCIONAMIENTO DEL PLC Y HMI	159
	5.	1.2	PRUEBAS DE COMUNICACIÓN CON EL PLC ESCLAVO	159
	5.	1.3	FUNCIONAMIENTO DE LOS VARIADORES DE FRECUENCIA	۱. 159
	5.	1.4	PRUEBA DE LOS SENSORES	159
	5.2 CON		UEBAS FINALES DE OPERACIÓN AL NUEVO SISTEMA DE DL	160
6	C	ONCL	LUCIONES Y RECOMENDACIONES	162
	6.1	CO	NCLUSIONES	162
	6.2	RE	COMENDACIONES	164
R	EFEI	REN	CIAS BIBLIOGRAFICAS	165
Α	NFX	os		168

CAPÍTULO 1

1 DESCRIPCIÓN DE LA PLANTA

1.1 OBJETIVO

El objetivo principal es el diseño y la implementación de un nuevo sistema de control para el sistema de alimentación de combustible al caldero Bremer, de esta manera, se hace una modernización de equipos y se garantiza una constante producción de vapor que requiere la planta.

La fábrica CODESA, produce contrachapados de madera. Para los diferentes procesos de fabricación usa el vapor para secar y quitar la humedad y así mejorar el proceso de secado, dando como resultado el aumento de la producción.

1.2 ANTECEDENTES

La empresa CONTRACHAPADOS DE ESMERALDAS S. A. inicia sus actividades en el año de 1972 en la ciudad y provincia de Esmeraldas, como respuesta a la necesidad de cubrir la demanda de tableros contrachapados tanto localmente como en el exterior.

Esta empresa junto con Novopan del Ecuador S.A. forma parte del grupo "PELIKANO" del Ecuador.

El Grupo Pelikano es la agrupación de las empresas Codesa, Novopan y Plywood dedicadas a la fabricación de tableros aglomerados y contrachapados, productos que son registrados y comercializados por la marca PELIKANO.

La implementación de la red de NOVOCENTROS en todo el país y en el Perú junto con la gestión de calidad que se realiza permite asegurar la comercialización de toda la línea de productos en el ámbito nacional y en toda la Comunidad Andina. Novopan y Codesa ofrecen una de las líneas más completas de tableros, bajo la marca Pelikano, tableros, aglomerados, melamínicos, MDF y Plywood que están a disposición de los clientes. Estos productos tienen el respaldo de una tecnología de punta y políticas de calidad que garantizan la acogida de estos, tanto en el mercado ecuatoriano como en los mercados extranjeros.

A medida que la demanda del plywood tanto a nivel nacional como internacional aumentó, la empresa se vio en la necesidad de aumentar su capacidad instalada en toda su línea de producción.

En el estudio de la materia prima para la combustión no se evidenció en los análisis principales la variabilidad de especie y tipo de material, sumados a un crecimiento del mercado en el consumo de tableros plywood, lo que generó una inestabilidad en la generación de vapor y como resultado negativo en el volumen de producción. El principal problema fue la disminución de capacidad en el proceso de secado tanto en cantidad, calidad de secado y afectaciones directas al costo de producción.

La generación de vapor es de vital importancia en el proceso de producción de la empresa, aunque en el presente caso constituía una deficiencia por lo que se tenían serios problemas en los programas de producción, generando pérdidas económicas importantes.

1.3 INTRODUCCIÓN

La empresa "CONTRACHAPADOS DE ESMERALDAS S.A CODESA" dispone de una planta de generación de vapor, la cual consta de las siguientes secciones:

- Caldero Bremer
- Pulmón
- Silo Zanella

Además cuenta con un tablero de control en la cual se encuentra el PLC, una pantalla de monitoreo y de control.

Debido a que los equipos de control ya cumplieron su vida útil, comenzaron a presentar problemas en la operación y se tiene como principales antecedentes el hecho de que en el caldero se tenía una alimentación pobre de combustible respecto al desempeño del mismo, ya que la rosca sinfín no alimentaba lo suficiente, o alimentaba de manera discontinua y en mayor parte porque se presentaban fallos de tipo sobrecarga o sobrecalentamiento de modo que la producción decaía.

También se aprovecha el excedente de desperdicio de madera que resulta del pelado, laminación y el polvillo que resulta del lijado, estos desechos son utilizados como combustible en el caldero resultando ahorros en costos de la unidad, costos de producción e impacto ambiental.

El presente proyecto se enfoca en la modernización y diseño de un nuevo sistema de control de la planta que servirá para tener una mayor eficiencia en la producción de vapor.

1.4 MARCO TEÓRICO

1.4.1 SISTEMAS DE CONTROL

Los sistemas de control, según la teoría cibernética, se aplican en esencia para los organismos vivos, las máquinas y las organizaciones. Estos sistemas fueron

relacionados por primera vez en 1948 por Norvert Wiener en su obra "Cibernética y Sociedad", con aplicaciones en la teoría de mecanismos de control¹.

Un sistema de control está definido como un conjunto de componentes que pueden regular su propia conducta o la de otro sistema con el fin de lograr un funcionamiento predeterminado, de modo que se reduzcan las probabilidades de fallos y se obtengan los resultados buscados.

Los sistemas de control más modernos en ingeniería automatizan procesos en base a muchos parámetros estos reciben el nombre de controladores de automatización programables.

Los sistemas de control deben conseguir los siguientes objetivos:

- Ser estables y robustos frente a las perturbaciones.
- Ser eficientes según un criterio preestablecido evitando comportamientos bruscos e irreales.

1.4.1.1 Necesidades de la Supervisión del Proceso

- Limitaciones de la visualización de los sistemas de adquisición y control.
- Control Versus Monitorización.
- Control de software.
- Cierre de lazo de control
- Recoger, almacenar y visualizar información.
- Minería de datos

-

SISTEMAS DE CONTROL: http://www.elsolucionario.net/2012/12/sistemas-de-control-para-ingenieria.html FECHA DE CONSULTA: 01/08/2012

1.4.1.2 Clasificación de los Sistemas de Control Según su Comportamiento²

1.4.1.2.1 Sistemas de Control en Lazo Abierto

Es aquel en que la señal de salida no influye sobre la señal de entrada, la exactitud de estos sistemas dependen de su calibración.

Estos sistemas se caracterizan por:

- Ser sencillos y de fácil concepto.
- Nada asegura su estabilidad ante una perturbación.
- La salida no se compara con la entrada.
- Ser afectado por las perturbaciones. Éstas pueden ser tangibles o intangibles.
- La precisión depende de la previa calibración del sistema.

1.4.1.2.2 Sistemas de Control en Lazo Cerrado

Son los sistemas en los que la acción de control está en función de la señal de salida. Los sistemas de circuito cerrado usan la retroalimentación desde un resultado final para ajustar la acción de control.

Es imprescindible cuando se da alguna de las siguientes circunstancias:

- Cuando un proceso no es posible de regular por el hombre.
- Una producción a gran escala que exige grandes instalaciones y el hombre no es capaz de manejar.
- Vigilar un proceso es especialmente difícil en algunos casos y requiere una atención que el hombre puede perder fácilmente por cansancio o despiste, con los consiguientes riesgos que ello pueda ocasionar al trabajador y al proceso.

-

² SISTEMAS DE CONTROL: http://www.slideshare.net/ptah_enki/sistemas-de-control FECHA DE CONSSULTA: 01/08/2012

Sus características son:

• Ser complejos, pero amplios en cantidad de parámetros.

• La salida se compara con la entrada y afecta en el control del sistema.

Su propiedad de retroalimentación.

Ser más estable a perturbaciones y variaciones internas.

1.4.2 COMUNICACIONES INDUSTRIALES

Hoy en día las comunicaciones industriales adquieren una gran importancia en nuestro sistema de automatización. Los equipos tienen la necesidad de

comunicarse entre sí de una manera segura, basándose en los últimos

estándares de comunicación³.

En el área de las comunicaciones en entornos industriales, la estandarización de

protocolos es un tema en permanente discusión, donde intervienen problemas

técnicos y comerciales. Cada protocolo está optimizado para diferentes niveles de

automatización y en consecuencia responden al interés de diferentes

proveedores, teniendo un rango de aplicación, sin ellos se disminuye el

rendimiento y aumenta la relación coste/beneficio. En muchos casos no se trata

de protocolos que compitan entre sí, sino que se complementan, cuando se trata

de una arquitectura de un sistema de comunicación de varios niveles⁴.

Los equipos destinados a este proyecto, son configurables tanto para usar

comunicación de datos por medio de un puerto serial así como también Ethernet.

³ COMUNICACIONES INDUSTRIALES:

http://www.swe.siemens.com/spain/web/es/industry/automatizacion/com_industriales/Pages/comunicaciones_industriales.a

spx FECHA DE CONSULTA: 01/08/2012

⁴ COMUNICACIONES INDUSTRIALES

http://infoplc.net/files/documentacion/comunicaciones/infoPLC net ComunicacionEntornos Industriales.pdf FECHA DE

CONSULTA: 01/08/2012

1.4.2.1 Protocolos de Comunicación

En principio un protocolo de comunicación es un conjunto de reglas que permiten la transferencia e intercambio de datos entre los distintos dispositivos que conforman una red, estos elementos pueden ser PLCs, variadores de frecuencia, interfaces electrónicas, sensores, actuadores, etc., con la central remota, la cual será la encargada de procesar la información para realizar algún proceso dentro de la industria⁵.

El desarrollo del control en la industria va de forma paralela a las comunicaciones, cada vez es necesario tener dispositivos inteligentes, los cuales serían los encargados de supervisar el proceso. Estos han tenido un paso evolutivo gradual a medida que la tecnología electrónica avanza y en especial en lo que se refiere a los microprocesadores.

1.4.2.2 Buses de Campo

Un bus de campo es el nombre genérico de los diferentes tipos de redes que se utilizan para uso industrial cuyo objetivo primordial es sustituir las conexiones punto a punto, simplificando considerablemente la instalación y operación de máquinas y equipamientos.

Típicamente son digitales, bidireccionales, montadas sobre un bus serie, en donde se encuentran conectados los diferentes dispositivos. Cada uno de estos estarán encargados de realizar funciones de auto diagnóstico, monitoreo, control, mantenimiento, así como de comunicarse entre sí a través del bus de campo, los requisitos para la utilización en la industria son:

La demanda de alta seguridad, la necesidad o posibilidad de funcionar en áreas altamente peligrosas y que sean sistemas abiertos y extensibles⁴.

A continuación se mencionan algunos buses de campo:

-

⁵ PROTOCOLOS DE COMUNICACIÓN http://dspace.ups.edu.ec/bitstream/123456789/171/4/Cap%203.pdf FECHA DE CONSULTA: 15/ 08/2012

- HART (High way-Addressable-Remote-Transducer)
- DEVICE NET
- CAN open
- MODBUS

1.4.2.2.1 HART (High way-Addressable-Remote-Transducer)

HART es mundialmente reconocido como un protocolo estándar de la industria para comunicación de los instrumentos de campo inteligentes 4-20mA, basados en microprocesador.

Permite la superposición de señal de comunicación digital a las señales analógicas de 4-20mA, sin interferencia, en el mismo cableado.

La señal digital utiliza dos frecuencias de 1200 y 2200 Hz, que representan dígitos "0" y "1", que forman una onda sinusoidal que superpone a la señal de 4 - 20 mA⁶

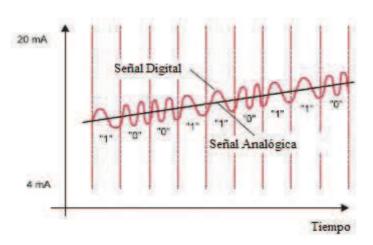


Figura 1-1 Señal Hart⁶

Este protocolo tiene la capacidad de conectar múltiples dispositivos de campo sobre el mismo par de hilos en una configuración de red multipunto.

٠

⁶ HART: http://www.smar.com/espanol/hart.asp FECHA DE CONSULTA: 15/08/2012

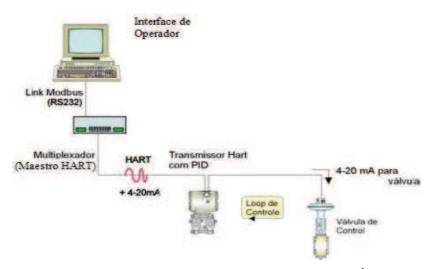


Figura 1-2 Conexión de red Multipunto⁶

14222 DEVICE NET⁷

DeviceNet es una red digital, multi-punto para conexión entre sensores, actuadores y sistemas de automatización industrial en general.

Esta tecnología es un estándar abierto de automatización con el objetivo de transportar 2 tipos principales de información.

- Datos cíclicos de sensores y actuadores, directamente relacionados al control.
- Datos no cíclicos indirectamente relacionados al control, como configuración y diagnóstico.

Una red DeviceNet puede tener hasta 64 dispositivos donde cada dispositivo ocupa un nodo en la red, direccionados de 0 a 63. Cualquier de ellos puede ser utilizado. No hay ninguna restricción para el uso de ellos, aunque el uso de los 63 no es recomendable, ya que se utiliza para la puesta en marcha.

.

DEVICE NET: http://www.smar.com/espanol/devicenet.asp FECHA DE CONSULTA: 15/08/2012

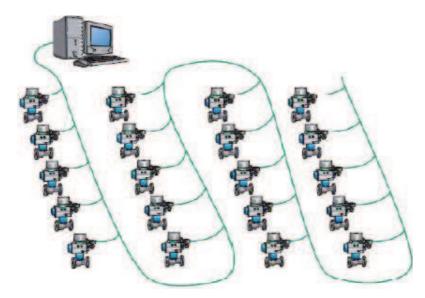


Figura 1-3 Device Net⁷

1.4.2.2.3 CAN OPEN⁸

Es un protocolo de comunicaciones desarrollado por la firma alemana Robert Bosch, basado en una topología bus para la transmisión de mensajes en entornos distribuidos. Además ofrece una solución a la gestión de la comunicación entre múltiples CPUs.

El protocolo de comunicación CAN proporciona los siguientes beneficios:

- Simplifica y economiza la tarea de comunicar subsistemas de diferentes fabricantes sobre una red común o bus.
- Delega la carga de comunicaciones a un periférico inteligente, por lo tanto el procesador anfitrión dispone de mayor tiempo para ejecutar sus propias tareas.
- Al ser una red multiplexada, reduce considerablemente el cableado y elimina la conexiones punto a punto, excepto en los enganches.

Este, permite trabajar a una distancia de hasta 1000 metros a 50 Kbits, la velocidad máxima permitida es de 1 Mbits con una distancia de 40 metros, opera en modo multimaestro.

-

⁸ CAN OPEN: http://www.can-cia.org/fileadmin/cia/pdfs/CANdictionary_v6.pdf FECHA DE CONSULTA:15/08/2012

1.4.2.2.4 MODBUS⁹

Modbus es un protocolo de comunicación situado en el nivel 7 del modelo OSI, basado en la arquitectura maestro/esclavo o cliente /servidor, diseñado en 1979 por Modicon para su gama de controladores lógicos programables (PLCs). Permite el control de una red de dispositivos. Ejemplo, comunicar los resultados a un ordenador sobre un sistema de medida de temperatura y humedad.

También se usa para la conexión de un ordenador de supervisión con una unidad remota (RTU) en un sistema de supervisión y adquisición de datos (SCADA).

Las razones por las cuales el uso de Modbus es superior a otros protocolos de comunicaciones son:

- es público
- su implementación es fácil y requiere poco desarrollo
- maneja bloques de datos sin suponer restricciones

Existen dos variantes, con diferentes representaciones numéricas de los datos y detalles del protocolo ligeramente desiguales.

Modbus RTU es una representación binaria compacta de los datos.

Modbus ASCII es una representación legible del protocolo pero menos eficiente.

Ambas implementaciones del protocolo son serie. El formato RTU finaliza la trama con una suma de control de redundancia cíclica (CRC), mientras que el formato ASCII utiliza una suma de control de redundancia longitudinal (LRC). La versión Modbus/TCP es muy semejante al formato RTU, pero estableciendo la transmisión mediante paquetes TCP/IP.

_

⁹ **MODBUS**: http://www.modbus.org/specs.php **FECHA DE CONSULTA:** 15/08/2012

1.4.3 PLATAFORMA MISUBISHI¹⁰

Figura 1-4 Plataforma Mitsubishi¹⁰

1.4.3.1 Familia FX

Cada PLC Mitsubishi puede adaptarse de modo que se ajuste exactamente a los requisitos de la aplicación. Puede elegirse entre PLCs bases sencillos para el usuario con un número fijo de entradas y salidas para aplicaciones sencillas y PLCs más flexibles con opciones de expansión. Los PLCs base están disponibles con diferentes configuraciones de E/S, de modo que un FX constituye una solución adecuada, independientemente de las tensiones disponibles y las señales de salidas exigidas.

Para aplicaciones más complejas, la familia FX cuenta también con un gran número de módulos analógicos. El FX tiene mucho que ofrecer también para posicionamientos, desde las entradas y salidas de impulsos integradas hasta el pleno soporte de la red de fibra óptica de control de movimiento SSCNET III.

PLATAFORMA MITSUBISHI: http://www.meau.com/eprise/main/sites/public/Downloads/default. FECHA DE CONSULTA: 01/09/2012

Dado que no hay ninguna máquina que se encuentre aislada, el autómata programable FX tiene numerosas opciones de comunicación para interconectarse al resto de la fábrica, la gama va desde ETHERNET Y MODBUS hasta la sencilla comunicación serie de modo que pueda consultarse en todo momento a través de la red información sobre el estado de la maquina o el proceso.

Por supuesto un FX3u puede conectarse también a muchas redes, como AS-Interface, Profibus/DP, CC-Link, DeviceNet, CANopen y Ethernet.

1.4.3.2 Terminales De Operador HMI de la Serie GOT

La familia de terminales de operador abarca, además de los terminales con pantalla táctil de gran formato, a los dispositivos de bajo coste. Estos terminales constituyen un complemento ideal para la familia FX, proporcionando la unión de interfaz hombre maquina central para aplicaciones de pequeña envergadura. La pantalla táctil de alta resolución tiene suficiente flexibilidad para, mostrar logotipos de la empresa o imágenes de máquinas, etc. Su retroalimentación multicolor y el extenso número de alarmas que ofrecen permiten alternar de manera rápida entre diferentes aplicaciones. El display puede instalarse tanto vertical como horizontalmente y por lo tanto se cuenta con la máxima flexibilidad en el diseño de paneles de control.

1.4.3.3 Variadores de Frecuencia

Mitsubishi ofrece un sistema de variadores que encaja con cada aplicación, la actual familia FR-E700 y la FR-D700 ofrecen una gran cantidad de funciones muy desarrollada, como el control vectorial o el autoajuste automático. Estos variadores pueden controlarse de manera muy sencilla con un PLC FX mediante señales digitales o analógicas. Pero independientemente de que variador se utilice, pueden lograrse ahorros energéticos de hasta el 60 % con un control directo del motor.

1.4.4 GENERACIÓN DE VAPOR¹¹

La generación de vapor de agua se produce mediante la transferencia de calor del proceso de combustión que ocurre en el interior de la caldera hacia el agua, elevando de esta manera su temperatura, presión y convirtiéndola en vapor.



Figura 1-5 Diagrama Básico de un Caldero

1.4.4.1 Definiciones

- Generador de vapor: es el conjunto o sistema formado por una caldera y sus equipos complementarios, destinados a transformar agua de estado líquido en estado gaseoso a temperaturas y presiones diferentes de la atmosférica.
- Caldera de vapor: es una máquina térmica que produce vapor a una presión generalmente mayor a la atmosférica.

MANEJO DE CALDERAS: http://www.areadigital.gov.co/produccionlimpia/documents/guias/guia_manejo_calderas.pdf FECHA DE CONSULTA: 15/09/2012

1.4.4.2 Tipos de Calderas

Existen varias formas de clasificación de caldera, entre estas se puede señalar las siguientes:

Según su movilidad:

- Fija o estacionaria.
- Móvil o portátil.

Según la presión de trabajo:

Baja presión 0 a 2,5 kg/cm2
Media presión 2,5 a 10kg/cm2
Alta presión 10 a 220kg/cm2
Supercríticas más de 200kg/cm2

Según su generación:

- De agua caliente
- De vapor saturado o recalentado

Según el ingreso de agua a la caldera:

- Circulación natural: el agua se mueve por efecto térmico.
- Circulación forzada: el agua circular mediante el impulso de una bomba.

Por la disposición de los fluidos:

- Pirotubulares o de tubos de humo.
- Acuatubulares o de tubos de agua

1.4.4.3 Calderas Pirotubulares o de Tubos De Humo

En las calderas pirotubulares, como se aprecia en la Figura 1-6, los gases circulan por dentro de los tubos y transfieren su energía al agua que los circunda. Pueden ser puestas en marcha rápidamente, operan a presiones mayores a 300 psi,

La combustión se realiza generalmente en la parte frontal de la caldera. Los gases calientes circulan por el tubo central y dependiendo del número de pasos, se devuelven por los demás tubos hasta salir por la chimenea.

Al calentarse los tubos por efecto de la convección forzada de los gases, se inicia el proceso de calentamiento del agua que está por fuera de los tubos, al llegar a su temperatura de saturación, se empieza a evaporar. Al seguir suministrando calor se puede aumentar la presión de vapor, hasta el punto de ajuste admitido o calibrado, obteniendo vapor a las condiciones deseadas o requeridas para su aplicación.

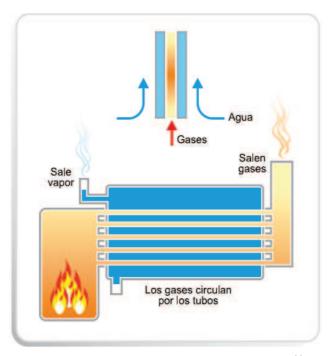


Figura 1-6 Calderas Piro tubulares¹¹

1.4.4.4 Calderas Acuatubulares o de Tubos de Agua

Como se observa en la Figura 1-7, en las calderas acuatubulares, el agua circula por dentro de los tubos y los gases que transfieren la energía al agua se encuentran circundándolos. Son equipos de bajo costo, simplicidad de diseño, exigen menor calidad del agua de alimentación, son pequeñas y eficientes.

Las calderas acuatubulares o de tubos de agua están constituidas por tambores inferiores y superiores y tubos que los conectan, entre los cuales se encuentra el agua. En la parte de arriba del domo superior (domo de vapor), se confina el vapor generado; mientras que en el inferior está el agua con presencia de lodos, producto del tratamiento químico al que es sometida.

El combustible utilizado puede ser sólido, líquido o gaseoso; pero generalmente utiliza combustible sólido o al menos una mezcla de éste con un combustible líquido.

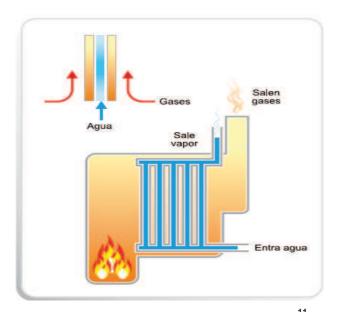


Figura 1-7 Calderas Acuatubulares¹¹

1.4.4.5 Circuito de Alimentación de Combustible

El sistema de alimentación de combustible hacia la caldera es vital en el proceso de generación de vapor, estas pueden utilizar diferentes tipos de combustibles:

- Combustibles sólidos: madera, carbones fósiles, antracita, hulla, lignito, turba, residuos orgánicos, carbón vegetal o leña. Su alimentación hacia la caldera puede ser manual o mediante bandas transportadoras.
- Combustibles Líquidos: Líquidos: cualquier líquido que pueda ser usado como combustible y que pueda ser vertido y bombeado.
- Combustibles gaseosos: Los combustibles gaseosos son los que mejores condiciones tienen para entrar en combustión. Se incluye el gas natural y todas sus variedades. También el gas de carbón, de petróleo, de altos hornos, gas ciudad y diversas mezclas.

1.4.4.6 Circuito de Alimentación de Agua

La alimentación de agua hacia las calderas se las hace de diferentes maneras, entre esta están:

- Red de abastecimiento (circuitos abiertos).
- Bombas impulsoras.
- Por termosifón (diferencia de densidades del agua caliente y fría).

Hay que considerar que el agua viene con impurezas sólidas e impurezas diluidas como es el caso de sales y minerales que le da la característica de dureza al agua y son perjudiciales ya que estas sales producen las denominadas incrustaciones en el interior de la caldera o en las mismas tuberías y las corroen disminuyendo su vida útil. Debido a esto se debe hacer un tratamiento del agua antes que ingrese a la caldera, cabe destacar que no existe ningún procedimiento simplista ni producto químico apropiado para el tratamiento de todas las clases de aguas. Cada caso se debe considerar individualmente, los tratamientos más conocidos

son los siguientes: filtrado, separación de lodos, calentamiento, vaporización o destilación, des aireación, tratamiento con cal apagada, tratamiento con carbonato sódico, tratamiento con hidróxidos cálcico, con fosfato trisódico y coagulantes. 12

1.5 PROCESO DE ELABORACIÓN DEL CONTRACHAPADO

1.5.1 PRODUCTOS Y SERVICIOS

Los productos que se fabrican en la planta de CODESA son los siguientes:

Tableros Corrientes: para uso interior.

Tableros Decorativos: Se los fabrica con diferentes tipos de madera nacional e importada como: Laurel, Macare, Roble, Caoba, Sapeli, Etimoe.

Tableros Marino: Se los utiliza para exteriores capaces de soportar humedad.

Fibro Paneles MDF: Son productos de enchape decorativo.

Novo panel Decorativo: es un producto parecido al Fibro Paneles MDF, la diferencia es que se mejora la calidad.

Todos los tipos de tableros tienen medidas estándares de 4 x 8 pies o 1.22 x 2.4 m y espesores de 4 mm, 5 mm, 7 mm, 9 mm, 10 mm, 12 mm, 15 mm, 16 mm 18mm.

¹² MANEJO DE CALDERAS: http://bibdigital.epn.edu.ec/bitstream/15000/325/1/CD-0307.pdf FECHA DE CONSULTA: 15/09/2012

-

Figura 1-8 Productos CODESA

1.5.2 CAPACIDAD DE PRODUCCIÓN

La capacidad instalada en la planta es de 70 metros cúbicos / día, durante una operación de 260 días al año en promedio de los últimos 6 años.

1.5.3 PROCESOS INTERNOS

La madera es uno de los materiales más antiguos y utilizados con mayor frecuencia para la construcción. Sus propiedades físicas y mecánicas le proporcionan una gran versatilidad en el mundo de la construcción, material ligero, baja conductividad térmica y fácil de mecanizar.

La materia prima es suministrada de la zona norte de la Provincia de Esmeraldas (Borbón y San Lorenzo del Pailón), extraída de plantaciones nuevas y reforestadas por CODESA con maquinaria propia, y trasladada en tráiler hasta las instalaciones de la planta para su debido proceso de transformación.

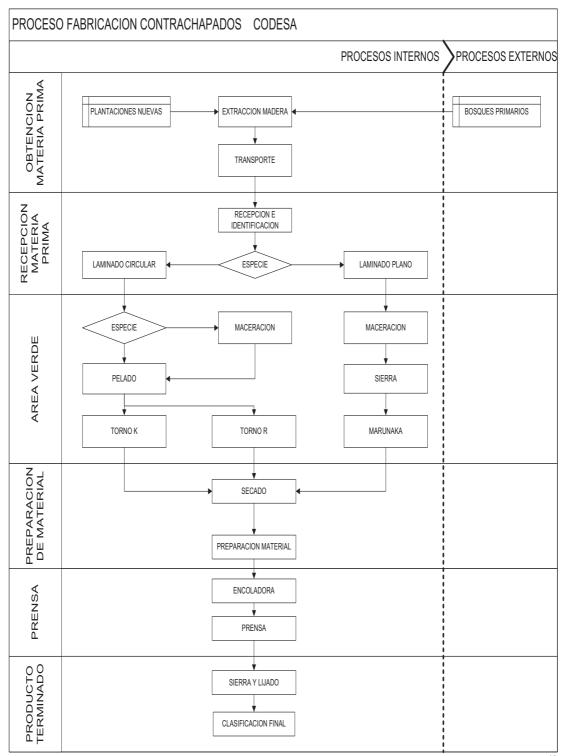


Figura 1-9 Diagrama de Flujo del Proceso de Elaboración del Contrachapado¹³

_

¹³ Diagrama de flujo proporcionado por CODESA "Proceso de Elaboración del Contrachapado"

1.5.3.1 Recepción e Identificación

Se recibe la madera en metros cúbicos, cada troza es de 1 m³ aproximadamente, cuando la troza es sana se recibe como 2,60 m de largo, cuando esta resquebrajado los costados o tiene nudos se clasifica como 2,25 m y trozas de 1,40 m se procesan en el torno Raute.

En el torno Keller se pasa la troza hasta que esta queda con unos 30cm de diámetro y esta pasa al torno Raute.

La madera debe permanecer en la laguna no más de 60 días, con el fin de conservarla en estado húmedo, y así proteger la madera de los rayos solares evitando que se deteriore.

Figura 1-10 Laguna para Protección de la Madera

1.5.3.2 Descortezado

Es esta etapa se utiliza una peladora de fabricación española, en ella se retira la corteza de las trozas de madera, ya que la corteza no se la utiliza en la fabricación del contrachapado, pero si se la utiliza como material combustible para el caldero.

Figura 1-11 Descortezado de las trozas

1.5.3.3 Corte de las Trozas

Las trozas son colocadas en la línea de transporte para llevarlas a los rodillos centradores y realizar el corte longitudinal en la sierra.

1.5.3.4 Laminado de las Trozas

Figura 1-12 Laminado en el Torno Keller

En esta sección, la madera de acuerdo a su diámetro va a ser procesada en el torno Keller o el torno Raute.

En el torno Keller se trabaja con trozas de mayor diámetro que gracias a esto se las utiliza para obtener las caras que serán utilizadas en los tableros.

En el torno Keller se trabaja con diferentes espesores de chapas:

- 8, 10 y 12 décimas para caras exteriores
- 15, 26, 30, 36 décimas para caras intermedias

36 de decimas = 3.6mm

En el torno Raute se trabaja con trozas de menor diámetro o se utilizan los curros que salen del torno Keller, ya que este lamina las trozas hasta su menor diámetro de trabajo que son 30 cm.

Aquí se producen chapas más pequeñas, por esta razón se las utiliza como almas en los tableros contrachapados.

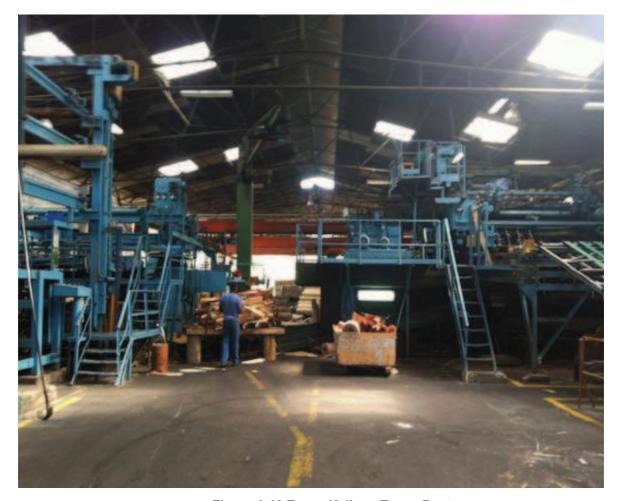


Figura 1-13 Torno Keller – Torno Raute

1.5.3.5 Clasificación de Caras y Almas

Se clasifican en medias caras y cuarto de caras una vez cortadas y saneadas las chapas, esto es lo que hacen las dos cizallas, luego de los tornos Keller y Raute.

1.5.3.6 Secado de las Chapas

En la fase de secado se elimina el agua que se encuentra dentro de la fibra. Este proceso ocurre al pasar la hoja entre un cilindro calentado con vapor y ventiladores que expele aire calentado.

Las caras deben tener un porcentaje de humedad de 10 % a 17%, en las caras intermedias y almas la humedad es del 9%.

La planta cuenta con cuatro secaderos que trabajan con diferentes tipos de chapas:

- Secadero 4 seca todo lo que es caras, se llama planchador.
- Secadero 3 seca caras intermedias estas pueden ser 12, 26 y 36.
- Secadero 1 y 2 secan almas.

Figura 1-14 Secado de las Chapas

1.5.3.7 Juntado de las Chapas

Juntadoras de almas: se trata de tener una hoja completa utilizando pegamento para coserla y se la clasifica según su espesor. Cuadra, clasifica, corta y pega.

Juntadoras de caras: Son unas máquinas muy especiales porque arman lo que uno quiere, siguiendo la forma natural de la madera.

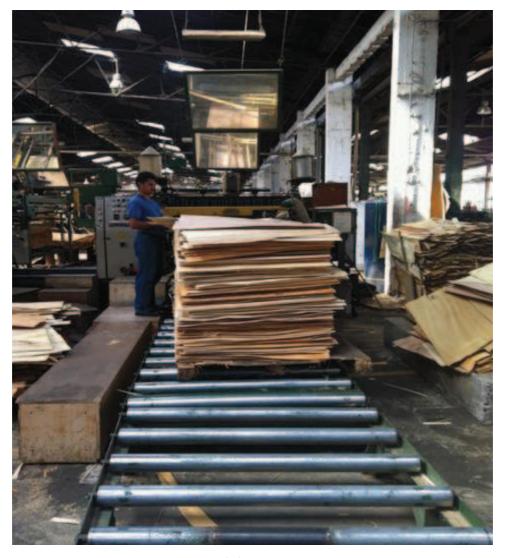


Figura 1-15 Juntado de chapas

1.5.3.8 Encolado

En esta etapa se pegan caras y almas, formando el tablero.

Encolado rojo se lo utiliza para hacer tableros tipo marino, estos tableros son capaces de soportar humedad, incluso agua.

Encolado blanco se lo utiliza en tableros corrientes.

Figura 1-16 Encoladora

1.5.3.9 Prensado

Se prensan las chapas en dos etapas:

Pre prensado: se prensan en frio un grupo determinado de chapas a 180 klg /cm²., en un tiempo de 12 a 15 minutos.

Prensado: se prensa individualmente cada tablero a 160 klg/cm² y a una temperatura de 100°C, esta etapa homogeniza el tablero y lo hace a dos tiempos del espesor del tablero.

Figura 1-17 Pre prensas

Figura 1-18 Prensa

1.5.3.10 Escuadrado

Realiza el corte transversal y longitudinal a los extremos de tablero, de acuerdo a las medidas establecidas por los estándares y normas que trabaja la empresa.

El tablero mide 2.44* 1.27.

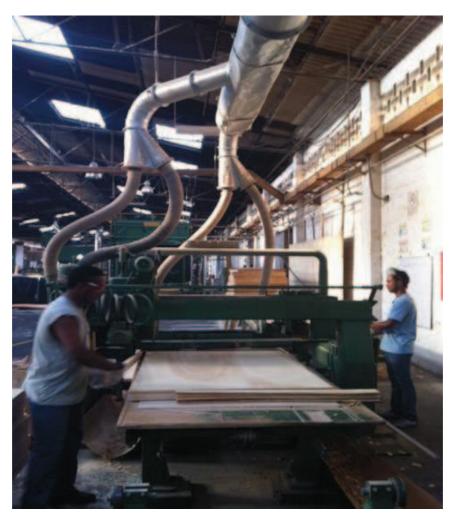


Figura 1-19 Escuadradora

1.5.3.11 Lijado

Luego del escuadrado, el tablero necesita un tiempo de reposo, aproximadamente tres días, para proceder al lijado. Pasa por tres etapas, al final de este proceso se imprime en éste el grosor del tablero y se procede a su almacenamiento.

Es importante recalcar que el desecho del lijado es aspirado y almacenado en un silo de polvo. El polvo será utilizado como combustible en la producción de vapor.

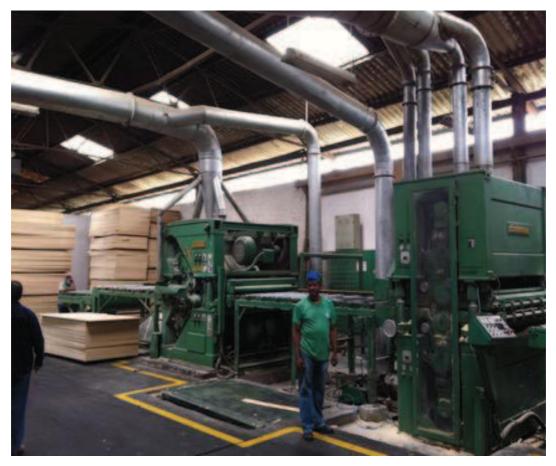


Figura 1-20 Lijado

1.5.3.12 Clasificación Final

Acabado el lijado, el tablero es inspeccionado y manualmente clasificado según los estándares de calidad que tiene en la empresa. Si el tablero es aprobado se lo almacena como producto terminado crudo, o puede, de acuerdo a los pedidos de los clientes, tener acabados.

Un tablero acabado es embalado, almacenado, y se lo tiene listo para la distribución.

Figura 1-21 Clasificación Final

Figura 1-22 Área de Almacenado

1.5.4 PROCESOS DE APOYO

Para la producción de los tableros se requiere adicionalmente de las siguientes plantas:

- Planta de tratamiento de agua
- Generación de vapor
- Laboratorio

1.5.4.1 Planta de Tratamiento de Agua

Hay que considerar que el agua que viene con impurezas solidas e impurezas diluidas como es el caso de sales y minerales que le da la característica al agua y son perjudiciales ya que estas sales producen las denominadas incrustaciones en el interior del caldero o en las mismas tuberías y las corroen disminuyendo su vida útil.

Debido a eso se debe hacer un tratamiento del agua antes de que ingrese al caldero, cabe destacar que no existe ningún procedimiento apropiado para el tratamiento de casi todas las clases de aguas, cada caso se debe tratar individualmente, los procedimientos más conocidos son los siguientes: filtrados, separación de lodos, calentamiento, vaporización o destilación, des aireación, tratamiento con cal apagada, tratamiento con carbonato sódico, tratamiento con hidróxido cálcico, con fosfato trisódico y coagulante.

1.5.4.2 Generación de Vapor

La fábrica de CODESA para suplir sus necesidades de vapor en la planta, como son las áreas de secado y prensado dispone de un caldero para generar el vapor que se necesite.



Figura 1-23 Caldero Bremer

1.5.4.3 Laboratorio

CODESA dispone de un laboratorio que es de gran importancia en los procesos de la planta, ya que en el analizan los componentes del agua y su tratamiento para poder usarla en la generación de vapor, aquí también se analiza y se produce el encolado que es una mezcla de diferentes componentes para producirlo.

CAPÍTULO 2

2 ANÁLISIS DEL PROCESO DE LA PLANTA (CALDERO BREMER)

2.1 GENERACIÓN DE VAPOR

2.1.1 SISTEMAS DE ALIMENTACIÓN DE AGUA AL CALDERO BREMER

2.1.1.1 Proceso de la Planta de Tratamiento de Agua¹⁴

El agua en estado natural puede absorber y contener oxígeno, CO₂, nitrógeno, polvo y otras impurezas contenidas en el aire así como disolver sustancias contenidas en la tierra. Todo esto puede acrecentarse por la contaminación con ácidos procedentes de la descomposición de materia orgánica, residuos industriales y aguas sépticas descargadas en lagos y ríos.

Con este antecedente es de gran importancia el correcto tratamiento del agua en la planta, ya que esta es usada en la generación de vapor en la fábrica y en el uso del consumo diario de las personas que ahí laboran así como también en la ciudadela encontrada dentro del perímetro de la misma.

El tratamiento de las aguas tiene como propósito el eliminar los microorganismos, sustancias químicas, caracteres físicos y radiológicos que sean nocivos para la salud humana y en los equipos que intervienen en la generación de vapor como son las bombas, tuberías y el caldero.

-

¹⁴ Manual CODESA Planta Tratamiento de Agua – Sistema de Alimentación de agua

Por definición, las fuentes de agua superficiales se consideran contaminadas y, por tanto, deben ser tratadas.

La calidad del agua potable se mide en características:

- Físicas
- Químicas
- Biológicas

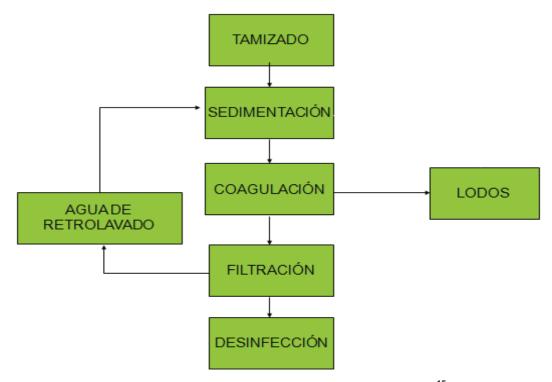


Figura 2-1 Proceso de Tratamiento de Agua¹⁵

Tabla 2-1 Tratamiento de Agua

Tratamiento de Agua			
Proceso	Estructura	Función	
Tamizado	Rejillas	Remover materiales groseros	
Sedimentación	Sedimentado	Remover partículas en suspensión	
Coagulación	Coagulador	Remover partículas coloidales	
Filtración	Filtros	Remover partículas remanentes	
Desinfección	Clorador	Destruir patógenos	

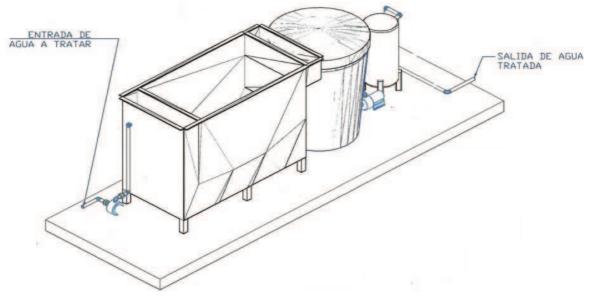


Figura 2-2 Planta Tratamiento de Agua¹⁵

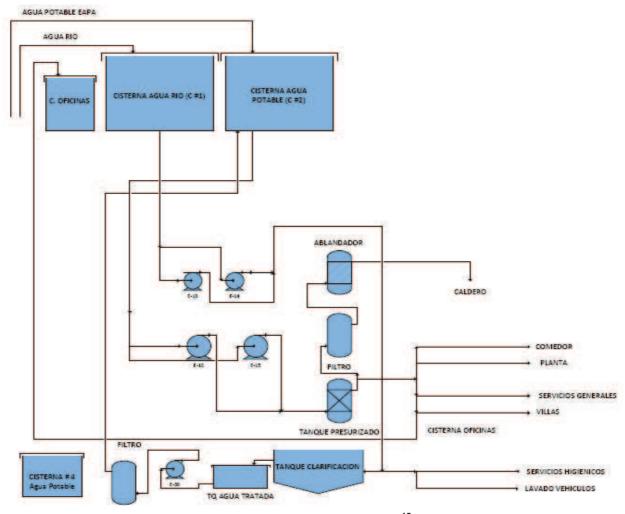


Figura 2-3 Distribución de Agua¹⁵

2.1.1.2 Bombas de Alimentación

Se dispone de un sistema de bombeo con una capacidad de 15 HP para la alimentación de agua al caldero. El agua de alimentación pasa a través de un tanque de ablandador de agua (para reducir la dureza) y por un filtro (que hace el filtro) y estos alimentan a una cisterna de almacenamiento y aun tanque elevado de alimentación de agua al Caldero.

2.1.2 SISTEMA DE ALIMENTACIÓN DE COMBUSTIBLE AL CALDERO

2.1.2.1 Picador Maier

El material que resulta del descortezado, pelado y residuos del proceso de fabricación del contrachapado, es llevado a través de bandas transportadora hacia el Picador Maier que tiene como función picar todo el material, para convertirlo en una especie de gránulos y así facilitar su transporte, almacenamiento y distribución hacia el caldero.

Figura 2-4 Picador Maier

2.1.2.2 Silo Zanella

El Silo Zanella de fabricación brasilera es el lugar en el que se almacena el material combustible como corteza, aserrín y otros flujos materiales.

Tiene una capacidad total de almacenamiento de 3600 m3, con una altura del material de 7m. Cuenta con extractores de acción eficaz en toda el área de la parte inferior con drenaje constante o variable, El movimiento longitudinal lo hace por medio de cadenas paralelas impulsadas por motores que ejercen la tracción por los coche guías.

Este cuenta con un sistema de transporte hacia el silo y después con un sistema de alimentación al caldero.

El sistema de transporte hacia el silo: es aquel que se encarga del material saliente del picador Maier a ser almacenado en el silo de modo que realiza el transporte de material mediante tres roscas transportadoras, denominadas:

- Roscas de transporte 1
- Transporte de canecas
- Rosca de transporte 2

El sistema de alimentación al caldero: esta fase se encarga del material almacenado en el silo, para su extracción y transporte hacia el pulmón el cual redistribuirá el material hacia 3 pequeñas roscas que llegan directo al caldero.

El sistema de alimentación comprende 3 elementos:

- Rosca de transferencia 3
- Sistema Hidráulico
- Rosca Sinfín del Extractor

Figura 2-5 Silo Zanella

2.1.2.3 Silo Polvillo

Es el lugar donde se almacena el residuo del lijado de los tableros (polvillo), este cuenta con un tornillo sin fin, el mismo que realiza dos movimientos, uno traslacional y otro rotacional para la evacuación del material al caldero con la ayuda de inyectores.

Figura 2-6 Silo Polvillo

2.1.3 GENERACIÓN DE VAPOR Y DISTRIBUCIÓN

El vapor generado por el caldero se distribuye a través de un "manifold", a las áreas de secado, prensado y marunaka.

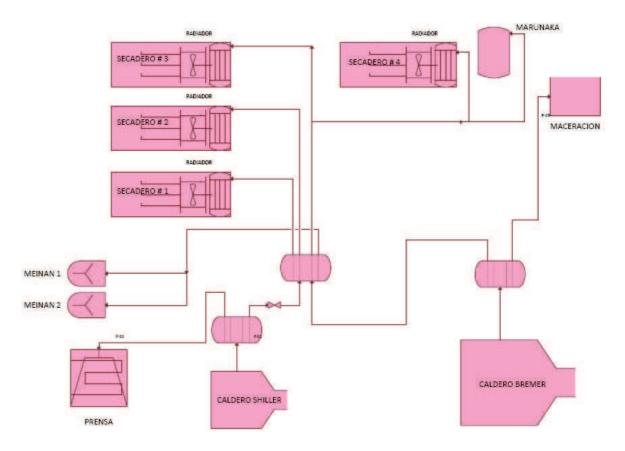


Figura 2-7 Distribución de Vapor¹⁵

Se tiene además una línea de retorno de condensado, que permite su recolección en un tanque de almacenamiento que alimenta nuevamente el caldero. En este tanque el agua se encuentra aproximadamente a 80 °C, es decir que el caldero no sufre un choque térmico cuando se restituye el agua.

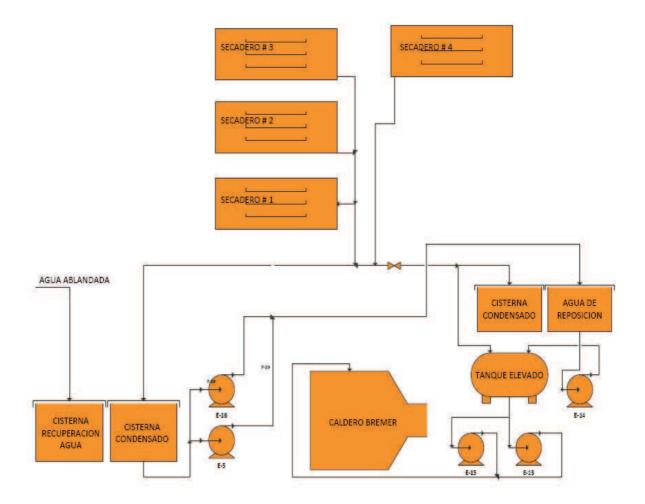


Figura 2-8 Circuito de Condensado¹⁵

2.1.4 CALDERO BREMER

El caldero Bremer es el encargado de la producción de vapor, este caldero es de fabricación brasilera, cuenta con una producción de vapor nominal de 6.500 kg vapor/ hora.

Tabla 2-2 Características Técnicas del Caldero Bremer

Tabla 2-2 Caracteristicas Technicas del Caldero Breiner			
Modelo	HBFS - 6,5		
Marca	Bremer		
Producción de vapor nominal	6.500 kg vapor/h		
Presión de Trabajo	15 kgf/cm2		
Presión Máxima de Operación	16,50 kgf/cm2		
Presión de Prueba	24,75 kgf/cm2		
Temperatura de Vapor de Salida del Caldero	204,40 °C		
Temperatura del Gas a la Salida del Horno	900 °C		
Temperatura del gas a la salida del Caldero	240 °C		
Temperatura del gas a la salida de la pre-aire	170 °C		
Temperatura del aire caliente	120 °C		
Temperatura de agua de alimentación	80 °C		
Temperatura a la entrada del caldero	80 °C		
Temperatura ambiente	25 °C		
Superficie de calefacción de la caldera	238 m2		
Superficie de calefacción del Horno	52,70 m2		
Superficie de calefacción total	290,70 m2		
Superficie de intercambio térmico del pre calentador	105,33m2		
Área de la cuadricula (giratoria)	7,24m2		
Volumen del horno (c / rejilla giratoria)	21,80m3		
Carga térmica de vapor	4.336.150,00 kcal/h		
Entalpia de Vapor	667,10 kcal / h		
Carga térmica neta del Horno	3.816.150,00 kcal/h		

Tabla 2-3 Desempeño del Combustible/Análisis de Costo

Tipo de Combustible	Concha	Lamina	Polvillo del Lijado
Mezcla máxima (%)	50	100	10
PCI (Kcal/Kg)	1.500	2.750	4.100
Humedad (%)	60,00	50,00	10,00
Peso Específico (Kg/m3)	415	240	100
Contenido de CO2 en la	12,00	12,00	12,00
Combustión			
Eficiencia (%)	78,89	83,00	84,57
Carga Térmica del Horno	4.836.949,49	4.597.538,43	4.512.148,98
(Kcal/h)			
Consumo (Kg/h)	1.612,31	1.671,83	110,05
Consumo (m3/h)	3,88	6,96	1,10

2.2 DESCRIPCIÓN DEL SISTEMA DE CONTROL DE LA ALIMENTACIÓN DE COMBUSTIBLE AL CALDERO

2.2.1 ANTIGUO SISTEMA DE CONTROL

2.2.1.1 Antecedentes

El caldero Bremer fue construido y diseñado en el año 2001 por la empresa brasilera H. BREMER & FILHOS LTDA.

Esta empresa entrego a CODESA el caldero con un control ON-OFF y una lógica de control basada en relés, temporizadores, contadores y controladores discretos.

2.2.2 NUEVO SISTEMA DE CONTROL

El nuevo sistema de control consiste en un control autónomo con dos PLCs MITSUBISHI de la familia FX3u que ejecutan todas las operaciones del sistema de control de la alimentación de combustible al caldero Bremer, se comunica con tres variadores de frecuencia (las tareas son el transporte de material a través de dos roscas sin fin y un sistema hidráulico para el movimiento de una rosca sin fin), con un algoritmo de control que incluirá rampas de aceleración y desaceleración, control de torque para el arranque y variación de la velocidad en el transporte de material.

Complementariamente a las comunicaciones se integra un interface HMI que permitan visualizar las variables de control, ejecutar operaciones de control de la caldera y registrar los eventos y magnitudes importantes en el desempeño. Todo esto con un soporte en la instalación de sensores de temperatura, nivel y presión.

La arquitectura usada para el sistema de control incluye una red de comunicaciones que enlaza un gabinete central con el PLC máster, un gabinete remoto con el PLC esclavo, un Panel View para operación local y los variadores de frecuencia.

De acuerdo a los estudios realizados por la empresa, se requiere una producción continua y eficiente de vapor para satisfacer las necesidades de la planta y reducir los gastos de mantenimiento que en esta planta se producen.

Es por esta razón que se propone hacer una modernización de la planta con equipos de alta tecnología, para reducir costos de mantenimiento y obtener toda la información necesaria de la planta.

CAPÍTULO 3

3 DESARROLLO Y PROGRAMACIÓN DEL SOFTWARE Y EL HMI

3.1 RECONOCIMIENTO DE LAS VARIABLES QUE INTERVIENEN EN EL PROCESO

Se plantea remplazar el sistema de control basado en controladores lógicos discretos por un PLC de excelentes características.

Realizado un estudio del proceso de la planta y de los planos eléctricos del antiguo sistema de control se conoce el número de entradas y salidas que se necesitan para la realización del proyecto.

Para su instalación, se utiliza el tablero de control existente adecuándolo para el nuevo equipo que se va a instalar que reemplaza el cableado en el tablero de control. El cableado de los equipos en el campo se remplaza únicamente los cables que no tengan la longitud adecuada para evitar empalmes (puntos de falla) y los que estén en mal estado.

En la Tabla 3-1 se presenta el listado de las partes a utilizarse para el remplazo planteado.

Tabla 3-1 Requerimientos para el Nuevo Sistema de Control

Ítem	Cant.	Descripción Código
1	2	Procesador MITSUBISHI FX3u con pórtico serial
2	1	Fuente de poder ABB 24 [V] para transmisores
3	1	FX2N – 16EX Current Sinking/Sourcing 24V DC Input Module
4	1	FX2N – 16 EYR Output Module
5	2	FX3u – 4AD Analog Input
6	1	Panel de operador de 15" MITSUBISHI GOT100 – 1050 – QSBI
7	1	Panel de operador de 8" KINCO MT4201T
8	2	Módulo de comunicación FX3u – 485ADP-MB
9	3	MITSUBISHI D700 3 – 400 [V]
10	3	Software

3.2 PROGRAMACIÓN DEL PLC MITSUBISHI FX3U

El primer paso del diseño consiste en definir el tipo de entradas y salidas que necesita el sistema, luego se define el número de cada una de ellas y lo siguiente es considerar los requisitos adicionales que deba poseer el controlador, como memoria de programa, licencias de software, facilidades de programación y en especial el protocolo de comunicación con el PLC esclavo, el HMI y los variadores de velocidad.

Para el presente proyecto se escoge el protocolo de comunicación de la plataforma MITSUBISHI N:N Network para comunicar los PLCs, que garantiza confiabilidad en la transmisión de datos hasta una distancia de 500 m y utiliza cable par trenzado para conectar el equipo de comunicación de acuerdo con RS-485.

El protocolo de comunicación del Inversor RS-485, se puede monitorizar el variador, dar comandos diversos a los inversores; y los parámetros pueden ser leídos o escritos, la distancia total es de 500 metros de extensión como máximo (para el sistema configurado con 485ADP solamente).

El protocolo de comunicación RS-422 Interface se utiliza para comunicar con la pantalla GOT100.

El software en el que se desarrolla el HMI debe brindar facilidades para los distintos protocolos como en este caso GT Designer3, cuya configuración se explicará más adelante.

Además para el desarrollo de la lógica de control se usa el software GX Works, de MITSUBISHI.

Para este proyecto se requieren 38 entradas digitales, 1 entradas análogas para RTD (Pt 100), 4 entradas analógicas para sensores ultrasónicos, 1 entrada analógica para un sensor de presión y 28 salidas digitales.

3.2.1 CONTROLADOR LÓGICO PROGRAMABLE (PLC)

El controlador lógico programable utilizado es de marca MITSUBISHI, el modelo del controlador es FX3u y el software de programación es el GX Works2. Se trata de un PLC modular, en el cual cada uno de los módulos de entrada y salidas se añade al CPU, como se muestra en la figura.

El controlador FX3u es el módulo principal instalado, y los diferentes módulos de entradas y salidas digitales/analógicas se instalan en el extremo derecho del módulo principal, y los módulos especiales se conectan a la izquierda de la unidad base.

Figura 3-1 FX3U - 16 MR¹⁵

- Debajo de la cubierta desmontable de la parte delantera es posible montar un casete de memoria.
- Con adaptadores de comunicación adicionales es posible realizar una segunda interface serie (RS232C, RS422, RS485, USB).
- La interface de programación (RS422, MINI DIN) puede emplearse también para la conexión de unidades graficas HMI.
- La unidad base principal con unidad de alimentación integrada, CPU y entradas y salidas forman una unidad compacta.
- Todos los módulos de la familia FX pueden montarse tanto en un carril DIN o directamente por medio de tornillos.

-

 $^{^{\}rm 15}$ http://www.meau.com/eprise/main/sites/public/About_Us/-Home

- Los módulos están conectados por medio de línea de banda plana.
- La memoria interna estándar puede abarcar hasta 16K pasos de programa.
- El tiempo de procesamiento para una instrucción lógica es de 0,065 us/instrucción lógica.
- Puede soportar sistemas con un número de entradas y salidas de hasta 384.
- Hasta 80 entradas analógicas y 48 salidas analógicas.
- Resolución analógica de 8, 12, 16 bits.
- Posicionamiento integrado:
 - o contadores de alta velocidad 100 KHZ.
 - 2 contadores de alta velocidad 10 KHZ.
 - 3 salidas de cadena de pulsos 100 KHZ.
- Tensión de alimentación 100 240 V Ac, 24 V.
- Una fuente de alimentación eléctrica incorporada de 24 V.
- Tipos de salida Relé, Transistor.

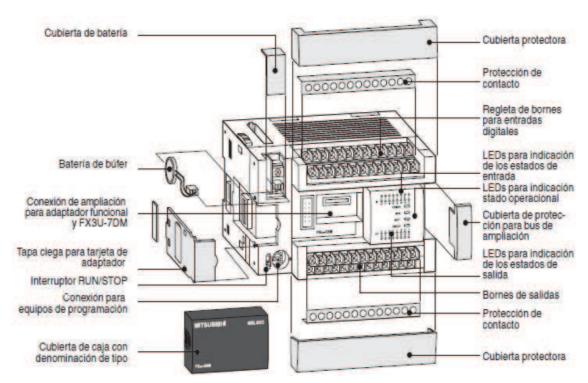


Figura 3-2 Partes del PLC FX3U¹⁵

3.2.1.1 Módulos de Entrada y Salida Digitales

Cada módulo se ingresa desde la parte izquierda y se conecta uno a continuación de otro. Se recomienda conectar primero las entradas, ya sean digitales o analógicas, y luego las salidas.

Si la **entrada/salida** se han conectado cuando la alimentación está encendida, la unidad principal asigna automáticamente los números de **entrada/salida** (^X/_Y) (octal) para las **unidades/bloques**, Por lo tanto, es necesario especificar los números de **entrada/salida** con los parámetros.

Números octales son asignados como entradas o salidas $({}^{X}/_{Y})$ como se muestra a continuación.

- X000 X007, X010 X017, X020 X027....., X070 X077, X100 107...
- Y000 Y007, Y010 Y017, Y020 Y027....., Y070 Y077, Y100 Y107...

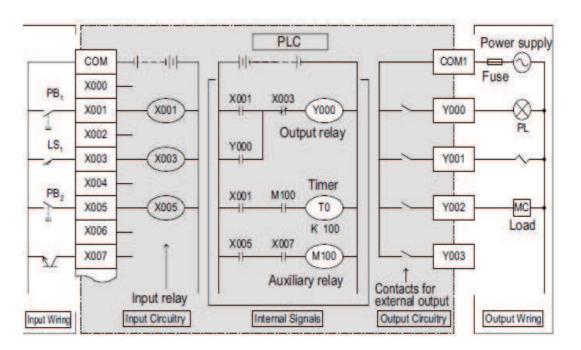


Figura 3-3 Entrada y Salida del PLC¹⁵

3.2.1.1.1 Entradas Digitales

Los módulos de entradas digitales poseen las siguientes características:

FX2N-16EX Current Sinking/Sourcing 24V DC Input Module Attribute.

En la Tabla 3-2 se muestran las características del módulo entradas digitales.

Tabla 3-2 Características módulo entradas digitales

Tabla 3-2 Garacteristicas modulo entradas digitales		
Características		
Número de entradas	16entradas.	
Categoría de voltaje	24 VDC	
Rango de voltajes de funcionamiento	1030 VCC a 30 °C (86 °F) 1026,4 VCC a 60 °C (140 °F)	

A continuación se muestra en la Figura 3-4 el esquema de cableado básica de los dispositivos de entrada al módulo FX2N-16EX, cabe mencionar, que la conexión para todas las entradas es la misma.

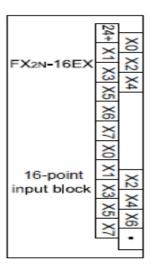


Figura 3-4 Diagrama de conexión del módulo entradas digitales

3.2.1.1.2 Salidas Digitales

Los módulos de salidas digitales poseen las siguientes características:

FX2N-16EYR AC/DC RELAY/Transistor Output Module.

El FX2N-16EYR es un módulo de salida de relé de 16 puntos que puede controlar cargas de CA o CC. El módulo tiene 2 grupos aislados de 8 puntos cada uno. Esto permite combinar cargas de CA y de CC en un módulo.

A continuación, en la Figura 3-5 se muestra el esquema de cableado básico (1) de los dispositivos de salida al módulo.

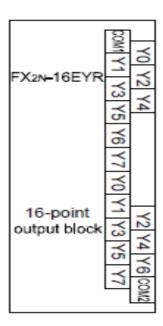


Figura 3-5 Diagrama de conexión del módulo salidas digitales

En la Tabla 3-3 se muestran las características del módulo salidas digitales.

Tabla 3-3 Características módulo salidas digitales

Características	
Número de salidas	16 salidas
Categoría de voltaje	5265 VCA
	5125 VCC

3.2.1.2 Módulos de Entradas y Salidas Analógicas

El controlador utilizado permite la conexión de varios tipos de módulos de entradas o salidas analógicas.

3.2.1.2.1 Entradas analógicas

FX3U - 4AD Analog Module.

FX3U-4AD es un bloque analógico especial que se puede conectar al PLC FX3G, FX3U, FX3GC o FX3UC.

Hasta ocho unidades se pueden conectar a la CPU FX3U.

Cada canal tiene una salida de tensión o especificación de salida de corriente.

El bloque convierte los valores digitales almacenados en la memoria buffer FX3U-4AD (BFM) en FX3U-4AD a las señales analógicas (tensión / corriente).

En la siguiente tabla se muestran las características del módulo de entradas analógicas.

Tabla 3-4 Características Módulo Entradas Analógicas

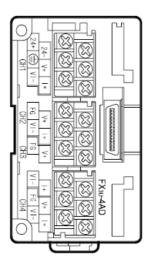

Características	
Número de entradas/salidas	4entradas, diferenciales
Rango	±10 V, 010 V, 05 V, 15 V, 020 mA, 420 mA.

Tabla 3-5 Tipo de Entradas Analógicas FX3U-4AD

Setting Value	Modo de entrada	Rango entrada análogo	Rango entrada digital
0	Modo entrada voltaje	-10V a +10V	-32000 a +32000
1	Modo entrada voltaje	-10V a +10V	-4000 a +4000
2	Entrada voltaje modo indicación directa del valor análogo	-10V a +10V	-10000 a +10000
3	Modo entrada corriente	4mA a 20 mA	0 a 16000
4	Modo entrada corriente	4mA a 20 mA	0 a 4000
5	Modo entrada corriente modo indicación directa del valor análogo	4mA a 20 mA	4000 a 20000
6	Modo entrada corriente	-20mA a +20 mA	-16000 a +16000
7	Modo entrada corriente	-20mA a +20 mA	-4000 a +4000
8	Modo entrada corriente modo indicación directa del valor análogo	-20mA a +20 mA	-20000 a +20000
F	Canal no usado	·	

En la Figura 3-6 se muestra el diagrama de conexión del módulo de entradas analógicas.

Signal	Application
24+	24V DC power supply
24-	247 DC power suppry
<u></u>	Ground terminal
V+	
VI-	Channel-1 analog input
l+	
FG	Channel-2 analog input
V+	
VI-	
l+	
FG	
V+	Channel-3 analog input
VI-	Channel-3 analog input
l+	
FG	Channel-4 analog input
V+	
VI-	
+	

Figura 3-6 Disposición de Terminales FX3u-4AD

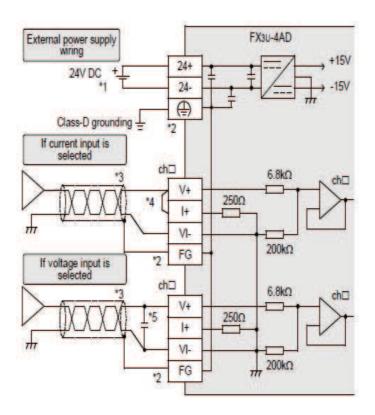


Figura 3-7 Diagramas de conexión del módulo entradas analógicas

3.2.2 DESCRIPCIÓN DEL SOFTWARE GXWORKS2

El software GxWorks2 está diseñado para programar controladores de la familia FX y para la plataforma Mitsubishi MELSOFT. Utiliza varias tipos de lenguaje de programación como Escalera (Ladder), Bloques de funciones (Functions blocks), texto estructurado (structured text) y esquemas de funciones secuenciales (Sequential Function Chart).

Al abrir cualquier proyecto es necesario reconocer todas las características que se muestran en la ventana del GxWorks2, mostradas en la Figura 3-8.

Tabla 3-6 Lenguajes de programación del PLC

Lenguaje de programación:	Para:
Lógica de escalera de relés	Desarrollar aplicaciones de PLC tradicionales Administrar necesidades de control de movimiento y servo control. Realizar transmisión de mensajes y comunicaciones en serie
Diagrama de bloques de funciones	Crear representaciones de flujo de su aplicación. Usar bloques de control de variadores y de procesos especiales incorporados en el entorno. Desarrollar estrategias de control de variadores y de procesos.
Texto estructurado	Usar un lenguaje basado en texto para programar operaciones matemáticas complejas. Aprovechar las mismas funciones e instrucciones ofrecidas en el diagrama de bloques de funciones y lógica de escalera de relés.
Diagrama de funciones secuenciales	Usar un lenguaje de alta visibilidad para administrar la ejecución de programas y rutinas. Secuenciar los estados de máquina. Programar más fácilmente máquinas con operaciones repetitivas.

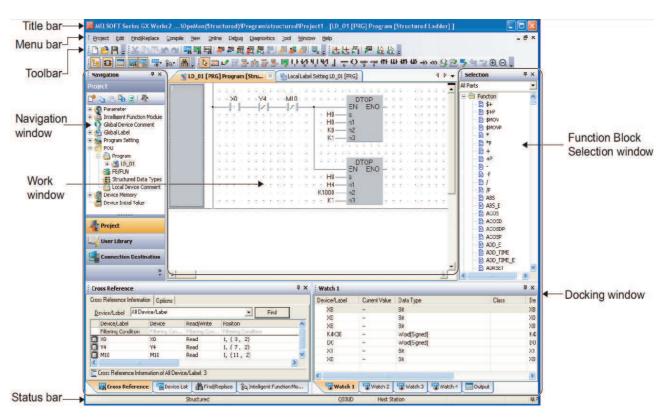


Figura 3-8 Pantalla Principal GxWorks2

63

Barra de título: Muestra el nombre del proyecto.

Barra de menús: Muestra las opciones de menú para ejecutar cada función.

Barra de herramientas: Esta barra Muestra botones de herramientas para la

ejecución de cada función y crear nuevos componentes del proyecto (por ejemplo,

las etiquetas, las rutinas, programas, etc.

Ventana de Trabajo: Pantalla principal que se utiliza para operaciones como

programación, parametrización y monitorización.

Docking ventana: Una pantalla secundaria para apoyar las operaciones

realizadas en un trabajo (común) ventana.

Ventana de navegación: Muestra el contenido de un proyecto en formato de

árbol.

Bloque de función de ventana de selección: Muestra una lista de funciones

(por ejemplo, bloques de funciones) que se utiliza para programación.

Barra en línea (Online): Esta barra de herramientas muestra el estado del

programa y del controlador. También indica el modo de funcionamiento y si

existen cambios pendientes.

3.2.2.1 Crear un Proyecto con GXWORKS2

Una vez abierto el software GxWorks2 se ingresa en file/new en la barra de

menú, y aparece la siguiente ventana donde se escoge el tipo de proyecto, el

CPU que se va a utilizar, y el lenguaje de programación como se muestra en la

Figura 3-9.

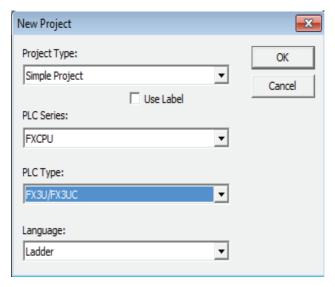


Figura 3-9 Ventana Nuevo Proyecto GxWorks2

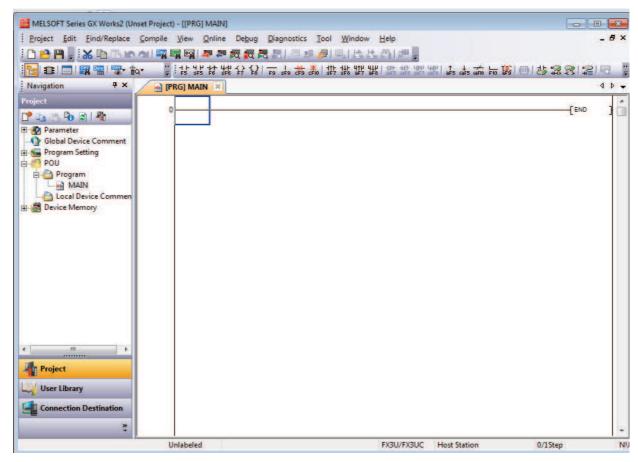


Figura 3-10 Proyecto Nuevo en GxWorks2

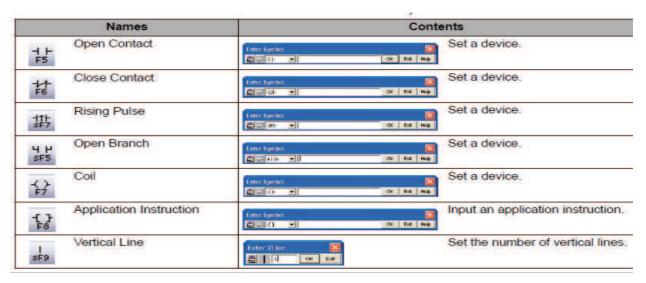


Figura 3-11 Iconos de la barra de herramientas Ladder

3.2.3 COMPILAR UN PROGRAMA

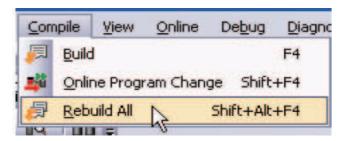


Figura 3-12 Compilar el Programa

Selecciona [Compile] [Rebuild All] para ejecutar "Rebuild All".

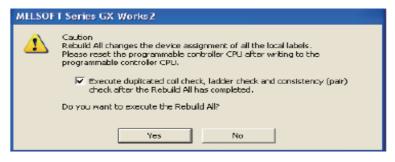


Figura 3-13 Confirmar Compilación

• En esta Figura 3-14 hacer clic en el botón para ejecutar "Rebuild All".

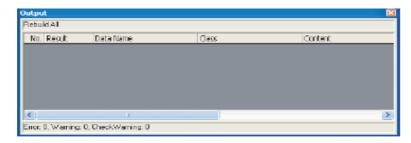


Figura 3-14 Ventana de Errores

 Cuando termina "Rebuild All" GxWorks2 muestra el resultado en la ventana de salida. Si un error ocurre chequear el contenido, eliminar la causa del error y ejecutar "Build" o "Rebuild All".

3.2.3.1 Conectar el Computador Personal al Controlador Programable

Ajuste el canal para conectar el ordenador personal a la CPU del controlador programable FX3u con un cable RS-232 o USB.

- Haga clic en "Connection Destination" en el área de selección de la ventana de navegación para mostrar la vista de destino de la conexión.
- doble clic en "Connection1" en la conexión actual en la vista de destino de la conexión para visualizar la pantalla de configuración de transferencia.

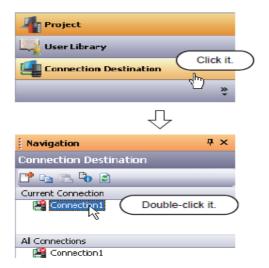


Figura 3-15 Connection1 GxWorks2

• Hacer doble clic en (Serial USB) en el "lado de la PC I/F", para mostrar la configuración serial del lado de la PC I/F.

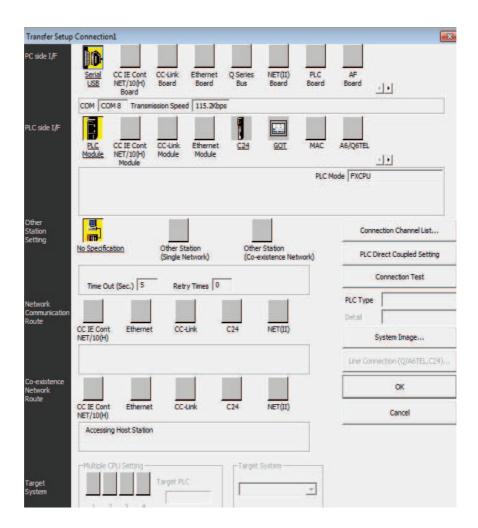


Figura 3-16 Configuraciones de Comunicación

Configurar el lado de la PC I/F.
 Después de la configuración hacer clic en el botón OK para completar la configuración y cerrar la pantalla.

Settings

- Seleccionar "RS-232C".
- COM port:

Introducir el puerto COM al que el cable está conectado FX3U.

Velocidad de transmisión: 115.2 kbps

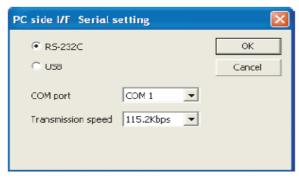


Figura 3-17 Configuración Serial

 Hacer clic en (Módulo PLC) en el "lado del PLC I/F" para seleccionar la interfaz que se utilizará.

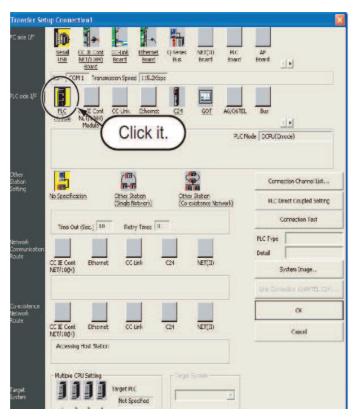


Figura 3-18 Configuración de Transferencia PC - PLC

- Hacer clic en el botón para ejecutar una prueba de comunicación con el controlador programable a través del canal de conexión especificado.
- Cuando la comunicación con el controlador programable se termina normalmente, la pantalla izquierda aparece, y el "Tipo de PLC" muestra la CPU del controlador programable nombre del modelo.
- Hacer clic en el botón para terminar "Configuración de transferencia" y cerrar la pantalla.

3.2.3.2 Escribir un Proyecto en el Controlador Programable

Seleccionar "Online" "Write to PLC" para mostrar la pantalla de datos en línea de funcionamiento.

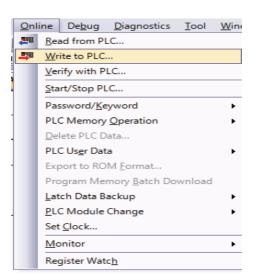


Figura 3-19 Escribir Proyecto en PLC

3.2.3.3 Convenciones de Nombres

A lo largo de un proyecto en GxWorks2, se definen los nombres para los distintos elementos del proyecto, como son el controlador, las direcciones de datos (tags), los módulos de E/S, etc.

Los nombres pueden ser libremente asignados, aunque comúnmente el nombre debe guardar relación con la tarea que ejecuta esa determinada variable. Es recomendable seguir las siguientes reglas:

- Se debe utilizar la letra X para asignar entradas del 0 al 7.
- Se debe utilizar la letra Y para asignar salidas del 0 al 7.
- Se debe utilizar la letra M para marcas internas y D para registros.
- No se distingue entre mayúsculas y minúsculas.

3.2.4 TIPOS DE COMUNICACIONES MITSUBISHI

Las funciones de comunicación permiten al PLC integrarlo a diferentes redes industriales. Para ello, Mitsubishi dispone de una completa gama de módulos de comunicación, para lograr enlazar al PLC con equipos de diferentes tipos y marcas.

Por ejemplo, gracias a la facilidad en su programación, los PLC de la serie FX pueden integrarse a buses de campo tales como AS-i, Profibus DP, DeviceNet o CAN, logrando incluso ser maestros de la red. De la misma forma, es posible integrar la serie FX a redes de tipo Ethernet.

Por último las comunicaciones series basadas en protocolos RS-232 y RS-485 resultan aptas para la creación de redes de bajo costo. Por ejemplo, con los módulos de comunicación es posible realizar una red N:N Network o también llamada redes tipo Maestro-Esclavo.

A continuación, se presenta el detalle de las características de los tipos de comunicación que se usaron en el proyecto.

3.2.4.1 Comunicación N:N NETWORK

El protocolo N:N Network permite la conexión de hasta ocho dispositivos a través del PLC FX vinculada con la comunicación de acuerdo con RS-485.

Además, el largo máximo del bus es de 500 metros, lo cual permite comunicar a PLC ubicados en diferentes partes de la planta. Esto es válido solo si se usa el módulo 485ADP, independiente del modelo de PLC.

Muchas veces, se necesita más de un sistema PLC dispositivo de control entradas y de salida. Los datos pueden necesitar ser ingresados a otro PLC o incluso a un PC.

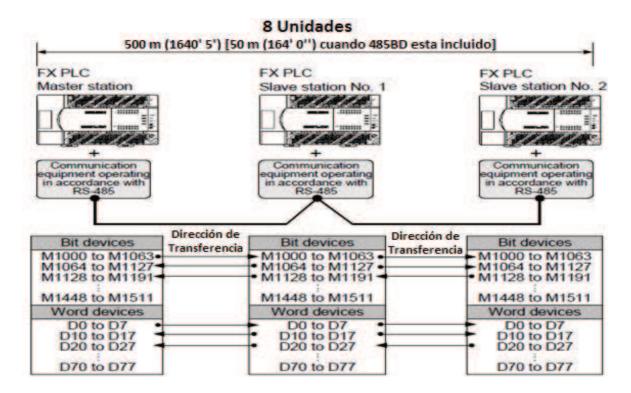


Figura 3-20 Sistema de Comunicación N:N Network

La Figura 3-20 muestra el número máximo de dispositivos vinculados. Existen diferencias en las especificaciones y limitaciones dependiendo del patrón de enlace seleccionado y la serie FX.

El número de puntos de enlace ocupados varía en función del número de estaciones esclavas utilizadas.

Presentando como ejemplo, cuando tres estaciones esclavas están conectadas en "Pattern 1", M1000 hasta M1223 y D0 hasta D33 están ocupados, y los dispositivos desocupados pueden ser utilizados como dispositivos generales para el control, pero se recomienda dejarlos en el estado desocupado si en un futuro las estaciones esclavas puedan ser añadidas.

Tabla 3-7 Marcas para la Comunicación N:N Network

Tabla 3-7 Marcas para la Comunicación N:N Network							
Estación No.		Pattern 0		Pattern 1		Pattern2	
		n No. Bit device (M)		Bit device (M)	Word device (D)	Bit device (M)	Word device (D)
		0	4 en cada estación	32 en cada estación	4 en cada estación	64 en cada estación	8 en cada estación
Estación Máster	Estació n No. 0	-	D0 a D3	M1000 a M1031	D0 a D3	M1000 a M1063	D0 a D7
	Estació n No. 1	-	D10 a D13	M1064 a M1095	D10 a D13	M1064 a M1127	D10 a D17
	Estació n No. 2	-	D20 a D23	M1128 a M1159	D20 a D23	M1128 a M1191	D20 a D27
	Estació n No. 3	-	D30 a D33	M1192 a M1223	D30 a D33	M1192 a M1255	D30 a D37
Estación Esclavo	Estació n No. 4	-	D40 a D43	M1256 a M1287	D40 a D43	M1256 a M1319	D40 a D47
	Estació n No. 5	-	D50 a D53	M1320 a M1351	D50 a D53	M1320 a M1383	D50 a D57
	Estació n No. 6	-	D60 a D63	M1384 a M1415	D60 a D63	M1384 a M1447	D60 a D67
	Estació n No. 7	-	D70 a D73	M1448 a M1479	D70 a D73	M1448 a M1511	D70 a D77

3.2.4.1.1 Dispositivos para Configurar la Comunicación N:N Network

La configuración de estos dispositivos es esencial para el uso de N: N Network.

Tabla 3-8 Dispositivos para la Comunicación N:N Network

Dispositivo	Nombre	Descripción	Valor Seteado
M8038	Ajuste de Parámetros	Este dispositivo es una bandera para el establecimiento de parámetros de comunicación, y se utiliza para comprobar la ausencia / presencia de N: N Network.	
M8179	Ajuste de Canal	Ajusta el canal del puerto de comunicación a utilizar.	
D8176	Configuración del número de la estación.	Establecer el número de la estación utilizada en el N: N Network. Estación maestra: 0, estación esclava: 1 a 7	0 a 7
D8177	Número de estaciones esclavas	Ajuste el número total de estaciones esclavas. Este ajuste no es necesario en los autómatas que trabajan como estaciones esclavas. [Valor inicial: 7]	1 a 7
D8178	Actualizar ajuste del rango	Seleccione el patrón deseado de puntos de dispositivos utilizados para la comunicación. Este ajuste no es necesario en los autómatas que trabajan como estaciones esclavas.	0 a 2
D8179	Número de Reintentos	Cuando una respuesta no se da, incluso después de la comunicación se repite el número de veces especificado, se considera como un error.	0 a 10
D8180	Tiempo de vigilancia	Ajuste el tiempo (50 a 2550 ms) para error de comunicación en unidades de 10 ms. Este ajuste no es necesario en los autómatas que trabajan como estaciones esclavas.	5 a 255

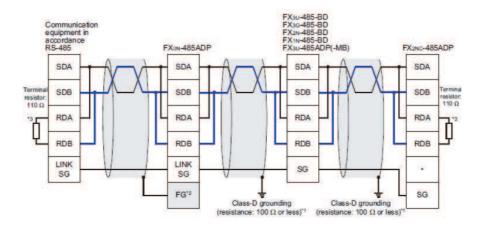


Figura 3-21 Diagrama de Conexión para N:N Network

Programa para configurar la comunicación N:N Network arbitrariamente si se desee escribir o leer datos.

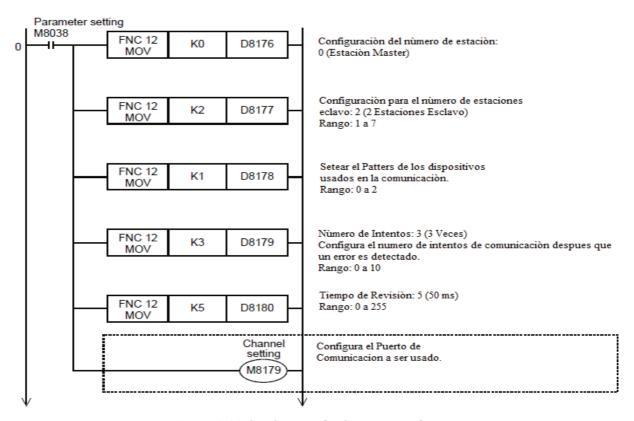


Figura 3-22 Configuración Comunicación Master

La presente es la configuración para la estación máster y se debe escribir en el paso cero del programa.

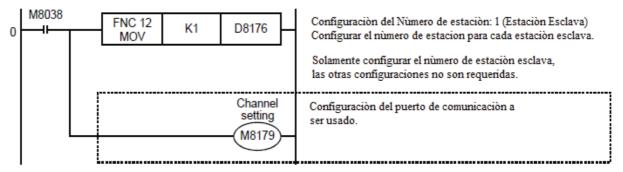


Figura 3-23 Configuración Comunicación Esclavo

Configuración para la estación esclavo se debe escribir en la primera línea del programa.

75

3.2.4.2 Red de Comunicación Rs485 para el Control de Variadores de Frecuencia

RS-485 (Estándar EIA-485) es una mejora sobre RS-422 ya que incrementa el

número de dispositivos que se pueden conectar y define las características

necesarias para asegurar los valores adecuados de voltaje cuando se tiene la

carga máxima. Gracias a esta capacidad, es posible crear redes de dispositivos

conectados a un solo puerto RS-485. Esta capacidad, y la gran inmunidad al

ruido, hacen que este tipo de transmisión serial sea la elección de muchas

aplicaciones industriales que necesitan dispositivos distribuidos en red

conectados a una PC u otro controlador para la colección de datos, HMI, u otras

operaciones.

RS-485 es un conjunto que cubre RS-422, por lo que todos los dispositivos que se

comunican usando RS-422 pueden ser controlados por RS-485. El hardware de

RS-485 se puede utilizar en comunicaciones seriales hasta una distancia de 4000

pies de cable.

Pines del conector DB-9

12345/

\6789/

Funciones de los pines en RS-485 y RS-422:

Datos: TXD+ (pin 8), TXD- (pin 9), RXD+ (pin 4), RXD- (pin 5)

Handshake: RTS+ (pin 3), RTS- (pin 7), CTS+ (pin 2), CTS- (pin 6)

Tierra: GND (pin 1)

Tabla 3-9 Pines RS485

ESPECIFICACIONES	RS485
MODO DE OPERACIÓN	DIFERENCIAL
NÚMERO DE DISPOSITIVOS	32 EMISORES
	32 RECEPTORES
MÁXIMA LONGITUD DEL CABLE	1200 metros
MÁXIMA VELOCIDAD DE TRANSMISIÓN	10 Mb/s
RANGO DE TRABAJO	-7V a +12V
RANGO DE SEÑAL: ALTO	+/-6V
BAJO	+/-1,5V
SENSIBILIDAD DE ENTRADA RECEPTOR	+/-200mV
RESISTENCIA DE ENTRADA RECEPTOR	>=12K

3.2.4.2.1 Variador de Frecuencia Fr-D700

Figura 3-24 PLC FX3U – Variadores de Frecuencia D700

Mediante la modificación de la tensión y de la frecuencia de salida de un variador es posible regular de forma continua las revoluciones del motor conectado.

Otras ventajas:

Tiempos de aceleración y de retardo ajustable, elevación de par de giro, protección electrónica contra sobre corriente y regulación PID integrada.

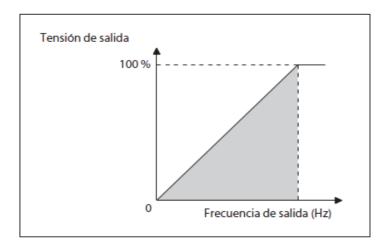


Figura 3-25 Respuesta del Variador de Frecuencia

El variador D700 puede controlarse de manera muy sencilla con un PLC FX mediante señales digitales o analógicas, este Variador de Frecuencia que trabaja en el rango de 1/8 a 20 HP, ya que es el indicado para trabajar con los requerimientos que se necesitan en el proyecto, logrando un ahorro de energéticos de hasta el 60%.

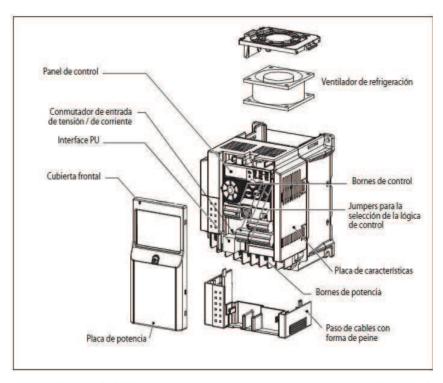


Figura 3-26 Estructura del Variador de Frecuencia FR- D700.

Figura 3-27 Esquema de Conexiones del Variador de Frecuencia FR- D700

Figura 3-28 RED RS - 485¹⁶

Para la comunicación de los tres variadores de velocidad con el PLC Mitsubishi FX3u utilizamos la red de comunicación RS485 que nos permite tener un mejor control y un mejor desempeño, por ejemplo arranque adelante, paro, arranque reversa y velocidad.

Para poder usar la red de comunicación RS485, necesitamos instalar la tarjeta de comunicación Fx3U-485 ADP que se conecta al lado izquierdo del PLC.

El número máximo de estaciones que nos permite controlar vía RS485 es de 8, desde la estación 0, hasta la estación 7.

 $^{^{16}\ \ \}text{http://www.infoplc.net/descargas/35-mitsubishi?start=50}$

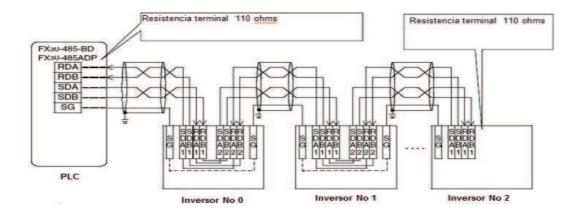


Figura 3-29 Diagrama de conexiones para los cables de comunicación vía RS485 a 4 hilos

Lista de Parámetros en el variador de frecuencia que deben ser ajustados para establecer la comunicación vía RS485.

Tabla 3-10 Parámetros Variador de Frecuencia

Parámetro	Significado	Margen ajuste	Ajuste Fábrica	Valor a Programar
331	Número de estación (2. puerto serie)	0 a 31 (0 a 247)	0	0
332	Velocidad de transferencia (2. puerto serie)	3, 6, 12, 24, 48, 96, 192, 384	96	192
333	Longitud bit stop/longitud datos (2. puerto serie)	0, 1, 10, 11	1	1
334	Prueba paridad (2. puerto serie)	0, 1, 2	2	2
335	N° de intentos de repetición (2. puerto serie)	0 a 10, 9999	1	9999
336	Intervalo tiempo comunicación datos(2. puerto serie)	0 a 999,8 s, 9999	0 \$	9999
337	Tiempo espera resp. (2. puerto serie)	0 a 150 ms, 9999	9999	9999
338	Escribir mandato de servicio	0, 1	0	0
339	Escribir mandato n° revoluciones	0, 1, 2	0	0
340	Clase de servicio tras arranque	0, 1, 2, 10, 12	0	1
341	Prueba CR/LR (2. puerto serie)	0, 1, 2	1	0
342	Elección acceso EPROM	0, 1	0	0
79	Selección del modo de operación	0, 1, 2, 3, 4, 6, 7	0	0
549	Selección de un protocolo	0, 1		0

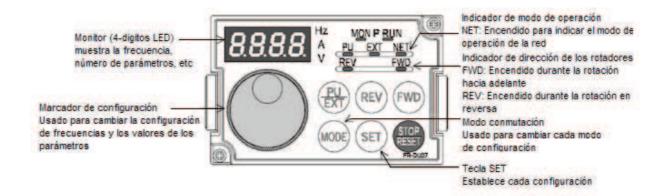


Figura 3-30 Vista de los Controles del Variador de Frecuencia

3.2.4.2.2 Procedimiento de Ajuste de la Tarjeta de Comunicación Res485 del PLC FX3u

Se cuenta con dos opciones dependiendo de qué tarjeta de comunicación se tenga.

Opción 1

Debe de tomarse en consideración, que si se cuenta con el módulo FX3U-485-DB el cual, es colocado en el puerto libre del PLC, este puerto será asignado por el PLC como el canal1 (CH 1), en los parámetros del FX.

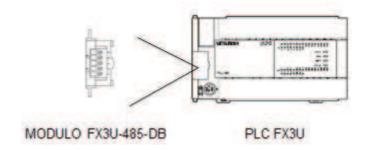


Figura 3-31 Módulo FX3U-485-BD

Opción 2

Si se cuenta con la tarjeta de comunicación FX3U-485ADP, la cual debe ser conectada en el primer slot del lado izquierdo del PLC, el puerto RS485 de la tarjeta será asignado por el PLC como el canal 2 (CH2), en los parámetros de FX

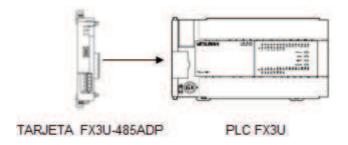


Figura 3-32 Módulo FX3U-485ADP

Descripción del proceso de configuración de la comunicación del PLC con RS485.

- 1.-Abrir Software GX Works2.
- 2.-Crear nuevo proyecto enfocado a PLC FX, con CPU 3U.
- 3.-Abrir setup de Transferencia PC-PLC.
- 4.-Realizar los ajustes según medio de comunicación, Checar que la comunicación está establecida.
- 5.-Abrir ventana de ajuste de parámetros del PLC FX.



Figura 3-33 Parámetros PLC

Establecer cuál de los 2 canales de comunicación será activado (ver opción 1, u opción 2).

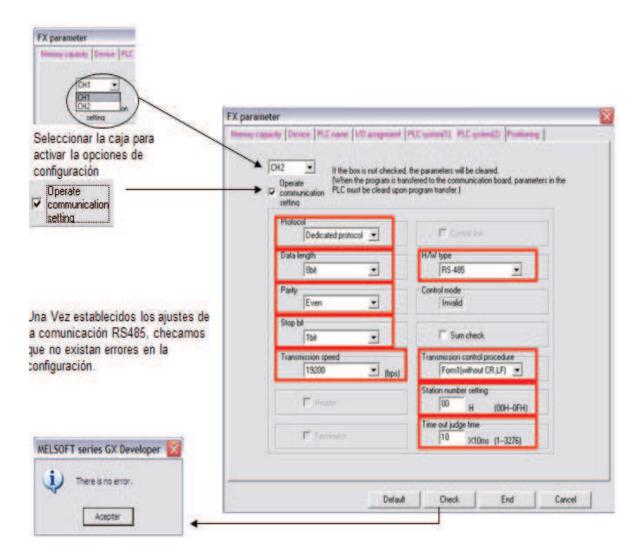


Figura 3-34 Configuración de Parámetros

Sección que muestra los códigos de instrucciones dedicadas al control del Drive, (estas instrucciones ya están establecidas, lo importante es saber si se quiere leer o escribir un dato).

Tabla 3-11 Instrucciones para el Control del VF

Se	ñal	Borne	Denominación Descripción		
	STF		Señal de inicio para la marcha a la derecha	El motor gira hacia la derecha cuando hay una señal en el borne STF.	El motor se para cuándo
			Señal de inicio para marcha a la izquierda	El motor gira hacia la izquierda cuando hay una señal en el borne STR.	se conectan a la vez las señales STF y STR.
señal	de	RH, RM, RL	Preselección de la velocidad	Preselección de hasta 15 frecuencias de sa diferentes	lida
qe	Conexiones	MRS Bloqueo de Regulación		Cuando esta entrada de control se conecta de 20 ms se desconecta la salida del variad frecuencia.	
Entradas		RES	Después de que haya respondido una fur protección, es posible resetear el variador conexión de esta entrada, borrando así el alarma. (La entrada RES tiene que estar como mínimo durante 0,1 seg.).		nediante la viso de
	referencia	SD	Punto de referencia conjunto para entradas de señales en lógica negativa		
	P. de re	PC	Salida de 24 V DC y punto de referencia común para entradas de control en lógica positiva		

Ejemplo del código de arranque HFA:

Item	Instruction Code	Bit Length	Description	Example
Run command	HFA	8bit	b0: AU (current input selection) *1 b1: Forward rotation command b2: Reverse rotation command b3: RL (low speed operation command) *1 b4: RM (middle speed operation command) *1 b5: RH (high speed operation command) *1 b6: RT (second function selection) *1 b7: MRS (output stop) *1	[Example 1] H02 Forward rotation b7 b0 0 0 0 0 0 1 0 1 0 [Example 2] H00 Stop b7 b0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figura 3-35 Códigos de Arranque HFA

Cadena de 8 bits.	0 0 0 0 0 0 0 0 0 0 0
	0 0 0 0 0 0 0 0 1 = 1
	0 0 0 0 0 0 0 1 0 = 2
	0 0 0 0 0 0 0 1 1 = 3
	0 0 0 0 0 0 1 0 0 = 4

Si al código HFA se le asigna un valor en decimal igual a 4, el inversor arrancara en reversa.

Para aplicar estos códigos en programación, es necesario conocer la instrucción dedicada del PLC.

Tabla 3-12 Instrucciones de Comunicación del VF

FUNCIÓN	FX _{3U} ,FX _{3UC}
Monitoreo Operación de un Inversor	IVCK
Control Operación de un Inversor	IVDR
Lee parámetros desde un Inversor	IVRD
Escribir Parámetros hacia un inversor	IVWR
Escribir Parámetros hacia un Inversor en el instante	IVBWR

Ejemplo en programación aplicando las instrucciones y los códigos de control.

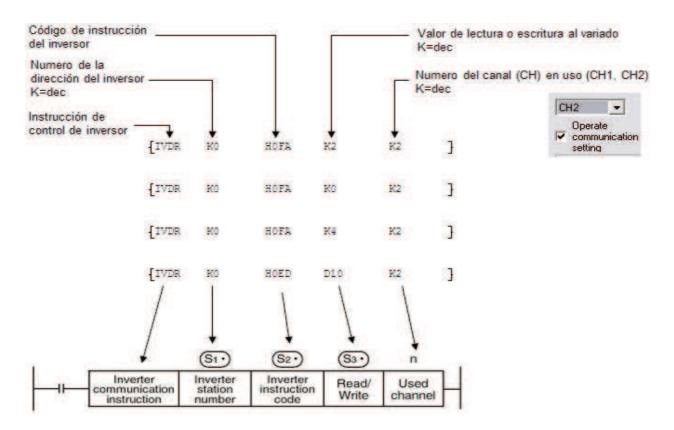


Figura 3-36 Configuración de Instrucciones

Ejemplo de programación para el control de inversor vía RS485 con PLC FX3U: arranque adelante, paro, arranque reversa y frecuencia de velocidad.

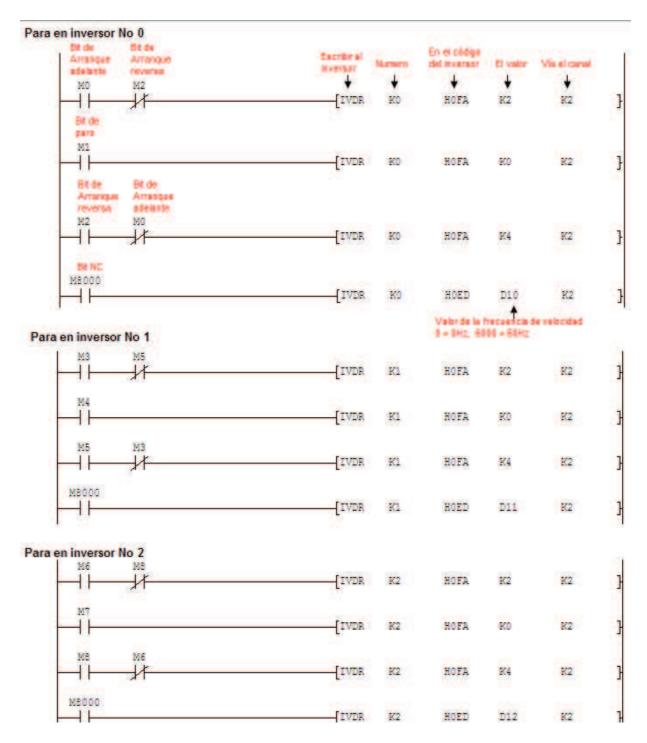


Figura 3-37 Ejemplo Programación VF

3.2.4.3 Comunicación RS422

La RS-422 trabaja en forma diferencial con las líneas que transmite y recibe, el circuito tiene solo dos hilos sin que exista una línea de masa común. Los unos y ceros lógicos se establecen en función de la diferencia de tensión entre ambos conductores del circuito. La inmunidad al ruido y la distancia son dos puntos claves para ambientes y aplicaciones industriales.

Tabla 3-13 Pines RS422

Especificaciones	RS422
Modo de Operación	DIFERENCIAL
Número de dispositivos	1 EMISOR
	10 RECEPTORES
Máxima longitud del cable	1200 metros
Máxima velocidad de transmisión	10 Mb/s
Rango de trabajo	+/-10V
Rango de señal: Alto	+/-6V
Bajo	+/-2V
Sensibilidad de entrada receptor	+/-200mV
Resistencia de entrada receptor	>=4K

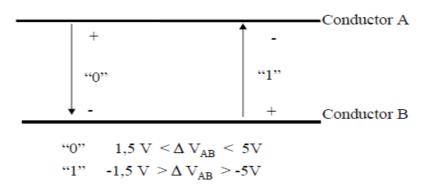


Figura 3-38 Comunicación RS422

Este tipo de comunicación es la que se utiliza para comunicar el PLC FX3u con la pantalla GOT 1055 de Mitsubishi.

3.2.5 PROGRAMA DEL PLC SILO ZANELLA

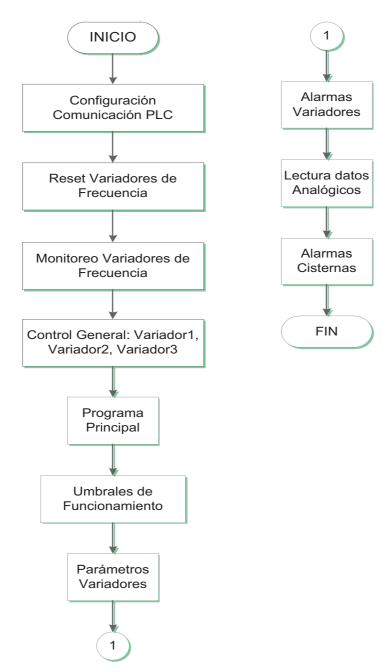


Figura 3-39 Diagrama de Flujo General del PLC Silo Zanella

En este diagrama de flujo se presenta en forma general el programa del Silo Zanella y se presenta en el anexo 1 los diagramas de flujo de cada uno de los bloques de la Figura 3-39.

3.2.6 PROGRAMA DEL PLC POLVILLO

Figura 3-40 Diagrama de Flujo del PLC Silo Polvillo "Parte 1"

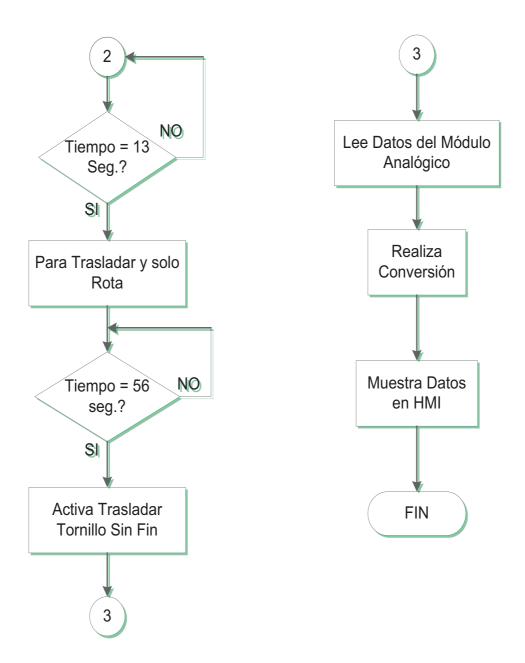


Figura 3-41 Diagrama de Flujo del PLC Silo Polvillo "Parte 2"

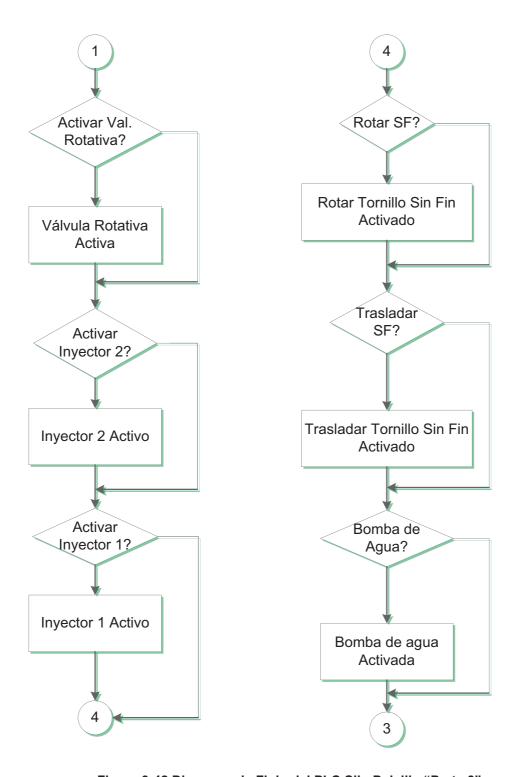


Figura 3-42 Diagrama de Flujo del PLC Silo Polvillo "Parte 3"

3.3 PROGRAMACIÓN DEL TOUCH PANEL MITUBISHI GOT1055

3.3.1 NECESIDADES DEL OPERADOR

El sistema de alimentación de combustible al caldero Bremer necesita una interfaz gráfica para la supervisión y el control del proceso, indicando en tiempo real el estado de los diferentes dispositivos que forman parte del sistema.

Esta interfaz debe ser amigable con el usuario, es decir clara y fácil de entender para el operador, siendo de mucha importancia ya que le permite tener un control y conocimiento real en el que se encuentra el proceso.

3.3.2 REQUERIMIENTOS DEL PROCESO

Los requerimientos para el diseño del HMI se basan en las necesidades de CODESA de mantener una alimentación continua y eficiente de combustible al caldero y así lograr una producción de vapor constante.

El Touch Panel, debe estar ubicado en un lugar de fácil acceso, directamente en la planta al alcance del operador.

Se debe controlar el proceso de manera automática y manual.

En todo momento, monitoreo y supervisión en el proceso, ya sea el estado de las bombas, tornillos sin fin, presión y temperatura del caldero.

3.3.3 EQUIPOS PARA LA REALIZACIÓN DEL HMI

3.3.3.1 MITSUBISHI GOT 1055-QSBD

El terminal GOT 1055 es un HMI de pantalla táctil que constituye el complemento ideal para el PLC fX3u de la familia FX, proporcionando la función de interfaz hombre-máquina central para este proyecto, lo que le permite ejecutar las operaciones que sólo se podía hacer en el panel de control convencional, como el funcionamiento del interruptor, luces, visualización de datos, etc., en la pantalla del monitor.

Presentación de las características de la pantalla.

Tabla 3-14 Características Generales de la Pantalla Mitsubishi

Marca	Mitsubishi GOT1000
Modelo	GT1055-QSBD
Tipo de Display	Tipo SNT cristal líquido a color (con Back light),
	5,7 pulgadas
Resolución	320 * 240
Colores	256 colores
Angulo de vista	55° hacia la derecha e izquierda, 65° hacia
	arriba y 70º hacia abajo
Tipo de Entrada	Touch Screen(Tipo matrix 16 * 16 Dots)
Memoria de usuario	3MB
Puerto de Comunicación	1*RS-232, 1*RS-422,1*USB(12 Mbps)
Alimentación	24 V DC (+10%, -15%)
Consumo	9.84 W (410 mA / 24 V DC)
Protección	IP67f
Peso (Kg)	0.7
Software	GT Designer3
Temperatura de Funcionamiento	0 a 50 °C

Puertos de comunicación del terminal de operador grafico Mitsubishi GT1055 – QSBD.

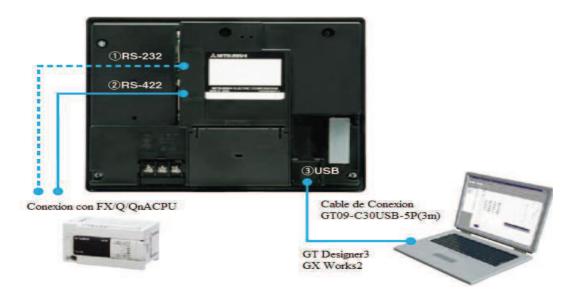


Figura 3-43 Puertos de Comunicación Pantalla GT1055-QSB

3.3.3.2 KINCO MT4201T

El terminal Kinco MT4201T es un HMI de pantalla táctil compatible con todas las marcas de PLCs, Variadores de frecuencias y otros terminales de operador gráfico.

Figura 3-44 Pantalla Kinco MT4201T

A continuación se presentan los puertos de comunicación del terminal de operador grafico Mitsubishi GT1055 – QSBD.

Figura 3-45 Vista Posterior Pantalla Kinco MT4201T

Tabla 3-15 Características Pantalla Kinco MT4201T

Display	4.3" TFT
Resolución	480*272
Color	65536
Back light	LED
Brillo	300cd/m2
Back light life	50000 horas
Touch Panel	4-wire precisión resistance network
Procesador	32-bit 400MHz RISC
Memoria	128M FLASH + 64M SDRAM
Recipe memory & RTC	512KB + RTC
Puerto para Impresora	Puerto Serial
Descarga del Programa	USB / Puerto Serial
Puerto COM	COM0:RS232/RS485-2/RS485-4,COM2:RS232
Software	EV5000 V1.6
Potencia Nominal	3.5W
Voltaje Nominal	DC24V
Rango de Entrada	12~28VDC
Resistencia de Aislamiento	Mayor a 50MΩ - 500V DC
Grado de Protección	IP65

3.3.4 DESCRIPCIÓN DEL SOFTWARE GT DESIGNER3

GT Designer3 es un software que crea proyectos para la serie de pantallas GOT1000 de Mitsubishi.

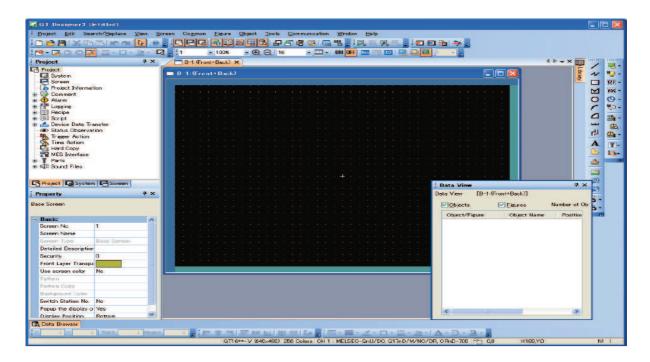


Figura 3-46 Pantalla Principal GT Designer3

Cuando se ingresa por primera vez al programa aparece una ventana que permite escoger si se crea un nuevo proyecto o si se abre alguna aplicación ya existente, como se presenta en el siguiente gráfico.

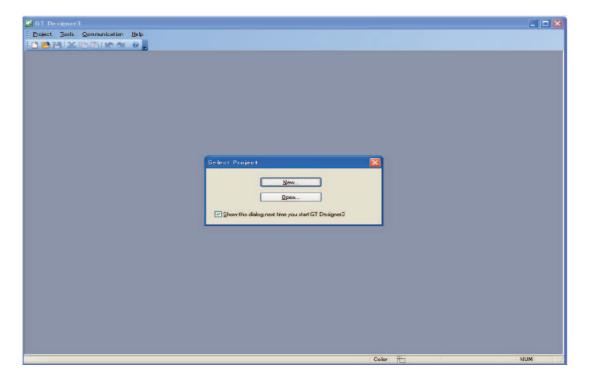


Figura 3-47 Nuevo Proyecto GT Designer3

En la ventana principal se presentan un gran número de herramientas que son indispensables para el desarrollo del HMI.

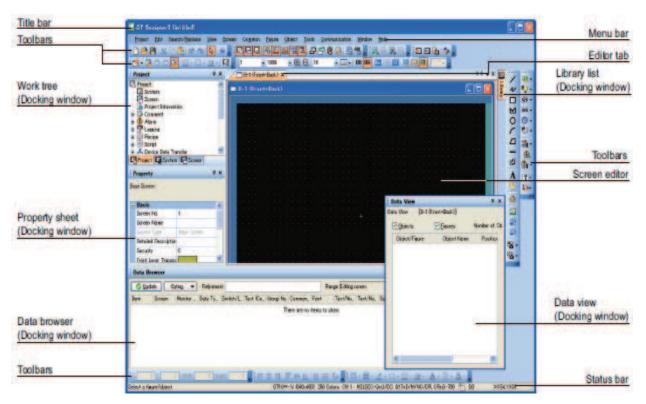


Figura 3-48 Barra GT Designer3

Barra de Menú: Se encuentran todas las opciones y funciones para la edición y creación de ventanas.

Barra de herramientas: Se localiza de una manera rápida los botones que más se usan durante la creación del proyecto, sin tener que abrir las opciones en la barra de menú.

Árbol de trabajo: Se puede ver todo el proyecto, crear una nueva pantalla, y añadir y eliminar pantallas con facilidad.

Hoja de Propiedades: Un objeto seleccionado o la configuración de los gráficos se muestran en una vista de árbol. Se pueden establecer colores, dispositivos, etc., sin tener que abrir un cuadro de diálogo en la hoja de propiedades.

Espacio de Trabajo: Es el área principal donde se crean las pantallas del proyecto, donde se arrastran objetos, imágenes e iconos, etc.

Editor: Se puede navegar a través de varias pantallas fácilmente con un simple clic de una pestaña. Los diseñadores pueden aprovechar las numerosas funciones de desarrollos convenientes y eficientes.

Lista de Librerías: Las piezas son fáciles de seleccionar, crear e incorporar en los proyectos en gráficos de alta resolución.

La lista de diagnósticos: Muestra mensajes sobre las actividades del sistema ya sean estos: errores, advertencias o el estado de la comunicación con el PLC.

3.3.5 DISEÑO DE LAS HMI EN EL TERMINAL GOT1055

Para un correcto y eficiente diseño de las HMI se deben considerar una serie de aspectos como: Tener una comprensión total sobre los equipos y máquinas que intervienen en el proceso, se debe hacer una recolección de datos para las pantallas que se van a usar, para conocer cómo se va a navegar entre ellas, así proporcionar la información necesaria que requiere el operador.

Al crear un nuevo proyecto se despliega la siguiente ventana, que da inicio a la configuración del nuevo proyecto.



Figura 3-49 Inicio de la configuración de la pantalla

En la siguiente ventana se escoge el modelo de la pantalla que se va a utilizar, en nuestro caso la pantalla es GT1055-QSBH, y la orientación de la pantalla en la que se va a trabajar, ya sea vertical u horizontal.

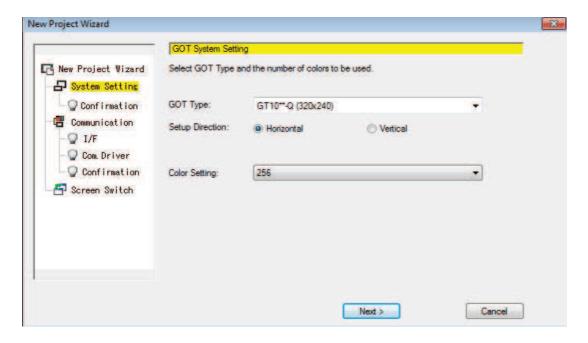


Figura 3-50 Selección del Tipo de Pantalla

La siguiente imagen muestra la selección de la marca y el tipo de controlador con el que se va a comunicar la pantalla.

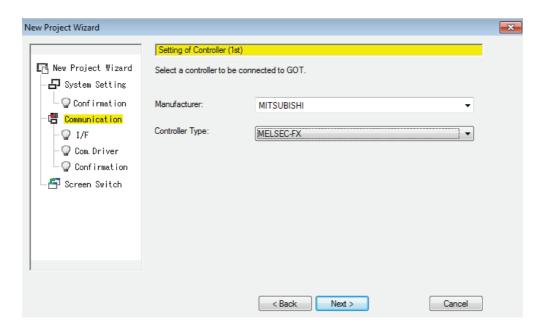


Figura 3-51 Selección del Controlador a conectarse con la pantalla

Y la selección del tipo de comunicación con la se va a trabajar en el proyecto, en este caso se eligió el estándar RS-422.

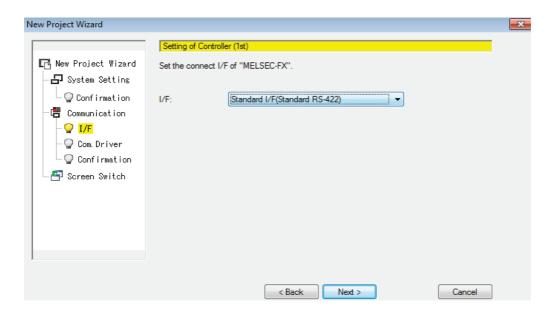


Figura 3-52 Selección del tipo de Comunicación de la Pantalla

En la siguiente imagen se muestra la configuración que tiene la pantalla y solicita la confirmación de la misma.

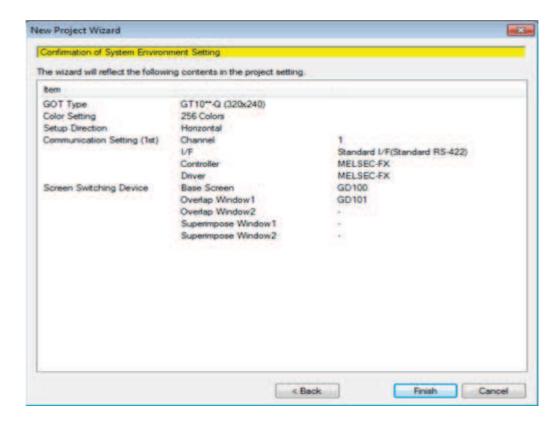


Figura 3-53 Ventana de configuraciones de la Pantalla

3.3.6 DESCRIPCIÓN DE LAS PANTALLAS EN EL TERMINAL MITSUBISHI

La interfaz gráfica de usuario está diseñada de acuerdo a los requerimientos que actualmente se presentan, a continuación se exhibe la pantalla principal que aparece al encender el touch panel, la misma que es la ventana de bienvenida, se puede ver la fecha y la hora, como también se puede escoger que proceso deseamos monitorear.

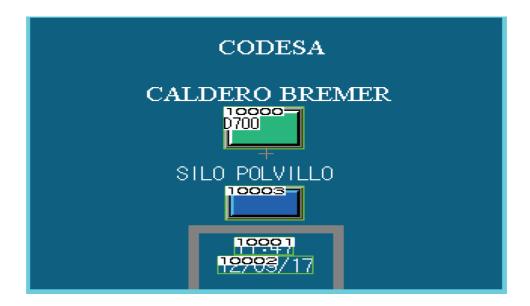


Figura 3-54 Pantalla Principal HMI

Aquí podemos seleccionar por medio de dos botones, si deseamos ir al menú del caldero Bremer o al menú del silo del polvillo.

En la Figura 3-55 se puede ver como se configuran los botones para saltar a las ventanas seleccionadas. Estas ventanas tienen varias pestañas, en las que se presentan opciones a escoger para que tipo de configuración realizar con los botones mostrados anteriormente.

La primera pestaña **Action*** configura que acción debe realizar el botón al ser presionado, en este caso se debe escribir el número de la pantalla y el nombre de la misma a la que se desee saltar.

En la pestaña **Style*** escoge la forma y los colores que se da al botón. Se cuenta con más pestañas como la de texto en la que escribe algún texto o nombre en el botón, las siguientes pestañas de configuraciones avanzadas en las que puede dar algún tipo de seguridad y nivel de acceso a los botones.

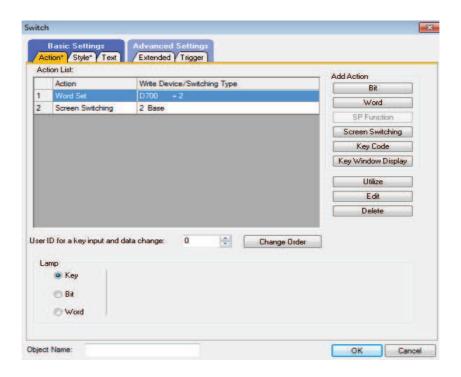


Figura 3-55 Switch Configuración del Botón Caldero Bremer

3.3.6.1 Caldero Bremer

Imagen que aparece al seleccionar en la pantalla principal el Botòn Caldero Bremer, en ella se encuentra un menu de las diferentes ventanas que intervienen en el proceso de transporte de material desde el picador al Silo Zanella y la alimentacion al caldero Bremer.

Figura 3-56 Pantalla Menú Caldero Bremer

Todas las ventanas cuentan con una barra superior que está conformada por diez botones numerados ascendentemente como se muestra en la siguiente figura, estos botones permiten ir a las pantallas que indiquen sus números respectivos asociados al menú del caldero Bremer, adicionalmente cuenta con dos botones que se llaman INICIO con el cual podemos regresar a la pantalla principal de la interfaz o el botón MENU con el cual podemos regresar al menú del caldero Bremer.

Figura 3-57 Barra Superior de las Pantallas del Caldero Bremer

3.3.6.2 Extractora

Esta pantalla muestra el grafico representativo del Silo Zanella y el tornillo sin fin, parpadeará cambiando de forma, indicando que está cayendo material en el silo. Se pueden usar los botones DER, IZQ, STOP ubicados en la parte inferior de la pantalla para darle el sentido de movimiento al tornillo sinfín, tanto a la derecha, izquierda y la parada. Estos controles solo funcionan en modo manual, en modo automático no tendrán repercusión alguna.

El gráfico es totalmente representativo, excepto por el efecto de parpadeo de la imagen de la rosca del sin fin en la parte inferior, el cual indica que el extractor está girando.

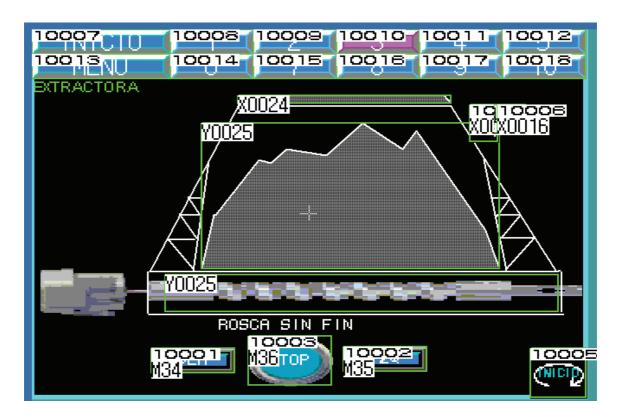


Figura 3-58 Pantalla Extractora

3.3.6.3 Extractora – Monitoreo

Permite monitorear el sistema de la rosca sin fin del extractor del silo Zanella, con lo que se puede tener conocimiento de los valores de voltaje, corriente y frecuencia en el motor del sin fin.



Figura 3-59 Extractora – Monitoreo

3.3.6.4 Extractora – Alarmas

Permite ver cuando se activa una alarma en el tornillo sin fin del extractor, ya sea esta por sobre corrriente, sobre voltaje y sobre carga.

Figura 3-60 Alarmas de la Extractora

En esta pantalla se da la dirección a la que corresponde la alarma, el texto y la forma que va a tener.

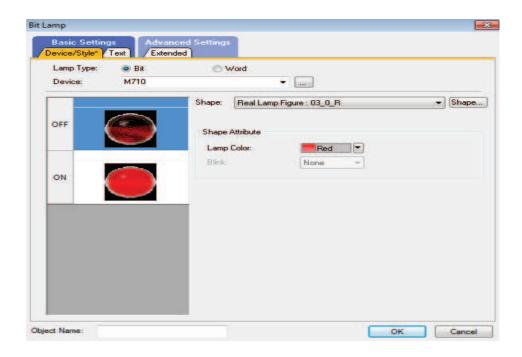


Figura 3-61 Bit Lamp – Alarma Extractora

3.3.6.5 Hidráulica

En esta ventana tenemos el gráfico representativo del sistema hidráulico de movimiento horizontal, más el gráfico de la rosca de transporte 3 la cual saca el material hacia el pulmón, este último también está dibujado para mayor comprensión y ubicación para el operador respecto al proceso.

El gráfico del movimiento horizontal de la rosca, proporcionado por el hidráulico, tiene un parpadeo diferente, al de la rosca de transferencia3 en conjunto con el pulmón, lo cual señaliza definidamente como sucede el proceso por dentro.

La posición del sinfín en el gráfico no indica que esté allí físicamente, es puramente representativo.

- Las flechas son las únicas indicadoras de la dirección hacia la que se está desplazando el carro con el sinfín del extractor.
- Las marcas "FC" significan Final de Carrera, los cuales parpadearán una vez alcanzados los extremos del pulmón, respectivamente.

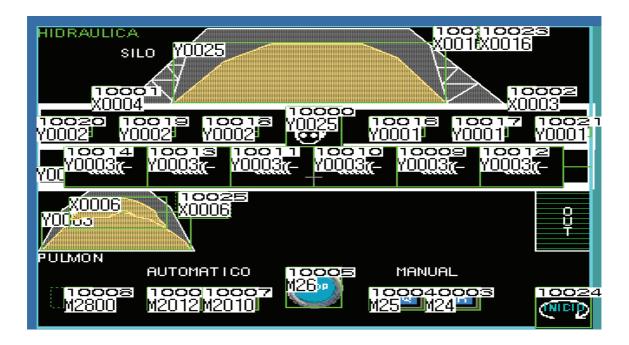


Figura 3-62 Pantalla Sistema Hidráulica

3.3.6.6 Hidráulica – Monitoreo

Monitorea el sistema de la bomba hidráulica de la rosca sinfín del extractor del silo Zanella, con lo que se puede tener conocimiento de los valores de voltaje, corriente y frecuencia en el motor del sinfín.

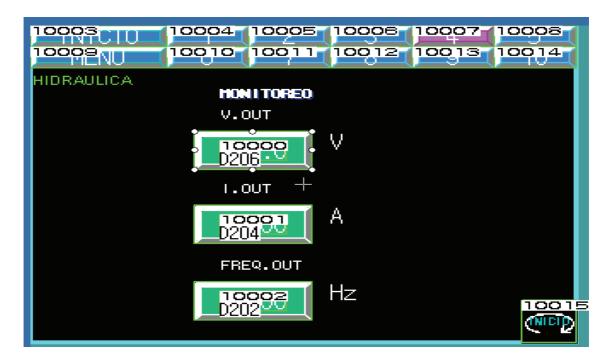


Figura 3-63 Hidráulica - Monitoreo

3.3.6.7 Alarmas del Sistema de la Bomba Hidráulica

Presenta señales cuando se activa una alarma en la bomba hidraulica, ya sea esta por sobre corrriente, sobre voltaje y sobre carga.

Figura 3-64 Alarmas Hidráulica

3.3.6.8 Corriente Extractora

Monitorea el valor de la corriente que existe en el sinfín del extractor, este valor se guarda en el registro D304, adicionalmente permite ingresar un valor de set point de la corriente para que este trabaje cerca del valor ingresado.

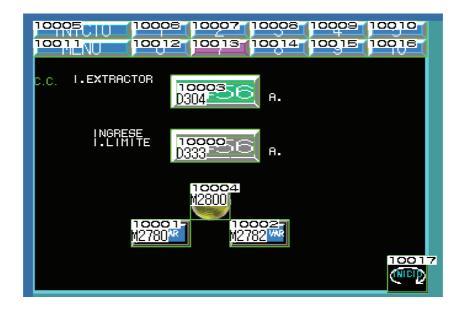


Figura 3-65 Corriente Extractora

3.3.6.9 Monitoreo de la Presión del Caldero Bremer

Muestra el valor real de la presión que existe en el caldero ayudando al operador a monitorear con facilidad esta variable. En este indicador se usa una escala de 0 a 20 Kgf/cm2, ya que el máximo valor de presión de trabajo normal del caldero se encuentra en este rango.

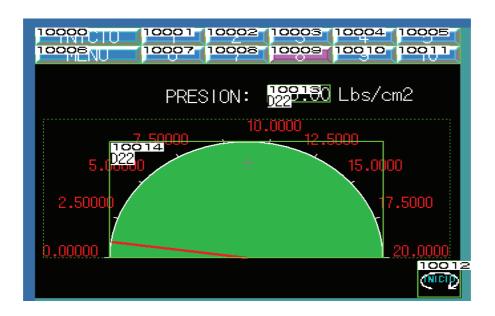


Figura 3-66 Pantalla de Presión del Caldero

3.3.6.10 Monitoreo de la Temperatura en el Caldero

En esta pantalla se tiene un gráfico representativo de un medidor con una escala, la cual indica el nivel de temperatura que se encuentra el caldero. Este valor se lo puede observar con una aguja que posee el gráfico o directamente el valor exacto de la temperatura ya que cuenta con numerical input asociado con el registro que posee este valor.

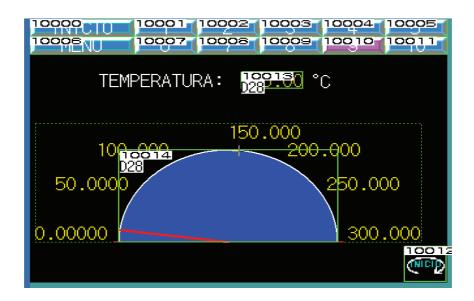


Figura 3-67 Pantalla de Temperatura del Caldero

3.3.6.11 Monitoreo del Nivel de Agua en las Cisternas

Para el caldero, es de gran importancia conocer el nivel y el volumen de agua que existe en las cisternas. El submenú muestra una lista de las cisternas en donde se almacena agua para el caldero, se puede acceder a cada una de las cisternas tocando el nombre de cada una de ellas.

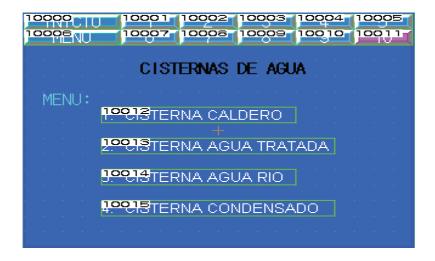


Figura 3-68 Ventana "Cisternas de Agua"

Las presentes imágenes dan a conocer el nivel y volumen del agua en que se encuentran todas las cisternas.

El agua llega desde el rio Esmeraldas mediante tuberías hasta la cisterna de agua de rio, una vez cumplido con el proceso de tratamiento pasa a la cisterna de almacenamiento en donde por último se la envía a la cisterna del caldero para ser usada en la generación de vapor.

La cisterna de condensado es el retorno de vapor del caldero que es almacenado a una temperatura aproximada de 75 °C para volverla a enviar al caldero sin que exista un choque térmico.

Figura 3-69 Ventana "Cisterna Agua Tratada"

Figura 3-70 Ventana "Cisterna Agua Rio"

Figura 3-71 Ventana "Cisterna Condensado"

Figura 3-72 Ventana "Cisterna Caldero"

3.3.6.12 Ventanas de Alarmas de la Cisternas

Es de gran importancia conocer el nivel de agua en las cisternas, por esta razón se crearon las ventanas de alarmas de cada una de ellas. Si el nivel de agua es muy bajo, automáticamente va a saltar a la ventana de indicación, esta ventana va a titilar cambiando de color verde a rojo. Siendo así más llamativa para el

operador, con ello envía un mensaje indicando a que cisterna corresponde la señal.

Figura 3-73 Ventana "Alarma Cisterna Agua Tratada"

Figura 3-74 Ventana "Alarma Cisterna Rio"

Figura 3-75 Ventana "Alarma Cisterna Condensado"

Figura 3-76 Ventana "Alarma Cisterna Condensado"

3.3.6.13 Silo Polvillo

Aparece al presionar el segundo botón en la pantalla de bienvenida, en ella se despliega un menú con los diferentes nombres de los elementos a controlar o monitorear en el proceso de enviar el polvillo hacia el pulmón, adicionalmente se puede encender la bomba para enviar agua hacia el caldero.

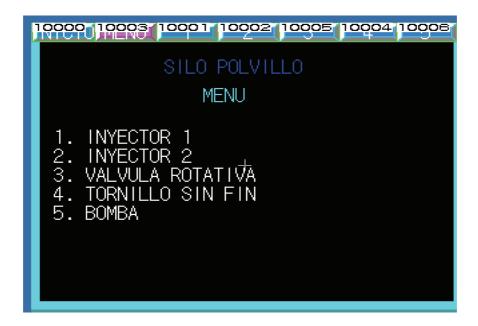


Figura 3-77 Pantalla Silo Polvillo

3.3.6.14 Inyector 1

Se presentan dos botones en esta ventana, uno de encendido y otro de apagado del inyector a más de ellos, tiene una lámpara que cambia de estado al encender el inyector.

Figura 3-78 Pantalla Inyector 1

3.3.6.15 Inyector 2

Al igual que la pantalla del inyector 1, aquí se tiene dos botones uno de encendido y otro de apagado del inyector 2 y una lámpara para visualizar su funcionamiento.

Figura 3-79 Pantalla Inyector 2

3.3.6.16 Válvula Rotativa

Esta pantalla cuenta con dos botones uno para encendido y otro para el apagado de la válvula rotativa, también cuenta con una luz de señalización para el funcionamiento de la válvula.

Figura 3-80 Pantalla Válvula Rotativa

3.3.6.17 Tornillo Sinfín

En esta ventana se puede controlar el funcionamiento del tornillo sinfín, ya que al estar ubicado en un silo cilíndrico este posee dos movimientos uno rotacional y otro traslacional.

Posee dos botones para el tipo de operación que se desee utilizar, uno manual y otro automático y dos luces de señalización para indicar en qué modo se encuentran trabajando.

En el modo manual el operador debe presionar los botones de encendido o apagado del movimiento rotacional o el movimiento traslacional del tornillo sinfín, y se cuenta con las respectivas luces de señalización del proceso.

En el modo automático debe cumplir el ciclo del silo Zanella, estar activada la rosca de Transferencia 3 y estar sobre el nivel inferior del pulmón para empezar el ciclo del silo Polvillo.

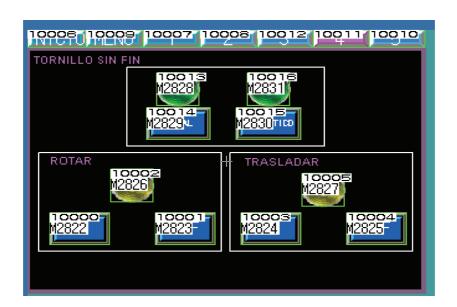


Figura 3-81 Tornillo Sin Fin

3.3.6.18 Bomba

En esta pantalla se cuenta con un gráfico representativo de la bomba , dos botones, uno de encendido y otro de apagado (ON - OFF), y una luz de señalización que indica si la bomba se encuentra encendida o apagado, adicionalmente se cuenta con dos tuberías que parpadean cuando la bomba está funcionando.

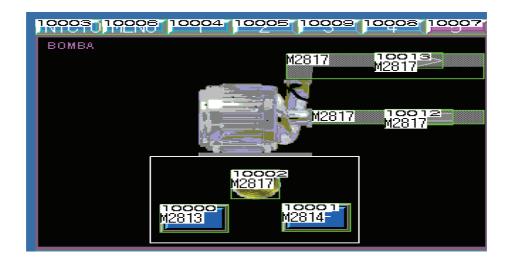


Figura 3-82 Bomba de Agua

3.3.7 DESCRIPCIÓN DEL SOFTWARE EV5000

El Ev5000 es un software para crear proyectos para la serie de pantallas Kinco MT6000, MT5000, MT4000. Este programa es muy conveniente ya que permite simular el proyecto en la computadora antes de cargarlo a la pantalla.

El nombre y la función de cada elemento se describen a continuación:

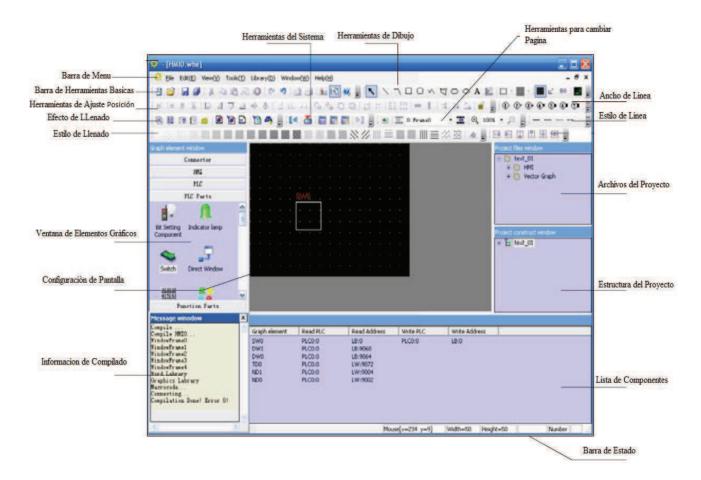


Figura 3-83 Pantalla Principal EV5000

Barra de Menú: Contiene menús para seleccionar varios grupos de comandos. Si uno de estos menús se selecciona en el menú desplegable correspondiente aparece.

Barra de herramientas básicas: Proporciona iconos de las herramientas básicas como: Crear proyecto, abrir proyecto, cortar y pegar.

Barra de herramientas Dibujo: Cada icono representa una función de dibujo como se muestra. Incluyen la herramienta de línea, herramienta rectángulo, elipse / círculo herramienta, herramienta de arco, polígono herramienta y la herramienta de texto.

Herramientas de Efecto de Llenado: Ofrece herramientas que se utilizan para rellenar el fondo de pantalla o áreas dentro de las barreras cerradas tales como rectángulo, elipse y sector. Cada icono representa un estilo de relleno.

Herramientas de Ajuste de Posición: Se utiliza para ajustar la posición de los componentes, como por ejemplo: alinear arriba, abajo a la derecha, justificar, tamaño igual, cascada, grupo, dar la vuelta, y así sucesivamente.

Herramientas del Sistema: Se utiliza para compilar, descargar y simulación de un proyecto.

Herramientas para Ancho de Línea: Ajusta el ancho de línea.

Herramienta para cambiar de Página: Se utiliza para el desplazamiento hacia adelante y hacia atrás en las páginas de un proyecto.

Herramientas para Base de Datos: Incluye herramientas de texto biblioteca, de alarmas, dirección de las etiquetas, control del PLC y de mensajes de eventos.

Herramientas de Compilación: Se utiliza para controlar la compilación de códigos.

Estilo de Línea: Esta barra de herramientas se utiliza para seleccionar el estilo de línea: con o sin flecha, una línea de puntos o línea sólida, arcos y el contorno de los rectángulos también se establecen por esta barra de herramientas.

Ventana de Elementos Gráficos: La ventana del elemento gráfico tiene cinco columnas opcionales:

- Conector: Se utiliza para seleccionar el tipo de enlace de comunicación.
- HMI: Selecciona el tipo de HMI.
- PLC: Se utiliza para seleccionar el tipo de control.

- PLC partes: Seleccionar las distintas partes de configuración relacionados con los registros del PLC.
- Piezas de función: Su función es de seleccionar varias piezas funcionales.

Ventana de la Estructura del Proyecto: Muestra la relación entre las ventanas árbol del proyecto, las partes del PLC y HMI en el proyecto con un diagrama de árbol.

Archivos del Proyecto: Esta ventana indica la relación entre el panel táctil y los archivos bitmap del proyecto en estructura de árbol.

Barra de Estado: Muestra la posición actual del ratón, anchura, altura del objeto de destino, editar el estado, y así sucesivamente.

Configuración de ventana: El usuario puede dibujar la configuración en esta ventana.

La Ventana elemento gráfico incluye: Conector, HMI, PLC, Partes del PLC, y Partes de funciones.

Conector: Incluye conexión de puerto serial y conexión Ethernet.

Si se escoge RS232 o RS485, hacer clic en el icono [Serial], arrástrelo a la ventana del proyecto.

Si se desea utilizar la conexión Ethernet, hacer clic en el icono de Ethernet a continuación, arrastrarlo a la ventana del proyecto. Al arrastrar, el icono aparecerá como un alambre. Después de dejarlo caer, el cable se quedará en la ventana del proyecto.

HMI: Todos los modelos de la serie de paneles MT4000 y MT5000 figuran en esta lista eView HMI, los usuarios deben seleccionar el modelo adecuado de acuerdo con el panel real de sus proyectos.

PLC: Todos los PLC compatibles con el sistema de paneles eView HMI figuran en esta lista, el usuario debe seleccionar el modelo adecuado de acuerdo con los PLCs reales para sus proyectos.

Partes del PLC: Todas las partes relativas a los registros del PLC están listados aquí, incluyendo el ajuste de bit, switch, estado multi display, tendencia gráfica, parte XY plot, parte de entrada numérica, parte de entrada de texto y así sucesivamente.

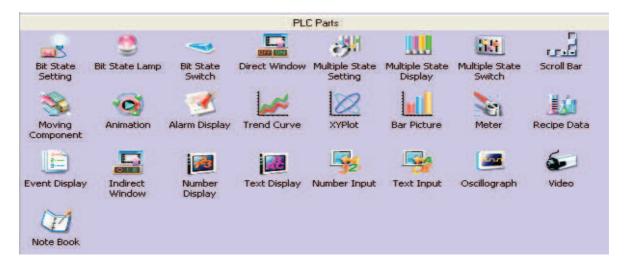


Figura 3-84 PLC Parts

Componentes Funcionales: Piezas para funciones especiales se encuentran aquí, incluyendo la Tecla de función, escala, alarma y temporizador.

Figura 3-85 Componentes Funcionales

3.3.8 DISEÑO DE LAS HMI EN EL TERMINAL MT4201T

Este terminal de operador grafico se la utiliza para el proceso del silo del polvillo, y estará ubicada en esta área. Las pantallas diseñadas en esta terminal son muy similares y cumplen las mismas funciones que las que se encuentran en el terminal de operador Mitsubishi GOT 1055.

Al iniciar un nuevo proyecto se despliega la siguiente ventana, que empieza la configuración del nuevo proyecto.

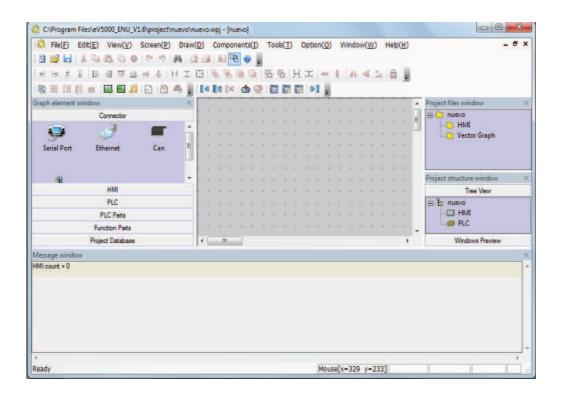


Figura 3-86 Pantalla de Nuevo Proyecto

A continuación se escoge el modelo de pantalla que tiene a disposición, el PLC y el tipo de comunicación que se va a utilizar.

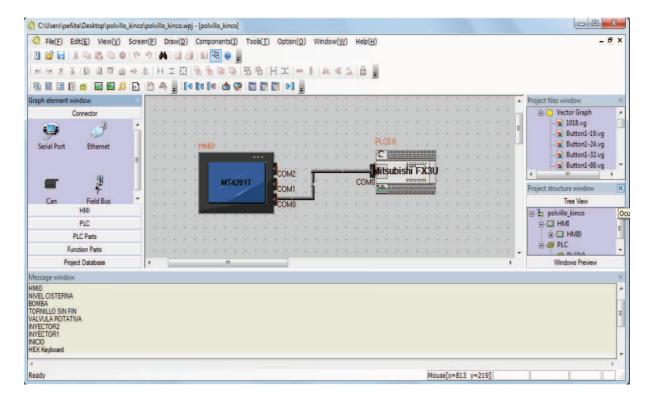


Figura 3-87 Configuración Proyecto Nuevo

Para configurar la comunicación serial se hace doble clic sobre la pantalla y aparece la siguiente ventana.

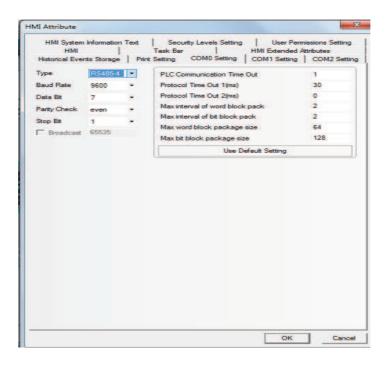


Figura 3-88 Atributos del HMI

El tipo de comunicación que se usa con el PLC Mitsubishi FX3U debe ser exactamente el que se presenta en la figura anterior:

- Tipo RS485-4
- Baud Rate 9600
- Data Bit 7
- Parity Check
- Even
- Stop Bit 1

No se necesita hacer ningún tipo de configuración en el programa del PLC.

El cable que se utiliza debe tener la configuración de pines mostrada en la siguiente figura.

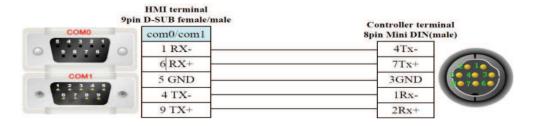


Figura 3-89 Cable FX Series RS422

Tabla 3-16 Dispositivos que soporta la Pantalla

Device	Bit Address	Word Address	Format
Input Relay	X000 - 377		000
Output Relay	Y000 - 377		000
Timer Relay	T000 - 511		DDD
Counter Relay	C000 - 199		DDD
Data Register Relay	D0000 - 7999		DDDD
Status Relay	S0000 - 4095		DDDD
Internal Relay	M0000 - 7679		DDDD
Special Internal Relay	SM8000 - 8511		DDDD
Timer		T000 - 511	DDD
Counter		C000 - 199	DDD
Data Register		D0000 - 7999	DDDD
Special Data Register		SD8000 - 8511	DDDD
Counter Memory (D Word)		C_dword200 - 255	DDD

A continuación se presentan las pantallas creadas en el terminal Kinco MT4201T, junto con las ventanas de configuración de los botones, luces de señalización, texto y gráficos.

La ventana principal es la de bienvenida, posee un botón para acceder al menú.

Figura 3-90 Pantalla Bienvenida Kinco

Esta ventana es de configuración del botón inicio en la cual podemos escoger la acción a realizarse, y a que pantalla saltar.

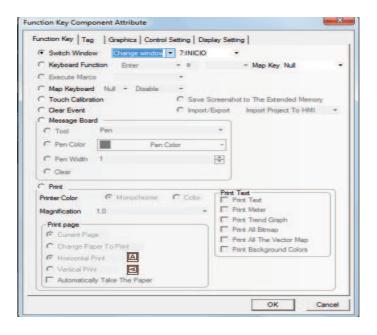


Figura 3-91 Botón Function Key Component

La siguiente ventana muestra el menú de las operaciones realizadas en el proceso del silo del polvillo, junto con una barra superior que indica los números del menú, con lo cual podemos saltar a las pantallas deseadas.

Figura 3-92 Menú Pantalla Kinco

Figura 3-93 Pantalla Inyector 1

Figura 3-94 Pantalla Inyector 2

Figura 3-95 Pantalla Válvula Rotativa

Figura 3-96 Pantalla Tornillo Sin Fin

Figura 3-97 Pantalla Bomba

Figura 3-98 Cisternas de Agua - Kinco

Figura 3-99 Cisterna Agua Tratada - Kinco

Figura 3-100 Cisterna Agua Rio - Kinco

Figura 3-101 Cisterna Condensado - Kinco

3.4 INSTRUMENTACIÓN

3.4.1 MEDICIÓN DE NIVEL

Es de vital importancia tener conocimiento del nivel del agua en las cisternas, para esto utilizaremos equipos que nos ayudaran a tener el control oportuno del sistema de medición.

3.4.1.1 Sensor Ultrasónico

Este equipo se lo conoce por su marca Senix modeloTSPC-30s1-485, que mide la distancia o presencia de un objeto, enviando una onda de sonido que choca con el objeto, midiendo el tiempo del eco de ida y vuelta. Conociendo la velocidad del sonido el sensor puede determinar la distancia del objeto desde el elemento transductor. Este sensor tiene una máxima distancia de medición de 4.3 [m].

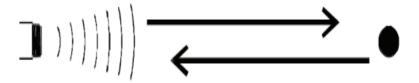


Figura 3-102 Funcionamiento del sensor ultrasónico

Figura 3-103 Sensor Ultrasónico Senix TSCP-30S1-485

Tabla 3-17 Conexiones del Sensor Ultrasónico

	Tubia o 17 Gorickiones	
Conexión de Cable	Cable	Descripción
Power	Café	10-30 VDC @ 60 mA max;
		Typical: 45 mA @ 24 VDC
Tierra	Azul	Power and interface common
Voltaje de Salida	Blanco	0-10 VDC, 0-5 VDC or custom
		range values between 0 and
		10 VDC
Corriente de Salida	Negro	4-20 mA or user adjusted
		range values between 0 and
		20 mA
Switch #1 Output	Negro	Sinking ("NPN") or Sourcing
		("PNP"), usuario selecciona
Switch #2 Output	Blanco	Sinking ("NPN") or Sourcing
		("PNP"), usuario selecciona
RS-232 out / RS-485+	Gris	Serial data connection
RS-232 in / RS-485-	Amarillo	Serial data connection

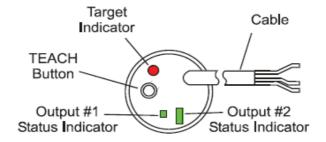


Figura 3-104 Características Físicas del sensor

Teach Button: El botón de aprendizaje se utiliza para realizar los ajustes del sensor manualmente, o se puede bloquear usando el software SenixVIEW.

El target Indicador: (redonda) muestra el estado de destino, también indica la condición de desbloqueo durante el ajuste, sirve como indicador de encendido, y parpadea de color rojo durante las operaciones de TEACH.

Salida # 1: El indicador de estado (cuadrado), muestra el estado de la salida seleccionada por el cable negro del sensor, permanece apagada si ella no se encuentra conectada.

Salida # 2: El indicador de estado (rectangular), muestra el estado de la salida seleccionada por cable blanco del sensor, permanece apagada si no se encuentra conectada.

3.4.1.2 Calibración Del Sensor

El sensor ultrasónico Senix TSPC-30S1-485 puede calibrarse manualmente por medio de un botón inteligente que posee o por medio del software SenixView.

3.4.1.2.1 Botón Teach

Cuando se utiliza las características del botón TEACH para hacer los ajustes del sensor, el indicador del blanco parpadeará lentamente en rojo, a menos que las funciones se encuentren desactivadas mediante TEACH SenixVIEW.

El usuario debe presionar el botón TEACH durante 3 segundos y soltarlo, luego debe contar los flashes, según el número de parpadeos se puede realizar una función.

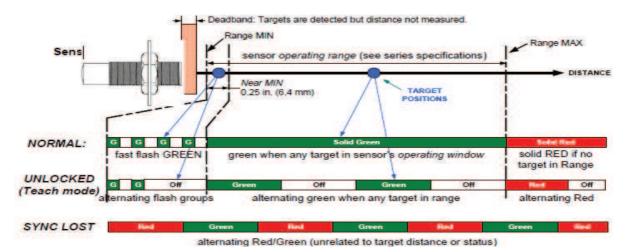


Figura 3-105 Funciones de Indicación del Blanco

Se puede establecer el modo de la salida analógica del sensor: 4 - 20mA o 0 - 10V, a través del botón "Teach" en la parte posterior del sensor, así:

- Mantenga pulsado el botón, mientras que el LED redondo parpadea tres veces, y luego soltar.
- La ronda de LED ahora debería parpadear una vez por segundo, lo que indica que el sensor está en modo de aprendizaje.
- Colocar el sensor para ver la distancia que desea a 0 voltios o 4 mA. Pulsar el botón y mantenerlo en ese estado hasta que parpadee cuatro veces, y soltarlo.
- Colocar el sensor a la distancia que se desea para 10 voltios o 20 mA.
 Pulsar el botón y mantenerlo así hasta que parpadee cinco veces, una vez realizada esta función se debe soltar.
- El sensor debe tener un buen objetivo al hacer esto.
- La ronda del led parpadea en verde cuando un objetivo es adquirido, y rojo cuando no. También parpadea en rojo cuando se está manteniendo pulsado el botón, pero volverá a verde si consigue la meta, Además, puede configurar 4mA para distancia cercana, o la misma distancia para 20mA.
- Una vez que haya establecido la calibración, presionar y mantener presionado el botón hasta que parpadee tres veces y soltar, con esto se vuelve al modo normal de operación.

3.4.1.2.2 Software SenixView

Figura 3-106 SenixView¹⁷

El software SenixView le permite seleccionar y calibrar las salidas del sensor, modificar las características (parámetros), ver, analizar las medidas de registro para la evaluación del desempeño, y guardar configuraciones en la computadora para recuperarla más tarde en alguna aplicación.

Las configuraciones pueden ser creadas o modificadas en el espacio de trabajo de SenixView, o ser movidas dentro o fuera del área de trabajo desde el sensor, o hacia el sensor como se muestra a continuación.

Figura 3-107 Transferencia de archivos en SenixView

Los parámetros de configuración se visualizan en la pantalla principal.

-

¹⁷ https://www.senix.com/

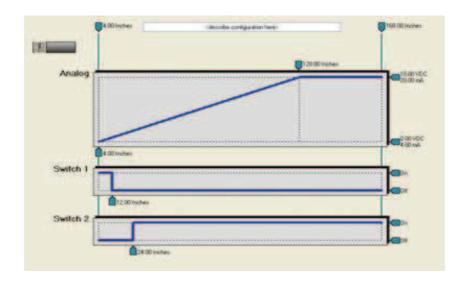


Figura 3-108 Pantalla Principal SenixView

3.4.1.2.2.1 Vista de la Pantalla Principal

La pantalla principal muestra una configuración de un sensor conectado, un archivo almacenado en el disco de la computadora, o el espacio de trabajo.

Figura 3-109 Transferencia Archivo -PC - Sensor y Viceversa

3.4.1.2.2.2 Mover La Configuración Al Sensor

Las configuraciones pueden ser movidas entre el área de trabajo y un archivo de disco, o entre el espacio de trabajo y un sensor, este movimiento se lleva a cabo de tres maneras:

 Uso de iconos.- utilizar el ratón para arrastrar a la derecha o izquierda del icono workspace hacia el icono de archivo o el icono del sensor, o viceversa. Todo movimiento debe estar dentro o fuera del área de trabajo, como se muestra a continuación.

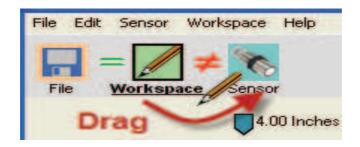


Figura 3-110 Mover archivos hacia o desde el sensor

• Usar la selección desde el menú:

3.4.1.2.2.3 Conexión del Sensor

SenixVIEW requiere tanto de un sensor físico y una conexión lógica al PC. Se usa una conexión directa de 9 pines del puerto COM o usar un adaptador USB a COM.

Instalar el cable serial para realizar la comunicación del sensor.

Aplicar la alimentación del sensor, el indicador de destino posterior debe estar encendido.

Conexión lógica: Conecte SenixVIEW al sensor mediante el menú Sensor y seleccionar Connect.

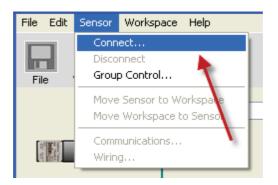


Figura 3-111 Conectar el Sensor con el PC

Aparece una ventana Connect Sensor con los valores por defecto o de sus selecciones anteriores. Realizar los cambios y luego hacer clic en Conectar:

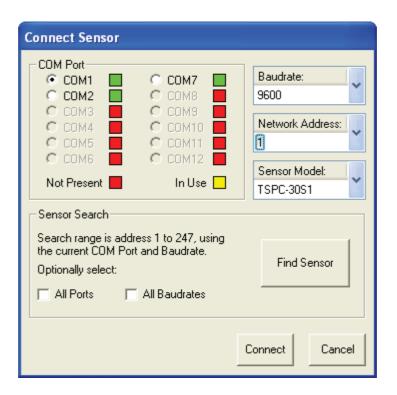


Figura 3-112 Configuración para la comunicación

El siguiente mensaje confirma la comunicación entre el SenixView y el sensor.

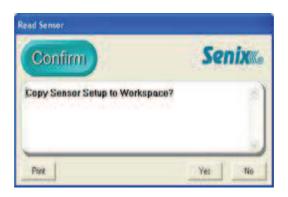


Figura 3-113 Mensaje de confirmación de la Comunicación

3.4.1.2.2.4 Ajustes del Sensor

Los ajustes del sensor son hechos en el área de trabajo y luego transferidos al sensor.

La siguiente figura muestra la pantalla con los iconos que se pueden configurar.

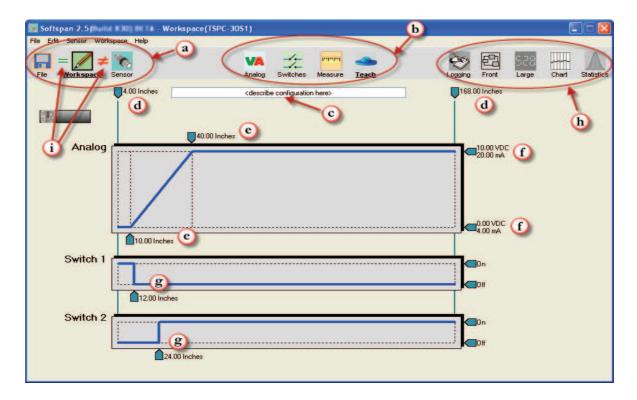


Figura 3-114 Ajuste de Parámetros en SenixView

- (a) Las configuraciones pueden ser movidos entre el área de trabajo y un archivo de disco o al sensor.
- (b) Hacer clic en uno de estos iconos para las funciones ampliadas asociadas a las salidas analógicas, salidas de conmutación, mediciones o el botón TEACH.
- (c) Introducir hasta 32 caracteres para describir un proyecto. Este texto recordatorio se almacena en el archivo del sensor o en disco cuando los parámetros se mueven o se guardan.
- (d) Hacer clic en el texto distancia para modificar el rango de funcionamiento, mínimo rango es el parámetro de la izquierda y el de la derecha máximo.
- (e) Hacer clic en el texto distancia de los puntos finales analógicos de alta y baja, para calibrar las salidas analógicas.

- (f) Hacer clic en el texto de los valores alto y bajo para cambiar el rango de salida. Las salidas de bucle de tensión y de corriente son ajustables independientemente.
- (g) Hacer clic en el texto distancia de los puntos de ajuste del interruptor para calibrar el interruptor ON. Las opciones de histéresis y ventana se encuentran haciendo clic en el icono Switches.
- (h) Estos iconos aparecen en gris en el área de trabajo, pero funcionan cuando se conecta un sensor.
- (i) Igualdad de símbolos indican si el espacio de trabajo es igual o no al archivo y al sensor.

3.4.2 MEDICIÓN DE TEMPERATURA

3.4.2.1 Sensor RTD PT100

Se fundamentan en la variación que experimenta la resistencia de los metales con la temperatura. Siendo esta variación aproximadamente lineal con la temperatura.

Uno de los metales más usado para este tipo de detector es el platino (Pt-100), el cual se caracteriza por presentar una resistencia de 100 Ω a 0 $^{\circ}$ C.

La relación entre la resistencia y la temperatura viene dada por la relación:

$$R_T = R_0 (1 + \alpha T)$$

Donde recibe el nombre de coeficiente de temperatura y tiene un valor para la resistencia de platino a = 0.003911

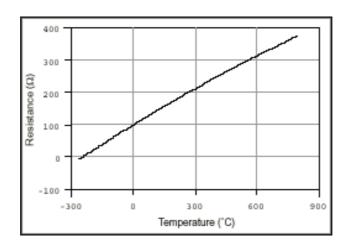


Figura 3-115 Variación de la Resistencia Vs Temperatura

Figura 3-116 Sensor de Temperatura RTD

3.4.2.2 Transmisor de Corriente

Figura 3-117 Vista del Transmisor de Temperatura

Este equipo es un transmisor a 2 hilos destinado a la medición de la temperatura en un entorno industrial.

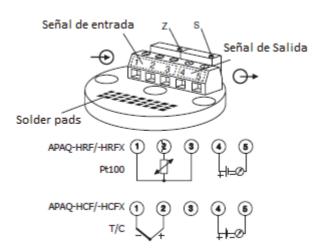


Figura 3-118 Conexión del Transmisor

Para poder calibrar el transmisor se debe soldar los pads como se muestra en la configuración siguiente.

• Seleccionar el Zeropoint

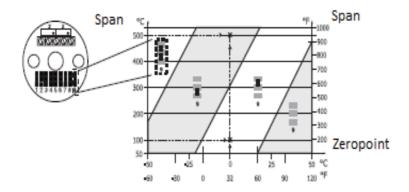


Figura 3-119 Selección del Zeropoint

• Seleccionar el Span en °C o °F

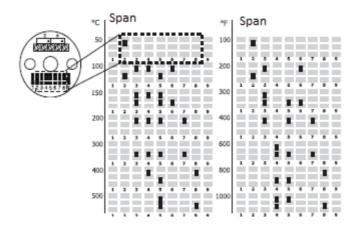


Figura 3-120 Selección del Span

• Seleccionar burn-out detection

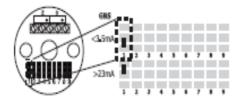


Figura 3-121 Selección de protección de Temperatura

3.4.2.2.1 Calibración del Transmisor de Temperatura

Se sugiere que la calibración se compruebe al menos una vez al año. Cuando una nueva calibración es necesaria, utilizar instrumentos de calibración con una precisión de al menos 5 veces mejor que la precisión requerida para la calibración. El transmisor tiene polaridad protegida y no será dañado al conectar la fuente de alimentación con la polaridad incorrecta, pero la salida será 0 mA.

- a. Se debe conectar la entrada y salida de señales según la figura de las conexiones, y aplicar una señal de entrada para dar una salida de aproximada de 12 mA.
- b. Si la señal de salida se ha estabilizado después de 15 minutos, el transmisor está listo para la calibración.
- c. Aplicar estaño correspondiente a la señal de entrada mínima que desee.
- d. Calibrar el potenciómetro hasta Z-mA lout = 4,00.

Figura 3-122 Calibración del potenciómetro I out = 4 mA

- e. Aplicar estaño correspondiente a la señal deseada de entrada máxima.
- f. Calibrar Z-potenciómetro hasta lout = 20,00 mA.

Figura 3-123 Calibración del potenciómetro I out = 20 mA

- g. Repetir c f hasta que las lecturas converjan.
- h. Fijar el potenciómetro con laca, y la calibración estará completa.

3.4.3 SENSOR DE PRESION

Es necesario conocer y monitorear el estado de la presión en el caldero de mejor manera, ya que existen manómetros, en donde el operador tiene que acercarse a ellos para poder ver el valor de la presión, por esta razón se instaló el sensor de presión MBS300 y mostrar la lectura en la pantalla.

Figura 3-124 Sensor de Presión MBS300

Características del sensor de presión:

Cubierta de acero inoxidable y resistente a los ácidos (AISI 316L)

- Señal de salida de 4 20 mA
- Marcado de conformidad "CE": con protección electromagnética de acuerdo con la directiva EMC (compatibilidad electromagnética).
- Temperatura compensada y calibrado por láser.

Aplicaciones típicas:

- -Bombas
- Compresores
- Neumática
- Tratamiento de agua

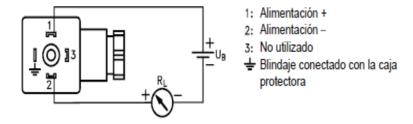


Figura 3-125 Conexión Eléctrica, 2 Conductores 4 - 20 mA

CAPÍTULO 4

4 IMPLEMENTACIÓN Y PUESTA EN MARCHA DEL SISTEMA DE CONTROL

La fase de implementación del proyecto inicia con una lista de los materiales y equipos que se necesitan para el desarrollo del mismo y bajo la supervisión del jefe de mantenimiento y la colaboración de un trabajador eléctrico.

4.1 MONTAJE E INSTALACIÓN

Para la instalación del nuevo sistema de control se utiliza el mismo tablero de control antiguo, ya que estos ocupan menos espacio y caben perfectamente en el tablero, se utiliza el cableado existente, únicamente se remplazan los cables que van conectados hacia los módulos del PLC y los que se encuentran en mal estado, se realiza la instalación de un cable desde el silo Zanella hasta el tablero del silo del Polvillo para la comunicación del PLC Máster y el PLC Esclavo.

Para la instalación del nuevo equipo se procede a retirar el equipamiento antiguo como se muestra en la siguiente figura 4-1.

Figura 4-1 Desmontaje del Antiguo sistema de Control

El tablero existente en el silo Zanella contaba con selectores, botones y luces pilotos, estos elementos no fue necesario cambiarlos ya que se encontraron en buen estado y sirven para el control e indicación del proceso en modo manual, a este tablero se adaptó un espacio en el cual se colocó la nueva pantalla Mitsubishi GOT 1055, de igual modo se utilizó el tablero que ya existía en el silo del polvillo y se lo adapto para colocar la pantalla Kinco MT4201T.

Figura 4-2 Antiguo y Nuevo Sistema de Control

Cabe mencionar que se utiliza el mismo circuito de fuerza para la alimentación del PLC, Variadores de Frecuencia, la pantalla HMI y los diferentes dispositivos.

4.2 INSTALACIÓN DE SENSORES

Para la instalación de los sensores fue necesario el tendido de cables desde el lugar en el que van a estar ubicados hasta las entradas del módulo analógico FX3U-4AD.

Se utilizó la fuente interna a 24 [V] DC del PLC para alimentar los módulos de entradas, salidas y analógicos.

4.2.1 INSTALACIÓN DEL SENSOR DE NIVEL

Para medir el nivel de las cisternas se utilizó un sensor ultrasónico marca Senix, el mismo que da una salida de 4 a 20 [mA] o de 0 a 10 [V], permitiendo hacer la conexión directamente al módulo analógico del PLC FX3U-4AD.

Figura 4-3 Sensor Ultrasónico Senix TSPC-30S1-485

Figura 4-4 Montaje del Sensor Ultrasónico

4.2.2 INSTALACIÓN DEL SENSOR DE PRESIÓN

Para medir la presión en el caldero se utilizó un sensor de presión MBS300, el cual da una salida de 4 a 20 [mA], realizando la conexión directamente al módulo analógico.

Figura 4-5 Instalación del Sensor de Presión MBS 3000

Figura 4-6 Sensor de Presión MBS 3000

4.2.3 INSTALACIÓN DEL SENSOR DE TEMPERATURA

Para medir la temperatura en el caldero se utilizó un sensor RTD Pt100, el cual da una señal analógica que requiere un transmisor de corriente de 4 a 20 [mA].

Figura 4-7 Instalación del Sensor RTD Pt100

Figura 4-8 Instalación Final Sensor Pt100

Se realizó el cableado desde el sensor Pt100 hasta el transmisor de corriente en los terminales 1,2 y 3, y fue necesario la instalación de una fuente de 24 V DC marca ABB que se contaba con ella en bodega, para la alimentación del transmisor de 4 a 20 mA.

Figura 4-9 Montaje Transmisor de Corriente 4 – 20 [mA]

Figura 4-10 Fuente 24 V DC Marca ABB

Esta fuente también se la utilizó para obtener la señal de 4 a 20 mA del sensor de presión.

4.2.4 CALIBRACIÓN DE LOS SENSORES

Se necesitó calibrar el sensor ultrasónico Senix y el transmisor de corriente para el sensor de temperatura Pt100, el sensor de presión MBS1000 vino calibrado de fábrica.

Para la calibración del sensor ultrasónico se la realizó con el software SenixView, que permite ingresar manualmente la distancia y el rango a la que debe sensar.

SenixView permite cambiar manualmente el rango de medida fácilmente y las unidades de medición, ya sea en centímetros, metros o pulgadas.

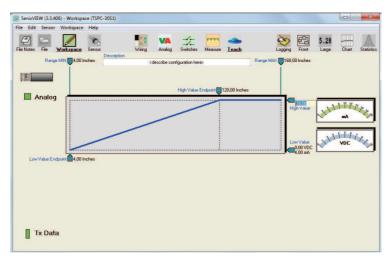


Figura 4-11 Calibración del Sensor con SenixView

El transmisor de corriente se procedió a soldar los pads como indica el manual del producto, pero en CODESA no se contaba con los instrumentos necesarios para simular el rango de funcionamiento del caldero que son de 0 a 350 °C y así poder calibrar el transmisor, gracias a la colaboración de la Refinería Esmeraldas que prestaron sus instrumentos, se logró calibrar el sensor.

CAPÍTULO 5

5 PRUEBAS Y RESULTADOS

Básicamente se realizaron dos tipos de pruebas en el proyecto, la primera fue en el aprendizaje y conocimiento de los equipos a medida que se realizaba el proyecto y la segunda después de la instalación completa de los equipos, donde se prueba el funcionamiento de las máquinas y el nuevo sistema de control.

5.1 PRUEBAS INICIALES

Las pruebas iniciales fueron básicamente comprobar el correcto funcionamiento de los equipos, como alimentar el PLC, los diferentes módulos de entradas y salidas, Variadores de frecuencia, las pantallas y sensores.

Figura 5-1 Pruebas a PLC y Sensores

5.1.1 FUNCIONAMIENTO DEL PLC Y HMI

Para probar el funcionamiento en la comunicación entre el PLC y las pantallas primeramente se procedió a realizar pequeños programas, como poner botones, luces y forzar estas entradas en el PLC y así ver el cambio de estado en las pantallas, esto se realizó con la pantalla Mitsubishi, con la pantalla Kinco se realizó la misma prueba, pero no aparecen los dispositivos mientras no exista comunicación con el PLC como focos, botones, etc., que tengan la dirección de una entrada, salida, marca del PLC.

5.1.2 PRUEBAS DE COMUNICACIÓN CON EL PLC ESCLAVO

Al igual que con las pantallas, para probar la comunicación del entre los PLCs se probaron con pequeños programas sencillos para enviar y recibir datos, asociando las entradas y salidas con los dispositivos específicos que se tienen en la configuración de la comunicación N:N Network.

5.1.3 FUNCIONAMIENTO DE LOS VARIADORES DE FRECUENCIA

Para comprobar el funcionamiento de los variadores de frecuencia se realizó la prueba con un motor, donde se comprobó el paro, cambio de giro, adelante y atrás y la comunicación RS485.

5.1.4 PRUEBA DE LOS SENSORES

Las pruebas y calibraciones en los sensores fueron diferentes para cada sensor utilizado. Para el sensor de presión no fue necesaria ninguna calibración ya que este fue adquirido de acuerdo a los requerimientos necesarios.

El sensor ultrasónico fue calibrado con el software SenixView por las facilidades y prestaciones que presenta este software.

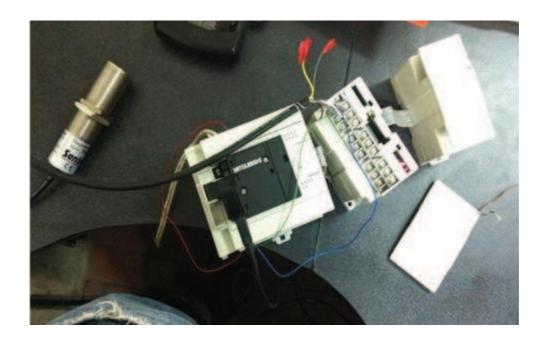


Figura 5-2 Prueba de Sensores

5.2 PRUEBAS FINALES DE OPERACIÓN AL NUEVO SISTEMA DE CONTROL

Después de la instalación de equipos y la programación del sistema de control se procedió a realizar diferentes pruebas para verificar un correcto funcionamiento del mismo.

Se procede a comprobar los diferentes valores de voltajes para los equipos instalados, así como continuidad en todos los cableados hechos.

# de medición	Corriente Antes (Amp) Semana 16- Jul a 23-Jul	Corriente Después (Amp) Semana 17-Sep a 24-Sep
1	18,5	14,3
2	13,7	13,74
3	12,6	14,2
4	16,9	14,7
5	17,4	15,1
6	27	14,85
7	31	15,4
8	23,2	14,82
9	24,6	14,6
10	20,6	13,95
11	21,8	14,45
12	18,3	13,87
13	17,4	13,82
14	19,4	13,6
15	22,8	14
16	23,1	14,4
17	13,4	14,3
PROMEDIO	20,10	14,36

Tabla 5-1 Corrientes antes y Después

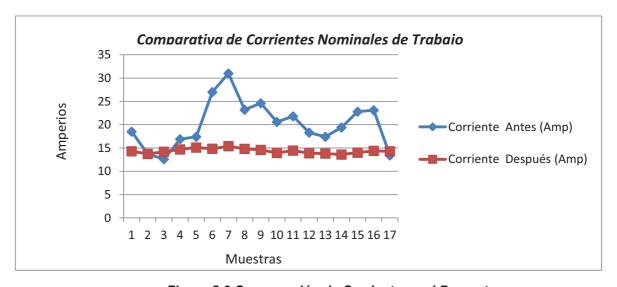


Figura 5-3 Comparación de Corriente en el Proyecto

En la Tabla 5-1 se presentan los datos comparativos del consumo de corriente de la rosca extractora antes y después de la implementación del nuevo sistema de control, y de mejor manera en la Figura 5-3 se compara y se muestra cómo se redujo y estabilizó el consumo de corriente de la rosca.

CAPÍTULO 6

6 CONCLUCIONES Y RECOMENDACIONES

6.1 CONCLUSIONES

- El objetivo de este proyecto se ha cumplido totalmente, ya que al finalizar la implementación se puede realizar el control y supervisión del sistema de alimentación de combustible hacia el caldero.
- Se implementó un sistema de control automático basado en dos PLCs Mitsubishi cuyo objetivo es mantener el una alimentación constante y continua de combustible al caldero, para así tener una producción de vapor constante que cumpla con las necesidades de la fábrica.
- Al sustituir el sistema de control anterior basado en relés, contadores, temporizadores y controladores discretos, por un sistema de control autónomo con dos PLCs, variadores de velocidad y pantallas táctil, resultó que la operación y mantenimiento del sistema mejoró completamente, permitiendo la creación del programa de los PLCs y así disminuyendo el número de dispositivos que se tenía en el tablero
- El PLC Mitsubishi FX3U brinda grandes ventajas ya que es un dispositivo modular en el cual los diferentes módulos como entradas y salidas digitales, analógicas y módulos de comunicación, etc., permite ir agregando o quitando de acuerdo a las necesidades y futuras ampliaciones que se presenten en el proceso. Este PLC posee una gran ventaja ya que al aumentar, quitar o al realizar algún cambio en el programa, se lo puede realizar en línea sin la necesidad de parar o apagar el PLC sin detener el proceso.
- El uso de la plataforma Mitsubishi es de gran ventaja y facilita la realización del proyecto, ya que dispone de un tipo de comunicación propia llamada N:N Network para comunicar los PLCs, con lo cual solo se necesita un módulo RS485ADP. La plataforma permite de igual manera la fácil

comunicación con los variadores de velocidad usando la red RS485 que permite comunicar hasta ocho variadores. Para comunicar la pantalla táctil la plataforma posee un puerto RS422 y con este último se tiene una plataforma completa y robusta, por lo tanto se reduce el cableado y otros dispositivos en lo que el sistema de control no será muy costoso ni muy complicado.

- El HMI creado en la pantalla Mitsubishi GOT 1055 en el tablero del silo Zanella constituye un sistema amigable con el usuario y seguro, ya que es una herramienta poderosa para la supervisión y el control en el transporte y alimentación del combustible al caldero.
- Posteriormente se instaló una pantalla más pequeña Kinco MT4201T en el lugar del silo del polvillo, y así lograr un control local del proceso de envío del polvillo hacia el caldero y de la bomba de agua. Esta pantalla de pequeño tamaño tiene grandes ventajas, ya que permite realizar un interfaz a color, representando mejor los elementos que intervienen en el proceso, sin mencionar el bajo costo de la pantalla con respecto a una Mitsubishi.
- Al realizar un algoritmo de control para los variadores de velocidad en el programa del PLC, se ha reducido un golpe de inercia en el arranque de los motores, el tornillo sin fin, desarrollaba altas corrientes de arranque por el movimiento simultaneo del sinfín y del sistema hidráulico o cuando entraba en una zona donde el material se encontraba muy duro o compactado produciendo atascos y paradas no deseadas. Con esto se logró una gran disminución en el consumo de energía, tomando esto como ventaja para disminuir los gastos de producción.
- Se instaló tres sensores ultrasónicos para medir el nivel de agua en unas cisternas, un sensor de presión y un sensor de temperatura Pt100 en el caldero, con esto se logra una mejor obtención de los datos del estado del caldero y del nivel del agua que se va a necesitar en la producción de vapor.
- El software de Mitsubishi GxWorks2 y GTDesigner3 presentan muchas ventajas y desventajas, son amigables con el usuario, aunque no existe mucha información en el internet, todo lo necesario para aprender el manejo de este software se encuentra en la página oficial de Mitsubishi

Electric MEAU.com. El software de la pantalla Kinco que se uso es el EV5000 el cual al comunicarlo con el PLC Mitsubishi permite usar la misma nomenclatura de nombres de los dispositivos y marcas usados en el proyecto, siendo esto una gran ventaja ya que permite el uso de otras marcas y facilidad de comunicación entre ellas.

 La ayuda y cooperación de los técnicos, operadores e ingenieros de la planta fue de gran importancia para el desarrollo del proyecto.

6.2 RECOMENDACIONES

- Antes de realizar o ejecutar un proyecto se debe plantear un estudio exhaustivo y un análisis profundo del proceso, de los equipos y elementos que intervienen en el mismo, de este modo el desarrollo y la ejecución se podrá realizar en forma ordenada y planificada.
- La operación del sistema como son los controles del tablero y las pantallas táctiles deben ser ejecutadas por el personal debidamente capacitado ya que de esto va a depender el correcto funcionamiento del sistema, así mismo la manipulación y cambios en el programa de los PLCs deben ser realizadas por un personal técnico que conozca el software y los equipos para evitar errores y posibles daños en ellos.
- Al realizar una modernización de equipos y automatización de un proceso es muy recomendable que la operación y el control sea parecido al sistema anterior, para que técnicos y operadores estén familiarizados y puedan fácilmente adaptarse al nuevo sistema.
- Si existe alguna falla en la instalación e interconexión de los equipos, se recomienda revisar las protecciones y todas las partes más expuestas como son los cables y conectores ya que existe la probabilidad que se presente algún problema en estos puntos.

REFERENCIAS BIBLIOGRAFICAS

- http://www.elsolucionario.net/2012/12/sistemas-de-control-paraingenieria.html
- 2. http://www.slideshare.net/ptah enki/sistemas-de-control
- 3. http://www.swe.siemens.com/spain/web/es/industry/automatizacion/com_in dustriales/Pages/comunicaciones industriales.aspx
- 4. http://infoplc.net/files/documentacion/comunicaciones/infoPLC_net_ComunicacionEntornos Industriales.pdf
- 5. http://dspace.ups.edu.ec/bitstream/123456789/171/4/Cap%203.pdf
- 6. http://www.smar.com/espanol/hart.asp
- 7. http://www.smar.com/espanol/devicenet.asp
- 8. http://www.can-cia.org/fileadmin/cia/pdfs/CANdictionary v6.pdf
- 9. http://www.modbus.org/specs.php
- 10. http://www.meau.com/eprise/main/sites/public/Downloads/manuals/default? DIV=00015
- 11. http://www.areadigital.gov.co/produccionlimpia/documents/guias/guia_man ejo calderas.pdf
- 12. http://bibdigital.epn.edu.ec/bitstream/15000/325/1/CD-0307.pdf
- 13. Diagrama de Flujo Proporcionado por CODESA "Proceso de Elaboración del Contrachapado"
- 14. Manual CODESA Planta Tratamiento Agua Sistema de Alimentación de Agua
- 15. http://www.meau.com/eprise/main/sites/public/About Us/-Home
- 16. http://www.infoplc.net/descargas/35-mitsubishi?start=50
- 17. http://www.senix.com/

Manuales MITSUBISHI disponible en:

http://www.meau.com/eprise/main/sites/public/About_Us/-Home http://www.meau.com/eprise/main/sites/public/Downloads/manuals/default? DIV=00015

MITSUBISHI. GX WORKS2 – Beginner's Manual

- o MITSUBISHI. GX WORKS2 Operating Manual.
- MITSUBISHI. MELSEC FX training manual.
- MITSUBISHI ELECTRC. Guía Rápida de Programación de Autómatas de la Serie FX
- o MITSUBISHI. GT DESIGNER3 Screen Design Manual.
- o MITSUBISHI. GOT100 Quick Guide
- o MITSUBISHI. User's manual Analog Control Edition
- o MITSUBISHI. INVERTER FR-D700 Instruction Manual (Basic)
- MITSUBISHI ELECTRIC AUTOMATION.FX3U AyF700 RED RS485

Software de Entrenamiento para PLC MITSUBISHI FX3U y Pantalla MITSUBISHI GOT1000:

http://www.meau.com/eprise/main/sites/public/Downloads/Software/default

- o MITSUBISHI. FX Training Software
- o MITSUBISHI.

Manuales y Software para la Pantalla KINCO MT4201T

http://www.kinco.cn/Search.aspx?type=product&par1=11&par2=15&nodeid =167&lang=en

http://www.kinco.cn/Search.aspx?type=product&lang=en&par1=11&par2=1 5&nodeid=121&page=\$page

- o KINCO. EV5000 User Manual.
- o KINCO. HMI and PLC Connecting Guide.
- KINCO. New Function of HMIware Version 1.6.

Manual y Software del Sensor Ultrasónico SENIX

http://www.senix.com/

http://www.senix.com/contact-support.htm

El manual del sensor Senix y el instalador del software SenixView fueron enviados a mi correo directamente por el personal de soporte técnico de la empresa Senix en Estados Unidos.

o SENIX. Manual Senix TSPC-30S.

Manual del Sensor de Presión Danfoss

18. http://www.fidemar.com.uy/catalogos/danfoss/agua/MBS_3000.pdf

o DANFOSS. Manual Sensor de Presión MBS_3000

http://www.ekosnegocios.com/marcas/material/pdf/42.pdf

http://www.pelikanoplywood.com/html/fset.htm

http://www.caballano.com/calderas.htm

http://es.scribd.com/doc/18227112/Caldera-Acuotubular

http://tec.upc.es/ie/practi/Sistemas.pdf

http://www.aie.cl/files/file/comites/ca/articulos/agosto-06.pdf

ANEXOS

ANEXO 1 Diagramas de Flujo del Silo Zanella

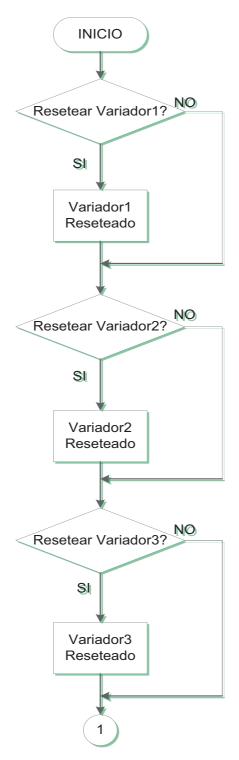


Diagrama de Flujo del PLC Silo Zanella "Reset"

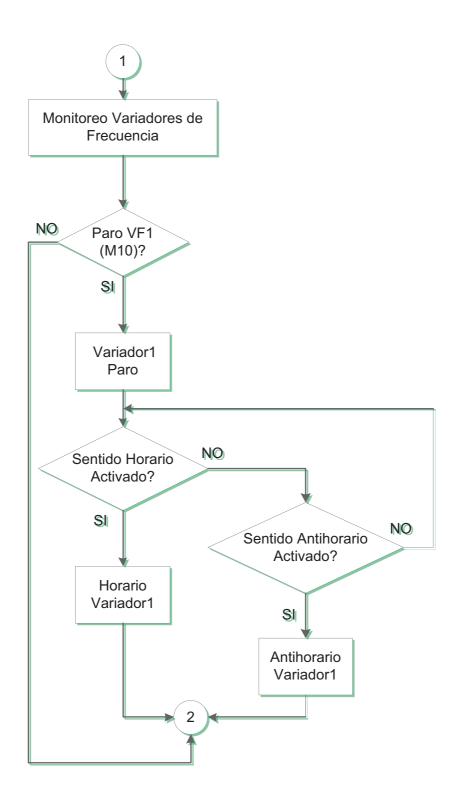


Diagrama de Flujo del PLC Silo Zanella "Control General Variador1"

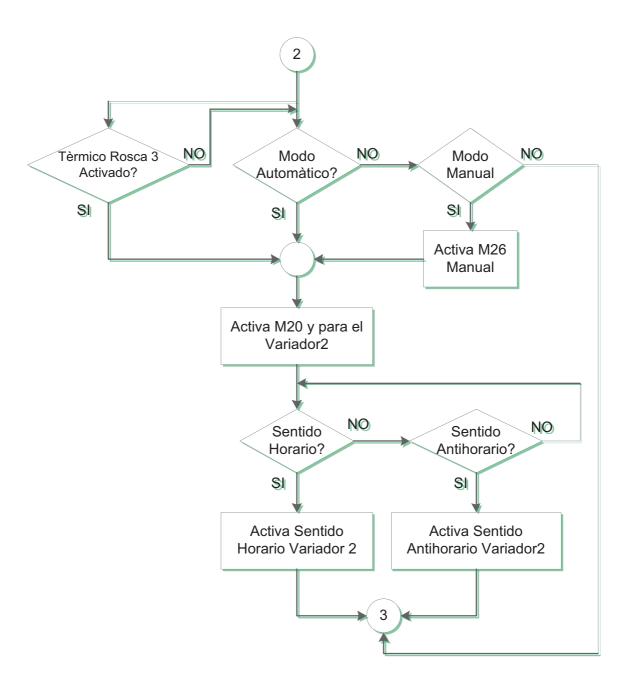


Diagrama de Flujo del PLC Silo Zanella "Control General Variador2"

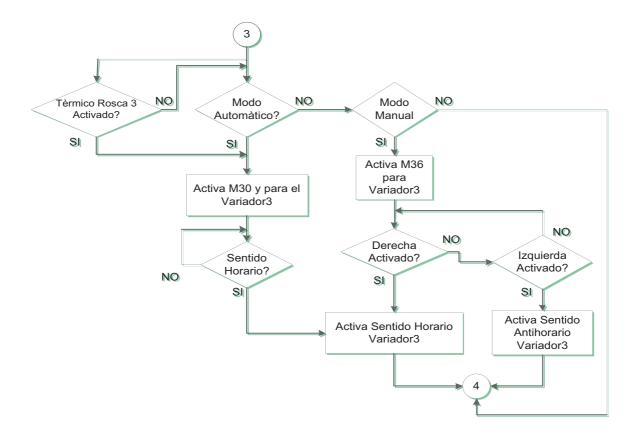


Diagrama de Flujo del PLC Silo Zanella "Control General Variador3"

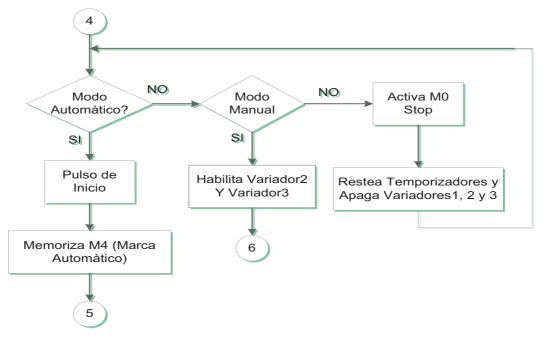


Diagrama de Flujo del PLC Silo Zanella "Programa Principal"

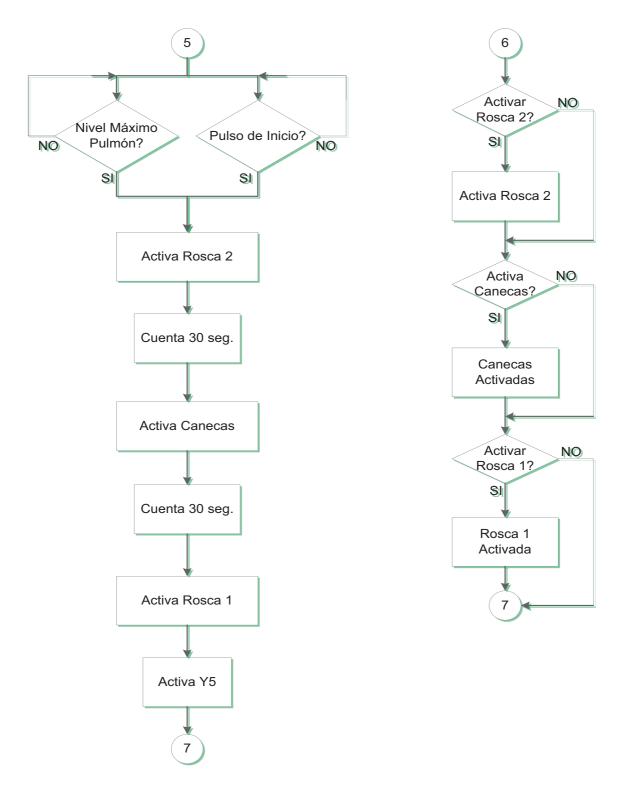


Diagrama de Flujo del PLC Silo Zanella "Programa Principal Sistema de Transferencia

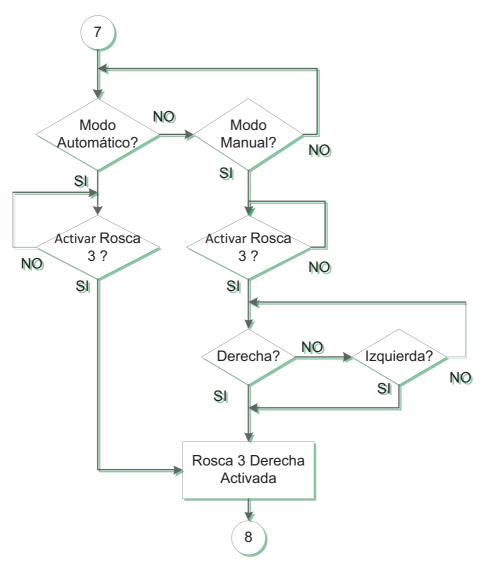


Diagrama de Flujo del PLC Silo Zanella "Programa Principal Sistema de Alimentación 1"

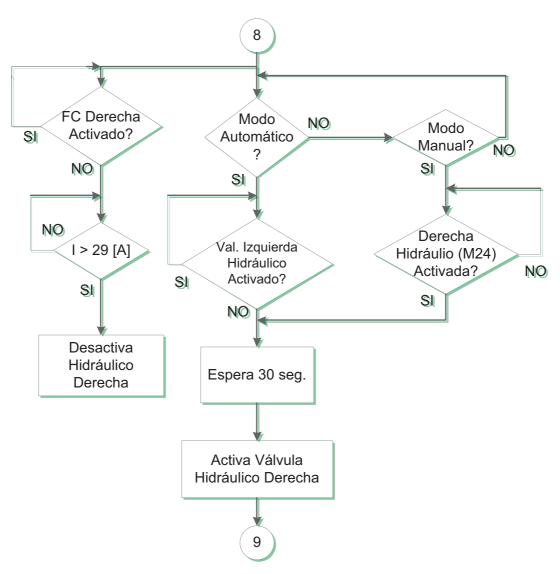


Diagrama de Flujo del PLC Silo Zanella "Programa Principal Sistema de Alimentación 2"

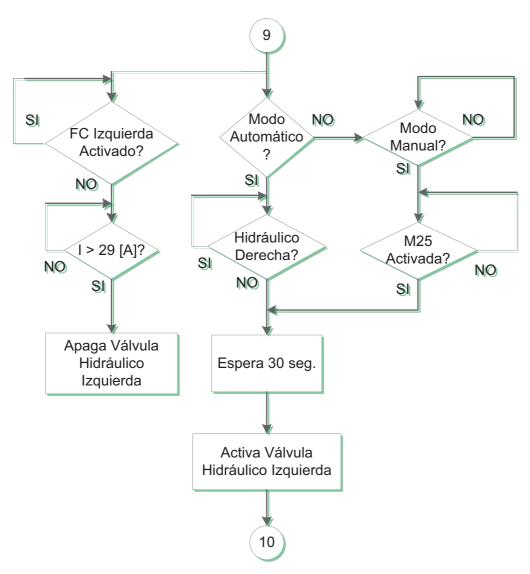


Diagrama de Flujo del PLC Silo Zanella "Programa Principal Sistema de Alimentación 3"

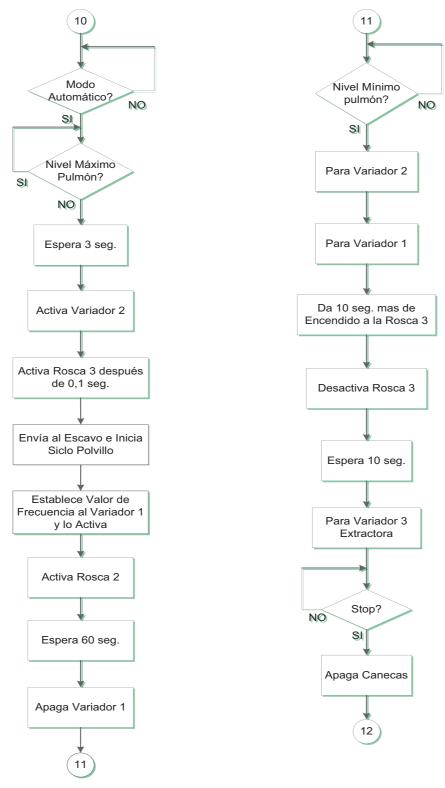


Diagrama de Flujo del PLC Silo Zanella "Programa Principal Inicio y Parada del Proceso"

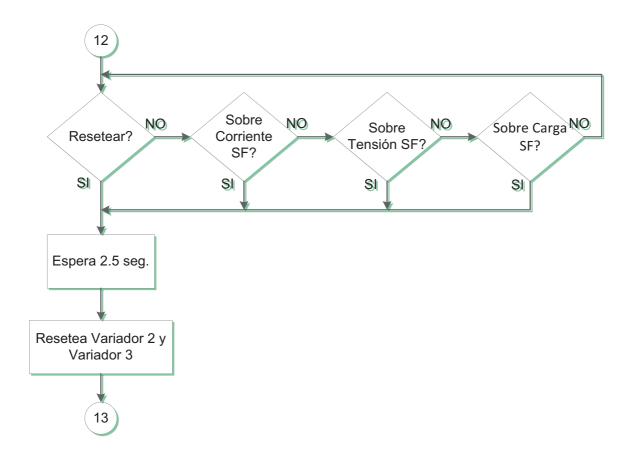


Diagrama de Flujo del PLC Silo Zanella "Reset del Proceso"

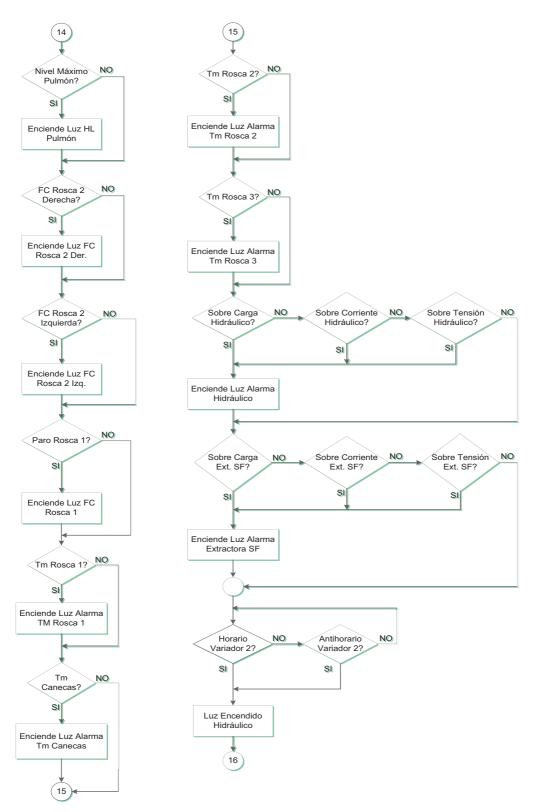


Diagrama de Flujo del PLC Silo Zanella "Luces Informativas, Luces de Alarmas y Funcionamiento"

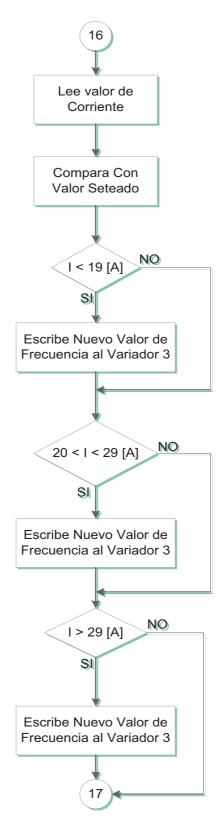


Diagrama de Flujo del PLC Silo Zanella "Umbrales de Funcionamiento"

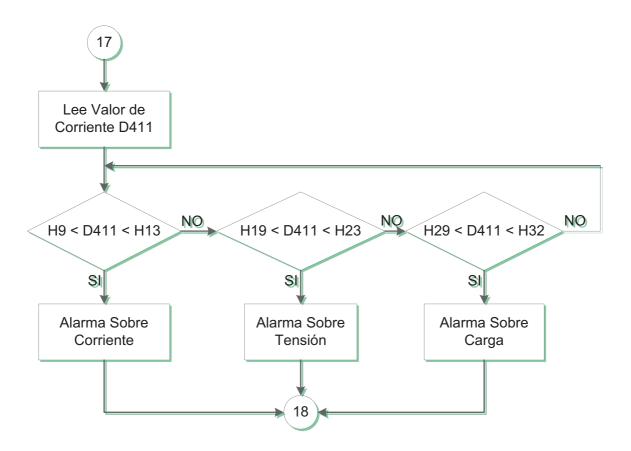


Diagrama de Flujo del PLC Silo Zanella "Alarmas Variadores"

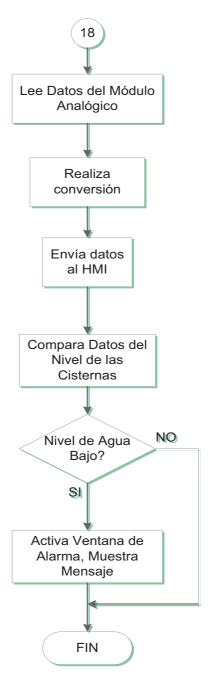


Diagrama de Flujo del PLC Silo Zanella "Lectura Modulo Analógico y Alarmas Cisternas"

ANEXO 2

Lista de Dispositivos de las Pantallas

		DEVICES HMI SILC	ZANELLA	- MITSUBISHI GOT 1055
Dispositivo(Bit)	Screen	Objeto	ID Objeto	
X0003	B8	Bit Lamp		Indicador Final de Carrera Der.
X0004	B8	Bit Lamp		Indicador Final de Carrera Izq.
X0006	B8	Bit Lamp		Indicador Nivel Maximo Pulmon
X0006	B8	Polygon (Lamp)		Indicador Nivel Maximo Pulmon
X0016	B5	Bit Lamp	10000	Indicador Silo
X0016	B5	Bit Lamp		Indicador Silo
X0016	B8	Bit Lamp		Indicador Silo
X0016	B8	Bit Lamp		Indicador Silo
X0024	B5	Polygon (Lamp)		Indicador Falla Rosca 1
Y0001	B8	Bit Lamp	10016	Indicador Extractora (Hidraulico) esta en el lado Der.
Y0001	B8	Bit Lamp		Indicador Extractora (Hidraulico) esta en el lado Der.
Y0001	B8	Bit Lamp		Indicador Extractora (Hidraulico) esta en el lado Der.
Y0002	B8	Bit Lamp		Indicador Extractora (Hidraulico) esta en el lado Izg.
Y0002	B8	Bit Lamp		Indicador Extractora (Hidraulico) esta en el lado Izg.
Y0002	B8	Bit Lamp	10020	Indicador Extractora (Hidraulico) esta en el lado Izq.
Y0003	В8	Bit Lamp		Indicador Rosca 3 Trabajando
Y0003	В8	Bit Lamp		Indicador Rosca 3 Trabajando
Y0003	В8	Bit Lamp		Indicador Rosca 3 Trabajando
Y0003	В8	Bit Lamp	10012	Indicador Rosca 3 Trabajando
Y0003	В8	Bit Lamp		Indicador Rosca 3 Trabajando
Y0003	В8	Bit Lamp		Indicador Rosca 3 Trabajando
Y0003	В8	Line (Lamp)		Indicador Rosca 3 Trabajando
Y0003	В8	Polygon (Lamp)		Indicador Rosca 3 Trabajando
Y0025	B5	Rectangle (Lamp)		Indicador Extractora Trabajando
Y0025	B5	Polygon (Lamp)		Indicador Extractora Trabajando
Y0025	В8	Bit Lamp	10000	Indicador Extractora Trabajando
Y0025	В8	Polygon (Lamp)		Indicador Extractora Trabajando
M24	В8	Switch	10003	Boton Derecha Hidráulico
M25	В8	Switch	10004	Boton Izquierda Hidráulico
M26	В8	Switch	10005	Boton Stop Hidráulico
M34	B5	Switch	10001	Boton Derecha Extractora
M35	B5	Switch	10002	Boton Izquierda Extractora
M36	B5	Switch	10003	Boton Stop Extractora
M62	B23	Bit Lamp	10000	Marca para activar Señalización Alarma Agua Tratada
M63	B24	Bit Lamp	10000	Marca para activar Señalización Alarma Agua Rio
M64	B25	Bit Lamp		Marca para activar Señalización Alarma Condensado
M65	B26	Bit Lamp	10000	Marca para activar Señalización Alarma Cist. Caldero
M610	B7	Bit Lamp	10000	Indicador Sobre Corriente Hidráulico
M612	B7	Bit Lamp	10001	Indicador Sobre Voltaje Hidráulico
M614	B7	Bit Lamp	10002	Indicador Sobre Carga Hidráulico
M710	B4	Bit Lamp	10000	Indicador Sobre Corriente Extractora
M712	B4	Bit Lamp	10001	Indicador Sobre Voltaje Extractora
M714	B4	Bit Lamp	10002	Indicador Sobre Carga Extractora
M2010	B8	Switch	10007	Boton Automático Derecha Hidráulico
M2012	B8	Switch	10006	Boton Automático Izquierda Hidráulico
M2780	B9	Bit Switch	10001	Boton Activar Extractora
M2782	В9	Bit Switch	10002	Boton Desactivar Extractora

M2800	B2	Bit Lamp	10000	Indicador Luz Extractora
M2800	B8	Bit Lamp	10008	Indicador Luz Extractora
M2800	В9	Bit Lamp	10004	Indicador Luz Extractora
M2810	B15	Bit Switch	10000	ON Inyector 2
M2811	B15	Bit Switch		OFF Inyector 2
M2812	B16	Bit Switch		ON VÁLVULA ROTATIVA
M2813	B18	Bit Switch		ON Bomba
M2814	B18	Bit Switch		OFF Bomba
M2815	B15	Bit Lamp		Luz Inyector2
M2816	B16	Bit Lamp		Luz Válvula Rotativa
M2817	B18	Bit Lamp		Indicador Luz Bomba
M2817	B18	Bit Lamp		Indicador Luz Bomba
M2817	B18	Bit Lamp		Indicador Luz Bomba
M2817	B18	Rectangle (Lamp)	10010	Indicador Luz Bomba
M2817	B18	Polygon (Lamp)		Indicador Luz Bomba
M2818	B16	Bit Switch	10002	OFF Válvula Rotativa
M2819	B14	Bit Switch		ON Inyector 1
M2820	B14	Bit Switch		OFF Invector 1
M2821	B14			Luz Inyector 1
		Bit Lamp		·
M2822	B17	Bit Switch		ON Rotar Tornillo Sin Fin
M2823	B17	Bit Switch		OFF Rotar Tornillo Sin Fin
M2824	B17	Bit Switch		ON Trasladar Tornillo Sin Fin
M2825	B17	Bit Switch		OFF Trasladar Tornillo Sin Fin
M2826	B17	Bit Lamp		Luz Rotar Tornillo Sin Fin
M2827	B17	Bit Lamp		Luz Trasladar Tornillo Sin Fin
M2828	B17	Bit Lamp		Luz Manual Tornilla Sin Fin
M2829	B17	Bit Switch		Boton Manual Tornillo Sin Fin
M2830	B17	Bit Switch		Boton Automático Tornillo Sin Fin
M2831	B17	Bit Lamp		Luz Automático Tornilla Sin Fin
Dispositivo(Word)		Objeto	ID Objeto	
D22	B10	Numerical Input		Presión del Caldero
D22	B10	Panelmeter	10014	Presión del Caldero
D28	B11	Numerical Input	10013	Temperatura del Caldero
D28	B11	Panelmeter	10014	Temperatura del Caldero
D32	B12	Numerical Input	10013	Nivel en Cisterna
D32	B12	Bar Graph	10014	Nivel en Cisterna
D34	B12	Numerical Input	10015	Volumen de Agua
D202	B6	Numerical Display	10002	Monitoreo Frecuencia Hidráulico
D204	B6	Numerical Display	10001	Monitoreo Corriente Hidráulico
D206	В6	Numerical Display	10000	Monitoreo Voltaje Hidráulico
D302	В3	Numerical Display	10002	Monitoreo Frecuencia Extractora
D304	В3	Numerical Display		Monitoreo Corriente Extractora
D304	B9	Numerical Display		Monitoreo Corriente Extractora
D306	B3	Numerical Display		Monitoreo Voltaje Extractora
D333	B9	Numerical Input		Ingresar Valor Corriente
D700	Common	Screen Switching		0
D700	B1	Switch	10000	
		1		1

	DEVICES HMI SILO POLVILLO - KINCO MT4201T						
Dispositivo(Bit)	Screen	Objeto	ID Objeto	Función			
Y0000	9: INYECTOR2	Bit State Lamp	BL0	LUZ			
Y0001	10: VÁLVULA ROTATIVA	Bit State Lamp	BL0	LUZ			
Y0002	11: TORNILLO SIN FIN	Bit State Lamp	BL2	LUZ: ROTAR			
Y0004	8: INYECTOR1	Bit State Lamp	BL0	LUZ			
Y0005	12: BOMBA	Bit State Lamp	BL0, BL3, Figura	INDICADOR			
M11	9: INYECTOR2	Bit State Switch	SW0	OFF			
M12	9: INYECTOR2	Bit State Switch	SW1	ON			
M13	10: VÁLVULA ROTATIVA	Bit State Switch	SW1	ON			
M14	10: VÁLVULA ROTATIVA	Bit State Switch	SW0	OFF			
M15	8: INYECTOR1	Bit State Switch	SW9	DETENER			
M16	8: INYECTOR1	Bit State Switch	SW2	INICIAR			
M17	11: TORNILLO SIN FIN	Bit State Switch	SW3	ON: ROTAR			
M18	11: TORNILLO SIN FIN	Bit State Switch	SW5	ON: TRASLADAR			
M19	11: TORNILLO SIN FIN	Bit State Switch	SW2	OFF: ROTAR			
M20	12: BOMBA	Bit State Switch	SW3	ON			
M21	12: BOMBA	Bit State Switch	SW2	OFF			
M22	11: TORNILLO SIN FIN	Bit State Switch	SW4	OFF: TRASLADAR			
M23	11: TORNILLO SIN FIN	Bit State Lamp	BL3	LUZ: TRASLADAR			
M24	11: TORNILLO SIN FIN	Bit State Switch	SW6	MANUAL			
M25	11: TORNILLO SIN FIN	Bit State Switch	SW7	AUTOMÁTICO			
M26	11: TORNILLO SIN FIN	Bit State Lamp	BL0	LUZ: MANUAL			
M27	11: TORNILLO SIN FIN	Bit State Lamp	BL1	LUZ: AUTOMÁTICO			
Dispositivo(Word)	Screen	Objeto	ID Objeto	Función			
GD100	Common	Screen Switching					
GD101	Common	Screen Switching					
D10	13: NIVEL CISTERNA	Bar Graph	BR0	INDICADOR NIVEL			
D10	13: NIVEL CISTERNA	Number Display	ND0	INDICADOR NIVEL			

ANEXO 3

Lista de Dispositivos de los PLCs

DEVICES PLC SILO ZANELLA – MITSUBISHI FX3U

	ENTRADAS						
Device	Contact	Comment					
X000	*	Manual					
X001	*	Automático					
X002	*	Emergencia					
X003	*	FC Derecha					
X004	*	FC Izquierda					
X005	*	Nivel Minimo en Pulmón (Micro)					
X006	*	Nivel Máximo en Pulmón (Micro)					
X007	*	Termistor					
X010	*	Rosca 1 ON					
X011	*	Rosca 1 OFF					
X012	*	Rosca 3 Derecha					
X013	*	Rosca 3 Izquierda					
X014	*	Paro					
X015	*	Hidráulico Derecha					
X016	*	Hidráulico Izquierda					
X17		Reserva					
X020	*	Rosca 2 ON					
X021	*	Rosca 2 OFF					
X022	*	Canecas ON					
X023	*	Canecas OFF					
X024	*	Tm Rosca 1 (Térmico)					
X025	*	Tm Canecas (Térmico)					
X026	*	Tm Rosca 2 (Térmico)					
X027	*	Tm Rosca 3 (Térmico)					

SALIDAS						
Device	Contact	Coil	Comment			
Y000			Reserva			
Y001	*	*	Derecha Válvula Hidraulico			
Y002	*	*	Izquierda Válvula Hidraulico			
Y003	*	*	Rosca 3 Derecha			
Y004	*	*	Rosca 3 Izquierda			
Y005		*	Luz Reset			
Y006			Reserva			
Y007			Reserva			
Y010	*	*	Rosca 1			
Y011	*	*	Canecas (Variador 4)			
Y012	*	*	Rosca 2 (Variador 5)			
Y013		*	Luz Nivel Máximo			
Y014		*	Luz Fc Rosca 2			
Y015		*	Luz Silo lleno			
Y016		*	Luz Fc Rosca 1			
Y017		*	Luz Tm Rosca 1			
Y020		*	Luz Tm Canecas			
Y021		*	Luz Tm Rosca 2			
Y022		*	Luz Tm Rosca 3			
Y023		*	Luz Encendido Hidraulico			
Y024		*	Luz Alarma Hidraulico			
Y025		*	Luz Encender SF			
Y026		*	Luz Alarma SF			
Y27			Reserva			

	MARCAS				
Device	Contact	Coil	Comment		
MO	*	*	Stop		
M1	*	*	Automático		
M2	*		Reset		
M3	*	*	Manual		
M4	*	*	Enclavamiento Automático		
M5	*	*	Enclavamiento Emergencia		
M10	*	*	Paro Variador 1		
M11	*	*	Horario Variador 1		
M12	*		Antihorario Variador 1		
M20	*	*	Paro Variador 2		
M21	*	*	Horario Variador 2		
M22	*		Antihorario Variador 2		
M24	*		Derecha Hidraulico Memoria desde la HMI		
M25	*		Izquierda Hidraulico Memoria desde la HMI		
M26	*		Paro del Hidraulico desde el HMI		
M27	*	*	Resetea T13		
M28	*	*	Resetea T14		
M30	*	*	Paro Variador 3		
M31	*	*	Horario Variador 3		
M32	*	*	Antihorario Variador 3		
M34	*		Derecha Extractora Sin Fin HMI		
M35	*		Izquierda Extractora Sin Fin HMI		
M36	*		Stop Extractora Sin Fin HMI		
M40	*	*	Desactiva Hidráulico Dere. Y Activa Hidráulico Izg.		
M42	*	*	Desactiva Hidráulico Izq. Y Activa Hidráulico Dere.		
M50			Reserva para > - HL		
M51			Reserva para = - Level		
M52	*	*	Activa por LL y permite salto Ven. Alarma Agua Tratada		
M53			Reserva para > - HL		
M54			Reserva para = - Level		
M55	*	*	Activa por LL y permite salto Ven. Alarma Agua Rio		
M56			Reserva para > - HL		
M57			Reserva para = - Level		
M58	*	*	Activa por LL y permite salto Ven. Alarma Condensado		
M59			Reserva para > - HL		
M60			Reserva para = - Level		
M61	*	*	Activa por LL y permite salto Ven. Alarma Cist. Caldero		
M62		*	Marca para activar Señalización Alarma Agua Tratada		
M63		*	Marca para activar Señalización Alarma Agua Rio		
M64		*	Marca para activar Señalización Alarma Condensado		
M65		*	Marca para activar Señalización Alarma Cist. Caldero		

	N/100		*	En Oparación Variador 1
	M100		*	En Operación Variador 1
	M200	*	*	En Operación Variador 2
	M204	*	*	Sobrecarga Hidráulico
	M207	*	*	Alarma Hidráulico
	M300	*		En Operación Variador3
	M304		*	Sobrecarga
	M307	*	*	Alarma
	M400	*	*	De 0 a 19 [Amp] Variador 3
	M401	*	*	De 20 a 29 [amp] Variador 3
	M402	*	*	Mayor a 29 [Amp] Variador 3
	M403	*	*	Setea el T30 en 10 Seg. (variador 3)
	M404	*	*	Setea el T20 en 3 Seg. (variador 3)
	M406	*	*	Setea el T21 en 1 Seg. (Variador 3)
	M407	*	*	Desactiva M31
	M415	*	*	Activa Hidráulico cuando la I. es mayor a 29 Amp.
	M416	*	*	Bloqueo Automático del Hidráulico, Derecha
	M417	*	*	Bloqueo Automático del Hidráulico, Izquierda
	M510		*	Alarma SobreCorriente (no esta en el HMI)
Marcas para	M512		*	Alarma SobreTensión (no esta en el HMI)
enviar del	M514		*	Alarma Sobrecarga (no esta en el HMI)
PLC Master	M610	*	*	Alarma Sobrecorriente Hidráulico HMI
al PLC	M612	*	*	Alarma SobreTensión Hidráulico HMI
Esclavo	M614	*	*	Alarma SobreCarga Hidráulico HMI
Laciavo	M710	*	*	Alarma SobreCorriente Sin Fin Extractora HMI
	M712	*	*	Alarma SobreTensión Sin Fin Extractora HMI
	M714	*	*	Alarma Sobrecarga Sin Fin Extractora HMI
	M901	*		Reset Variador 1
	M902	*	*	Reset Variador 2
	M903	*	*	Reset Variador 3
	M1000		*	S3 Inyector 2 Marcha
	M1001		*	S2 Inyector 2 Paro
	M1002		*	Válvula Rotativa ON
	M1003		*	Inicia ciclo automático en el Polvillo
Mareas nara	M1004		*	Desactiva el Polvillo por Maximo Nivel en el Pulmon
Marcas para Recibir del	M1005		*	Enciende Bomba de Agua
	M1006		*	Apaga Bomba de Agua
PLC Esclavo	M1007		*	Apaga Válvula Rotativa
	M1008		*	Automático Inyector 1
	M1009		*	Marca OFF Inyector 1
	M1010		*	Marca ON Rotar Tornillo Sin Fin
	M1011		*	Marca OFF Rotar Tornillo Sin Fin

N41012		*	Marras ON Treataday Tayasilla Cira Fila
M1012		*	Marca ON Trasladar Tornillo Sin Fin
M1013		ļ	Marca OFF Trasladar Tornillo Sin Fin
M1014		*	Marca Manual Tornillo Sin Fin
M1015		*	Marca Automático Tornillo Sin Fin
M1020	*	*	Pulso para Activar M28 y M40, Hidráulico Derecho
M1022	*	*	Pulso para Activar M27 y M42, Hidráulico Izquierda
M1064	*		Inyector 2
M1065	*		Derecha Válvula Rotativa
M1066	*		Bomba
M1067	*		Inyector 1
M1068	*		Rota el Tornillo sin Fin
M1069	*		C1 Sin Fin Rotar
M1070	*		Indica manual en el Tornillo Sin Fin
M1071	*		Indica automático del Tornillo Sin Fin
M2000	*	*	Marca para activar y desactivar la rosca 3 en modo auto
M2005	*	*	Marca para activar la Rosca 2 en modo automático
M2006	*	*	Marca para desactivar la Rosca 2 en modo automático
M2010	*		Botón Automático Derecha Hidráulico HMI
M2012	*		Botón Automático Izquierda Hidráulico HMI
M2780	*		Activar Extractora HMI
M2782	*		Desactivar Extractora HMI
M2800	*	*	Lámpara en HMI e Inicio en Control Corriente
M2810	*		Boton HMI ON Inyector 2
M2811	*		Boton HMI OFF Inyector 2
M2812	*		Boton HMI ON Válvula Rotativa
M2813	*		Boton HMI ON Bomba
M2814	*		Boton HMI OFF Bomba
M2815		*	Lampara HMI Inyector 2
M2816		*	Lampara HMI Válvula Rotativa
M2817		*	Lampara HMI Bomba
M2818	*		Boton HMI OFF Válvula Rotativa
M2819	*		Boton HMI ON Inyector 1
M2820	*		Boton HMI OFF Inyector 1
M2821		*	Lampara HMI Inyector 1
M2822	*		Boton HMI ON Rotar Tornillo Sin Fin
M2823	*		Boton HMI OFF Rotar Tornillo Sin Fin
M2824	*		Boton HMI ON Trasladar Tornillo Sin Fin
M2825	*		Boton HMI OFF Trasladar Tornillo Sin Fin
M2826		*	Lampara HMI Rotar Tornillo Sin Fin
M2827		*	Lampara HMI Trasladar Tornillo Sin Fin
M2828		*	Lampara Tornillo Sin Fin
M2829	*		Boton Manual Tornillo Sin Fin
M2830	*		Boton Automatico Tornillo Sin Fin
M2831		*	Lampara Tornillo Sin Fin
1412031			Lampara Torrinio Siri Tiri

			REGISTROS
Device	Contact	Coil	Comment
D0		*	Registro en el que se almacena el valor analógico CHO
D1		*	Registro en el que se almacena el valor analógico CH1
D2	*	*	Registro en el que se almacena el valor analógico CH2
D3	*	*	Registro en el que se almacena el valor analógico CH3
D6		*	Vol. Agua Tratada enviado al esclavo
D7		*	II .
D10	*		Nivel de Cisterna Agua Trat., Recibido del PLC esclavo
D11	*		II .
D12	*		Nivel de Cisterna Agua Rio, Recibido del PLC esclavo
D13	*		II .
D14	*		Vol. De agua Cisterna Rio, Recibido del PLC esclavo
D15	*		II .
D16	*		Nivel Cisterna condensado, Recibido del PLC esclavo
D17	*		II .
D18	*		Vol. De agua Cisterna Cond., Recibido del PLC esclavo
D19	*		II .
D50	*	*	Registro D3 transformado de entero a coma flotante
D51	*	*	II .
D52	*	*	Resultado de multiplicar D18 por la máxima presión
D53	*	*	II .
D54		*	Valor de Presión
D55		*	II .
D56	*	*	Registro D2 transformado de entero a coma flotante
D57	*	*	п
D58	*	*	Resultado de multiplicar D24 por la máxima Temp.
D59	*	*	п
D60		*	Valor de Temperatura
D61		*	п
D62	*	*	Nivel de Cisterna Agua Tratada
D63	*	*	п
D64		*	Volumen de Agua en la Cisterna Agua Tratada
D65		*	П
D66	*	*	Registro D1 transformado de entero a coma flotante
D67	*	*	"
D68	*	*	Resultado de multiplicar D66 por el máximo nivel Cald.
D69	*	*	II I
D70	*	*	Nivel Cisterna Caldero

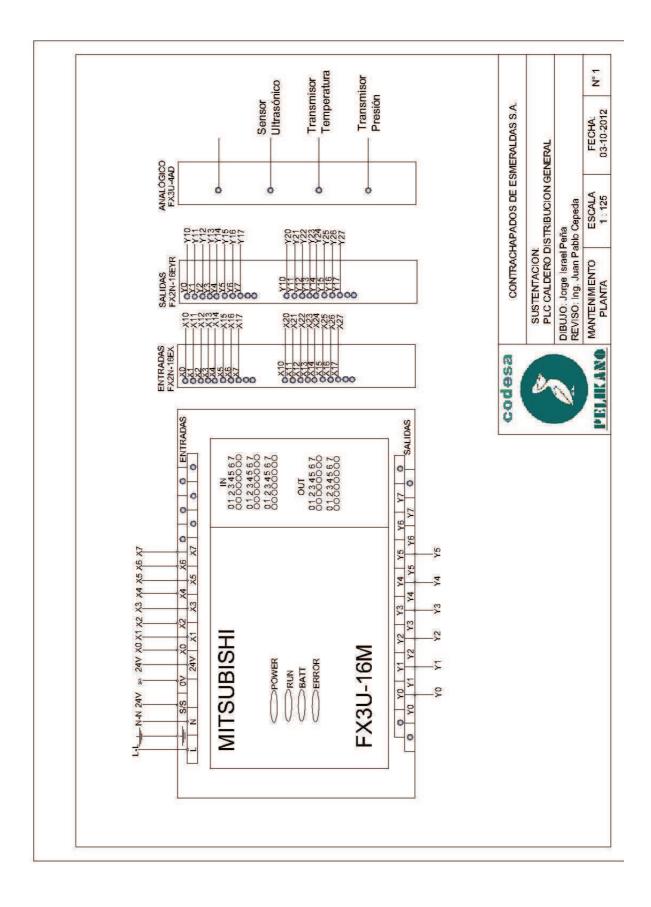
D71	*	*	п
D72		*	Volumen de Agua Cisterna Caldero
D73		*	п
D74		*	Nivel Cisterna Rio
D75		*	п
D76		*	Volumen Cisterna Rio
D77		*	п
D78		*	Nivel Cisterna Condensado
D79		*	п
D80		*	Volumen Cisterna Condensado
D81		*	п
D102		*	Monitoreo Frecuencia Variador 1 Rosca 3
D104		*	Monitoreo Corriente Variador 1 Rosca 3
D106		*	Monitoreo Voltaje Variador 1 Rosca 3
D150	*	*	Valor Inicial de Frecuencia del Variador 1 Rosca 3
D250	*	*	Valor Inicial de Frecuencia del Variador 2
D304	*	*	Monitoreo Corriente Extractora
D333	*	*	Ingresar Valor Corriente
D350	*	*	Valor Inicial de Frecuencia del Variador 3
D410	*	*	Registro Principal de Alarma del Variador 1
D411	*	*	Registro de Comparación para Activar Alarmas VAR 1
D412		*	п
D420	*	*	Registro Principal de Alarma del Variador 2
D421	*	*	Registro de Comparación para Activar Alarmas VAR 2
D422		*	п
D430	*	*	Registro Principal de Alarma del Variador 3
D431	*	*	Registro de Comparación para Activar Alarmas VAR 3
D432		*	II .
D610	*		Parametro Escritos al Variador 1
D612	*	*	Parametro Escritos al Variador 1
D614	*	*	Parametro Escritos al Variador 1
D620	*		Parametro Escritos al Variador 2
D622	*	*	Parametro Escritos al Variador 2
D624	*	*	Parametro Escritos al Variador 2
D630	*	*	Parametro Escritos al Variador 3
D632	*	*	Parametro Escritos al Variador 3
D634	*	*	Parametro Escritos al Variador 3
D666	*	*	Reigistro del valor de Corriente Ingresado

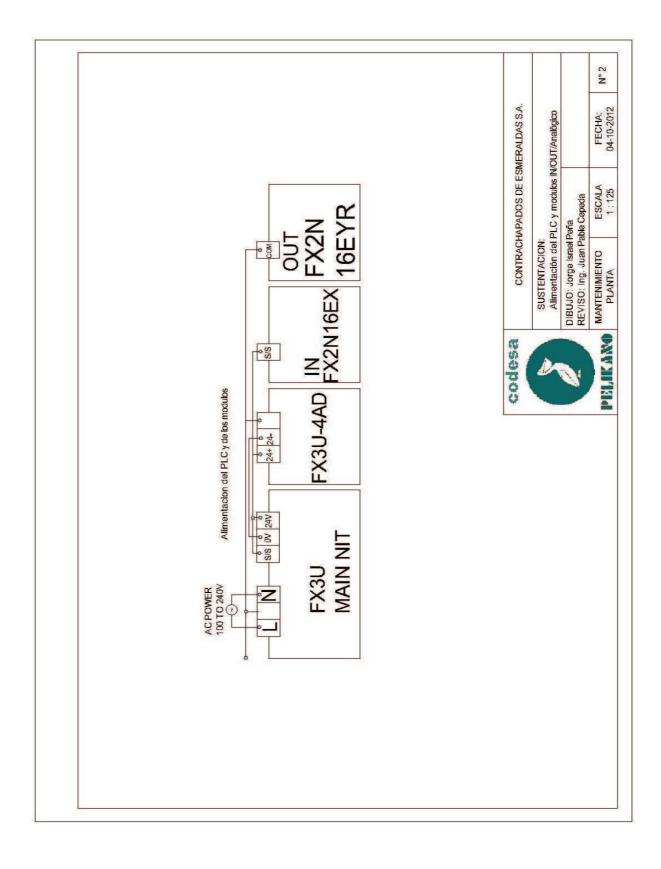
	TEMPORIZADORES						
Device	Contact	Coil	Comment				
T1	*	*	Pulso Start				
T2	*	*	Pulso Start Bloqueo				
T11	*	*	Timer para desactivar M28 despues de 2.4 min.				
T12	*	*	Timer para desactivar M27 despues de 2.4 min.				
T13	*	*	Activa M1020 despues de 100 seg. Hidra. Dere.				
T14	*	*	Activa M1022 despues de 100 seg. Hidra. Izq.				
T20	*	*	Timer Encendido Variador 2				
T21		*	Timer Apagado Variador 2				
T30	*	*	Timer Apagado Variador 3				
T42	*	*	Giro Antihorario Variador 3				
T43	*	*	Giro horario Variador 3				
T50	*	*	Timer Reset Clear Variador 3				
T51	*	*	Timer Encendido Caneca				
T52	*	*	Timer Encendido Rosca 1				
T53	*	*	Timer Encendido Rosca 3				
T123	*	*	Mas Tiempo de Encendido a la Rosca 3				
T234	*	*	Tiempo que Necesita el Conversor Analógico				

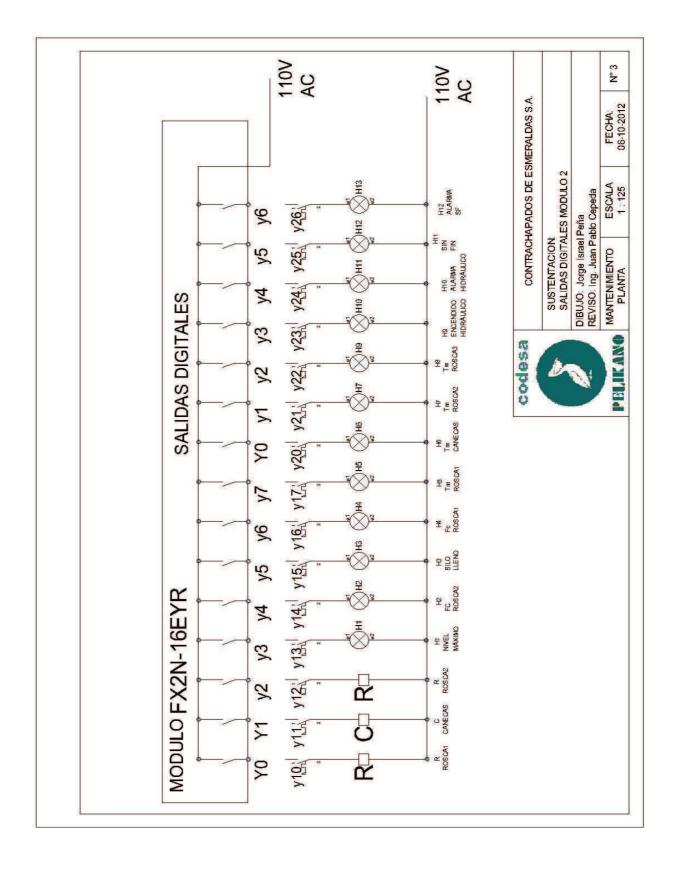
DEVICES PLC SILO POLVILLO – MITSUBISHI FX3U

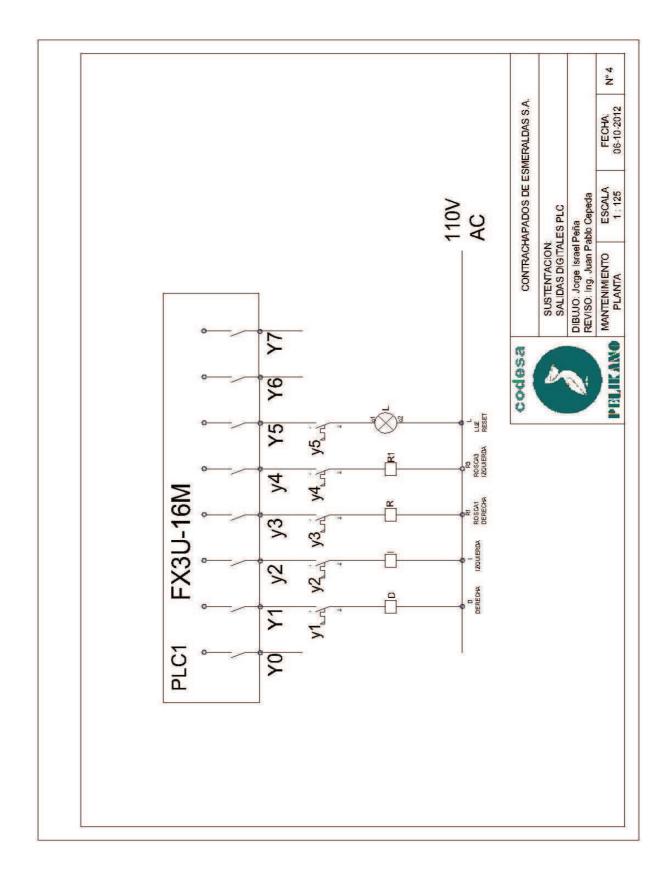
	ENTRADAS					
Device	Contact	Comment				
X000	*	Emergencia (Bloqueo en Tunel)				
X001	*	Térmico Inyector 2				
X002	*	Térmico Válvula Rotativa				
X003	*	Térmico Inyector 1				
X004	*	Termico C1 (Rotar Sin Fin)				
X005	*	Térmico C2 (Trasladar Sin Fin)				
X006	*	Térmico Bomba				

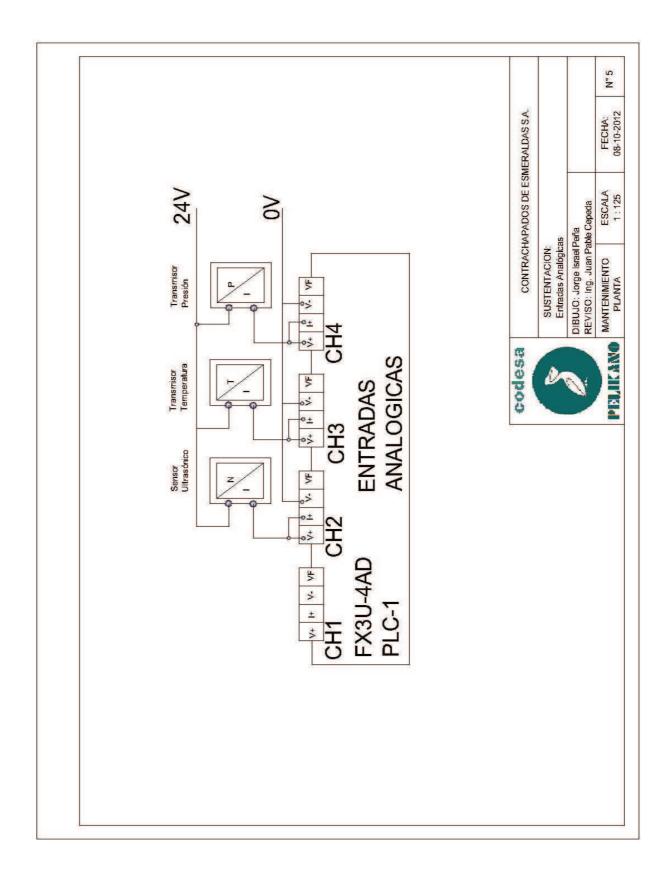
SALIDAS							
Device	Contact	Coil	Comment				
Y000	*	*	Inyector 2				
Y001	*	*	Válvula Rotativa				
Y002	*	*	C1 Sin Fin (Rotar)				
Y003	*	*	C2 Sin Fin (Trasladar)				
Y004	*	*	Inyector 1				
Y005	*	*	Bomba				


				MARCAS
	Device	Contact	Coil	Comment
	M1	*	*	Marca para que despues de 13 seg. Se apague la Y3
	M3	*	*	Marca para que despues de T3 se pueda activar Y3
	M11	*		S1 Inyector 2 / Paro
	M12	*		S5 Inyector 2 / Marcha
	M13	*		S6 Válvula Rotativa / Marcha
M14 *			S7 Válvula Rotativa / Paro	
	M15	*		S1 Inyector 1 / Paro
	M16	*		S1 Inyector 1 / Marcha
	M17	*		S3 Tornillo Sin Fin / Trasladar ON
	M18	*		S4 Tornillo Sin Fin / Rotar ON
	M19	*		S3 Tornillo Sin Fin / Trasladar OFF
	M20	*		Bomba ON
	M21	*		Bomba OFF
	M22	*		S4 Tornillo Sin Fin / Rotar OFF
	M23	*	*	Marca para indicar que rota el Sin Fin y enviar la M1068
	M24	*		Boton Manual Sin Fin ON
	M25	*		Boton Manual Sin Fin OFF
	M26		*	Foco Manual Tornillo Sin Fin
	M27		*	Foco Automático Tornillo Sin Fin
		*	*	
	M30	*	*	Bobina para poner en manual el Tornillo Sin Fin
	M31		*	Marca para activar la 1071 de automatico del Sin Fin
	M1000			S3 Inyector 2 Marcha
	M1001			S2 Inyector 2 Paro
	M1002			Válvula Rotativa ON
	M1003			Inicio Automático en Válvula Rotativa
_	M1004			D11 Nivel Maximo Pulmon
	M1005			Bomba ON
para	M1006			Bomba Off
	M1007			Válvula Rotativa OFF
	M1008			Inyector 1 ON
	M1009			Inyector 1 OFF
1aster	M1010			Sin Fin Rotar ON
	M1011			Sin Fin Rotar OFF
	M1012			Sin Fin trasladar ON
	M1013			Sin Fin trasladar OFF
	M1014	*		Manual Sin Fin ON
	M1015	*		Manual Sin Fin OFF
	M1064		*	Envia al master a la M2815 y enciende lamp en HMI Inyector2
larcac	M1065		*	Se activa con la Y1 y envia a la M2816 y enciende la lamp en el HMI de la V.R.
larcas	M1066		*	Se activa con la Y5 y envia a la M2817 y enciende la lamp en el HMI de la Bomba
para	M1067		*	Se activa con la Y4 y envia a la M2821 y enciende la lamp en el HMI del inyector
nviar	M1068		*	Se activa con la M23 y envia a la M2826 y enciende la lamp de rotar del Sin Fin
l PLC	M1069		*	Se activa con la Y2, envia a la M2827 y enciende la lamp de trasladar del sin fin
laster	M1070		*	Se activa con la M30, envia a la M2828 y enciende la lamp del manual del sin fir
	M1071		*	Se activa con la M31, envia a la M2831 y activa la lamp del automático del sin fi


	REGISTROS						
Device	Contact	Coil	Comment				
D0		*	Registro en el que se almacena el valor analógico CHO				
D1		*	Registro en el que se almacena el valor analógico CH1				
D2		*	Registro en el que se almacena el valor analógico CH2				
D3	*	*	Registro en el que se almacena el valor analógico CH3				
D6	*		Vol. Agua Tratada recibido del Master				
D7			II .				
D10		*	Nivel de Cisterna Agua Tratada				
D11		*	II .				
D12		*	Nivel de Cisterna Agua Rio				
D13		*	II .				
D14		*	Volumen de Cisterna Agua Rio				
D15		*	II .				
D16		*	Nivel de Cisterna Condensado				
D17		*	II .				
D18		*	Volumen de Cisterna Condensado				
D19		*	II .				
D20	*	*	Registro D3 transformado de entero a coma flotante				
D21	*	*	II .				
D22	*	*	Resultado de multiplicar D20 por el máximo nivel				
D23	*	*	II .				
D24	*	*	Registro D2 transformado de entero a coma flotante				
D25	*	*	II .				
D26	*	*	Resultado de multiplicar D24 por el máximo nivel				
D27	*	*	II .				
D28	*	*	Registro D1 transformado de entero a coma flotante				
D29	*	*	II .				
D30	*	*	Resultado de multiplicar D28 por el máximo nivel				
D31	*	*	II .				


TEMPORIZADORES				
Device	Contact	Coil	Comment	
T1	*	*	Tiempo de Movimiento de Traslación 13 seg.	
T2	*	*	Tiempo de Movimiento Rotacional 56 seg.	
T3	*	*	Tiempo para que Inicie el movimiento Traslacional	
T234	*	*	Tiempo que Necesita el Conversor Analógico	


ANEXO 4


Planos del Sistema de Control

