ESCUELA POLITECNICA NACIONAL

FACULTAD DE INGENIERIA ELECTRICA

ARMONICAS EN TRANSFORMADORES

TESIS PREVIA A LA OBTENCION DEL TITULO DE INGENIERO

ELECTRICO

DIRECTOR

Ing. Milton Toapanta Oyos

AUTOR

...

Alex O. Orellana Oviedo

QUITO - ECUADOR

CERTIFICACION

En calidad de Director de tesis de grado certifico que la tesis previo a la obtención del Titulo de Ingeniero Eléctrico bajo el tema " Armónicas en Transformadores " , ha sido realizada de manera personal por el Señor Alex Orellana Oviedo .

Ng Milton Toppanta Oyos

DIRECTOR DE TESIS

DEDICATORIA

A mis padres y mi familia , quiénes con su ejemplo , apoyo y fuerza espiritual han sido la base de mi educación .

ALEX O. ORELLANA OVIEDO

AGRADECIMIENTO

A la Escuela Politécnica Nacional y a todas las personas que pertenecen y que siguen fortificando la Facultad de Ingenieria Eléctrica , de manera especial al Director de esta Tesis Ingeniero Milton Toapanta Oyos , y a todas las personas que forman parte del Departamento de Maquinas Eléctricas y el Laboratorio de Maquinas Eléctricas .

INDICE

1I	NTRODU	CCION	1
1.	CAPI	TULO 1	ž
1.			
- · ·	1.1.	El fenómeno de saturación en materiales	
-		ferromagnéticos	3
	1.2.	Análisis teórico y matemático de las bobinas	14
	1.3.	El transformador analizado como el	
		acoplamiento magnético de dos bobinas	
_		y su circuito equivalente	20
_	1,4.	Distorsión en las ondas de voltaje y	
		corriente debido a la presencia de	
		materiales ferromagnéticos	27
	1.5.	Pruebas experimentales	42
		1.5.1. Caracteristica voltaje-corriente	42
		1.5.2. Corriente de excitación en el	
		transformador	<i>4</i> 1. 4 1 .

CAPITULO 2

2.	CONE)	IONES	DE	BANC	DS DE	TRAN	SFORM	ADORES	Y SU	
	INFL	JENCIA E	EN OP	ERAC	10N	т. D. И. И. Р.			инниц	46
	2.1.	Introdu	lcció	ſì" "" ,	ны и н н н at 31			- 11 et el 19 31 a	(et bil bil bil bil 31	46
	2.2.	Generad	zión	de	armóni	cas	en	bancos	s de	
		transfo	ormad	ores	depen	diend	o de	la con	nexión	
		de los	mi.sm	<u>0</u> 5.,,		и и и и	н м н к н ч	د ان ۲۵ ما او از م	4 m K m H H	49
		2.2.1.	Cone	xión	estrel	la-es	trella	3		49
			2.2.	1 1	Conexi	ón es	trella	a – est	rella	
					con ne	utros	aisla	ados	א נו א נא ו	51
			2.2.	1.2.	Conexi	ón es:	trella	a — est	rella	
					con c	uatro	hild)s er	ı el	
					primar	io				56
		2,2.2.	Cone:	xión	delta.	. ir e e n 1	м н н ч н <i>и</i>			59
			2.2.3	2.1.	Conexi	ón de:	lta —	estrel	.la	46
			2.2.	2.2.	Conexi	ón es	trella	a – del	.ta	67
			2.2.3	2.3.	Conexi	ón de:	lta -	delta.		70
*		2.2.3.	Cone:	xión	delta	abier	ta o V	/ — Ų.,,	HF BC 29 H K	72
		2.2.4.	Cone:	xión	estr	ella -	- estr	ella	con	
			terc	iaric) delta		# # # h 74 P H			74
~	~ <u> </u>	2.2.5.	Conve	ersor	– estát	ിനാനം നിര	e fred	uencia	4	77
	2.3.	Circuit	to equ	lival	ente d	e tero	cer ar	mónicc		85
	2.4.	Pruebas	5 ex	perin	entale	e de	los	armć	nicos	
		generac	ios (en 1	os ban	cos de	e tran	sforma	dores	
		para lo	os di [.]	ferer	tes ti	pos de	e cone	xiones	ח א ש א ת	93
		2.4.1.	Cone:	kión	estrel	1a - e	estre]		39 87 17 8 9 75	93

	2.4.1.1 Conexión estrella - estrella	
	con neutros aislados	93
	2.4.1.2. Conexión estrella - estrella	
	con cuatro hilos en el	
	circuito primario	95
2.4.2.	Conexión delta	97
	2.4.2.1. Conexión delta - estrella	97
	2.4.2.2. Conexión estrella - delta	99
	2.4.2.2.1. Neutros aislados	99
	2.4.2.2.2. Neutros interconectados	101
	2.4.2.3. Conexión delta - delta	103
2.4.3.	Conexión delta abierto o V - V	106
2.4.4.	Conexión estrella - estrella cón	
	terciario delta	109
2.4.5.	Determinación experimental del circuito	
	equivalente de tercer armónico	111

CAPITULO 3

<u> </u> 3.	INFL	UENCIA DE LOS ARMONICOS EN BANCOS TRIFASICOS	
~	DE-T	RANSFORMADORES	114
	3.1.	Introducción	116
	3.2.	Naturaleza fisica de la inestabilidad del	
-		neutro	118
	3.3.	Desplazamiento del neutro	122
		3.3.1. Inversión del neutro	122
		3.3.1.1. Inversión del neutro en un	
		circuito monofásico	122

3.3.1.2. Inversión del neutro en un

3.4.	Oscilación del neutro	127
2"2"	Flujo de potencia de una frecuencia a otra	140
3.6.	Auto-excitación de los voltajes anormales	
	por saturaciones alternas sucesivas	141
3.7.	Pruebas experimentales de inestabilidad del	
	neutro	150

CAPITULO 4

4. SIMULACION MATEMATICA DE LOS ARMONICOS EN BANCOS	
TRANSFORMADORES.	157
4.1. Bases del análisis	157
4.2. Forma de uso del programa aplicado al	
presente estudio	181
4.3. Análisis de los resultados	190
CONCLUSIONES	197
RECOMENDACIONES	206
APENDICES	209
Apéndice 1	209
 Apéndice 2	214
Apéndice 3	221
ANEXO	226
BIBLIOGRAFIA	

INTRODUCCION.

Los transformadores trifásicos formados por un solo núcleo o tres transformadores monofásicos conectados en un banco transformador, pueden ser conectados de varias maneras; las cuales determinarán el contenido armónico en las señales de voltaje, corriente y flujo. De esta manera se justifica su uso dentro de cada sistema en particular.

A pesar de que este tema ha sido tratado ya en _____mucho tiempo, en la actualidad no deja de ser motivante su anàlisis por lo interesante y lo importante que es este fenómeno con el uso de transformadores.

Analizando el origen que producen estas distorsiones en las señales, se podrá comprender en <u>mejor forma el efecto que tienen estas distorsiones en</u> el comportamiento de un Sistema Eléctrico.

For tanto, el objetivo del presente trabajo es determinar las causas que originan las distorsiones en las señales de voltaje, corriente y flujo dentro del transformador monofásico; asi como también analizar estas características dentro de un banco de transformación. Dependiendo del tipo de conexión que tenga el banco se limitará el contenido armónico de las señales de corriente, lo que determinará las condiciones, beneficios y perjuicios que tiene un determinado tipo de conexión del banco dentro de un Sistema Eléctrico.

Con la ayuda de un computador digital, una vez que se han determinado las causas que contribuyen a la distorsión en las señales de corriente, se puede simular las condiciones en que ha de trabajar el banco de transformación para cada tipo de conexión:

Adicionalmente se analizará los inconvenientes que pueden presentarse cuando es utilizado un banco de transformación con conexión estrella – estrella con neutro enterrado sobre el lado secundario en una linea de transmisión larga, o a través de su modelo equivalente que sería el de un banco transformador con conexión estrella – estrella alimentando una carga trifásica capacitiva con conexión estrella y con su neutro conectado al neutro del lado secundario del banco transformador.

Todos los fenómenos señalados serán comprobados y determinados con la ayuda del equipo disponible en el laboratorio de maquinas eléctricas y en otros laboratorios de la Facultad de Ingeniería Eléctrica de la Escuela Politécnica Nacional.

1. FENOMENOS MAGNETICOS QUE SE PRODUCEN EN LAS BOBINAS.

1.1. <u>El fenómeno de saturación en materiales</u> <u>ferromagnéticos</u>.

Para poder comprender y definir lo que es la saturación, se debe comprender primero algunos fenómenos físicos que se presentan a nivel atómico, ya que estas determinarán el comportamiento magnético macroscópico de los materiales. Inicialmente se puede imaginar que un átomo está constituido por un núcleo formado por particulas cargadas en movimiento, alrededor del cual se encuentran girando electrones en -diferentes órbitas y en su propio eje; fenómeno que es

De los experimentos realizados por OERSTED en 1.920, se conoce que una corriente eléctrica crea un campo magnético. Si se analiza al átomo desde este de vista, se observa que éste se encuentra punto constituido por un conjunto de pequeñas corrientes eléctricas (cargas en movimiento), y como tales son pequeñas fuentes de campo magnético; de esta manera, se puede decir que las propiedades magnéticas de 105 materiales dependen del momento magnético del movimiento orbital de los electrones, del momento magnético de espín, y del espín nuclear; aunque este último representa una pobre contribución las a

propiedades magnéticas de los materiales. El momento dipolar magnético se define como la corriente que da origen al campo magnético multiplicada por la superficie que encierra el circuito magnético. De todas estas fuentes de campo magnético, la más importante es el espin de electrones. Cuando existe un número grande de electrones, los espines opuestos neutralizan su efecto; pero cuando existe un número en exceso de electrones con espin en una misma dirección, estos producen un campo magnético neto.

Hasta ahora se ha analizado los fenómenos magnéticos en los átomos sin la presencia de un campo magnético externo; pero, cuando éste se encuentra presente, es necesario analizar el fenómeno a través de los efectos de este campo sobre los electrones; lo cual se hará mas adelante para comprender en mejor forma el desarrollo del fenómeno.

Cuando se tiene un circuito cerrado por el cual circula una corriente directa, en un campo magnético uniforme, se experimenta una fuerza vectorial total cero, pero esto no quiere decir que el par de torsión sea cero; donde el par de torsión, o momento de una fuerza es un vector cuya magnitud es el producto de las magnitudes de la fuerza vectorial, el brazo de palanca vectorial, y el seno del menor de los ángulos entre los dos; la dirección del vector resultante estará dada por

la regla de la mano derecha; es decir, el vector resultante será el producto cruz entre los dos vectores; así,

$$T = R \times F \tag{1}$$

En un circuito cerrado se tiene la siguiente relación,

$$dT = IdS \times B = dm \times B$$
(2)

Donde, dm = IdS es el momento dipolar magnético diferencial. Escribiendo en una forma mas general se tiene lo siguiente,

$$T = IS \times B = m \times B \tag{3}$$

Estos resultados son exactos cuando se asume que B es constante en toda la superficie, y que la fuerza resultante es cero. Se debe tener en cuenta que el par de torsión sobre una espira que lleva corriente tiene una dirección como para alinear el campo magnético producido por la espira con el campo magnético aplicado.

Una vez determinada esta pequeña base matemática y teórica, se puede decir que un electrón en una órbita actúa como una pequeña espira de corriente y por lo tanto experimenta un par de torsión cuando se encuentra sometido a un campo magnético externo; dicho par tiende a alinear el campo magnético externo con el campo magnético producido por el electrón en orbita.

lo analizado hasta aqui, se puede ahora De clasificar a los materiales en base a la respuesta que tengan éstos bajo la influencia de un campo magnético externo. Aqui, el efecto o respuesta del material por la inducción magnética Fi estará determinado (densidad de flujo magnético), y la causa será el campo aplicado, representado por la magnético externo intensidad de campo magnético H (fuerza magnetizadora). Para determinar esta clasificación de los materiales en forma más clara, se valdrá de lo que se conoce como teoria del entorno o de los dominios magnéticos, la cual puede ser entendida como regiones submicroscópicas dentro del material determinadas por momentos atómicos paralelos, magnetizados a un punto de saturación. Cada una de estas regiones se la denomina entorno o dominio magnético. Aunque dentro de cada dominio existe una dirección de magnetización dominante, los dominios adyacentes no tendrán necesariamente la misma dirección de magnetización. Por lo tanto, sin la presencia de un externo, los dominios magnético tendrán campo direcciones de magnetización aleatorias. Si se considera un material virgen, estos dominios en forma global no darán al material una caracteristica de magnetización a la muestra. Pero cuando existe un campo magnético externo, los dominios variarán en dirección; así que dependiendo de las direcciones 85 que Y adquieran éstos, que puede clasificar a los se materiales en,

Diamagnéticos. Este tipo de material esta compuesto por átomos que no presentan ningún momento magnético permanente; y cuando se los someten a un campo magnético externo, el campo en el interior del material se reduce, esto se debe a que en este tipo de material los dominios asumirán una posición contraria a la dirección del campo magnético externo aplicado.

Paramagnéticos. En este tipo de materiales existe la presencia de dominios magnéticos, pero analizados en conjunto, el momento magnético es cero. Cuando el material es sometido a un campo exterior, el campo en el interior del material presenta un incremento, ya que los dominios magnéticos en el material se alinean en forma paralela a la dirección del campo aplicado.

Ferromagnéticos. En este tipo de material, cada átomo tiene un momento dipolar relativamente grande, ocasionado principalmente por momentos magnéticos de compensados. espin electrónicos ΠØ Las fuerzas interatómicas hacen que estos momentos magnéticos se alinien en forma paralela dentro de cada dominio. En los materiales ferromagnéticos virgenes existirán dominios, cada uno de éstos con fuertes momentos magnéticos y direcciones aleatorias, y por tanto el material no manifestará momento magnético neto. Cuando el material es sometido a un campo magnético externo, los dominios que tengan igual dirección que el campo

aplicado incrementarán su tamaño con ayuda de 1.0s dominios adyacentes, y el campo magnético en el interior del material serà mayor que el campo aplicado. Conforme el campo exterior se incrementa se llegará a un valor donde ya casi todos los dominios han adquirido la misma dirección del campo aplicado; esto es conocido estado de saturación " del material; como 11 un incremento posterior en la intensidad del campo magnético exterior no producirá ningún cambio significativo en la densidad de flujo en el interior del material.

Cuando se elimina el campo magnético externo, los dominios no logran regresar a sus posiciones originales instantaneamente, y como consecuencia de esto, en el material se tendrá una densidad de flujo conocido como residual y el material presenta caracteristicas magnéticas aún después de que el campo magnético exterior ha desaparecido; los demás materiales presentan efectos magnéticos únicamente cuando el campo externo se encuentra presente.

Antiferromagnéticos. El antiferromagnetismo se presenta en ciertos tipos de materiales donde las fuerzas entre átomos adyacentes hacen que los momentos atómicos se alínien en forma antiparalela, pero con momentos magnéticos de igual magnitud. Esto hace que el momento magnético de la muestra sea cero; y por tanto,

Ξ

; '

cuando estos materiales son sometidos a campos magnéticos externos son afectados ligeramente.

Ferrimagnéticos. Este fenómeno es muy parecido al anterior; es decir, también se produce una interacción negativa entre los vecinos más cercanos, con la única diferencia que la magnitud de sus momentos dipolares adyacentes son menores en comparación con los materiales antiferromagnéticos.

DIAMAGNETISMO

FERROMAGNETISMO

FERRIMAGNETISMO

MUESTRA VIRGEN

PARAMAGNETISMO

ANTIFERROMAGNETISMO

FIGURA 1 : CLASIFICACION DE LOS MATERIALES.

En la figura 1 se indica la clasificación magnética de los materiales con ayuda de la teoria de los dominios o entornos magnéticos.

Para tener una medida de la respuesta del material a campos magnéticos se utiliza lo que se conoce con el nombre de permeabilidad y representada por μ , la cual da una medida de la capacidad del material para ser magnetizado; dicho de otra forma, es una medida de la facilidad con la cual un campo magnético externo, representado por H, puede producir una densidad de flujo B en el material. Numéricamente μ es igual al cociente de la densidad de flujo B con la intensidad de campo magnético H, de la siguiente manera,

$\mu = B / H$

pero esta relación numéricamente es cierta solo cuando el medio considerado es el aire y tiene un valor igual a $4\times\pi\times10^{-7}$ H/m; pero cuando existen materiales ferromagnéticos involucrados, esta relación es compleja, y lo que se acostumbra es trazar curvas en el plano cartesiano B vs. H para su determinación.

CURVA E HISTERESIS DE MAGNETIZACION. La histéresis indica la historia magnética del material cuando es sometido a un campo magnético externo; el cual puede ser representado a través de una curva indicando la causa y el efecto.

 1°

Para generalizar el estudio, se considera una muestra de material ferromagnético virgen; es decir, una muestra que posee un momento magnético neto igual a cero; es decir,se tiene inicialmente una intensidad de campo magnético H = 0 (ningún campo externo aplicado) y una densidad de flujo en el material B = 0 (se está considerando un material virgen). Cuando se incrementa el campo magnético H, se irá incrementando al mismo tiempo B, pero de una manera no lineal. Si se gráfica B en función de H se obtiene la curva de la figura 2, la cual es conocida como la " curva de magnetización " de la muestra.

FIGURA 2: CURVA DE MAGNETIZACION

En la figura 2 se ha ido incrementando H desde cero hasta Hmax, y E también se ha incrementado desde cero hasta Emax, siguiendo la trayectoria OA.

Si ahora se empieza a disminuir H desde Hmax. hasta cero, se observa que aunque H es cero, B no será igual a cero, sino que toma un valor E = Br, conocida como inducción residual o remanente tal como se indica en la figura 3; es decir, ya no sigue la trayectoria OA en sentido inverso sino que sigue la trayectoria AB. Se dice entonces que E retrasa a H. Si ahora, H es aplicado en sentido inverso desde cero, se alcanzará un punto C en el cual B es igual a cero y H es igual a Hc, donde Hc es la intensidad de campo magnético externo inverso necesario para desmagnetizar la muestra, es decir para que los dominios adquieran posiciones e intensidades magnéticas que se neutralicen entre si y den como resultado un momento magnético a la muestra de cero, siguiendo la trayectoria BC. Si se sigue incrementando H en sentido negativo, se alcanzará el punto D, donde se tiene Bmax y Hmax pero en direcciones contrarias a las que se tenian en el punto A; con una variación de H desde -Hmax hasta cero, se alcanzará el punto E, donde H es cero y E es igual a - Br; una variación de H hasta el punto F se tendrá un valor de B igual a cero y de H igual a + Hc. Con un incremento de H hasta Hmax. se regresa nuevamente al punto A.

Todo esto es representado en la figura 3 y es conocido con el nombre de "gaza", "anillo" o "lazo" de histéresis.

FIGURA 3: LAZO DE HISTERESIS.

El área encerrada representa las pérdidas debidas a histéresis en el material, tal como se demuestra en el apéndice² 2. La expresión matemática para dichas pérdidas es:

$$dW = H_{a}dB [J]$$
(4)

Si el ciclo es recorrido algunas veces por segundo con un campo exterior alterno, la pérdida de energía por segundo viene dada por el área del ciclo multiplicada por la frecuencia. Dependiendo de la frecuencia a la cual varie el campo magnético externo, se inducirán corrientes en el interior de la muestra, las cuales son conocidas como corrientes " parásitas " o de " remolino "; corrientes que incrementarán las pérdidas en el material, y que dependen de la composición del material, de la frecuencia del campo externo, del espesor del material y de la densidad máxima del flujo. Estas pérdidas en conjunto producen una disminución en el rendimiento .

Se puede concluir que un material dado tendrá distintas curvas B - H dependiendo del valor máximo de B en los extremos del lazo, sin perder en mente el hecho de que la curva de magnetización d-c sigue siendo la misma.

1.2. <u>Análisis teórico y matemático de las bobinas</u>.

LEY DEL CIRCUITO DE AMPERE. Esta ley dice que la integral de linea de H alrededor de cualquier trayectoria cerrada T es igual a la corriente directa encerrada por esta trayectoria, así,

$$\int_{T} H.dL = I$$
 (1)

FIGURA 4 : CONDUCTOR LLEVANDO UNA CORRIENTE DIRECTA I

Con referencia a la figura 4, las integrales de linea de H alrededor de las trayectorias cerradas a y b producirán una respuesta igual a la corriente directa I que circula por el conductor, mientras que la integral de H sobre la trayectoria cerrada c, que corta al conductor, dará una respuesta menor que la corriente directa I, y será igual a la porción de corriente que encierra esa trayectoria. En este caso T es cada una de las trayectorias señaladas como a, b, y c. Si la corriente varía con el tiempo, se tendrá una relación muy semejante a la relación (1), así,

$$\int_{T} H_{*} dL = i \qquad (2)$$

Donde i es la corriente total instantánea encerrada por la trayectoria T, y, H y dL son dos vectores en el " espacio. La dirección para i es determinada con ayuda de la regla de la mano derecha.

r

Si se tiene una bobina formada por varias espiras por las que circula la misma corriente i, entonces la corriente total encerrada puede ser encontrada sumando todas éstas atravesando cualquier superficie encerrada por la trayectoria T; esta superficie es conocida como " superficie Gaussiana ". Por tanto, si se tiene una bobina formada por N espiras, cada una llevando la misma corriente i, entonces de la expresión (2) se tiene que,

$$\int_{T} H.dL = Ni$$
 (3)

Donde el producto Ni es conocido como fuerza magnetomotriz (f.m.m) y es representada con F. Cabe señalar que la trayectoria cerrada T puede ser a través del aire, un material ferromagnético, una combinación de ambas, o cualquier tipo de material.

Si se considera una relación lineal entre la densidad de flujo y la intensidad de campo magnético, se tiene lo siguiente,

$$B = \mu H \tag{4}$$

En vacío u otro material no magnético, la expresión (4) se puede escribir de la siguiente manera,

 $B = \mu_0 \times H = \mu_0 \times NI / lm$ (5)

donde lm es la longitud media por la que circula el flujo. Pero si el medio no es el aire, la expresión (5) ya no es evaluado en forma simple, ya que adicionalmente a B creada por H existirá otra componente de flujo, la cual es provocada por la orientación de los dominios en la dirección del campo externo; esta contribución es denotada con β en la siguiente expresión,

$$B = \mu_0 \times NI / lm + \beta$$
 (6)

El valor de β va a depender de la cantidad de dominios orientados en favor del campo externo H; por tanto β se puede representar en función de H a través de la siguiente relación,

$$\beta = X \times H \tag{7}$$

donde β es conocido como la densidad de flujo intrínseco.

Para materiales ferromagnéticos, X es una cantidad variable, normalmente mucho mayor que la unidad. Reemplazando la expresión (7) en la expresión (5) se tiene,

$$B = \mu \times H \tag{8}$$

donde $\mu = \mu_0 + X$ es conocido como permeabilidad del material, la cual es variable para materiales ferromagnéticos y mucho mayor que μ_0 . Las unidades para μ son Weber por amperio vuelta y por metro en el sistema internacional de unidades.

La pendiente de la curva B vs H del material calculada en el punto de operación da el valor de la permeabilidad en ese punto. En la práctica se consigue una buena aproximación si se considera que μ es constante solo si la densidad de flujo máxima de operación es baja, de esta manera se puede aproximar la permeabilidad a la siguiente expresión,

Se puede definir el flujo magnético total que atraviesa una superficie de área A de la siguiente manera,

$$\emptyset = \int_{A} \mathbf{B} \cdot \mathbf{d} \mathbf{a}$$
(10)

donde da es un vector diferencial de área, y además se esta considerando la componente normal de B. Si B es perpendicular a la superficie y uniforme en toda la superficie A, la relación (10) se convierte en,

$$\emptyset = B \times A$$
 (11)

FLUJO CONCATENADO F.

FIGURA 5 : BOBINA DE N ESFIRAS.

En el caso representado en la figura, \emptyset_2 se encuentra atravesando todas las vueltas de la bobina; ϑ_1 y ϑ_3 se encuentran atravesando algunas de las espiras y se las denomina flujos de dispersión. Si se considera que todo el flujo atraviesa las N espiras, la expresión para el flujo concatenado vendrá expresado por,

$$\Gamma = N \times \emptyset \tag{12}$$

Pero si no todo el flujo atraviesa las N espiras, se deberá sumar las contribuciones del flujo concatenado vuelta por vuelta; y por tanto, para el presente caso se tendrá,

$$\Gamma = \sum_{i=1}^{N} \emptyset_{i}$$
(13)

donde \emptyset_1 es el flujo que enlaza la i-ésima vuelta de la bobina.

INDUCTANCIA. La inductancia es la razón del total de enlaces del flujo magnético a la corriente de la siguiente manera,

$$L = \Gamma / i$$
 (14)

donde i es la corriente que circula en la bobina de N espiras y que produce el flujo \emptyset ; y Γ son los enlaces del flujo magnético definido anteriormente. La relación (14) es verdadera únicamente cuando se considera medios lineales. Si existen materiales ferromagnéticos, no existe una definición sencilla de la inductancia que sea útil en todos los casos, ya que la relación entre las concatenaciones de flujo y la corriente es compleja.

1.3. <u>El·transformador analizado como el acoplamiento</u> <u>magnético de dos bobinas y su circuito</u> equivalente.

Fara iniciar el análisis, se considerará el acoplamiento entre bobinas, para lo cual se define la " inductancia mutua " como una medida del acoplamiento magnético entre dos bobinas; matemáticamente se expresa de la siguiente manera,

$$M = N d\emptyset/di [H] (1)$$

FIGURA 6 : BOBINAS ACOPLADAS MAGNETICAMENTE.

En el caso de la figura 6, se ha utilizado como núcleo un material ferromagnético con el fin de guiar el flujo y conseguir un mejor acoplamiento; cabe señalar que se puede eliminar el núcleo ferromagnético, pero en este caso se tendría un pobre acoplamiento magnético a través del aire.

Se puede ver en la figura 6 al flujo total producido dividido en tres partes; una corresponde a $\emptyset_{1.1}$ y es el flujo que atraviesa únicamente a las N₁ vueltas del bobinado 1; \emptyset_{12} similar a \emptyset_{11} , atravesando únicamente las N₂ vueltas del bobinado 2. Tanto \emptyset_{11} , como \emptyset_{12} son conocidas como flujos de dispersión; por otro lado, \emptyset . es el flujo que atraviesa las N₁ vueltas de la bobina 1 y las N₂ vueltas de la bobina 2, y es conocido como flujo mutuo y cuyo valor dependerá del acoplamiento entre las dos bobinas. De la relación (1) se tiene,

$$M_{12} = N_2 d_{evm} / di_1$$

$$M_{21} = N_1 d_{evm} / di_2$$
(2)

La relación (2) es mas general, y en caso de que el material de acoplamiento sea aire se tendrá,

$$M_{12} = N_2 \emptyset_{\bullet} / i_1$$

$$M_{21} = N_1 \emptyset_{\bullet} / i_2$$
(3)

Siguiendo con el análisis, se escoge la dirección de i₁ en forma arbitraria, y la dirección de i₂ se toma de tal manera que, con i₁ e i₂ positivas, es decir

entrando en los bobinados, los flujos mutuos resultantes se suman. Estas direcciones pueden ser marcadas con puntos referenciales, las cuales indican que las componentes del flujo mutuo, debido a las corrientes i, e i2; se suman cuando estas corrientes están entrando (o saliendo) de los terminales.

Inicialmente se considerará al transformador en forma ideal; es decir, aquel que no tiene pérdidas, ni flujos de dispersión, y además el núcleo magnético tiene una permeabilidad infinita. De esta manera se tiene lo siguiente,

$$\Gamma_{1} = N_{1} \times \emptyset_{\bullet}$$

$$\Gamma_{2} = N_{2} \times \emptyset_{\bullet}$$
(4)

Aplicando la ley de Faraday se obtiene lo siguiente,

$$v_1 = N_1 \, d\emptyset_{\bullet} \, / \, dt$$

$$v_2 = N_2 \, d\emptyset_{\bullet} \, / \, dt$$

$$(5)$$

Relacionando \vee_1 con \vee_2 se tiene,

$$v_1 / v_2 = N_1 / N_2 = a$$
 (6)

Es conveniente con el objeto de simplificar la notación definir n = 1/a, donde " a " indica la relación del número de vueltas del transformador. Con las direcciones de corriente indicadas en la figura 6, las fuerzas magnetomotrices creadas por las corrientes tienden a sumarse, es decir,

$$F = N_1 \times i_1 + N_2 \times i_2' = R \times \emptyset_{\bullet}$$
(7)

donde " R " es la reluctancia del núcleo y esta relacionado a las características geométricas del material a través de la relación R = 1 / (μ x A). Si se asume que el núcleo tiene una permeabilidad infinita,

$$F = N_1 \times i_1 + N_2 \times i_2' = 0 \tag{8}$$

y por tanto,

$$i_2'/i_1 = -N_1/N_2 = -1/n = -a$$
 (9)

Para eliminar el signo de la última expresión se reemplazará $-i_2$ por i_2 , es decir,

$$i_2 / i_1 = N_1 / N_2 = 1 / n = a$$
 (10)

Para acercarse un poco más al modelo real físico del transformador, se considerará el flujo de dispersión, y en este caso se tendrá las siguientes expresiones para las concatenaciones del flujo,

$$\Gamma_{1} = \Gamma_{1,1} + N_{1} \times \emptyset_{\bullet}$$

$$\Gamma_{2} = \Gamma_{1,2} + N_{2} \times \emptyset_{\bullet}$$
(11)

En general; $\Gamma_{1,4}$ va a ser menor que N₄ x Ø. cuando estamos considerando la presencia de materiales ferromagnéticos en el núcleo, ya que el camino por el que circula \emptyset_{14} es el aire y por tanto presenta una gran reluctancia debido a los bajos valores de µ.

$$\Gamma_{12} = L_{12} \times i_1$$

$$\Gamma_{12} = L_{12} \times i_2'$$
(12)

Si ahora se considera la resistencia de los bobinados,

$$v_{1} = r_{1} \times i_{1} + d\Gamma_{1}/dt = r_{1} \times i_{1} + L_{11} di_{1}/dt + N_{1} d\emptyset_{2}/dt$$

$$(13)$$

$$v_{2} = r_{2} \times i_{2} + d\Gamma_{2}/dt = r_{2} \times i_{2} + L_{12} di_{2}/dt + N_{2} d\emptyset_{2}/dt$$

Si se considera permeabilidad finita se observa que la fuerza magnetomotriz en el núcleo ya no es cero. Para analizar este caso se despreciará los pequeños flujos de dispersión, así como también se asumirá que el transformador se encuentra trabajando en vacío, es decir $i_2'= 0$; en este caso, en el transformador ideal la corriente primaria debería ser cero, pero en el caso real existirá una corriente suficiente para mantener el campo. A esta corriente se la denomina "corriente de magnetización", y es representada por im, y cuyo valor será,

$$F = N_1 \times i_1 + N_2 \times i_2' = R \times \emptyset_a$$
(7)

Si i2' es cero, entonces,

Entonces,

$$\mathbf{i}_{\bullet} = \mathbf{R} \times \mathcal{O}_{\bullet} / \mathbf{N}_{1} \tag{14}$$

For tanto, si se tiene una corriente en el lado secundario del transformador, la corriente que deberá circular en el circuito primario será,

 $i_1 = i_* - (N_2 / N_1) \times i_2' = i_* + (N_2 / N_1) \times i_2$ (15)

Es decir, i, deberá tener una componente de corriente necesaria para mantener el núcleo magnetizado, y otra que compense el efecto desmagnetizante de la corriente en el circuito secundario (de acuerdo con la ley de Lenz).

Cabe indicar, que la expresión (14) indica que la corriente de magnetización dependerá de la reluctancia del circuito magnético R y del valor del flujo mutuo de magnetización \emptyset_{\bullet} , para un número especificado de espiras en el arrollamiento primario del transformador.

De acuerdo con la ley de Faraday se tiene,

$$e_1 = N_1 \, d\vartheta_{\bullet} / \, dt = L_{\bullet} \, di_m / \, dt \tag{16}$$

donde L. = N_1^2 / R es la inductancia de magnetización.

Ahora ya se puede obtener un circuito equivalente del transformador para condiciones reales, tal como se indica en la figura 7. Se debe señalar, que si se desea tomar en cuenta las pérdidas en el núcleo debidas a corrientes parásitas, se deberá incluir una resistencia en paralelo con L.; además, si se quiere tomar en cuenta la no linealidad del núcleo, se deberá reemplazar L. por un inductor no lineal.

FIGURA 7: TRANSFORMADOR REAL.

Se puede referir todos los elementos del transformador a un solo lado y de esta manera tener el circuíto equivalente T del transformador. Se puede simplificar aún más el circuito considerando que i. es mucho menor que i., y de esta manera se puede agrupar la resistencia del primario y del secundario en una sola, así como también la inductancia,

FIGURA 8 : MODELO DEL TRANSFORMADOR REAL SIMFLIFICADO.

1.4. <u>Distorsión en las ondas de voltaje y corriente</u> <u>debido a la presencia de materiales</u> <u>ferromagnéticos</u>.

Se sabe de la ley de Faraday, que si se aplica una f.e.m. senoidal sobre una bobina, se tendrá una onda de flujo también senoidal y retrasada 90°. Si la bobina no encierra material ferromagnético, la señal de la corriente que circula por el bobinado también será senoidal y estará en fase con la onda de flujo, lo que se puede explicar considerando que tanto la inductancia de la bobina, como la permeabilidad del medio son constantes; y por tanto, la característica B-H para este caso será una linea recta.

Con la presencia de materiales ferromagnéticos, la inductancia y la permeabilidad del medio ya no son constantes, y el flujo ya no guarda una relación lineal con la corriente y con la fuerza magnetizante, a pesar de que la onda de f.e.m. siga siendo una función senoidal; la onda de corriente será distorsionada siguiendo el cambio de permeabilidad en núcleo, tal como se indica en la figura 2 y en la figura 3. Esta corriente puede ser encontrada experimentalmente con ayuda del circuito de la siguiente figura con los terminales secundarios abiertos.

Donde el bobinado primario es alimentando de una fuente senoidal; la cuál produce una corriente i, en el bobinado primario y es denominada corriente de excitación; en este caso, debido a que la fuente externa es senoidal, en el núcleo se creará un flujo aproximadamente senoidal,

$$e_{i} = N_{i} d\emptyset / dt$$
(1)

En este caso se esta considerando que todo el flujo queda confinado en el núcleo. Si se considera la resistencia del bobinado primario, asi como la
dispersión de flujo en este bobinado, se tendrà la siguiente relación.

$$v_1 = z_1 \times i_{\bullet} + e_1 \tag{2}$$

donde , $z_1 = r_1 + j \ 2 \ \pi \ f \ L_{1,1}$ y f es la frecuencia de la unda seno del voltaje aplicado. Si se considera que la onda de flujo tiene la siguiente expresión,

$$\emptyset = \emptyset_{max} \times \text{Sen wt}$$
 (3)

entonces, la tensión inducida e será,

$$e_1 = w \times N_1 \times \mathcal{Q}_{max} \times Cos wt$$
(4)

donde \emptyset_{max} es el valor máximo de flujo, el cual dependerá del valor de la tensión aplicada v_i. El valor eficaz de e_i estará dado por,

$$E_{1} = W N_{1} \mathscr{D}_{max} / \mathscr{I}_{2} = 4.44 \times f \times N_{1} \times \mathscr{D}_{max}$$
(5)

Por tanto, el valor eficaz de la tensión inducida en el bobinado primario dependerá de la frecuencia, el número de espiras y el flujo máximo en el núcleo. Bien se puede despreciar las constantes del circuito primario, y así poder considerar que la fuente externa aplicada v. es igual a la tensión inducida en el bobinado primario, y por tanto, si se aplica una tensión senoidal, en el núcleo existirá un flujo máximo \emptyset_{max} que satisfaga que E. sea igual al valor eficaz de la tensión aplicada V.; es decir,

$$\mathcal{Q}_{max} = \bigvee \left(4_{*}44 \times f \times N_{*} \right) \tag{6}$$

La última relación permite conocer en forma aproximada los valores máximos de flujo sobre la característica B-H; cabe señalar que en este análisis se ha considerado que el valor de la resistencia total sobre el bobinado primario es depreciable.

Si se desprecia los flujos de dispersión se tendrá lo siguiente,

 $v_i(t) = r_i \times i_i(t) + e(t) = r_i \times i_i(t) + N_i d\emptyset / dt$ (7)

La forma de onda de la corriente de excitación puede ser encontrada gráficamente de la siguiente manera. Si se desprecia las resistencias en el bobinado primario y se considera el anillo de histéresis modificado en su escala \varnothing - i (esto esta justificado tomando en consideración que \emptyset es proporcional a B y que i es proporcional a H), entonces si se tiene una f.e.m senoidal y una onda de flujo también senoidal pero en cuadratura con la f.e.m, para cada valor del flujo en un cierto instante, se deberá tomar el correspondiente valor de la corriente sobre el anillo de histéresis, tomando en consideración si Ø esta aumentando o disminuyendo conforme el tiempo 50 incrementa. De esta manera se obtiene lo siguiente,

FIGURA 9 : CORRIENTE DE EXITACION i, .

Como se puede observar en la figura 9, la señal de la corriente de excitación difiere de ser una onda senoidal, y como se sabe, del procedimiento matemático conocido como " Series de Fourier ", cualquier función periódica puede ser resuelta en una suma infinita de funciones senoidales que varian entre ellas tanto en magnitud como en frecuencia.

Debido a la simetría del anillo de histéresis, la onda de corriente de excitación será resuelta en la suma de armónicas "impares" de 1, 3, 5, 7, etc. veces la frecuencia de la onda de alimentación de voltaje. La corriente de excitación se encuentra en adelanto con respecto a la onda de flujo, y la componente fundamental también deberá hacerlo; esto es verdadero como se indica en el apéndice 2; el área encerrada por el anillo de histéresis representa las pérdidas en el núcleo, pérdidas que son desprendidas en forma de calor y son inevitables en la muestra. Dichas pérdidas deberán ser suministradas por la fuente de energia externa a través de las siguientes relaciones.

Si se considera que,

 $i_{\bullet}(t) = Ia_{imax} \text{ Cos wt } + Ia_{\varpimax} \text{ Cos 3wt } + \dots + + + + Ib_{imax} \text{ Sen wt } + Ib_{\varpimax} \text{ Sen 3wt } + \dots$ (8)

Entonces,

 $i_{s}(t) = \sqrt{2} [Ia_{1,mr} \cos wt + Ia_{3,mr} \cos 3wt + \dots + Ib_{1,mr} \sin wt + Ib_{3,mr} \sin wt + Ib_{3,mr} \sin wt + \dots] (9)$

La potencia instantánea entregada por la fuente será,

$$p(t) = v(t) \times i_{\bullet}(t) \tag{10}$$

donde $v(t) = \sqrt{2}$ Vef Sen wt. Por tanto,

 $p(t) = 2 \operatorname{Vef}[\operatorname{Ia}_{1-\tau} \operatorname{CoswtSenwt} + \operatorname{Ia}_{2-\tau} \operatorname{Cos3wtSenwt} + ... +$ $\operatorname{Ib}_{1-\tau} \operatorname{Sen}^2 \operatorname{wt} + \operatorname{Ib}_{2-\tau} \operatorname{Sen3wtSenwt} + ...] \qquad (11)$

El valor promedio de la potencia entregada se expresa a través de la siguiente relación,

$$F_{\text{promedic}} = (1 / T) \int_{to}^{to + T} p(t) dt$$

Si se considera que to = 0 se obtendrá lo siguiente.

 $P_{promedic} = (2 \text{ Vef } / \text{ T}) \int_{0}^{\text{T}} [\text{Ia}_{1er} \text{ Coswt Senwt } + \\ + \text{ Ia}_{3er} \text{ Cos3wt Senwt } + \\ + \text{ Ib}_{1er} \text{ Sen}^2 \text{ wt } + \\ + \text{ Ib}_{3er} \text{ Sen3wt Senwt } + ...]dt$ $- \int_{0}^{2\pi} \int_{0}^{2\pi} \text{ Cos wt Sen wt dwt } = 0$ (12)

 $\int_{0}^{2\pi} \operatorname{Sen} \operatorname{wt} \operatorname{Cos} \operatorname{nwt} \operatorname{dwt} = 0$

 $- \int_{0}^{2\pi} \operatorname{Sen^{2}wt} dwt = \pi$

 $- \int_{0}^{2\pi} \operatorname{Sen} \operatorname{wt} \operatorname{Sen} \operatorname{nwt} \operatorname{dwt} = 0$

Por lo tanto,

$$P_{\text{promedia}} = V_{\text{eff}} * Ib_{\text{ieff}}$$
(13)

Por tanto, únicamente la componente fundamental de la corriente de excitación contribuye a la potencia promedio. En este análisis se ha despreciado las pérdidas en el cobre del bobinado; las pérdidas en forma simplificada se puede expresar de la siguiente manera,

$$\mathsf{Pp}\mathsf{érdidas} = \mathsf{V} \times \mathsf{I} \mathsf{Cos} \Theta \tag{14}$$

Donde el ángulo 0 representa el desplazamiento de entre la señal de voltaje У 1 a componente fase excitación; la corriente de 105 fundamental de armónicos de orden superior que forman parte de la señal de la corriente de excitación no contribuyen a las pérdidas en forma directa sino que 10 hacen esto es, incrementan las pérdidas indirectamente; induciendo corrientes en el núcleo (conocidas como corrientes de remolino), las cuales modificarán el anillo de histéresis área encerrada en el Y se incluirán en las pérdidas totales a través de 1 a componente fundamental. Se debe indicar adicionalmente, que la componente fundamental de la señal de 1 2 corriente de excitación deberá estar en fase o adelante de la onda de flujo; caso contrario, esta se encontrará retrasada a la onda de voltaje en un ángulo mayor que $\pi/2$ y la potencia de pérdidas,Ppérdidas = V₁ x I₁ Cos Θ será negativo; lo cual fisicamente es imposible.

Si se consideran todas estas propiedades se puede encontrar un diagrama vectorial equivalente descomponiendo a la corriente de excitación en dos componentes, una en fase con el voltaje aplicado, y que será la componente de pérdidas representada por Ic; y la otra en cuadratura conteniendo todos los armónicos

34

de mayor orden y denominada componente de magnetización de la corriente y representada por Im; donde,

 $Im = I(Ia3ef^2 + Ib3ef^2 + I4ef^2 + I5ef^2 + ...)$ (15)

FIGURA 10 : DIAGRAMA VECTORIAL EQUIVALENTE DE LA CORRIENTE DE EXCITACION. $ic(t) = \sqrt{2}$ Ib₁₋₇ Sen wt

En la figura 10, la corriente de excitación I. está representada con una onda senoidal equivalente, de igual frecuencia, valor efectivo y potencia media que la onda real y retrasada a V. un ángulo Θ_{ϵ} , tal que,

$$\mathsf{Pp}\mathsf{érd}\mathsf{idas} = \mathsf{V}_1 \times \mathsf{I}_{\bullet} \mathsf{Cos} \ \Theta_{\bullet} \tag{16}$$

Si se aproxima aún más despreciando los armónicos de orden superior, la corriente de magnetización i. vendrá dada por,

$$i_{\bullet}(t) = \sqrt{2} Ia_{1-\tau} Cos wt$$
(17)

Cualquiera de las aproximaciones deberá ser hecha tomando en consideración el valor del flujo máximo (\tilde{w}_{max}) al que se esta operando, ya que del orden que tenga éste dependerá el porcentaje de armónicos en la onda de la corriente de excitación.

Hasta ahora lo único que se puede concluir es que la señal de la corriente de excitación contiene armónicos, pero no se ha determinado aún, cuál es la causa para que ocurra esto, lo cual será explicado a continuación. Si se considera inicialmente el Caso cuando se desprecian pérdidas por histéresis y además se asume que la permeabilidad permanece constante. En este caso, la característica E-H será una recta, y la corriente de excitación en el tiempo será sinusoidal encontrándose en fase con el flujo, y en cuadratura con el voltaje aplicado.

Ahora si se analiza el caso en el que se sigue despreciando pérdidas histéresis, de pero 1 a permeabilidad varía según la curva de magnetización. En este caso, lo que esta variando es la permeabilidad y la onda de corriente obtenida no será una onda seno pura, por tanto ésta puede ser resuelta en una serie de armónicos impares. Se concluye por tanto que la introducción de armónicos en la señal de la corriente de excitación no es sólo producida por el anillo de histéresis, ni sólo producida por la variación de la permeabilidad; la introducción de armónicos en la señal de corriente de excitación son producidas por la combinación de las dos.

Cuando la resistencia del circuito tienen un valor que no puede ser despreciado y si el voltaje inducido e(t) es relativamente pequeño comparado con la caida de voltaje en la resistencia r entonces,

$$v_1 (t) \approx r_1 \times i_0(t) \tag{18}$$

Si $v_1(t) = V_{max}$ Sen wt, de la expresión (18) se tiene.

$$I_{max} = V_{max} / r_1 \tag{17}$$

donde,

$$i_{\sigma}(t) = I_{max} \text{ Sen wt}$$
 (20)

Las formas de onda de v(t) e i(t) son senoidales y se encuentran en fase, lo que produce que la señal de flujo tenga una forma aplanada en la parte superior debido al fenómeno de histéresis. Mientras que la señal de voltaje inducido e(t) = -K dØ/dt K>O, tendrá un pico pronunciado cada medio ciclo.

Otra característica que debe ser analizada es cuando ambos términos, es decir el voltaje inducido y la caida de tensión en la resistencia tienen valores semejantes; en este caso las formas de onda de i.(t), e(t) y \emptyset (t), cuando v.(t) es senoidal, son difíciles de obtener debido a que \emptyset (t) e i.(t) no pueden ser determinadas independientemente una de la otra, por tanto, un método gráfico aproximado será suponer dos señales de voltaje distorsionados, de tal manera que satisfaga que la suma en cada instante de tiempo sea igual a la tensión aplicada \vee_1 en ese instante.

Si se consideran las componentes de tercer armónico en el circuito transformador indicado en la figura 11, en general corrientes de tercer armónico fluirán tanto en el lado secundario como también en el lado primario.

FIGURA 11 : TRANSFORMADOR MONOFASICO CON CARGA.

El voltaje de la fuente es senoidal; de esta manera, las corrientes de tercer armónica existentes deberán ser producidas por fuerzas electromotrices de tercer armónico. Por lo tanto, las fuerzas electromotrices de tercer armónico son generadas por un flujo de tercer armónico en el núcleo del transformador. Asumiendo una relación unitaria de transformación, o refiriéndo todas las cantidades al mismo lado, las fuerzas electromotrices de tercer armónico inducidas en los dos bobinados por éste flujo son iguales en magnitud y fase. Las siguientes ecuaciones relacionan las cantidades de tercer armónico,

$$\forall_{1} = I_{1} = I_{2} = E_{1} = E_{1} = I_{1} = I_{1} = I_{2} = I_{2$$

$$V_{2}^{*} = I_{2}^{*} Z_{1}^{*} = E_{2}^{*} - I_{2}^{*} Z_{22}^{*} - j X_{21}^{*} I_{1}^{*}$$
(22)

۰.

$$Z_{1,1} = R_1 + j (X_1 + X_{1,2})$$
(23)

$$Z_{22}^{i} = R_2 + j (X_2^{i} + X_{21}^{i})$$
(24)

donde E_1 = E_2 son las fuerzas electromotrices de tercer armónico inducidas en los bobinados por el flujo de tercer armónico en los núcleos.

I¹, I² : Corrientes de tercer armónico.

Z₁₁^{...},Z₂₂^{...}: Impedancias propias de tercer armónico.

X₁₂^{...},X₂₁^{...}: Reactancias mutuas de tercer armónico.

- Z₁...,Z₂... : Impedancias de dispersión de tercer armónico.
- Z." : Impedancia de tercer armónico del generador y lineas primarias.
- Z.''' : Impedancia de tercer armónico de la carga y lineas secundarias.

 $E_{1} = I_{1} + Z_{0} + J_{12} + J_{22}$ (25) $E_{2} = I_{2} + Z_{12} + Z_{12} + J_{22}$ (25)

Entonces,

• •

$$I_1 \cdots / I_2 \cdots = (Z_2 \cdots + Z_L \cdots) / (Z_1 \cdots + Z_n \cdots) (27)$$

For tanto, la distribución de corriente de tercer armónico entre los dos bobinados de un transformador esta largamente regulado por la magnitud y carácter de la impedancia de triple frecuencia de la carga. Si se compensa la carga con capacitores se tiene,

$$Z_2^{(1)} + Z_1^{(1)} = R_2 + j X_2^{(1)} + R_1 + j (X_1^{(1)} - X_2^{(1)}) (28)$$

Si,

$$X_{2}^{*} + X_{1}^{*} - X_{2}^{*} = 0 \qquad (29)$$

(resonancia serie en el circuito secundario para la corriente de tercer armónico).

Si adicionalmente se tiene $R_L = 0$ entonces,

$$I_1 \quad (Z_1 \quad Z_1 \quad Z_1 \quad Z_1 \quad (Z_1 \quad Z_1 \quad Z_1 \quad Z_1 \quad (Z_1 \quad Z_1 \quad Z$$

Si el voltaje del generador es estrictamente senoidal, entonces ninguno de los armónicos de corriente puede extraer potencia en unión con este voltaje. Por tanto, potencia se encuentra ingresando en el núcleo sólo a frecuencia fundamental, los armónicos de la corriente producirán pérdidas en el cobre y en el núcleo a frecuencia fundamental. En el núcleo, ésta es convertida a potencia de otras frecuencias, una parte de la cual es repartida a los circuitos donde las corrientes de las frecuencias más grandes fluyen. Esto es verificado a través del circuito triplicador estático de frecuencia que se analizará en el capitulo siguiente.

• .

1.5. Pruebas experimentales.

 $v_{i}(t)$ $\stackrel{i_{i}(t)}{\frown}$ $\stackrel{i_{i}(t)}{\frown}$ $\stackrel{i_{i}(t)}{\frown}$

1.5.1. <u>Característica voltaje - corriente</u>.

FIGURA 1 : CIRCUITO UTILIZADO

En este caso se tiene un transformador alimentado por su lado primario y con el circuito secundario abierto. La fuente del circuito primario es una fuente senoidal de voltaje, la cual va a ser variada desde cero y sus valores van a ser registrados en pasos de 10 voltios r.m.s; también, con la ayuda de un osciloscopio se registran los valores picos en las ondas de corriente para cada valor de voltaje.

El objeto de tomar lectura de los valores picos en las ondas de corriente, es que estos valores deben coincidir con los valores picos de flujo, los cuales a su vez dependen de los valores del voltaje aplicado. De esta manera, la forma de la curva característica voltaje-corriente tendrá la misma forma como la curva de magnetización del núcleo. Experimentalmente se obtuvieron los valores indicados en la siguiente tabla,

CURVA APROXIMADA DE MAGNETIZACION

Ibase=10.0 Amp. KVAbase=1.1 Vbase=110 Volts. Vap.(p.u). Ipico(p.u) O Õ 0,091 0.0055 0.182 0.008008 0.273 0.009504 0.364 0.011396 . 0.455 0.013992 0.545 0.017996 0.636 0.022 0.727 0.024992 0.818 0.031788 Ŏ.909 0.035992 0.955 0.039996 0,044 1. 1.045 0.052008 1.091 0.057992 1,136 0.063008 1.182 0.070004 1.227 0.079992 1.273 0.08778 1.318 0.102498 1.364 0.115016 1.409 0.134992 1.455 0.149996

En la tabla anterior se han representado los valores en por unidad.

Si se grafican los valores de la tabla anterior en un gráfico; éste en forma, será semejante a la curva de magnetización del transformador, tal como se indica en la siguiente figura.

• •

1.5.2. <u>Corriente de excitación en el</u> transformador.

Para la determinación de la corriente de excitación en un transformador se utilizará el siguiente circuito.

FIGURA 3 : CIRCUITO UTILIZADO PARA LA DETERMINACION DE LA CORRIENTE DE EXCITACION.

El valor de R debe ser bajo (aproximadamente 1 ohmio); un valor elevado no es adecuado, ya que la forma de onda se distorcionaría e introduciría errores en las mediciones. Los resultados obtenidos en el laboratorio son representados en el siguiente gráfico.

FIGURA 4 : CORRIENTE DE EXCITACION.

El espectro de frecuencia para la corriente de excitación es presentado en la siguiente figura,

 FUNDAMENTAL
 100.0 %

 3=r
 ARMONICO
 29.3 %

 5=armonico
 4.9 %

 7me
 ARMONICO
 1.1 %

FIGURA 5 : ESPECTRO DE FRECUENCIA DE LA CORRIENTE DE EXCITACION.

2. CONEXIONES DE BANCOS DE TRANSFORMADORES Y SU INFLUENCIA EN OPERACION.

2.1. Introducción.

Como se analizo en el capitulo anterior, los armónicos son producidos por las pérdidas de histéresis y por la variación de la permeabilidad; si un transformador monofásico es alimentado por una fuente de voltaje senoidal, la onda de corriente necesaria a producir una onda aproximadamente seno de flujo contiene armónicos, notablemente un tercero y un quinto armónico.

Los armónicos son casi enteramente producidos por la variación de la permeabilidad; uno de los argumentos que soporta esto es que no existe voltaje de tercer armónico impreso sobre el transformador y consecuentemente la componente de tercer armónico de la corriente de excitación no debe producir ninguna pérdida de potencia.

Si existe un circuito cerrado para las componentes armónicas de la corriente de excitación, ellas fluirán conforme a los requerimientos de la fuerza electromotriz inducida. Obviamente, estas componentes armónicas de la corriente que fluyen, por ejemplo, a través de la resistencia de un bobinado del generador o

un circuito delta de un banco transformador dan elevación a pérdidas de energía, por tanto no significa que no produzcan pérdidas, lo que realmente toma lugar conversión de frecuencia dentro una de1 es transformador. En un banco trifásico alimentado por una fuente senoidal trifásica, las tres corrientes de excitación en las tres ramas serán iguales en forma y magnitud pero desplazadas 120° entre ellas, al igual que sus respectivas componentes armónicas. Esto es, si el n-ésimo armónico en la corriente de excitación del transformador No.1 es K. Sen (nwt + α_n), el n-ésimo armónico en la corriente de excitación del transformador No.2 es K, Sen [n (wt \pm 120°) + α_{n}], y en el transformador No.3 es K, Sen [n (wt ± 240°) + α_n]

Π	Sen(nwt+a,)	Sen[n(wt+120°)+a _n]	Sen[n(wt+240°)+a _n]
1	Sen(wt+a ₁)	Sen(wt+a1+120)	Sen(wt+a ₁ +240)
3	Sen(3wt+a₃)	Sen(3wt+a ₃)	Sen(3wt+a ₃)
5	Sen(5wt+a,)	Sen(5wt+a,+240°)	Sen(5wt+a,+120°)
7	Sen(7wt+a ₇)	Sen(7wt+a,+120°)	Sen(7wt+a,+240°)
9	Sen(9wt+a,)	Sen(9wt+a,)	Sen(9wt+a,)
11	Sen(11wt+a _{1.1})	Sen(11wt+a ₁₁ +240°)	Sen(11wt+a ₁₁ +120°)
13	Sen(13wt+a ₁₃)	Sen(13wt+a ₁₃ +120°)	Sen(13wt+a ₁₃ +240°)
15	Sen(15wt+a ₁₅)	Sen(15wt+a ₁₅)	Sen(15wt+a ₁₅)
17	Sen(17wt+a ₁₇)	Sen(17wt+a ₁₇ +240°)	Sen(17wt+a ₁₇ +120°)

Del cuadro anterior se observa que todas las componentes múltiplos del tercero en las tres

4.7

corrientes de excitación son idénticas y con el mismo desplazamiento de fase, mientras que las componentes quinta, séptima, onceava y otras frecuencias diferentes del tercero tienen desplazamientos mutuos de 120°. En general, las magnitudes de las componentes armónicas en la corriente de excitación de un transformador varian inversamente con el orden de los armónicos, aunque no necesariamente en proporción inversa. Por tanto, es visto que el tercer armónico es usualmente la componente más grande a excepción de la fundamental; es por esta razón que ésta ha recibido la mayor atención en la energización de transformadores.

Con una conexión trifásica en estrella, la componente triple de magnetización es eliminada, y ocurre una variación de flujo de triple frecuencia, lo cual produce una forma de onda del voltaje inducido en cada transformador con un gran valor pico a través de cualquier bobinado. Es decir, el tipo de conexión limita el porcentaje de los armónicos de f.e.m y de corriente que pueden circular en las lineas.

2.2. <u>Generación de armónicas en bancos de</u> <u>transformadores dependiendo de la conexión de</u> <u>los mismos</u>.

2.2.1. <u>Conexión estrella - estrella</u>.

bancos de transformadores, una conexión En en estrella suprime la circulación de las componentes de tercer armónico y sus múltiplos en la corriente de excitación y permite el aparecimiento de componentes de tercer armónico en las ondas de flujo y voltaje. Ës resistencia del circuito decir, sin aumentar la primario, existe otra manera por la cual. la circulación del tercer armónico y sus múltiplos en la corriente de excitación pueden ser suprimidos, es decir, por el uso de una conexión en estrella. Por lo tanto, en una conexión trifásica en estrella, 1 a componente de triple frecuencia de la corriente de magnetización es eliminada y esto produce una variación del flujo produciendo una onda de fuerza electromotriz por fase con un gran pico, fenómeno que ocurre ya sea con transformadores monofásicos conectados en estrella o con transformadores trifásicos tipo acorazado.

En transformadores trifásicos tipo núcleo, el voltaje de tercer armónico no es marcado, debido a que el circuito magnético para el tercer armónico de flujo en cierto modo es un circuito abierto, es decir un camino sobre las tres ramas en paralelo y regresando a través del aire o tanque; siendo este un camino de gran reluctancia, hace que la componente de tercer armónico de flujo y fuerza electromotriz inducida en los bobinados sea despreciable.

El pico que se presenta en el voltaje es únicamente entre fase y neutro, entre lineas no existirá ninguna componente de tercer armónico. Por lo tanto, en este tipo de conexión, las corrientes de tercer armónico están en fase y su suma en el punto neutro debe ser cero; por tanto, si el neutro se encuentra aislado, estas corrientes de excitación de tercer armónico deberán ser cero en cada rama. Esto produce que la onda de corriente se aproxime a una onda senoidal y por esta razón el voltaje a neutro no puede ser una onda senoidal, sino que tendrá un gran valor pico, es decir, contendrá una gran componente de tercer armónico, el cuál, aparece como una elevación del voltaje al neutro y causa un esfuerzo adicional incrementando lag pérdidas en el aislamiento. La distorsión no aparece en los voltajes de linea ya que la distorsión entre una linea y neutro es cancelado por las otras dos fases de la conexión. La distorsión en la onda de voltaje puede ser eliminada al suministrar un camino 1 a para corriente de excitación de tercer armónico, camino que puede ser suministrado al conectar el neutro del banco al neutro del generador suministrando un circuíto

50

monofásico para las corrientes de tercer armónico a través de la linea y el generador; de esta manera, una corriente de la relación de fase adecuada fluye y la distorsión desaparece.

En el siguiente análisis se analizarán algunos tipos de conexiones de transformadores en estrella, considerando relaciones de transformación unitaria y asumiendo que el generador está conectado en estrella.

2.2.1.1. <u>Conexión estrella - estrella</u> <u>con neutros aislados</u>.

FIGURA 1 : CONEXION ESTRELLA - ESTRELLA CON NEUTROS AISLADOS.

La conexión mostrada en la figura 1 se debe emplear bajo un estudio detallado de las condiciones en que ha de trabajar el banco, ya que este tipo de conexión tiene características que en determinadas circunstancias como se analizarán en el siguiente capitulo pueden ser perjudiciales e incluso peligrosas.

Las corrientes de excitación suministradas a los transformadores tendrán la misma intensidad y forma de onda, pero estarán defasadas un tercio de periodo. Por tanto, los terceros armónicos de las tres corrientes de excitación, si existieran, estarían en concordancia de fase y su suma no sería nula, pero debido a la ausencia del hilo neutro estas corrientes no pueden circular, así como tampoco múltiplos de éste. En tal caso, las señales de flujo se distorsionan y consecuentemente los voltajes entre las lineas y el neutro contienen grandes componentes de tercer armónico. Por tanto, en un banco de transformadores en condiciones balanceadas, los respectivos terceros armónicos son iguales y están en fase en los tres transformadores; las diferencias de las componentes de tercer armónico en cualquier par de transformadores son cero, así que los voltajes de tercer armónico no aparecerán entre las lineas terminales. La componente de tercer armónico en los voltajes sobre cada transformador puede tener un gran valor, el cual puede causar un serio esfuerzo sobre el aislamiento.

Cuando el neutro de los primarios (secundario en circuito abierto) se encuentra aislado, sólo se suprimen los terceros armónicos y sus múltiplos, todos los restantes armónicos de las tres corrientes de excitación podrán circular, ya que éstas se encuentran desfasadas 120° y su suma al punto neutro es cero.

52

Si las tensiones entre linea y linea son equilibradas y varian sinusoidalmente, las tensiones entre linea y neutro contienen armónicos fundamentales de valor eficaz igual al producto de 1 / 43 por el valor eficaz de las tensiones entre linea y linea. Si se desprecian los armónicos mayores al tercero y se suponen tensiones entre linea y línea senoidales, el valor eficaz V_{err} de las tensiones respecto al neutro será,

$$\nabla_{-\tau F} = \sqrt{(\nabla_{-\tau F^{1}}^{2} + \nabla_{-\tau F^{3}}^{2})}$$

donde $V_{\bullet,\tau e_1}$ es la tensión eficaz del armónico fundamental y $V_{\bullet,\tau e_3}$ es la tensión eficaz del tercer armónico.

Cuando están equilibradas las tensiones del generador y varían senoidalmente, teniendo los transformadores características de excitación exactamente iguales, los terceros armónicos de las tensiones en los transformadores aparecen como tensiones de tercer armónico entre el neutro del generador y el neutro de los primarios de los transformadores. Si se pone a tierra el neutro del generador, entre el neutro de los primarios y tierra existirá una tensión de tercer armónico. Si no se pone a tierra ni el neutro del generador ni el de los primarios, las tensiones entre las lineas y tierra y

53

entre el neutro de los primarios y tierra serán determinadas por las capacidades de las líneas a tierra y de los devanados del transformador a tierra.

Se puede tener un modelo equivalente para este circuito, en especial para el tercero y el quinto armónico de la siguiente manera; si se asume una relación de transformación unitaria, o todos los elementos referidos al mismo lado, entonces,

$$V_1 = V_2 = E_1 = E_2$$
 (1)

$$E_{1,v} = E_{2,v} = I_{1,v} (Z_{1,1,v} + Z_{0,v}) + jI_{2,v} X_{1,2,v}$$
(2)

$$E_{1}^{v} = E_{2}^{v} = I_{1}^{v} (Z_{11}^{v} + Z_{q}^{v}) = j I_{1}^{v} \times X_{21}^{v}$$
(3)

$$\forall_2 \mathsf{v} = \mathsf{E}_{\Xi} \mathsf{v} - \mathsf{j} \mathsf{I}_1 \mathsf{v} \times \mathsf{X}_{\Xi 1} \mathsf{v}$$

donde,

$$Z_{1}^{v} = Z_{11}^{v} - j X_{21}^{v}$$

$$Z_{2}^{v} = Z_{22}^{v} - j X_{12}^{v}$$

$$V_{2}^{v} = I_{2}^{v} (7_{2}^{v} + 7_{2}^{v})$$
(4)

Cuando el banco se encuentra con carga se tendrán las siguientes relaciones para las componentes de quinta armónica; así,

$$E_{1}^{v} = E_{2}^{v} = I_{1}^{v} (Z_{11}^{v} + Z_{0}^{v}) + j \quad I_{2}^{v} X_{12}^{v} =$$
$$I_{2}^{v} (Z_{22}^{v} + Z_{1}^{v}) + j I_{1}^{v} X_{21}^{v}$$

por tanto,

$$I_1^{\vee}/I_2^{\vee}=(Z_2^{\vee}+Z_1^{\vee})/(Z_1^{\vee}+Z_9^{\vee})$$

- V. : Voltaje terminal en el bobinado i
- E. : Voltaje inducido en el terminal i
- I. : Corriente en la línea i
- Z. : Impedancia del generador
- Z₁₁ : Autoimpedancia del bobinado i
- Z₁ : Impedancia de dispersión del bobinado i con respecto a algún bobinado especificado

R1 : Resistencia del bobinado i

X₁₁ : Autoreactancia del bobinado i

 $X_{12} = X_{21}$: Reactancia mutua del bobinado 1 y 2.

X₁ : Reactancia de dispersión del bobinado i con respecto a algún bobinado especificado

2.2.1.2. <u>Conexión estrella - estrella</u>

<u>con 4 hilos en el primario</u>.

FIGURA 2 : CONEXION ESTRELLA - ESTRELLA CON NEUTRO INTERCONECTADO ENTRE EL GENERADOR Y EL BOBINADO PRIMARIO.

En este caso las componentes de tercer armónico de las corrientes de excitación son establecidas en los bobinados primarios de los transformadores con el neutro como un hilo común, entrando a los bobinados del generador y regresando por los hilos de las fases. Cuando la tensión aplicada es senoidal, la corriente de excitación contendrá armónicos impares, siendo de mayor importancia la componente fundamental y el tercer armónico. La corriente que circula por el hilo neutro es la suma de las corrientes i_{ee} , i_{ee} e i_{ec} ; cuando los transformadores son iguales y las tensiones smn equilibradas, los armónicos fundamentales de las tres corrientes de excitación son tres ondas senoidales de igual amplitud defasadas 120°; su suma por tanto es cero, lo que significa que por el neutro no circulará ninguna corriente de frecuencia fundamental. Por otro

lado, las componentes de tercer armónico de las corrientes de excitación se encuentran en concordancia de fase en las tres líneas y por tanto, en el hilo neutro circulará una corriente igual a tres veces la componente de tercer armónico de la corriente de fase; así como también los armónicos múltiplos del tercero.

Los armónicos a partir del noveno suelen ser muy débiles, por lo que la corriente que circula por el neutro es aproximadamente una onda senoidal de frecuencia igual a tres veces la frecuencia de alimentación. Los terceros armónicos de las corrientes de excitación producirán pequeñas caidas de tercer armónico en los bobinados primarios y por tanto, cuando varian senoidalmente las tensiones respecto al neutro aplicados a los primarios, las fuerzas electromotrices índucidas por el flujo mutuo contendrán terceros armónicos de pequeña magnitud. Estos aparecen como componentes pequeñas de las tensiones de 105 secundarios respecto neutro, aunque al estas лα aparecen en las tensiones de linea en el circuito.

Se tendra el siguiente modelo para las componentes de tercero y quinto armónico,

La corriente de tercer armónico fluirá sobre el lado primario,

57

$$E_{1} \cdots = E_{2} \cdots = I_{1} \cdots (Z_{11} \cdots + Z_{0} \cdots + 3Z_{1n} \cdots) = jI_{1} \cdots X_{21} \cdots$$
(5)
$$V_{2} \cdots = E_{2} \cdots - jI_{1} \cdots X_{21} \cdots = I_{1} \cdots (Z_{1} \cdots + Z_{0} \cdots + 3Z_{1n} \cdots)$$
(6)

Las condiciones para el quinto armónico cumplen las mismas relaciones (2), (3), y (4).

Cuando el banco se encuentra con carga se deberá considerar dos casos,

Caso 2. Cuatro hilos en el circuito primario y cuatro hilos en el circuito secundario

 $E_{1} \cdots = E_{2} \cdots = I_{1} \cdots (Z_{11} \cdots + Z_{n} \cdots + Z_{1n} \cdots) + j X_{12} \cdots I_{2} \cdots$

 I_2 $(Z_{22}$ $+Z_1$ $+Z_{220}$ $) + jI_1$ X_{21}

 $I_{1}^{*} / I_{2}^{*} = (Z_{2}^{*} + Z_{1}^{*} + 3Z_{2n}^{*}) / (Z_{1}^{*} + Z_{n}^{*} + 3Z_{1n}^{*})$

2.2.2. <u>Conexión delta</u>.

Un circuito delta suministra un camino cerrado para que las componentes de tercer armónico y sus múltiplos puedan circular, y de esa manera producir una señal de flujo aproximadamente senoidal; por tanto, los voltajes sobre cada transformador también serán senoidales y de esa manera se evita tener sobre los transformadores extra - esfuerzos como sucede cuando la componente de tercer armónico de la corriente de excitación es suprimída.

Primarios conectados en delta. Si se considera el caso de tres transformadores monofásicos con 105 primarios conectados en delta y sus secundarios sin ninguna conexión; si ahora se aplica a los primarios tensiones senoidales balanceadas, las formas de onda de corrientes las de excitación los en tres transformadores serán iguales y desplazadas 120° entre si. Si las tensiones de linea son senoidales, las formas de las señales de las corrientes de excitación tienen la forma general indicada en el capitulo anterior. De esta manera, las formas de las señales de las corrientes de excitación ince (Ice en la figura) e iæse (Ise en la figura) en dos de los transformadores son de la forma indicada en la figura 3 por las señales con pico pronunciado.

FIGURA 3 : CORRIENTES DE FASE Y DE LINEA.

La corriente de excitación suministrada por la linea A es,

$$i_{\alpha \beta} = i_{\alpha \beta \beta} - i_{\alpha \beta \beta} \qquad (7)$$

esta representada ina por una onda con doble forma cumbre; como se observa, 1a de onda de 1a corriente de excitación en las lineas es diferente de la forma de onda de la corriente de excitación en los bobinados primarios de los transformadores.

Terceros armónicos. En la figura 4 se indican las tres corrientes en cada rama del circuito delta denotadas por i_{ca}, i_{AB} e i_{BC}; ondas que son completamente iguales pero desfasadas 120°.

FIGURA 4 : CORRIENTES EN LAS TRES FASES DEL BANCO Y SUS COMPONENTES DE TERCER ARMONICO.

Debido a que i_{AB} se encuentra retrasada respecto a ica en 120°, el tercer armónico de i_{AB} se encuentra retrasado respecto al tercer armónico de i_{CA} en tres tercios de periodo, o sea un periodo completo del tercer armónico, como se observa en la figura 4. Por tanto, los terceros armónicos de la corriente se hallan en concordancia de fase, como se puede observar en el diagrama vectorial de la figura 5,

CA3 = AB3 = BC3

FIGURA 5 : DIAGRAMA VECTORIAL DE LAS COMPONENTES DE TERCER ARMONICO EN LAS CORRIENTES DE EXCITACION.

La diferencia instantánea de los terceros armónicos cero, por tanto, cuando los transformadores son es iguales y son alimentados por tensiones de forma de onda equilibradas, las componentes de tercer armónico en las corrientes de excitación no podrán circular por las lineas; por tanto, las componentes de tercer armónico de las corrientes de excitación circularán alrededor del circuito delta. Las componentes armónicas múltiplos del tercero se comportarán de la misma manera que éste, circulando también en el circuito local del delta; por ejemplo, el defasaje entre los armónicos novenos es de nueve tercios, o sea tres periodos enteros; por tanto, dichos novenos armónicos también se hallan en concordancia de fase comportándose de la misma manera que las componentes de tercer armónico.

Quintos armónicos. En la figura 6 pueden verse dos señales de corriente con picos pronunciados, ico e ios

62

conteniendo quintos armónicos. Debido a que i_{ne} retrasa en 120°, el quinto armónico de a ica ina estará retrasado al quinto armónico de ica en cinco tercios de período de los quintos armónicos, lo que equivale a dos tercios de retraso o a un adelanto de un tercio del periodo de quinto armónico; es decir, un adelanto de 120°. Por tanto, el orden de fases para los quintos armónicos es el inverso del orden de fases para los armónicos fundamentales como se indicò en la introducción de este capitulo.

La corriente en la línea va a estar dada por la diferencia de las dos corrientes de fase, tal como lo demuestra la expresión (7) e indicado en la figura 7

El armónico fundamental de la corriente de línea i, tiene una intensidad $\sqrt{3}$ veces mayor que el armónico fundamental de las corrientes en el triángulo y esta retrasada respecto al armónico fundamental de iAE en 30°, mientras que el quinto armónico de i, es $\sqrt{3}$ veces mayor que el quinto armónico de las corrientes en el triángulo, pero se encuentra adelantando respecto al quinto armónico de iAE en 30°. Por tanto, el defasaje entre las componentes armónicas fundamental y quinta de las corriente de línea es diferente del defasaje entre dichas componentes de las corrientes del triangulo, como se indica en el gráfico de la figura 8.

Debido a la ausencia de terceros armónicos en las corrientes de linea, la intensidad eficaz de las corrientes de linea en vacio no es J3 por la intensidad eficaz de corriente de excitación la de los transformadores conectados en triángulo, sino que es menor. La intensidad eficaz de las corrientes de excitación en cada transformador será,

$$I_{\varrho D} = \mathcal{I} \left(I_{\varrho 1}^{2} + I_{\varrho 3}^{2} + I_{\varrho 3}^{2} + \dots \right)$$
(8)

$$I_{a_{1}} = I_{3} \times I (I_{a_{1}}^{2} + I_{a_{2}}^{2} + I_{a_{2}}^{2} + \dots)$$
(7)

Si se desprecian los armónicos de orden superior al tercero se tiene,

$$I_{elline} = \sqrt{3} \times \sqrt{(I_{elD}^2 - I_{els}^2)}$$
(10)

2.2.2.1. <u>Conexión delta - estrella</u>.

En este caso la corriente de tercer armónico circulará en el circuito delta primario. De esta manera se tienen las siguientes ecuaciones que describen su comportamiento,

FIGURA 9 : CONEXION DELTA - ESTRELLA.

$$E_1 = E_2 = I_1 Z_{1,1}$$
 (11)

 $V_{2}^{\prime \prime \prime} = E_{2}^{\prime \prime \prime} - j I_{1}^{\prime \prime \prime} X_{21}^{\prime \prime} = I_{1}^{\prime \prime} Z_{1}^{\prime \prime \prime}$ (12)

$$E_{1}^{v} = E_{2}^{v} / \sqrt{3} = I_{1}^{v} (Z_{11}^{v} / 3 + Z_{0}^{v})$$
(13)

$$V_{2}^{v} = E_{2}^{v} - j \quad (I_{1}^{v} / \sqrt{3}) X_{21}^{v} = \sqrt{3} \quad I_{1}^{v} (Z_{1}^{v} / 3 + Z_{2}^{v}) \quad (14)$$

donde los parámetros ya han sido definidos.

En este tipo de conexión, cuando el banco se encuentra cargado se tendrá que distinguir dos casos,

Caso 1. Tres hilos en el circuito secundario.

$$E_1$$
 $= E_2$ $= I_1$ $Z_{1,1}$

 $\forall_2 \cdots = \exists_2 \cdots - j \exists_1 \cdots \forall_{2^{j_1}} \cdots = \exists_1 \cdots \forall_1 \cdots \forall_{2^{j_1}} \cdots = \exists_1 \cdots \forall_1 \cdots \forall_1 \cdots \forall_1 \cdots \forall_1 \cdots \forall_n \forall_n \cdots \forall_n \forall_n \cdots \forall_n \forall_n \forall n \in \mathbb{N}$

$$E_{1}^{v} = E_{2}^{v}/\sqrt{3} = I_{1}^{v}(Z_{11}^{v}/3 + Z_{0}^{v}) + j(I_{2}^{v}/\sqrt{3})X_{12}^{v} = I_{2}^{v}(Z_{22}^{v} + Z_{0}^{v}) + jI_{1}^{v}(X_{21}^{v}/\sqrt{3})$$

$$I_1^{\vee}/I_2^{\vee} = \sqrt{3}(Z_2^{\vee}+Z_1^{\vee}) / (Z_1^{\vee}+\overline{3}Z_9^{\vee})$$

Caso 2. Cuatro hilos en el circuito secundario.

$$E_{1} \quad = E_{2} \quad = I_{1} \quad Z_{11} \quad + jI_{2} \quad X_{12} \quad =$$

$$I_{2} \quad (Z_{22} \quad + Z_{1} \quad + JZ_{2n} \quad) + jI_{1} \quad X_{21} \quad + JZ_{2n} \quad A_{2n} \quad A$$

$$I_1 \cdots / I_2 \cdots = (Z_2 \cdots + Z_1 \cdots + Z_{2n} \cdots) / Z_1 \cdots$$

2.2.2.2. <u>Conexión estrella - delta</u>.

Neutros aislados. En este caso, las componentes de tercer armónico de las corrientes en el primario ya no pueden existir por encontrarse interrumpido su camino de retorno por el hilo neutro. La ausencia de estos terceros armónicos de la corriente de excitación distorsiona las ondas de flujo en los núcleos, introduciendo componentes de tercer armónico en el mismo; por tanto, los voltajes inducidos en los bobinados primario y secundario por las variaciones del flujo contienen terceros armónicos, los cuales se encuentran en fase en los tres transformadores. Estos voltajes de tercer armónico al encontrarse en fase tienden a establecer corrientes en la misma dirección en los tres transformadores fluyendo sobre el lado secundario conectados en delta. Estas corrientes de tercer armónico en los bobinados secundarios, establecen los correspondientes flujos de tercer armónico, los cuales neutralizan la distorsión de las ondas de flujo originalmente causadas por la ausencia de las componentes de tercer armónico en la corriente de excitación primaria.

FIGURA 10 : CONEXION ESTRELLA - DELTA CON NEUTRO AISLADO.

La corriente de tercer armónico será confinada exclusivamente al circuito delta secundario.

$$E_{1} = E_{2} = j I_{2} X_{12} = I_{2} Z_{22}$$
(15)

$$V_1 = E_1 - j I_2 X_{12} = I_2 I_{22} - j I_2 X_{12}$$

V.

$$I_{2} = I_{2} I_{2} I_{2} I_{2} I_{2} I_{1} I_{2} I_$$

$$E_{1}^{v} = \sqrt{3} E_{2}^{v} = I_{1}^{v} (Z_{11}^{v} + Z_{0}^{v})$$
(17)

$$V_{2}^{v} = E_{2}^{v} - j \quad (I_{1}^{v} / \sqrt{3}) \quad X_{21}^{v} = (I_{1}^{v} / \sqrt{3}) (Z_{1}^{v} + Z_{0}^{v}) \quad (18)$$

Cuando el banco se encuentra cargado se tendrán las siguientes relaciones,

$$E_{1}^{v} = \sqrt{3} E_{2}^{v} = I_{1}^{v} (Z_{11}^{v} + Z_{0}^{v}) + j (I_{2}^{v} / \sqrt{3}) X_{12}^{v} = \sqrt{3} I_{2}^{v} (Z_{22}^{v} / 3 + Z_{1}^{v}) + j I_{1}^{v} X_{21}^{v}$$

$$I_{1}^{v}/I_{2}^{v} = (Z_{2}^{v} + Z_{L}^{v}) / (I = (Z_{1}^{v} + Z_{0}^{v}))$$

Neutros interconectados.

FIGURA 11 : CONEXION ESTRELLA - DELTA CON CONEXION DEL NEUTRO.

Inicialmente si se considera un extremo del delta abierto; el lado primario se comporta como un banco estrella – estrella сол conexión del neutro, permitiendo la circulación de componentes de tercer armónico en la corriente de excitación. Estas componentes tercer armónico los bobinados de ел primarios de los transformadores por tanto las Y fuerzas electromotrices inducidas por el flujo mutuo contienen terceros armónicos débiles que aparecen como pequeñas componentes de las tensiones en los circuitos secundarios. For tanto, la tensión en los terminales abiertos del secundario delta va a ser tres veces la componente de tercer armónico de tensión en uno de los

bobinados, ya que estos se encuentran en fase. Las componentes de frecuencia diferentes al tercero y sus múltiplos no se presentan en el vértice abierto por estar éstas desplazadas 120° y ser de igual magnitud.

Al cerrar la esquina en el lado delta secundario, las fuerzas electromotrices de esta frecuencia crean una corriente de esta frecuencia sobre el delta secundario. Por tanto, componentes de tercer armónico de corriente circularán tanto sobre el lado primario en estrella como en el secundario en delta. La combinación de estas corrientes permiten variaciones casi senoidales del flujo en los tres transformadores. Al cerrar el lado secundario se reducirá la corriente en el lado primario, y comenzará a circular corriente en el circuito secundario.

$$E_{1}^{\prime\prime\prime} = E_{2}^{\prime\prime\prime} = I_{1}^{\prime\prime\prime} (Z_{11}^{\prime\prime\prime} + Z_{0}^{\prime\prime\prime} + \exists Z_{1n}^{\prime\prime\prime}) + j I_{2}^{\prime\prime\prime} X_{12}^{\prime\prime\prime}$$

$$E_{1}^{\prime\prime\prime} = E_{2}^{\prime\prime\prime} = I_{2}^{\prime\prime\prime} Z_{22}^{\prime\prime\prime} + j I_{1}^{\prime\prime\prime} X_{21}^{\prime\prime\prime} \qquad (17)$$

$$I_{1}^{\prime\prime\prime} / I_{2}^{\prime\prime\prime} = Z_{2}^{\prime\prime\prime} / (Z_{1}^{\prime\prime\prime} + Z_{0}^{\prime\prime\prime} + \exists Z_{1n}^{\prime\prime\prime\prime}) \qquad (20)$$

La conexión del neutro no afecta a las componentes de quinto armónico.

2.2.2.3. Conexión delta - delta.

Con este tipo de conexión, las componentes de tercer armónico en las tres tensiones en el lado secundario se encuentran en fase y en el mismo sentido

alrededor del triángulo y por tanto producen una débil corriente de tercer armónico en el circuito delta secundario. Por tanto, los terceros armónicos de las corrientes de excitación se encuentran tanto en el circuito primario como en el circuito secundario, y las corrientes de tercer armónico necesarías para permitir las variaciones casi senoidales de los flujos mutuos las crean los efectos combinados de estas corrientes.

Las componentes de tercer armónico no podrán aparecer sobre las líneas, éstas existirán únicamente en los circuitos delta del primario y secundario.

FIGURA 12 : CONEXION DELTA - DELTA

Las fuerzas electromotrices de tercer armónico inducidas son dadas por las siguientes expresiones,

$$E_{1}^{\cdots} = E_{2}^{\cdots} = I_{1}^{\cdots} Z_{11}^{\cdots} + j I_{2}^{\cdots} X_{12}^{\cdots} = I_{2}^{\cdots} Z_{22}^{\cdots} + j I_{1}^{\cdots} X_{21}^{\cdots}$$
(21)

la división de corriente de tercer armónico entre el circuito primario y secundario será gobernado por la siguiente expresión,

$$I_1 / I_2 = Z_2 / Z_1$$
 (22)

las componentes de quinto armónico serán,

$$E_{1}^{v} = E_{2}^{v} = I_{1}^{v} (Z_{11}^{v} / 3 + Z_{q}^{v})$$
(23)

$$V_{2}^{v} = E_{\mathbb{R}}^{v} - j I_{1}^{v} (X_{\mathbb{R}, 1}^{v} / \mathbb{S}) = I_{1}^{v} (Z_{1}^{v} / \mathbb{S} + Z_{q}^{v})$$
(24)

Cuando el banco se encuentra cargado se tendrán las siguientes relaciones,

$$E_{1}^{\vee} = E_{2}^{\vee} = I_{1}^{\vee} (Z_{2,1}^{\vee}/3 + Z_{0}^{\vee}) + j I_{2}^{\vee} (X_{1,2}^{\vee}/3) = I_{2}^{\vee} (Z_{2,2}^{\vee}/3 + Z_{1}^{\vee}) + j I_{1}^{\vee} (X_{2,1}^{\vee}/3)$$

$$I_{1}^{\vee}/I_{2}^{\vee} = (Z_{2}^{\vee} + \Im Z_{L}^{\vee}) / (Z_{1}^{\vee} + \Im Z_{0}^{\vee})$$

2.2.3. Conexión delta abierta o V-V.

Con este tipo de conexión se tienen características muy similares a las que se tiene con una conexión estrella - estrella. En este tipo de conexión las componentes de tercer armónico existen en la corriente de excitación debido a que este tipo de conexión tienen características que bien podrían tratarse como un circuito desequilibrado, además el circuito para la circulación de las componentes de tercer armónica de la corriente de excitación se cierra a través del generador. También existirán componentes de tercer armónico en las señales de voltaje inducido sobre los transformadores.

FIGURA 13: CONEXION DELTA ABIERTA O CONEXION V - V.

Debido al desequilibrio del circuito, el voltaje a través del lado abierto será diferente al de las otras dos fases.

Las componentes de tercer armónico de la corriente de excitación junto con sus múltiplos encuentran un camino para su circulación a través de las dos ramas del bobinado primario y dos ramas del generador. Esto causará que en una linea secundaria el voltaje de tercer armónico se presente con un gran valor.

2.2.4. <u>Conexión estrella - estrella con</u> terciario delta.

Para el presente caso se analizará cuando los neutros se encuentran aislados, ya que cualquier modificación que se haga al circuito, se podrá relacionar con los casos ya antes descritos.

Con este tipo de conexión, las componentes de tercer armónico introducidas en los voltajes de linea a neutro pueden ser reducidas con la utilización de transformadores con un tercer bobinado conectado en delta dentro del banco.

FIGURA 14 : CONEXION ESTRELLA - ESTRELLA CON TERCIARIO CONECTADO EN DELTA.

En esta conexión, los terceros armónicos de las corrientes de excitación necesarias para mantener las variaciones casi senoidales de los flujos en los núcleos podrán circular por el circuíto terciario

conectado en delta, y las condiciones son similares a las de un banco con conexión estrella-delta sin conexión del neutro.

Como se observa en la figura 14, las componentes de tercer armónico y sus múltiplos circularán en el circuito delta terciario.

Si se designa el tercer bobinado como No.3 y se asume una relación de transformación unitaria, se puede escribir las siguientes expresiones,

$$\mathsf{E}_{\mathtt{a}}^{\ \ \prime\prime} = \mathsf{E}_{\mathtt{a}}^{\ \ \prime\prime} = \mathsf{E}_{\mathtt{a}}^{\ \prime\prime} = \mathsf{I}_{\mathtt{a}}^{\ \prime\prime} \mathsf{Z}_{\mathtt{a}\mathtt{a}}^{\ \prime\prime} \tag{25}$$

$$V_{1}^{\prime\prime\prime} = E_{1}^{\prime\prime\prime} - j I_{3}^{\prime\prime\prime} X_{13}^{\prime\prime\prime} = I_{3}^{\prime\prime\prime} (Z_{33}^{\prime\prime\prime} - j X_{13}^{\prime\prime\prime}) = I_{3}^{\prime\prime\prime} Z_{39}^{\prime\prime\prime}$$
(26)

$$\forall_2 \cdots = \mathsf{E}_2 \cdots - \mathsf{j} \mathsf{I}_3 \cdots \mathsf{X}_{23} \cdots = \mathsf{I}_3 \cdots (\mathsf{Z}_{33} \cdots - \mathsf{j} \mathsf{X}_{23} \cdots) = \mathsf{I}_3 \cdots \mathsf{Z}_{35} \cdots$$
(27)

donde Z_{30} y Z_{30} representan las impedancias de dispersión de tercer armónico con respecto a los bobinados No.1 y No.2 respectivamente.

Los quintos armónicos de esta conexión obedecen a las ecuaciones que gobiernan una conexión estrella estrella ya analizada (2), (3) y (4).

LISTA DE SIMBOLOS:

E = Voltaje inducido por el flujo en el núcleo
I = Corriente

ԱՌ

bobinado

≕ Corriente que circula en

delta cerrado

Ιp

= Corriente en el neutro I. Impedancia del neutro Z. = ≕ Frecuencia 'f = Impedancia del generador Z. Z = Impedancia de carga Z_{11} , Z_{22} , Z_{33} = Auto impedancia de los bobinados No.1, No. 2 y No. 3. Z1, Z2, Z3 = Impedancia de dispersión de los bobinados No.1, No.2 y No.3 con respecto a algún bobinado especifico. = Resistencia de los bobinados No.1, R1, R2, R3 No.2 y No.3. X_{11} , X_{22} , X_{33} = Autoreactancia de los bobinados No.1, No.2 y No.3. = Reactancia mutua del bobinado No.1 $X_{12} = X_{21}$ y No.2. = Reactancia mutua del bobinado No.1 $X_{13} = X_{331}$ y No.3. Xaa = Xaa = Reactancia mutua del bobinado No.2 y No.3. X1, X2, X3 = Reactancia de dispersión de los bobinados No.1, No.2 y No.3 con respecto a algún bobinado específico.

2.2.5. <u>Conversor estático de frecuencia</u>.

FIGURA 15 : CIRCUITO TRIFLICADOR DE FRECUENCIA.

Analizando el circuito se puede observar que las corrientes en el circuito primario contendrán componentes armónicas impares de todos los ordenes a excepción del tercer armónico y sus múltiplos, los cuales no podrán circular en el circuito primario.

Por el momento, ninguna corriente podrá circular en el circuito secundario por encontrarse abierto. Esta carencia de corrientes de tercer armónico en el circuito primario así como sus múltiplos produce que la onda de flujo se distorsione, introduciéndose en ésta una componente de tercer armónico, la cual a su vez produce voltajes inducidos distorsionados entre línea y neutro.

Considerando el circuito secundario de salida se tiene que las componentes fundamentales de los voltajes secundarios inducidos se encuentran desplazados 120°

:

entre fases, y por tanto, sumados vectorialmente a través de los terminales secundarios son cero (claro esta suponiendo la utilización de tres que se idénticos); pero si existieran transformadores desbalances entre estos, se supone que su respuesta es despreciable). Por otro lado, las componentes de tercer armónico, así como sus múltiplos se encuentran en concordancia de fase y por tanto estos se manifestarán en los terminales abiertos de la conexión secundaria, que en el caso del tercer armónico va a ser 1a componente de uла fase multiplicada por tres. tercero, las componentes novena, Comparadas con el décimo quinto y de mayor orden son despreciables y no tienen mayor sentido que sean tomadas en cuenta en el análisis.

Si 50 cierran los terminales secundarios, el circuito de la figura 15 se convierte en un banco transformador con conexión estrella - delta sin interconexión del neutro; en este caso, la componente tercer armónico necesaria en de la corriente dе excitación para crear un flujo casi senoidal circularán por este bobinado. Entonces, lo mismo sucederá si se conecta una carga entre los terminales del circuito delta abierto; es decir, la componente de tercer armónico de la corriente de excitación necesaria, circulará a través de la carga.

Como se analizó en el capitulo anterior la única de la corriente de excitación componente que contribuyen a las pérdidas totales es la componente fundamental de la corriente, y si se desprecian las pérdidas en el núcleo y en los bobinados, se tiene que la componente fundamental de la corriente de excitación se encontrará en cuadratura con el voltaje aplicado, ya sea que el circuito se encuentre abierto Ö eΠ cortocircuito; bajo estas condiciones, la potencia de entrada y de salida es cero. Si se conecta una caroa entre los terminales secundarios abiertos, la corriente secundaria modifica la forma de la onda de flujo de una manera tal que la componente fundamental en la corriente de entrada cambia tanto en magnitud como en fase con respecto al voltaje aplicado; de esta manera, la potencia requerida por la carga es tomada de1 circuito de alimentación a frecuencia fundamental. Esto puede ser visualizado de una manera aproximada con las siguientes relaciones,

Ø,=Ø1-Ø2

 $e_1 = N_1 \quad d\emptyset_{\bullet} / dt$ $e_2 = N_2 \quad d\emptyset_{\bullet} / dt$ $e_2 = i_2 \quad \times \quad Z_1$

79

Entonces,

$$i_{z}Z_{L} = N_{z} d\emptyset_{\bullet} / dt$$
$$d\emptyset_{\bullet} / dt = i_{z} Z_{L} / N_{z}$$

por tanto,

$$\emptyset_{\bullet} = (Z_{L} / N_{2}) \int_{-\infty}^{t} i_{z} dt$$

Despreciando las pérdidas en el transformador se tiene,

$$P_i = P_z$$

Entonces,

$$\forall_1 \ I_1 = \forall_2 \ I_2$$

En el caso del circuito triplicador de frecuencia se tiene que,

$$J \Im V_1 I_1 Cos \Phi = V_2 \cdots I_2 \cdots Cos \Phi_c$$

donde Φ es el ángulo de fase entre el voltaje aplicado y la componente fundamental de la corriente de entrada; y Φ_c es el ángulo determinado por la carga.

En la última expresión se esta considerando únicamente componentes de tercer armónico y despreciando los armónicos de orden superior múltiplos del tercero. Aunque se desprecien las pérdidas, las potencias promedio de entrada y salida son iguales, en acordancia con la ley de conservación de la energia; pero los valores instantáneos en general son diferentes. Mientras la potencia de entrada es continua la potencia de salida siendo monofásica es pulsante. De esta manera, el banco que cambia la señal de entrada de 60 ciclos a una salida de 180 ciclos, almacena potencia durante parte del ciclo y la entrega a la salida monofásica durante el resto del ciclo; este reservorio de energía en el banco triplicador de frecuencia se realiza en los campos magnéticos.

Si se considera a E_3 como el voltaje de tercer armónico de circuito abierto, y a I_3 como la corriente de carga, se tiene el siguiente diagrama vectorial a los terminales de salida, $E_{3,m}$

FIGURA 16 : CONDICIONES TERMINALES DEL TRIFLICADOR ESTATICO DE FRECUENCIA.

En el circuito secundario circulará una corriente cuya frecuencia será tres veces la frecuencia de la fuente de alimentación, pero como se sabe, en el circuito primario no podrá circular ninguna corriente de esta frecuencia que equilibre a la corriente de carga; por tanto, esta corriente de carga producirá una caida de tensión en los bobinados secundarios correspondiente al tercer armónico y adelantando 90° respecto a la corriente. Este voltaje se debe sumar vectorialmente a E₃ para así obtener el voltaje terminal en la carga V₃. El voltaje inducido por la corriente de carga actúa de la misma manera que la caída de voltaje en la reactancia de dispersión en un transformador normal. Por esta razón se representa como I₃X₃, donde X₃ es la reactancia equivalente de tercer armónico del circuito secundario.

En el núcleo, el flujo que produce la caida I₃X₃ es superpuesto sobre un flujo mayor a 60 ciclos; la máxima densidad de la cual esta bien arriba del codo en la curva de magnetización, es decir, el núcleo se encuentra saturado durante una considerable porción del ciclo y por tanto X₃ puede ser considerado constante como una primera aproximación.

El valor de X_3 puede ser determinado experimentalmente midiendo el voltaje de circuito abierto E₃ y la corriente de cortocircuito I₃ en el lado secundario; de esta manera se tiene,

$$X_3 = E_3 / I_3 (\Omega)$$
 (28)

Una vez determinado X₃, se puede encontrar el voltaje de salida y regulación para cualquier tipo de carga.

Los transformadores a utilizarse en el circuito triplicador deberán ser diseñados en orden a trabajar en las regiones del codo de saturación, ya que si ellos operan en la región de baja densidad de flujo o densidades sobre el codo de la curva de magnetización, la producción de armónicos será baja, ya que estos dos sectores se los pueden considerar como rectas.

El flujo que produce la caida de tensión I_3X_3 recorre un camino de baja reluctancia en el núcleo, a diferencia del flujo de dispersión de un transformador a frecuencia fundamental, el cual recorre un camino de gran reluctancia por el aire. Es por esta razón que la reactancia X_3 del triplicador de frecuencia es mayor que la reactancia de dispersión X_3 del transformador; resultado que lleva a una pobre regulación de voltaje, especialmente para cargas inductivas; además de una considerable reducción en la potencia máxima de salida.

Del diagrama vectorial de la figura 16 se pueden obtener las siguientes expresiones,

$$V_{3} = \int \left[E_{3}^{2} - I_{3}^{2} X_{3} (X_{3} + 2X) \right]$$
(29)

$$W = I_3 \, \int \left[E_3^2 - I_3^2 \left(X_3 + X \right)^2 \right] \tag{30}$$

Las deducciones de las relaciones (29) y (30) pueden ser verificadas en el apéndice 1.

Donde X es la componente reactiva de la carga y W es la potencia de salida en la carga, la cual va a depender del valor de la corriente I₃ en la carga; por tanto, para encontrar la máxima potencia que se puede entregar a la carga se tiene que derivar la potencia W con respecto a la corriente de carga I₃ e igualar el resultado a cero, para obtener de esta manera la siguiente expresión,

$$W_{max} = E_{3}^{2} / [2 (X_{3} + X)]$$
(31)

La deducción de esta última expresión puede ser verificada en el apéndice 1.

Como se puede observar de la expresión (31) y del diagrama vectorial de la figura 16, tanto la potencia máxima, como la regulación de voltaje dependen de la reactancia del transformador y de la componente reactiva de la carga. La reactancia del transformador que puede ser modificado no es แก parámetro con facilidad en un banco triplicador dado, en cambio, la componente reactiva de la carga si puede ser controlada con facilidad si es que se conecta en serie con ésta un capacitor del valor apropiado como se indica en la figura 17,

FIGURA 17 : TRIFLICADOR ESTATICO DE FRECUENCIA CON CARGA CAPACITIVA DE COMPENSACION.

Por lo tanto, la potencia máxima de salida en estas condiciones será,

$$W_{max} = E_{3}^{2} / [2 (X_{3} + X - 1/wc)]$$
(32)

Teóricamente cuando 1/wc llega a ser igual a X₃+X, la potencia máxima a la salida llega a ser infinita; pero en la práctica, esta es limitada por las pérdidas del circuito. For tanto, con la compensación capacitiva se llega a incrementar la potencia máxima, así como también se obtiene una mejor regulación.

2.3. <u>Circuito equivalente del tercer armónico</u>.

La componente de tercer armónico ya sea en la señal de voltaje o en la señal de corriente junto con la componente fundamental, constituyen los factores de mayor importancia en el comportamiento de un banco

transformador. Las características del circuito equivalente del tercer armónico son determinadas experimentalmente; para estas pruebas se tomarán en cuenta el hecho de que las componentes de tercer armónico de las corrientes en un sistema trifásico se encuentran en fase; por tanto, el análisis del circuito equivalente de tercer armónico será diferente del que se utiliza cuando se analiza voltajes y corrientes a frecuencia fundamental.

Se debe considerar que cualquier componente armónico de corriente existirá como el resultado de una fuerza electromotriz de la misma frecuencia en el circuito. Si el voltaje aplicado es una fuente senoidal, la no linealidad de la característica B - H del núcleo producirá las componentes armónicas de voltaje, las cuales causan las componentes armónicas en la corriente de excitación del transformador.

Si se considera el caso de un banco transformador conectado estrella - delta sin conexión del neutro, caso que ya fue analizado con el lado delta abierto en un extremo, ninguna componente de tercer armónico en las corrientes podrán circular sobre ambos lados, lo cual causará que las ondas de voltaje en los terminales de cualquier transformador sean distorsionadas, conteniendo un pronunciado tercer armónico.

Si se cierra el terminal abierto en el secundario, las componentes de tercer armónico en los voltajes se sumarán directamente en fase alrededor del circuito delta secundario, lo cual producirá una circulación de corriente de tercer armónico en el circuito delta formado por tres impedancias de tercer armónico. Experimentalmente se puede encontrar la impedancia ofrecida por el transformador al paso de la corriente de tercer armónico a partir de la siguiente información,

- El voltaje de tercer armónico en circuito abierto.

 La impedancia del transformador a la corriente de tercer armónico.

Voltaje Para encontrar generado. el voltaje generado de tercer armónico se utilizará el circuito indicado en la figura 18 con el interruptor en la posición B. y con voltaje aplicado senoidal a los bobinados primarios; de esta manera se encuentra el correspondiente voltaje generado de tercer armónico en los terminales abiertos del circuito delta. Se debe que en estos terminales existirán indicar también componentes armónicos múltiplos del tercero, los cuales son despreciables.

FIGURA 18: CIRCUITO UTILIZADO PARA LA DETERMINACION DE LOS VOLTAJES Y CORRIENTE GENERADOS DE TERCER ARMONICO.

El voltaje generado por transformador es un tercio del voltaje total medido. Con el interruptor en la posición A se medirá la corriente de tercer armónico y sus múltiplos, que de la misma forma como en el caso anterior, los múltiplos del tercer armónico son despreciables comparados con el tercer armónico de la corriente en el circuito delta.

La relación de las componentes de tercer armónico de voltaje por transformador a la componente de tercer armónico de la corriente que circula por el circuito delta, dará como resultado la impedancia total del transformador a cada valor del voltaje aplicado en el circuito primario.

El circuito equivalente. El circuito equivalente de tercer armónico es una adaptación del circuito

equivalente T convencional del transformador a frecuencia fundamental con algunas condiciones las cuales serán aclaradas más adelante. El circuito equivalente es representado en la siguiente figura,

FIGURA 19 : CIRCUITO EQUIVALENTE DE TERCER ARMONICO.

La rama shunt se encuentra formada por un generador ficticio de tercer armónico, el cual es el voltaje terminal de un solo transformador cuando la componente de tercer armónico de la corriente de excitación es totalmente eliminada, y a un valor del voltaje aplicado. En esta misma rama se encuentra la impedancia en vacio, la cual es la relación del voltaje de triple frecuencia a la corriente de la misma frecuencia, la cual debería fluir como parte de la corriente de excitación sin ninguna impedancia externa conectada en el circuito. Se debe tomar en cuenta en el circuito equivalente, que la corriente de tercer armónico esta . determinada principalmente por el valor de la fuerza electromotriz generada y por la impedancia en vacio a

determinar cualquier tipo de conexión que se tenga en el banco, asi por ejemplo, si los bobinados primarios son conectados en estrella sin conexión del neutro, no podra circular ninguna corriente de tercer armónico en los bobinados primarios, situación que se representará en el circuito equivalente con el terminal b abierto.

Si en el primario conectado en estrella se establece un conductor en el neutro, los puntos a y b estarán cortocircuitados directamente, proporcionando de esta manera un camino para la circulación de corriente de tercer armónico.

Para la representación en el circuito equivalente de las conexiones sobre el lado secundario se tiene que identificar las siguientes situaciones:

Sin carga externa. Para este caso, con una conexión secundaria del banco en estrella, el terminal d en el circuito equivalente estará abierto y por tanto ninguna corriente de tercer armónico podrá circular sobre este lado. Dentro de este caso se puede representar 1a situación que ocurre cuando el neutro sobre este lado se encuentra enterrado dentro de un sistema donde la capacitancia propia de la línea es apreciable; en este caso se debe considerar que los puntos c y d en el circuito equivalente se cierran a través de un capacitor, y en este caso existirá circulación de corriente de tercer armónico sobre los bobinados secundarios.

Si los bobinados secundarios son conectados en delta, se tiene que los puntos c y d en el circuito equivalente están unidos, suministrando un camino cerrado para la circulación de corriente de tercer armónico.

Con carga externa. Para esto se analizará el caso cuando los bobinados secundarios y la carga están conectados estrella У รนร neutros en están interconectados. En el circuito equivalente de tercer armónico los puntos c y d están cerrados a través de la impedancia de carga a esta frecuencia, suministrando un camino para la circulación de corrientes de tercer armónico por el bobinado secundario y la carga. Cuando los neutros de los bobinados secundarios y la carga no tienen conexión, ninguna componente de tercer armónico en la corriente podra circular, lo cual se representa en el circuito equivalente con el punto d abierto.

Cuando los bobinados secundarios son conectados en delta, no importará si existe carga o no, ya que la componente de tercer armónico de la corriente circulará sobre los bobinados secundarios, lo cual se representará en el circuito equivalente con los puntos c y d cortocircuitados permitiendo que corrientes de tercer armónico puedan circular sobre este lado.

Es evidente del circuito equivalente que si los bobinados primario y secundario están conectados en delta, la componente de tercer armónico de la corriente debería divídirse entre los dos bobinados inversamente a sus respectivas impedancias de dispersión. 2.4. <u>Pruebas experimentales de los armónicos</u> <u>generados en los bancos de transformadores para</u> los diferentes tipos de conexiones.

2.4.1. <u>Conexión estrella - estrella</u>.

2.4.1.1. <u>Conexión estrella - estrella</u> con neutros aislados.

FIGURA 1 : CONEXION ESTRELLA - ESTRELLA CON NEUTROS AISLADOS.

El circuito de la figura 1 es utilizado para la determinación experimental de los parámetros de mayor importancia en este tipo de conexión, y cuyos resultados son indicados en las siguientes figuras,

Escalas : y: 5 V/div x: 2mseg/div

FIGURA 2 : V_{AN}

Escalas : y; 20 mV/div x: 2 mseg/div Rmedición=10

FIGURA 3 : 10A

El espectro de frecuencias para las señales son indicadas en el siguiente cuadro.

FUNDAMENTAL	100.0 %
3-r ARMONICO	8.8% D
5to ARMONICO	6.5 %
7mg ARMONICO	7.

FIGURA 4 : SERIES DE FOURIER PARA ian

2.4.1.2. <u>Conexión estrella - estrella</u> <u>con cuatro hilos en el circuito</u> <u>primario</u>.

FIGURA 5 : CONEXION ESTRELLA - ESTRELLA CON CUATRO HILOS EN EL CIRCUITO PRIMARIO.

Los resultados obtenidos en el laboratorio son indicados en las siguientes figuras,

Escalas : y: 20 mV/div x: 2 mseg/div Rmedición=20 Punta x10

FIGURA 6 : Corriente im

Escalas : y: 20 mV/div x: 2 mseg/div Rmedición=20

FIGURA 7 : ina

El espectro de frecuencias para las señales son indicadas en el siguiente cuadro.

İn				iør			
FUNI	DAMENTAL	26.29	7.	D	FUNDAMENTAL	100.0	7.
3	ARMONICO	83.09	7.		3=r ARMONIC	0 13.3	7.
5**	ARMONICO	5.27	7.	D	5t⇔ ARMONIC	0 3.8	7.
7~~	ARMONICO	5.83	7.	D	7m⇔ ARMONIC	0	7.

FIGURA 8 : SERIES DE FOURIER PARA in e iga

2.4.2. Conexión delta.

2.4.2.1. <u>Conexión delta -</u> estrella.

FIGURA 7 : CIRCUITO UTILIZADO PARA PRUEBAS

.

Escalas : y: 0.5 V/div x: 2 mseg/div Rmedición=4Ω

FIGURA 10 : Corriente ipi

Escalas : γ: 1.0 V/div x: 2 mseg/div Rmedición=4Ω

FIGURA 11 : Corriente i.a

Un desplazamiento del neutro ocurre a frecuencia fundamental debido a que la curva voltamperimétrica de la combinación de un reactor con núcleo ferromagnético en paralelo con un capacitor tiene dos regiones de operación; una en retraso y otra en adelanto. En alguna operación de maniobra, una rama puede actuar capacitivamente y las otras dos inductivamente; lo cual produce un desplazamiento del neutro.

Este fenómeno y el de oscilación serán explicados en secciones posteriores.

FIGURA 3 : CURVA VOLTAJE - CORRIENTE DE UN REACTOR CON NUCLEO FERROMAGNETICO EN PARALELO CON UN CAPACITOR.

En I_L; para cada valor de E se obtiene un valor de corriente, sabiendo que esta se encuentra fuera de fase respecto a E por un ángulo de 90°. En el caso de I. se procede con el mismo análisis; pero en este caso, la corriente adelanta en un ángulo de 90° con respecto a E.

En la figura anterior, I_L es la característica voltamperimétrica de un inductor con núcleo saturable, e I_c corresponde a la característica voltamperimétrica de una capacitancia. La curva característica resultante de la combinación del inductor con el capacitor es indicada con I_c en la figura 3. En la figura 4 se puede distinguir las siguientes zonas,

CURVA VOLTAJE - CORRIENTE

FIGURA 4 : DETALLES DE I. DE LA FIGURA 3.
encuentra adelantado, y la 0-A. Ι. se ZONA combinación se comporta igual que un capacitor. En esta aproximadamente característica zona se tiene นเกล lineal, lo que se puede aproximar a una reactancia capacitiva constante; y el comportamiento del circuito es estable.

ZONA A-B. En esta zona se cubre los mismos valores de corriente como en la zona O-A pero a un voltaje mayor. En esta zona; con el incremento de voltaje la corriente disminuye. En términos de impedancia, la reactancia aparente de la combinación todavía se encuentra en adelanto; es decir, actúa capacitivamente, pero la reactancia incremental se encuentra en retraso.

- X, considerada como E/I es negativa, adelantando o capacitiva; pero,
- X, considerada como Variación de E / Variación de I es positiva, retrasando o inductiva, lo cual es una fuente de inestabilidad.

Es decir, una combinación operando en el punto N en equilibrio estable, con un disturbio se puede producir que el punto N se desplace hacia la zona B-D o hacia la zona O-A hasta que alcance un punto de equilibrio. También puede producirse el caso que el punto N no encuentre un punto de equilibrio dentro de las otras dos zonas y por tanto N puede mantenerse en un estado de persistente oscilación.

ZONA B-D. La corriente en esta zona se encuentra en retraso, e incrementa conforme el voltaje también lo hace; por tanto, la característica de la combinación es de una inductancia con saturación. Un punto de equilibrio dentro de esta zona tiende a ser estable.

3.3. <u>Desplazamiento del neutro</u>.

3.3.1. Inversión del neutro.

3.3.1.1. <u>Inversión del neutro en un</u> <u>circuito monofásico</u>.

En la figura 5 se asume que las ramas 1 y 2 son iguales.

FIGURA 5 .- INVERSION EN UN CIRCUITO MONOFASICO.

Un punto de equilibrio para el punto N se encuentra en el punto medio entre los dos potenciales; como se indica en la figura 5 y en el diagrama vectorial de la figura 6.

FIGURA 6 : DIAGRAMA VECTORIAL PARA LA CONDICION NORMAL DEL NEUTRO. $E_1 = E_2 = E_0 / 2.$

En la figura 6, Eo es el voltaje de linea, y E_1 , E_2 son los voltajes de las ramas. Si los voltajes E_1 y E_2 se encuentran dentro de las zonas O-A, como se indica en la figura 4, el potencial del punto N sera normal y estable; y en este caso ambas ramas se encuentran trabajando como capacitores.

Si se asume ahora el caso de que el interruptor de línea es cerrado e inicia un transitorio, el cual lleva la una rama, por ejemplo E₁, en la zona B-D y representada con E₁[']. En estas circunstancias; una condición anormal de equilibrio puede ser establecida de la siguiente manera; de la curva de la figura 4 se observa que no solo E₁ + E₂ = E₀, sino que también E₁['] + E₂['] = E₀. Ya que E₀, el voltaje de línea es una condición externa, la cual no puede ser modificada; entonces, E_2 ' debe ser negativo para seguir cumpliendo la condición antes mencionada, ya que E_1 ' es mayor que el voltaje de línea. Esto puede ser representado vectorialmente como se indica en la figura 7.

FIGURA 7 : DIAGRAMA VECTORIAL PARA NEUTRO INVERTIDO.

En este caso, el potencial del punto N se encuentra fuera del voltaje de línea. Claro esta que una rama del circuito se encuentra actuando como un inductor y la otra como un capacitor.

3.3.1.2. <u>Inversión del neutro en un</u> <u>circuito tr</u>ifásico.

Si el neutro de un banco de transformadores con conexión estrella - estrella se encuentra enterrado en un circuito el cual es aislado; el neutro de los transformadores se encuentra unido al neutro de las capacitancias de las lineas a tierra, como en el circuito de la figura 2.

Cualquiera de las ramas de este circuito tendrá una caracteristica voltamperimétrica similar al de 1a figura 4; es decir, cualquier rama podrá actuar como un capacitor o como un inductor. Si los tres transformadores monofásicos son iguales, la posición normal del neutro se encuentra en el centro de gravedad del triángulo de voltajes de linea. Otras posiciones de equilibrio son también probables, por ejemplo, dos ramas pueden trabajar inductivamente y la tercera capacitivamente; en este caso una rama se encontrará invertida y las otras dos estarán sobre - excitadas; y por tanto el neutro se desplazará fuera del triángulo de los voltajes de linea. Aproximadamente el voltaje linea a linea aparecerá sobre los dos transformadores, mientras un voltaje de menor valor y de forma de onda distorsionada aparecerá sobre el tercer transformador.

Esto se representa en la siguiente figura,

(چ)

۲

FIGURA 8

* 3

3.4. <u>Oscilación del neutro</u>.

Cuando el neutro es perturbado, el paso a un estado de equilibrio debe tomar lugar por medio de una oscilación a la frecuencia fundamental del circuito. En muchos casos esta oscilación se extingue hasta alcanzar un estado de equilibrio balanceado en las tres ramas o con el neutro desplazado a la frecuencia fundamental del circuito y los armónicos usuales; pero en otros casos, esta oscilación puede persistir.

FIGURA 9 : CIRCUITO PARA ANALISIS DE INESTABILIDAD MONOFASICA DEL NEUTRO.

128

Figura 10 : CURVA VOLTAJE-CORRIENTE

🗕 Frecuencia multiple – 🗕 Frecuencia natural 🛛 – 🛲 Frecuencia media

FIGURA 10 : MODIFICACION DE LA CURVA DE LA FIGURA 4 PARA VARIAS FRECUENCIAS.

En el circuito indicado en el figura 9 la oscilación se presenta cuando una rama actúa en forma inductiva y la otra en forma capacitiva, lo cual producirá oscilación del neutro.

Para un valor de voltaje dado, la operación de frecuencia natural del sistema puede ser alrededor del punto A, y para la oscilación de media frecuencia es alrededor del punto B'. Si una unidad se encuentra algo abajo de B', digamos a B', en la zona capacitiva, mientras la otra se encuentra algo más arriba del punto B', digamos B''', en la zona inductiva, se tiene una oscilación del neutro.

La oscilación a doble frecuencia del neutro, se produce por un desplazamiento del neutro fuera del triángulo de voltajes delta. Con esto se obtienen voltajes iguales o balanceados de forma de onda asimétricas sobre los tres transformadores.

FIGURA 11 : OSCILACION DEL PUNTO NEUTRO N A DOBLE FRECUENCIA FUERA DEL TRIANGULO DE VOLTAJE.

Fara voltajes de línea balanceados como en la figura 12; se tendrán los voltajes de rama indicados en las figuras 13, 14, 15, 16 y 17.

₩t /1

350

-51

FIGURA 15:0SCILACION DEL NEUTRO A 2P Voltaje de Rama 9

.

.

Representando los tres voltajes de rama dentro del mismo diagrama se tendrá lo siguiente,

Representando en conjunto los voltajes de línea y de rama se tendrá,

La oscilación a media frecuencia se produce por un desplazamiento del neutro, pero ahora éste queda dentro del triángulo de voltajes de linea. En este caso se tendrán voltajes iguales y balanceados de forma asimétrica sobre los tres transformadores. Esto puede ser indicado vectorialmente con la ayuda de la figura 18.

FIGURA 18 : OSCILACION DEL PUNTO NEUTRO N A MEDIA FRECUENCIA DENTRO DEL TRIANGULO DE VOLTAJES.

Para voltajes de línea balanceados como en la figura 19; se tendrán los voltajes de rama indicados en las figuras 20, 21, 22, 23 y 24.

Figura 19:Voltajes de linea balanceados 6.

VOLTAJE

-4

Representando los tres voltajes de rama dentro del mismo diagrama se tendrá lo siguiente,

Representando en conjuntos los voltajes de linea y de rama se tendrá,

En las figuras 25 y 26 se puede observar los voltajes del neutro con respecto al punto Z (que puede ser tierra) para oscilación a doble frecuencia y a media frecuencia respectivamente,

.

3.5. <u>Flujo de potencia de una frecuencia a otra</u>.

Este caso es mejor comprendido con el análisis y desarrollo del conversor estático de frecuencia analizado en el capítulo II, donde la potencia era extraida del circuito primario a frecuencia fundamental y utilizada en el circuito de salida a una frecuencia que es tres veces la frecuencia de alimentación; fenómeno que como ya fue explicado, son producidos por saturación y la eliminación del tercer armónico en la corriente de excitación.

Adicionalmente, el flujo de potencia en un multiplicador de frecuencia de una frecuencia más baja a una frecuencia mayor debe ser reversible.

Si I, es la corriente de tercer armónico en una carga extrayendo del transformador una potencia P, esta corriente puede ser ahora invertida por la aplicación de una fuente conveniente de voltaje de tercer armónico en el circuito secundario, y la potencia P debe también ser invertida, entregando potencia al transformador en lugar de extraer potencia de éste. For tanto, no solo que se puede transmitir potencia de una frecuencia a otra en virtud de la saturación en el núcleo; sino que también se puede transmitir potencia de los armónicos a la componente fundamental si es que se dispone de una fuente externa conveniente. Cuando la potencia fluye de 180 ciclos a 60 ciclos; en este caso, el circuito primario de frecuencia fundamental es de 180 ciclos y, el circuito secundario va a ser el de 60 ciclos; de esta manera, se ésta transmitiendo potencia de frecuencia fundamental a un sub-armónico de orden 1/3; por tanto, bien se podria hacer fluir potencia de 30 ciclos a 10 ciclos.

Esto se puede relacionar con el fenómeno de inestabilidad de la siguiente manera; cuando la oscilación es a una frecuencia mayor que la de alimentación, el flujo de potencia es similar al de un conversor estático de frecuencia; es decir, la potencia se transmite de la fundamental a los armónicos; pero cuando la frecuencia de oscilación es menor que la frecuencia de alimentación, el flujo de potencia es de los sub-armónicos, a la fundamental.

3.6. <u>Autoexcitación de los voltajes anormales por</u> <u>saturaciones alternas sucesivas</u>.

Esto es un análisis adicional que pretende aclarar el fenómeno de inestabilidad del neutro que ocasionadamente puede presentarse en bancos trifásicos de transformadores conectados en forma estrella – estrella con neutro enterrado en sistemas con neutro aislado. Estos fenómenos se reflejan en los voltajes sobre los transformadores, los mismos que son auto –

excitados por saturaciones alternas sucesivas en los núcleos de los transformadores y que son explicados de la siguiente manera.

La primera saturación ocurre como una consecuencia de las condiciones iniciales de voltaje y densidad residual en el núcleo; y acoplado con la capacitancia del sistema. La frecuencia del armónico de voltaje generado, por una sucesión de saturaciones alternadas es dependiente sólo sobre la razón a la cual ellos ocurren; de esta manera, es posible la obtención de armónicos de frecuencias inusuales.

Debido a que las condiciones iniciales en los tres transformadores en general van a ser diferentes, al inicio las saturaciones van a ser muy irregulares, las cuales son de naturaleza transitoria. El circuito de la figura 27 va a servir para fines de análisis,

FIGURA 27 :

e₁₂ , e₂₃ , e₃₁ : VOLTAJES BALANCEADOS DE UNA FUENTE TRIFASICA NO ENTERRADA.

En el caso descrito en la figura, los voltajes anormales se presentarán únicamente entre fase V neutro; adicionalmente, el lado secundario del banco no contribuirá en nada al fenómeno, ya que ellos se encuentran abiertos, pero si reflejarán las anomalias que se presentan en los voltajes primarios del banco. En conclusión, tanto la inversión del neutro como la oscilación de éste se debe a la saturación en los núcleos de los transformadores, Al producirse cualquiera de los fenómenos descritos, el punto neutro diferirà de la posición que debería tener en condiciones normales, es decir, en el centro de gravedad del triángulo de voltajes de linea. Esta ubicación inconveniente del neutro dependera de los tres voltajes en los primarios del banco transformador; los cuales a su vez se reflejan en los circuitos secundarios del banco analizado; por tanto, las anomalias del neutro serán reflejadas en la esquina abierta de los secundarios conectados en delta $(\Im e_n)$. Para fines de explicación del fenómeno se utilizará el circuito de la figura 28, que como se puede verificar en el apéndice 3, éste posee las mismas características del circuito mostrando en la figura 27.

FIGURA 28 : CIRCUITO EQUIVALENTE AL DE LA FIGURA 27.

El voltaje sobre el capacitor es equivalente al voltaje del neutro. De la figura 28 se observa que la variación en los voltajes en el capacitor es el que introduce los armónicos en los voltajes del transformador. For tanto, se tendrá las siguientes relaciones,

$$e_{t1} = e_n + e_{q1}$$

 $e_{t2} = e_n + e_{q2}$ (1)
 $e_{t3} = e_n + e_{q3}$

Cuando un transformador es energizado inicialmente, se producen una serie de saturaciones de carácter transitorio, las cuales producen corrientes grandes que causarán que el capacitor desarrolle un voltaje unidireccional. Con todos los transformadores trabajando a densidades normales, sus impedancias son grandes y no permiten la descarga del capacitor, manteniendo el voltaje desarrollado en éste constante.

1.44

Los cambios de voltaje resultante del proceso de saturación pueden ser visualizados con ayuda de la figura 29, 30, 31 y 32.

FIGURA 29 : VOLTAJES EN EL GENERADOR Y EN EL NEUTRO PARA DIFERENTES SATURACIONES.

é

FIGURA 30:VOLIAJE at1 Y on

1.1

Con referencia a las figuras anteriores, a t. el banco es alimentado y se asume que las condiciones iniciales del transformador No.2 hacen que se sature a t₁, lo cual producirá una elevación en el voltaje del capacitor, la cual en las figuras anteriores se asume que vertical; una vez que sucede esto, las es impedancias en los transformadores del banco tienen un suficiente yalor prevenir la descarga а en el capacitor, con lo que el voltaje en este se mantendrá constante. Este voltaje se sumará a los voltajes del producirá un gran voltaje generador, lo cual en el transformador No.1 saturándolo a este tı a У en dirección opuesta la primera, invirtiéndo la a polaridad del voltaje en el capacitor.

Una vez se inicia la saturación, esta se incrementará en intensidad hasta que el voltaje en el transformador alcanza un valor igual a cero, punto en el cual el flujo alcanza su valor máximo.

El voltaje en el capacitor a t_2 , se mantendrá constante mientras los transformadores del banco operan a densidades normales hasta que nuevamente conforme a la expresión (1), en el transformador No.1 se tendrá un voltaje grande capaz de saturar este nuevamente a t_3 e invertir el voltaje en el capacitor, con lo que el proceso se repetirá con saturaciones en los diferentes transformadores y con cambios en la polaridad del voltaje en el capacitor.

Como se puede observar, existe gran similaridad entre los voltajes anormales encontrados en las figuras 30, 31 y 32 con los encontrados en las figuras 13, 14, 15, 20, 21 y 22, puesto que se trata del mismo fenómeno analizado desde otro punto de vista.

De esta manera se puede concluir que debido a esta serie de saturaciones que se presentan en los núcleos de los transformadores, los voltajes anormales son auto - excitados por saturaciones alternas sucesivas en la condición estable.

Cabe indicar que antes que el voltaje en el capacitor invierta, existirán saturaciones que no invertirán directamente el voltaje en el capacitor, pero si contribuirán al efecto final de inversión. Por tanto, las mayores saturaciones serán el resultado de voltajes en el transformador anormalmente grandes, las cuales ocurren cuando los voltajes del neutro y la alimentación están en la misma dirección y se suman directamente. Como los voltajes continúan elevándose, otros transformadores empiezan a alcanzar densidades de saturación en la misma dirección.

;

3.7. <u>Pruebas experimentales de inestabilidad del</u> <u>neutro</u>.

En la práctica se utilizará el siguiente circuito,

cuyo circuito modificado es el que se presenta en la siguiente figura,

Los dos circuitos fueron utilizados en el laboratorio, dando los mismos resultados.

Como se señaló en la parte teórica de este capitulo, la inestabilidad que se presenta con este tipo de conexión se debe a las condiciones iniciales del circuito. For tanto, al cerrar el interruptor de alimentación, en muchos de los casos se produjo una inversión del punto neutro, con voltajes elevados sobre dos de los transformadores, por lo que no fue posible mantener el sistema en este estado por largo tiempo; con el objetivo de proteger a los transformadores de posibles fallas en el aislamiento.

Una vez que el sistema se encontraba en estas condiciones, la simple acción de abrir el interruptor y cerrarlo nuevamente provocó que el sistema cambie a un nuevo estado de inestabilidad; es decir, a un estado de oscilación del neutro que en ciertas ocasiones fue de carácter transitorio y en otras fue un estado de persistente oscilación.

Encontrándose en el estado de oscilación, se obtuvo una señal que no pudo ser mantenida en una posición fija en el oscilógrafo, ya que la característica de esta señal es parecida a una onda que cambia en el tiempo y en el espacio; es decir, se trata de una señal que si se mira en un punto fijo sobre el oscilógrafo, cambia de valor en cada instante.

Durante el estado de oscilación del neutro, el banco emitía gruñidos, los cuales son producidos por componentes de alta frecuencia.

Como se mencionó anteriormente, estos fenómenos son producidos por las condiciones iniciales establecidas en los elementos que pueden almacenar energía; es decir, en los bobinados del transformador y en las capacitancias del sistema. Como es lógico, lo que pertenece al bloque del banco transformador no se puede modificar; en cambio, la parte de las capacitancias si pueden ser modificadas, con lo que dependiendo del valor que estas tengan cuando se realiza una operación de maniobra, se llegará a cualquiera de las condiciones de inestabilidad descritas.

Una vez encontrándose el banco en la condición de oscilación del neutro, cualquier operación de apertura y cierre del interruptor resulto nuevamente en una persistente oscilación del punto neutro dentro del rango de capacitancias donde ya se obtuvo oscilación del neutro.

En la siguiente fotografia se indica la característica del desplazamiento de la señal de voltaje grabada en un punto de su cambio.

En la siguiente fotografía se indica la oscilación del neutro.

Cabe señalar que el fenómeno de desplazamiento del neutro se produce a frecuencia fundamental; en cambio, el fenómeno de oscilación se produce a una frecuencia igual al doble de la de alimentación y a la mitad de ésta dependiendo del valor de la capacitancia.

En el siguiente cuadro se indican los valores de capacitancia en donde se obtuvieron los fenómenos de inestabilidad descritos anteriormente.

C(uF)	ESTADO	FRECUENCIA
1.	ESTABLE	f
2	ESTABLE	f
3	ESTABLE	f
<i>4</i>].	ESTABLE	f
5	ESTABLE	·f
6	ESTABLE	f
7	ESTABLE	-f
8	ESTABLE	-f
9	ESTABLE	-f
10	ESTABLE	ť
11	ESTABLE	-f
12	ESTABLE	-f
13	ESTABLE	f

14	ESTABLE	f
15	ESTABLE	۰f
16	ESTABLE	f
17	ESTABLE	f
18	ESTABLE	۰f
1.9	ESTABLE	f
20	ESTABLE	f
21	ESTABLE	f
22	ESTABLE	f
23	ESTABLE	۰f
24	ESTABLE	۰f
25	ESTABLE	f
26	INESTABLE	1/2 f
27	INESTABLE	1/2 f
28	INESTABLE	1/2 f
29	INESTABLE	1/2 f
30	INESTABLE	1/2 f
31	INESTABLE	1/2 f
32	INESTABLE	2 f
33	INESTABLE	2 f
34	INESTABLE	2 f
35	INESTABLE	⊋ f
36	INESTABLE	2 f
37	INESTABLE	2 f
38	INESTABLE	2 f
39	INESTABLE	2 f
40	INESTABLE	2 f

EQUIPO UTILIZADO EN LAS PRUEBAS.

.

- Tres transformadores de 4 bobinados

110 Voltios

1.1 KVA

- Osciloscopio TEKTRONIX

WATTS(MAX) 90

AMPS(MAX) 0.9

115 V 60Hz

- Funtas de prueba

154

.

×1.

×10

- Funta de corriente

- Tarjeta de adquisición de datos

- Programa MICRO-CAP III

- Resistencias de 3.3 Ω , 9 Amperios

- Transformador variable

THE ZENITH ELECTRIC CO. LTD.

115-135 V / 0-135 V 16 A

- Voltimetro

260-130-65 V

- Amperimetro

5-20 A

- Amperimetro YEW

0.1-0.2-0.5-1 A

156

- Transformador de corriente

10-25-50-100-150-200-300-400-600 A / 5A

- Vatimetro YEW

120-240 V / 1-5 A Cos Ø = 0.2 Escala en Vatios - 120
4. SIMULACION MATEMATICA DE LOS ARMONICOS EN BANCOS TRANSFORMADORES.

4.1. <u>Bases del anàlisis</u>.

iniciar el análisis de las componentes Fara armónicas que se generan en las señales de voltaje, corriente y flujo, se debe investigar las causas que originan el aparecimiento de éstas dentro del circuito. Estas causas ya fueron explicadas en el capitulo I; y lo que se hará es aproximar estos fenómenos a funciones que puedan ser analizadas con la ayuda de un computador digital y tener los resultados del comportamiento que tendria el transformador cuando va entrar a en funcionamiento.

Como se analizó en el capitulo I, el material ferromagnético de los que se encuentran constituidos los núcleos de los transformadores obedecen a una característica densidad de flujo - intensidad magnética que es única para cada tipo de material; asi, en forma general se puede graficar esta característica como en la siguiente figura,

FIGURA 1 : ANILLO DE HISTERESIS.

Como se indica en la figura 1; la característica B-H del material sometido a un campo externo encierra un área, la cual se genera por las perdidas que existen en cualquier material en el núcleo bajo las condiciones establecidas en el capitulo I.

Experimentalmente resulta mas fácil y conveniente obtener una curva voltaje - corriente en lugar de obtener una B - H. Además, partiendo de la curva voltaje - corriente en valores reales, ésta puede ser convertida a una en valores relativos del voltaje y corriente nominales del transformador.

Una vez realizado esto, se puede encontrar una curva flujo - corriente a partir de la curva anterior si es que se consideran las siguientes relaciones,

Como una primera aproximación el flujo varía en forma senoidal de la siguiente manera,

por tanto la tensión inducida en el bobinado será,

$$e_1 = W N1 \ \emptyset_{max}$$
 Cos Wt

Si se desprecia la caida de tensión en el bobinado primario, se puede decir que la tensión aplicada es igual a la tensión inducida, y por tanto se tendrá lo siguiente,

$$v_1 = W N1 \mathcal{D}_{max} Cos Wt$$

Debido a que se está obteniendo experimentalmente voltajes efectivos aplicados y corriente pico; se puede tener de esta manera una curva flujo máximo - corriente máxima como se indica en la figura 2 en forma experimental,

FIGURA 2 : FLUJO PICO - CORRIENTE PICO.

.

La curva encontrada de esta manera es lo que se conoce como la característica de magnetización del material del núcleo.

Como se indicó en el capitulo I, cuando el campo externo varia entre dos valores máximos, cada uno con polaridad contraria ; la característica flujo-corriente del núcleo encierra un área; característica que se la conoce como anillo de histéresis y cuya área representa las perdidas que se producen en el núcleo.

Estas características pueden ser aproximadas a segmentos rectilíneos como en la siguiente figura,

Corriente en por unidad

Fluja en par unidad

De la figura se puede tener las siguientes propiedades,

$i_R > 0$

 $\emptyset = \mathbb{C} \left(\mathbf{i} - \mathbf{i}_{\mathsf{R}} \right)$ (1)

$$\emptyset = E \mathbf{i} + F \tag{2}$$

$$\emptyset = C (i + i_R)$$
(3)

$$\emptyset = E i - F \tag{4}$$

$$\emptyset = C i \tag{5}$$

Si se igualan las expresiones (2) y (5) se tiene,

 $E i_A + F = C i_A$

 $i_A (C - E) = F$

por tanto,

 $i_A = F / (C - E)$

$$\mathcal{D}_{\mathbf{A}} = \mathbf{C} \mathbf{i}_{\mathbf{A}}$$

Si se expresan las pérdidas en vacio en por unidad por F0; y se consideran que estas pérdidas representan las del núcleo se tiene,

$$F_{\bullet}/2 = \int_{-i_R}^{i_P} C(i+i_R) di + \int_{i_P}^{i_0} (E i+F) di - \int_{i_R}^{i_0} C(i-i_R) di$$

$$i_{P} = \frac{1}{|i'/2 + i i_{R}| - 1R^{+} |Ei'/2 + Fi|_{1P} - C |i'/2 - i i_{R}|_{1R}}$$

$$F_{\bullet}/2 = i_{P}/2 (C-E) + C i_{R}(i_{P}+i_{0}) + i_{0}/2 (E-C) + F(i_{0}-i_{P})$$
(6)

Ahora, se sabe que,

$$i_A = i_F + (i_0 - i_F) / 2 = (i_F + i_0) / 2$$

por tanto,

$$\mathbf{i}_{\mathsf{P}} + \mathbf{i}_{\mathsf{Q}} = \mathcal{D} \mathbf{i}_{\mathsf{R}} \tag{7}$$

Si la última expresión se reemplaza en la relación (6) se tiene,

 $F_{\Theta} = (i_{P} - i_{G}) [2i_{A} (C - E) - 2F] + 4C i_{A} i_{R} (8)$

Si se igualan las expresiones 1 con 2, y 2 con 3 se tiene,

$$i_{\alpha} = (C i_{R} + F) / (C - E)$$
(9)

$$\mathbf{i}_{\mathsf{P}} = (\mathsf{F} - \mathsf{C} \, \mathbf{i}_{\mathsf{R}}) / (\mathsf{C} - \mathsf{E}) \tag{10}$$

Si se resta la expresión (9) de la expresión (10) se tiene,

 $i_P - i_0 = -2Ci_R / (C - E)$ (11)

Si se reemplaza la última expresión en la expresión (8) se tiene,

$$i_{R} = F_{\bullet} (C - E) / (4 C F)$$

Ahora, se sabe que,

 $C - E = F / i_A$

por tanto,

 $i_R = P_{\bullet} F / (4 C F i_A)$

Entonces,

 $i_R = P_0 / (4 C i_A)$

Si se reemplaza i, en la expresión (10) se tiene,

 $i_{P} = (F - C i_{R}) / (C - E)$

Si se reemplaza i, en la expresión (7) se tiene,

 $i_0 = 2 i_A - i_P$

For tanto se han conseguido los puntos que definirán la característica aproximada del núcleo flujo - corriente en por unidad.

Circuito equivalente del transformador.

En por unidad se tiene,

 $V_1 = r_1 I_1 + j X_{L_{1,1}} I_1 + j X_{L_{m,1}} (I_1 - I_2)$

$$V_2 = r_2 I_2 + j X_{L_{1,22}} I_2 + j X_{L_{m,1}} (I_2 - I_1)$$

En el circuito, X_{L11} y X_{L12} representan las reactancias de dispersión en los bobinados del transformador, y que toma en cuenta únicamente el aire como camino para el flujo; y puesto que este medio presenta una característica flujo – corriente lineal, éstos valores permanecerán aproximadamente constantes. En cambio, la reactancia X_{Lm1} es la respuesta al paso de flujo a través del núcleo, y puesto que la característica flujo – corriente aproximada es como se indica en la figura 3, su valor cambiará en todo el recorrido.

De esta manera, se establece la relación entre el circuito equivalente del transformador y la característica flujo - corriente aproximada del núcleo.

Ademas, se puede establecer la siguiente relación,

 $X_{Lmpage} = W_{page} \times L_{mpage}$

donde,

Entonces,

 $X_{LmP} = W L_{\bullet} / (W_{BABE} \times L_{mBABE})$

Si W = WBABE,

Por lo tanto,

$$X_{\Box mP} = U = \Box_{mP} = U$$

Como se sabe, $L_{mF,U}$ representa la pendiente en cada punto sobre la curva de la figura 3, y de la ultima expresión se observa que esta misma pendiente representa la variación de la reactancia de magnetización en el circuito. Yolviendo al análisis del circuito se tiene lo siguiente.

 $I_{1} = V_{1} / [r_{1} + j (X_{L_{1}} + X_{L_{m_{1}}})]$

Si $V_1 = 1 + j 0$,

 $I_{i} = r_{i} / [r_{i}' + (X_{\perp 1 \perp} + X_{\perp m \perp})'] - j (X_{\perp 1 \perp} + X_{\perp m \perp}) / [r_{i}' + (X_{\perp 1 \perp} + X_{\perp m \perp})']$

En el dominio del tiempo se tiene la siguiente expresión para la corriente,

 $i_{1} = \sqrt{2} \times \sqrt{\{[r_{1}/(r_{1}'+(X_{\perp 1}+X_{\perp m1})']'^{\dagger}[(X_{\perp 1}+X_{\perp m1})/(r_{1}'+(X_{\perp 1}+X_{\perp m1})')]^{2}\}} \operatorname{Sen}\{Wt-\operatorname{atan}[(X_{\perp 1}+X_{\perp m1})/r_{1}]$

En forma general la corriente puede ser expresada de la siguiente manera,

$$i_1 = K \operatorname{Sen}(Wt - \Theta)$$

Donde K y 0 variarán sobre cada segmento en la figura 3, y se puede observar que la pendiente tendrá dos valores: y por tanto, K y 0 tendrán dos valores sobre el ciclo completo de la siguiente manera,

$$K_{1} = \sqrt{2} \times \sqrt{\left[\left[r_{1} / \left(r_{1}' + \left(X_{\Box_{1,1}} + C \right)' \right) \right]' + \left[\left(X_{\Box_{1,1}} + C \right) / \left(r_{1}' + \left(X_{\Box_{1,1}} + C \right)' \right) \right]' \right\}}$$

 $\mathbb{K}_{2} = \mathcal{I}_{2} \times \mathcal{I}_{\left[r_{1} / (r_{1} + (X_{\Box_{1} a} + E)^{*}) \right]} + \left[(X_{\Box_{1} a} + E) / (r_{1} + (X_{\Box_{1} a} + E)^{*}) \right]}$

 $\Theta_1 = \operatorname{atan} \left[\left(X_{L_{11}} + C \right) / r_1 \right]$

 $\Theta_2 = \operatorname{atan} \left[\left(X_{Lll} + E \right) / r_l \right]$

A continuación se repetirá la figura anterior con el objeto de determinar los rangos dentro de los cuales se producirán los cambios en la pendiente sobre la curva; pero hay que resaltar el hecho que el flujo variará libremente y no en forma senoidal como tradicionalmente se lo hace. Con esto se obtiene un modelo mas real del transformador, ya que el flujo en realidad no varia senoidalmente, sino que será distorsionado; que en ciertos casos esta distorsión sea pequeña y se pueda representar como una variación senoidal es cierto, pero en general esto no sucede.

REGION 1 : DE TO A T1 : $i_1 = K_1$ Sen (Wt - θ_1)

En Wt = TO , $i_1 = -i_p$ $-i_p = K_1$ Sen (TO $-\Theta_1$) Por tanto , TO = Θ_1 + asen ($-i_p / K_1$) En Wt = T1 , $i_1 = i_0$ $i_0 = K_1$ Sen (T1 $-\Theta_1$) Por tanto , T1 = Θ_1 + asen (i_0 / K_1) DT1 = T1 - TO

REGION 2 : DE TI A T2 : En este sector la corriente aumenta desde io hasta in pero con una pendiente diferente; por tanto, se deberá considerar este cambio con K_2 y Θ_2 , pero considerando el recorrido que ya ha tenido Wt en la

T₂' Τr En Wt = T1', $i_1 = i_0$ $i_a = K_2$ Sen (T1' - θ_2) For tanto , $T1' = \Theta_2 + asen (i_a / K_2)$ De TO a T4 se habrá recorrido 180°; por tanto , si se considera que el intervalo entre T1' a T2' es DT2 , entonces , $DT1 + 2 DT2 + DT3 = 180^{\circ}$ For tanto , $DT2 = (180^{\circ} - DT1 - DT3) / 2$ Donde , DT2 = T2' - T1' = T4' - T3'DT3 = T5' - T4'El intervalo necesario para que i_1 = K_2 Sen (Wt - Θ_2) pase de i_0 a i_P ser igual al intervalo va ha requerido en pasar de i, a io ,

м

correspondiente valor de Wt' relacionados a través de la siguiente relación, KTE1 = T1 - T1' por tanto , Wt' = Wt - KTE1 De esta manera se obtiene lo siguiente, De T1 a T2 : Wt' = Wt - KTE1 $i_1 = K_2$ Sen (Wt' - θ_2)

REGION 3 : DE T2 A T3 : En esta región se conoce el intervalo requerido en pasar de im a io, y por tanto ,

T3 = T2 + DT2

En esta región se debe tener en cuenta que se sigue con la misma curva de la región anterior; y además, la corriente en el circuito deberá ajustarse a las condiciones determinadas por las características del anillo de histéresis de la siguiente manera,

REGION 4 : DE T3 A T4 : En esta región se conoce el intervalo requerido en pasar de io

a i_r, por tanto,

T۹ Q T5' Ρ

T4 = T3 + DT3 T5' = T4' + DT3 T3 = T4' + KTE3Entonces, KTE3 = T3 - T4'De esta manera se tiene, De T3 a T4 : Wt' = Wt - KTE3 i_1 = K_2 Sen (Wt' - θ_2) En las regiones siguientes el desarrollo es idéntico a los anteriores, por tanto, REGION 5 : DE T4 A T5 : T5 = T4 + DT1i_1 = K_1 Sen (Wt - θ_1) REGION 6 : DE T5 A T6 : T6 = T5 + DT2 Wt' = Wt - KTE1 $i_1 = K_2 \text{ Sen (Wt' - \Theta_2)}$

REGION 7 : DE T6 A T7 : T7 = T6 + DT2 Wt' = Wt - KTE2 $i_1 = K_2$ Sen (Wt' - θ_2)

REGION 8 : DE T7 A T8 : T8 = T7 + DT3 Wt' = Wt - KTE3 $i_1 = K_2$ Sen (Wt' - Θ_2)

Una vez que se han determinado cada una de las regiones en el anillo de histéresis se puede determinar el contenido armónico tanto para la corriente de excitación como para el flujo, si para esto se hace uso del procedimiento matemático conocido como Series de Fourier de la siguiente manera,

Si las ecuaciones para la corriente de excitación y el flujo son representadas como una función f(x)periódica y con un periodo igual a 2π , ésta puede ser definida de la siguiente manera,

$$f(x) = a_0/2 + \Sigma(a_n \cos nx + b_n \sin nx) = a_0/2 + a_1 \cos x + \frac{n-1}{n-1}$$

$$b_1 \sin x + a_2 \cos 2x + b_2 \sin 2x + \dots + a_n \cos nx + \frac{n-1}{n-1}$$

Ahora, la función queda definida si se conocen los coeficientes a., a, y b,; los mismos que son conocidos como los coeficientes de Fourier y definidos de la siguiente manera,

$$a_{o} = (1 / \pi) \int_{-\pi}^{\pi} f(x) dx$$

$$a_n = (1 / \pi) \int_{-\pi}^{\pi} f(x) \cos nx \, dx \qquad F1$$

$$b_n = (1 / \pi) \int_{-\pi}^{\pi} f(x) \operatorname{Sen} nx dx$$

Las expresiones indicadas en las relaciones F1 se establecen para un segmento definido entre $-\pi$ y π ; sin embargo, cuando la función es definida sobre un segmento que tiene la forma [a ; a + 2π], las expresiones F1 cambian de la siguiente manera,

$$a_0 = (1 / \pi) \int_{-}^{x+2x} f(x) dx$$

:

$$a_n = (1 / \pi) \int_{\bullet}^{\bullet + 2\pi} f(x) \cos nx \, dx \qquad F2$$

$$b_n = (1 / \pi) \int_{-\infty}^{+2\pi} f(x) \, \text{Sen nx dx}$$

La deducción de estas expresiones pueden ser encontradas en cualquier texto de Análisis Matemático.

En forma general se puede decir que las ecuaciones que establecen la relación entre el circuito equivalente y el anillo de histéresis tienen la siguiente forma,

- DE TO A T1 :
$$i_1 = K_1 \operatorname{Sen}(Wt-\Theta_1)$$
 $\emptyset = C(i_1 - i_R)$

 - DE T1 A T2 : $i_1 = K_2 \operatorname{Sen}(Wt-KTE1-\Theta_2)$
 $\emptyset = Ei_1 + F$

 - DE T2 A T3 : $i_1 = K_2 \operatorname{Sen}(Wt-KTE2-\Theta_2)$
 $\emptyset = Ei_1 + F$

 - DE T3 A T4 : $i_1 = K_2 \operatorname{Sen}(Wt-KTE3-\Theta_2)$
 $\emptyset = Ei_1 + F$

 - DE T3 A T4 : $i_1 = K_2 \operatorname{Sen}(Wt-KTE3-\Theta_2)$
 $\emptyset = Ei_1 + F$

 - DE T4 A T5 : $i_1 = K_1 \operatorname{Sen}(WT-\Theta_1)$
 $\emptyset = C(i_1 + i_R)$

 - DE T5 A T6 : $i_1 = K_2 \operatorname{Sen}(Wt-KTE1-\Theta_2)$
 $\emptyset = Ei_1 - F$

 - DE T6 A T7 : $i_1 = K_2 \operatorname{Sen}(Wt-KTE2-\Theta_2)$
 $\emptyset = Ei_1 - F$

 - DE T7 A T8 : $i_1 = K_2 \operatorname{Sen}(Wt-KTE3-\Theta_2)$
 $\emptyset = Ei_1 - F$

Estas relaciones pueden ser ahora desarrolladas de una manera simple en series de Fourier del modo siguiente,

(1/m)[J-roKiSen(Wt-01)CosWt dWt $J_{\pm 1}$ K₂Sen (Wt-KTE $1-\Theta_2$) CosWtdWt $\int + \frac{1}{2} K_2 Sen (Wt - KTE2 - \Theta_2) CosWtdWt$ rt 4 -u ظ ۲ רין ד ™SK ²Sen (Wt-KTE3-0₂) CosWtdWt ÷ + ÷ ÷

 $a_1 = (1/\pi) \int_{\tau_0}^{\tau_{0+2\pi}}$

i₁(Wt)CosWt dWt=

(1/m)[J+0 J T X د Ц Ч С L H U ્ર ન સ rt 2 L.L.Q רדש 774 LL:3 HN _ ⊢ ¢ L L O Ч Ш 77 K_1 Sen(Wt- Θ_1) dWt K₂Sen(Wt-KTE⊠-0₂) dWt K₁Sen(Wt-⊖₁) dWt + K_2 Sen(Wt-KTE2- Θ_2) K_z Sen(Wt-KTE1- Θ_z) dWt K₂Sen(Wt-KTE2-0₂) K_2 Sen(Wt-KTE1- Θ_2) dWt K_2 Sen(Wt-KTE3- Θ_2) dWt + dωt dωt ł ÷ ł ł ÷ പ

.

 $a_{o} = (1/\pi) \int_{\tau_{o}}^{\tau_{0}+2\pi} i_{1}(Wt) dWt =$

•

J_{T4}K₁Sen(Wt-θ₁)CosWt dWt +

D

Ľ

ſте $\int_{T_3} K_2 Sen(Wt - KTE1 - \Theta_2) CosWtdWt +$

∫^{T7} ∫_{T4}K₂Sen(Wt-KTE2-0₂)CosWtdWt +

∫^{T®} ∫_{T7} K₂Sen(Wt−KTE3−⊖₂) CosWt dWt]

 $b_1 = (1/\pi) \int_{T_0}$ i,(Wt)SenWt dWt =

 $(1/\pi)$ [$\int_{TO} K_{i}$ Sen(Wt- Θ_{i})SenWt dWt +

rtz J_{T1}K₂Sen(Wt−KTE1−0₂)SenWtdWt +

тз J_{T≈}K₂Sen(Wt-KTE2-0₂)SenWtdWt +

rt4 J_{T☉}K₂Sen(Wt−KTE3−θ₂)SenWtdWt +

eτη $\int_{T_{4}} K_{1} \operatorname{Sen}(Wt - \Theta_{1}) \operatorname{SenWt} dWt +$

CT & J_{Te}K₂Sen(Wt-KTE1-0₂)SenWtdWt +

የተፖ J_{TG}K₂Sen(Wt-KTE2-θ₂)SenWtdWt+

J_{T→} K₂Sen(Wt-KTE3-0₂)SenWtdWt]

Reemplazando Wt por y para $n \ge 2$ se tiene,

тs

```
'T0+21
a_n = (1/\pi) \int_{T_0}
                                   i_1(y)Cosny dWt =
                                         (1/\pi) \begin{bmatrix} \int_{-\pi_0}^{\pi_1} K_1 \operatorname{Sen}(y-\theta_1) \operatorname{Cosny} dy + \end{bmatrix}
                                                      \int_{\text{TI}}^{\text{T2}} K_2 \text{Sen}(y - \text{KTE1} - \theta_2) \text{Cosy dy} +
                                                       צהדין
                                                       J<sub>T⊇</sub>K₂Sen(y-KTE2-0₂)Cosy dy +
                                                      \int_{T \supset K_2} \text{Sen}(y - \text{KTE}3 - \theta_2) \text{Cosy dy} +
                                                      \int_{\pi_{A}}^{\pi_{B}} K_{i} \operatorname{Sen}(y-\theta_{i}) \operatorname{Cosy} dy +
                                                       ሰተው
                                                       J<sub>T∋</sub>K₂Sen(y-KTE1-0₂)Cosy dy +
                                                      \int_{T_{45}}^{T_{7}} K_{2} \text{Sen}(y - KTE2 - \theta_{2}) \text{Cosy dy} +
                                                      ∫⊤∽ K₂Sen(y-KTE3-0₂) Cosydy]
b_n = (1/\pi) \int_{T_0} i_1(y) \operatorname{Sen} ny dWt =
                                    (1/\pi) [\int_{-\pi \sigma K_1}^{\pi + \pi} K_1 Sen(y-\theta_1) Sen ny dy +
                                                 \int_{\text{T1}}^{\text{T2}} K_2 \text{Sen}(y - KTE1 - \theta_2) \text{Sen ny dy } +
                                                  ∫<sub>T2</sub>K₂Sen(y-KTE2-0₂)Sen ny dy +
                                                  J<sub>⊤≈</sub>K₂Sen(y-KTE3-0₂)Sen ny dy +
```

 $\int_{-\tau_{2}}^{\tau_{3}} K_{1} \operatorname{Sen}(y-\theta_{1}) \operatorname{Sen} ny dy + \int_{-\tau_{3}}^{\tau_{3}} K_{2} \operatorname{Sen}(y-KTE1-\theta_{2}) \operatorname{Sen} ny dy + \int_{-\tau_{3}}^{\tau_{7}} K_{2} \operatorname{Sen}(y-KTE2-\theta_{2}) \operatorname{Sen} ny dy + \int_{-\tau_{3}}^{\tau_{6}} K_{2} \operatorname{Sen}(y-KTE3-\theta_{2}) \operatorname{Sen} ny dy + \int_{-\tau_{7}}^{\tau_{6}} K_{2} \operatorname{Sen}(y-KTE3-\theta_{2})

Para los coeficientes de Fourier para la señal de flujo se puede proceder con el mismo criterio.

4.2. <u>Forma de uso del programa aplicado al presente</u> <u>estudio</u>.

La simulación presentada en este trabajo se lo ha realizado para transformadores con características similares a los que se tienen en el laboratorio de Maquinas Eléctricas de la Facultad de Ingeniería Eléctrica. Aunque se han supuesto en la simulación tres transformadores completamente iguales, en el laboratorio no se obtuvo realmente esta igualdad.

Cuando se forma un banco trifásico a partir de tres transformadores monofásicos, se supone que estos transformadores son idénticos; por tanto, basta con determinar las características en solo un transformador, para que las características de

funcionamiento trifásico en el banco sean definidas. En base a esto, el programa se inicia con lo siguiente,

LOS VALORES NOMINALES DEL TRANSFORMADOR Potencia nominal en KVA : Voltaje nominal en el lado de alta en KV : Voltaje nominal en el lado de baja en KV : Frecuencia :

Estos valores son para un solo transformador; claro esta, bajo el supuesto que todos los transformadores son iguales. Estos valores servirán para determinar los valores característicos del transformador en por unidad.

A continuación se deberán introducir los resultados de las pruebas de circuito abierto y de cortocircuito; que en este caso, las pruebas se deberán realizar sobre el lado de baja y sobre el lado de alta respectivamente.

Los valores serán introducidos de la siguiente manera,

Introduzca resultados de pruebas : Prueba de circuito abierto sobre el lado de baja : Potencia de entrada en vatios : Voltaje de alimentación en KV : Corriente de entrada en A : Prueba de cortocircuito sobre el lado de alta : Potencia de entrada en vatios : Voltaje de alimentación en KV : Corriente de entrada en A :

Si alguno de los valores solicitados hasta el momento no han sido introducidos, se indicará el siguiente mensaje,

Usted ha ingresado los valores de manera incorrecta.

Presione la tecla que se indica a continuación. O Desea ver ejemplo,1 Ingreso correcto de valores :

Si la selección es cero, la simulación se iniciará con valores escogidos en pruebas realizadas para uno de los transformadores con los siguientes valores,

Potencia nominal : 2.2 KVA Voltaje nominal en el lado de alta : 0.22 KV Voltaje nominal en el lado de baja : 0.22 KV Frecuencia : 60 Hz Potencia de cortocircuito : 120 W Vcc = 0.012 KV Icc = 10 A Po = 32 W

 $V_{CA} = 0.22 \text{ KV}$ Ica = 0.41 A

En cambio, si la selección es el 1, nuevamente se iniciará la introducción de valores. Estos valores son los únicos que se deberán introducir.

Puesto que la simulación se ha realizado con ayuda del paquete compuntacional MATLAB, a continuación se indicará en el computador una letra K; lo que indica que la simulación se encuentra paralizada hasta que sea presionada la combinación de las teclas Ctrl Z, para luego indicar el siguiente mensaje,

SIMULACION EN PROCESO

Luego de esto aparecerá en forma gráfica el anillo de histéresis aproximado o la variación de la permeabilidad que será utilizado en la simulación. De este o cualquier gráfico se podrá salir en cualquier momento al presionar cualquier tecla; para luego indicar con una letra K que la simulación se encuentra paralizada hasta que se presione la combinación de teclas antes mencionadas.

A continuación se indicará el siguiente mensaje,

SERIES DE FOURIER EN PROCESO

Luego de que el computador haya calculado los coeficientes de Fourier se indicará el siguiente mensaje,

TIPO DE CONEXION

O Estrella-Estrella,1 Delta-Estrella,2 Delta-Delta, 3 Estrella-Delta,4 Salir :

Cualquiera que sea la selección, se indicará en forma gráfica las siguientes curvas,

a .- O Conexión Estrella-Estrella

O Neutro conectado,1 Neutro sin conexión :

Esto se refiere a que el banco tiene conexión del neutro al generador o no.

a.1 .- O Conexión Y - Y con conexión del neutro a la fuente.

GRAFICOS : Corriente de fase IA. Flujo en el núcleo. Serie de Fourier de la corriente de excitación. Serie de Fourier de la corriente de excitación en porcentaje de la componente fundamental.

Serie de Fourier del flujo. Serie de Fourier del flujo en por centaje de la componente fundamen tal.

a2 "- 1 Conexión Y - Y sin conexión del neutro a la fuente.

GRAFICOS : Corriente de linea IA.
Flujo en el núcleo
Serie de Fourier de la corriente
de linea IA.
Serie de Fourier de la corriente
de linea IA en porcentaje de la
componente fundamental.
Serie de Fourier del flujo.
Serie de Fourier del flujo en por
centaje de la componente fundamen
tal.

b .- 1 Conexión Delta - Estrella

GRAFICOS : Corriente de linea IA. Corriente en el circuito delta I. Flujo en el núcleo. Serie de Fourier de la corriente de linea IA. Serie de Fourier de la corriente de linea IA en porcentaje de la componente fundamental de 1. a corriente en el circuito Delta. Serie de Fourier de la corriente en el circuito Delta. Serie de Fourier de la corriente el circuito Delta en en porcentaje de 1 a componente fundamental de la corriente en el circuito Delta.

Serie de Fourier del flujo.

Serie de Fourier del flujo en porcentaje de la componente fundamental.

c .- 2 Conexión Delta - Delta

GRAFICOS : Corriente de linea IA.

Corriente en el circuito delta primario I..

Corriente en el circuito delta secundario I_{2.}.

Flujo en el núcleo.

Serie de Fourier de la corriente de linea IA.

Serie de Fourier de la corriente de linea IA en porcentaje de la componente fundamental en el circuito delta primario. Serie de Fourier de la corriente en el circuito delta primario. Serie de Fourier de la corriente en el circuito delta primario en porcentaje de la componente fundamental. Serie de Fourier del flujo. Serie de Fourier del flujo en

porcentaje de la componente fundamental.

d .- 3 Conexión Estrella - Delta

d1 .- O Neutro conectado,1 Neutro sin conexión

dll .- 1 Conexión Estrella - Delta con conexión del neutro a la fuente.

Esto se refiere a que si el banco tiene conexión del neutro al generador o no

GRAFICOS : Corriente de linea IA. Corriente en el circuito delta. Flujo en el núcleo. Serie de Fourier de la corriente de linea IA. Serie de Fourier de la corriente de linea IA en porcentaje de la componente fundamental.

Serie de Fourier de la corriente en el circuito delta.

Serie de Fourier de la corriente en el circuito delta en porcentaje de la componente fundamental.

Serie de Fourier del flujo. Serie de Fourier del flujo en porcentaje de la componente fundamental.

d22 -- 1 Conexión Estrella - Delta sin conexión del neutro a la fuente.

GRAFICOS : Corriente de linea IA.

Corriente en el circuito delta. Flujo en el núcleo. Serie de Fourier de la corriente de linea IA. Serie de Fourier de la corriente de linea IA en porcentaje de la componente fundamental. Serie de Fourier de la corriente en el circuito delta.

en el circuito delta en porcentaje de la componente fundamental. Serie de Fourier del flujo. Serie de Fourier del flujo en porcentaje de la componente fundamental.

e - 4 Salir - Si este es el caso, se sale de la simulación con el siguiente mensaje,

GRACIAS FOR UTILIZAR EL PRESENTE TRABAJO

HASTA PRONTO

D

Ľ

4.3. <u>Análisis de los resultados</u>.

A continuación se darán los resultados obtenidos en la simulación para bancos trifásicos completamente balanceados, considerando tanto histéresis como la variación de la permeabilidad.

VALORES NOMINALES DEL TRANSFORMADOR

POTENCIA	NOMINAL	2.2	KVA
VOLTAJE	PRIMARIO	0.22	KΥ
VOL TAJE	SECUNDARIO	0.22	${\mathbb K} {\mathbb V}$

PRUEBAS DE LABORATORIO

PRUEBA DE CIRCUITO ABIERTO:

POTENCIA DE ENTRADA	32.00 W
VOLTAJE DE ALIMENTACION	0.22 KV
CORRIENTE DE ALIMENTACION	0.41 A

PRUEBA DE CORTOCIRCUITO:

POTENCIA DE ENTRADA	120.00	ω
VOLTAJE DE ALIMENTACION	0.012	KΥ
CORRIENTE DE ALIMENTACION	10.00	А

A continuación se presentarán los resultados obtenidos en la simulación considerando en lazo de histéresis y la curva de magnetización.

Corriente en por unidad
CONEXION ESTRELLA - ESTRELLA.

<u>Con conexión del neutro</u>.

Corriente de fase IA

))

•

osloùn ls ns olul7

Flujo en e 1 núcleo.

Flujo

7M

Al senil eb etneirroð

<u>Sin conexión del neutro</u>.

CONEXION DELTA - ESTRELLA.

Corriente de linea IA.

ALL PAULE OF TIMES IN

Corriente

Corriente en el circuito delta I1.

-

Flujo

D

CONEXION DELTA - DELTA.

Corriente de linea IA.

Corriente

Corriente en el circuito delta secundario I2.

Corriente

ς Ç

CONEXION ESTRELLA - DELTA.

G

<u>Con conexión del neutro</u>.

Corriente de linea IA.

Corriente

Corriente

J

Flujo en el núcleo.

Flujo

<u>Sin conexión del neutro</u>,

Flujo

Corriente en por unidad

Flujo en por unidad

CONEXION ESTRELLA - ESTRELLA.

<u>Con conexión del neutro</u>.

Corriente de fase IA

Corriente

Flujo en el núcleo.

Flujo

ទរក conexión del neutro.

Flujo en el núcleo.

ידמ מה כד כד

E R

Amplitud

D

CONEXION DELTA - ESTRELLA.

Corriente de linea IA.

COLLIGNES WE TINEW TH

./

Corriente en el circuito delta I1.

D

Flujo en el núcleo.

Flujo

CONEXION DELTA - DELTA.

Corriente n D © 1 circuito delta secundario л N

Flujo

CONEXION ESTRELLA - DELTA.

<u>Con conexión del neutro</u>.

Corriente de linea IA.

Corriente

Flujo

-

Corriente ß р 1 circuito delta.

Corriente

Flujo en el núcleo.

Flujo

A continuación se expresan el contenido armónico en las señales obtenidas para cada tipo de conexión obtenidas a través de la simulación \dot{y} comparadas con los resultados obtenidos en el laboratorio.

CONTENIDO ARMONICO EN LAS SEÑALES.

TRANSFORMADOR MONOFASICO.

SIMULACION

	EXPERIMENTAL	HISTERESIS	MAGNETIZACION
FUNDAMENTAL	100.0%	100.0%	100.0%
3er ARM.	29.3%	29.9%	17.1%
5to ARM.	4.9%	4.8%	2.8%
7mo ARM.	1.1%	3.3%	2.1%

CONEXION ESTRELLA-ESTRELLA.

<u>Sin conexión del neutro:</u>

iøn

SIMULACION

	EXPERIMENTAL	HISTERESIS	MAGNETIZACION
FUNDAMENTA	L 100.0%	100.0%	100.0%
3er ARM.	8.8%	D 0.0%	0.0%
5to ARM.	6.5%	4.8%	2.8%
7mo ARM.		3.3%	2.1%
<u>Con conexión del neutro</u>:

D

)

ien

SIMULACION

	EXPERIMENTAL	HISTERESIS	MAGNETIZACION
FUNDAMENTAI	100.0%	100.0%	100.0%
3er ARM.	13.3%	29.9%	17.1%
5to ARM.	3.8%	4.8%	2.8%
7mo ARM.	7.	3.3%	2.1%

in

SIMULACION

	EXPERIMENTAL		HISTERESIS	MAGNETIZACION
FUNDAMENTA	_ 26.29%	D	0.0%	0.0%
3er ARM.	83.09%		89.7%	51.2%
5to ARM.	5.27%	D	0.0%	0.0%
7mo ARM.	5.83%	D	0.0%	0.0%

CONEXION DELTA-ESTRELLA.

iøa

SIMULACION

	EXPERIMENTAL	HISTERESIS	MAGNETIZACION
FUNDAMENTA	AL 135.9%	173.2%	173.2%
3er ARM.	16.4%	D 0.0%	0.0%
5to ARM.	11.0%	8.4%	4.9%
7mo ARM.	2.2%	5.8%	3.7%

~01				
		SIMULACIÓN		
E	EXPERIMENTAL	HISTERESIS	MAGNETIZACION	
FUNDAMENTAL	100.0%	100.0%	100.0%	
3er ARM.	35.5%	29.9%	17.1%	
5to ARM.	6.7%	4.8%	2.8%	
7mo ARM.	2.3%	3.3%	2.1%	

CONEXION ESTRELLA-DELTA.

Sin conexión del neutro:

iøA

SIMULACION

	EXPERIMENTAL	HISTERESIS	MAGNETIZACION
FUNDAMENTA	_ 100.0%	100.0%	100.0%
3er ARM.	8.8%	D 0.0%	0.0%
5to ARM.	6.5%	4.8%	2.8%
7mo ARM.	"/	3.3%	2.1%

i_{D2}

SIMULACION

	EXPERIMENTAL	HISTERESIS	MAGNETIZACION
FUNDAMENTA	L%	0.0%	0.0%
3er ARM.	35.5%	29.9%	17.1%
5to ARM.	%	0.0%	0.0%
7mo ARM.	7.	0.0%	0.0%

i_{D1}

.

.

Con conexión del neutro:

iøa

SIMULACION

	EXPERIMENTAL	HISTERESIS	MAGNETIZACION
FUNDAMENTA	L 100.0%	100.0%	100.0%
3er ARM.	28.9%	15.0%	8.5%
5to ARM.	17.3%	4.8%	2.8%
7mo ARM.	8.7%	3.3%	2.1%

i_{D2}

SIMULACION

	EXPERIMENTAL		HISTERESIS	MAGNETIZACION
FUNDAMENTA	L 80.7%	D	0.0%	0.0%
3er ARM.	36.1%		15.0%	8.5%
5to ARM.	18.7%	D	0.0%	0.0%
7mo ARM.	12.3%	D	0.0%	0.0%

CONEXION DELTA-DELTA

iøa

SIMULACION

	EXPERIMENTAL	HISTERESIS	MAGNETIZACION
FUNDAMENTAL	425.7%	173.2%	173.2%
3er ARM.	57.8%	D.0%	0.0%
5to ARM.	20.8%	8.4%	4 9%
7mo ARM.	3.6%	5.8%	3.7%

SIMULACION

	EXPERIMENTAL	HISTERESIS	MAGNETIZACION
FUNDAMENTAL	100.0%	100.0%	100.0%
3er ARM.	81.2%	15.0%	8.5%
5to ARM.	34.4%	4.8%	2.8%
7mo ARM.	8.1%	3.3%	2.1%

ipz

SIMULACION

	EXPERIMENTAL		HISTERESIS	MAGNETIZACION
FUNDAMENTAL	33.85%	D	0.0%	0.0%
3er ARM.	5.19%		15.0%	8.5%
5to ARM.	1.70%	D	0.0%	0.0%
7mo ARM.	2.8%	D	0.0%	0.0%

La letra D señalada junto a algunos resultados experimentales demuestran el desequilibrio existente en los transformadores, pues esta letra indica que en dicho tipo de conexión no debería existir la presencia de corrientes de esa frecuencia.

CONCLUSIONES

- En el estudio realizado se han utilizado tres transformadores con las características mas parecidas posibles, aunque como se observan en los resultados, existen desbalances en el banco que hacen que los resultados se desvien de los valores esperados. Sin embargo existe concordancia entre la teoría, los resultados experimentales y la simulación matemática de los armónicos que se presentan en cada tipo de conexión del banco.
- Los armónicos en bancos trifásicos de transformadores aparecen básicamente debidos a dos causas. La primera causa es debida a la variación de la permeabilidad dentro del ciclo de cambio, debido a la característica no lineal en la curva densidad de flujo (B) versus intensidad de campo magnético (H) que se presentan en los materiales que forman los núcleos de los transformadores.

La segunda causa es debida al anillo de histéresis, la cual fue analizada en la parte teórica como la historia magnética del material; la cual encierra un área en la variación densidad magnética (B) -

intensidad de campo magnético (H) dentro del ciclo, y cuya área representa las perdidas en el núcleo como resultado de la reorientación de los dominios en el núcleo.

For tanto, la distorsión en las señales de corriente, flujo y voltaje en los transformadores no obedece solo al cambio de la permeabilidad, ni solo al ciclo de histéresis, en realidad la distorsión obedece a la combinación de estos dos fenómenos dentro del núcleo.

- Descomponiendo estas señales en Series de Fourier, se encuentra que estas están formadas solo de componentes impares, lo cual es provocado por la simetria que existe en la característica de la curva densidad de flujo (B) - intensidad de campo magnético (H) en el núcleo.
- Al ser alimentado un solo transformador de una fuente de voltaje senoidal, la señal de corriente es resuelta en la suma de funciones senoidales impares de todos los ordenes; mientras que en el lado secundario se tiene una señal de voltaje formada casi en su totalidad de una componente senoidal. Esto no quiere decir que no existan componentes de tercer, quinto, séptimo, etc. armónicos, lo que sucede es que estos son despreciables frente a la componente fundamental.

Por tanto, se puede decir que para tener una señal de voltaje aproximadamente senoidal, es necesario que la corriente de excitación este formada por componentes armónicas de todos los ordenes.

Lo que normalmente se ha realizado para la determinación gráfica de la corriente de excitación es suponer que la señal de flujo varia senoidalmente; fenómeno que no es verdadero, aunque como una aproximación es valida.

El argumento que soporta esta tesis es que la corriente de excitación se encuentra formada además de la componente fundamental, por armónicos impares de todos los ordenes, las cuales a su vez deben ser creados por fuerzas electromotrices inducidas en el núcleo por componentes armónicos de flujo del mismo orden de la corriente, ya que la tensión de alimentación como se señaló, se trata de una fuente senoidal de voltaje, y por tanto esta no dará lugar al aparecimiento de estas componentes.

En general es imposible tener libre de una pequeña componente de tercer armónico en los voltajes terminales de un transformador, incluso si el voltaje del generador es una onda senoidal pura. La eliminación completa de las componentes de tercer armónico en los voltajes debería requerir impedancia de triple frecuencia cero en los circuitos donde la corriente de tercer armónico fluye; condición que es imposible de ser alcanzada.

Dependiendo del tipo de conexión que tenga el banco,
 las señales de corriente en las lineas y en los
 bobinados del transformador se encontraran formadas
 solo por ciertas componentes armónicas.

Por ejemplo, con una conexión en estrella, ninguna de las componentes de tercer orden y sus múltiplos podrán circular, ya que estas se encuentran eΠ concordancia de fase; y, a menos que se ofrezca un camino por las que estas puedan circular no lo harán, y lo que producirá es que el flujo se distorsione conteniendo una gran componente armónica de tercer orden, la cual distorsionará la señal de voltaje inducido entre las fases y el neutro. Las distorsiones en las señales de voltaje entre lineas desaparecerá, ya que las componentes de tercer orden en los voltajes de rama se encuentran en fase y se anulan entre ramas.

Estos inconvenientes pueden ser fácilmente eliminados si es que se ofrece un camino de circulación para estas componentes; ya sea suministrando un hilo de retorno a través del conductor del neutro o por una conexión en delta dentro del banco.

- En conexiones monofásicas o polifásicas donde ninguna impedancia apreciable es ofrecida a la circulación de corriente de triple frecuencia, los voltajes de triple frecuencia usualmente serán pequeños y podrán ser despreciados en comparación con la componente fundamental. Los voltajes resultantes serán aproximadamente sinusoidales.
- No solo la magnitud, sino también fase la de 1a impedancia la cual la corriente de tercer armónico debe superar tiene un importante efecto sobre la magnitud de los voltajes y corrientes de tercer armónico. Eπ general, una corriente de tercer armónico en retraso reduce el flujo de triple frecuencia en el núcleo, mientras una corriente en adelanto tiende a amplificarlo.
- El transformador puede ser analizado aplicando el principio de superposición como un circuito formado por un núcleo de característica lineal y analizado a través de la respuesta de éste a cada frecuencia, para obtener una respuesta final que será la suma de todas estas respuestas a cada frecuencia. De esta manera, si se conoce la respuesta que se obtiene en el transformador monofásico, se sabrá la respuesta del banco para cada tipo de conexión; así,

Conexión estrella. En este caso la señal de corriente que circula por las lineas estará formada por armónicas impares de todos los ordenes con excepción del tercer armónico y sus múltiplos.

Si la conexión tiene un cuarto conductor en el circuito primario, por las lineas circulará una corriente formada por componentes impares incluyendo componentes de tercer armónico y sus múltiplos, mientras que por el hilo neutro circulará una corriente formada por tres veces la componente de tercer armónico y sus múltiplos de la corriente en las lineas.

Conexión delta. En este caso la corriente que circula por el bobinado estará formada por componentes impares de todos los ordenes; en cambio en las lineas circulará una corriente formada por componentes impares que son 43 veces las componentes en los bobinados exceptuando los terceros armónicos y sus múltiplos, considerando los respectivos desplazamientos de fase.

- Si el banco se encuentra cargado, la repartición de corriente para cada armónico será inversamente proporcional a las impedancias del circuito primario y secundario, como se indicó matemáticamente en la parte teórica.

- Si se considera ya sea solo la variación de la permeabilidad o el anillo de histéresis, en general como una buena aproximación se puede considerar que la curva varia según dos pendientes, una en la zona lineal y la otra en la región de saturación. Por tanto, si esta curva es modificada a una de flujo corriente en por unidad, la pendiente dará el valor de la reactancia de magnetización en por unidad dentro de cada sector.
- El área que encierra el anillo de histéresis representa las perdidas en el núcleo; perdidas que si son expresadas en por unidad, esta área representa el valor de la potencia obtenida en la prueba de circuito abierto.
- Determinando los puntos dentro de los cuales se producen los cambios en las pendientes de la curva, se puede acoplar la característica del núcleo con el circuito equivalente en por unidad del transformador tomando en cuenta los cambios en la pendiente dentro . de un periodo.

Es así que el modelo utilizado en la simulación no considera que el flujo varia senoidalmente, sino que éste y la corriente varíen de una manera mas real. - A1 incrementarse las perdidas en el núcleo, la potencia requerida por esta ingresara al circuito a través de la componente fundamental en la corriente, lo cual producirá una mayor distorsión en la onda de flujo y en el voltaje inducido. Este fenómeno puede entendido de mejor considerando ser manera սո transformador monofásico, donde se ha incluido una resistencia variable el circuito en serie con primario.

Si se incrementa el valor de la resistencia, la caída de tensión en ésta se irá incrementando hasta un punto en que la caida de tensión sea aproximadamente la igual al voltaje senoidal de fuente de alimentación; lo cual hace que la corriente que circula la resistencia sea aproximadamente por senoidal. Este fenómeno hace que la señal de flujo se distorsione, y en consecuencia lo mismo sucederá con el voltaje inducido. En consecuencia, dependiendo del valor de la resistencia, se cometerá errores a1 suponer que la onda de flujo varia en forma senoidal.

- Además de la componente fundamental en las señales, la componente de tercer armónico también tiene un valor apreciable que varia dependiendo del punto de operación sobre la curva de magnetización; motivo por el cual, esta componente recibe la mayor atención en el análisis y estudio de bancos de transformadores. - La conexión estrella - estrella sin ninguna conexión del neutro debería evitarse รแ utilización. principalmente en sistemas de gran longitud donde las capacitancias del sistema toman un valor apreciable; ya que como se analizó en la parte teórica Y practica, una simple desconexión y conexión del banco puede producir deseguilibrio en el banco; ya sea, un desplazamiento del neutro o una persistente oscilación del neutro. Cualquiera de los dos tipos de inestabilidad que se produzca lo hace con valores picos de voltaje elevados, lo cual puede producir averias en el aislamiento de los transformadores y en la carga.

Por tanto, este tipo de conexión debería ser realizado solo si es que se ha realizado un estudio detallado de las condiciones en que ha de trabajar el banco.

- En general se puede decir que la componente fundamental disminuye conforme se incrementa la densidad de flujo, en cambio, el tercer y quinto armónico incrementan conforme se incrementa la densidad de flujo en el núcleo.

RECOMENDACIONES

- Al tomar las formas de onda de las señales de corriente con ayuda de un oscilógrafo a través de una resistencia, se deberá tener la mayor precaución de que la resistencia tenga un valor pequeño. Un valor recomendado seria 1 ohmio o, en general que no sea mayor que 5 ohmios. Un valor mayor de la resistencia de medición distorsiona en mayor grado la señal e introduce errores en las mediciones.
- Los transformadores utilizados en el laboratorio presentan desequilibrios, pero para fines de comprensión del fenómeno de la presencia de armónicos en parte han ayudado; por lo que se recomendaría para ún mejor entendimiento del fenómeno y beneficio de los alumnos que sean reemplazados por transformadores de características mejoradas.
- El uso de un banco de transformación con conexión estrella - estrella sin conexión del neutro en el primario, con carga capacitiva entre fase y neutro debería ser utilizado bajo un estudio detallado de las características de los transformadores y de la carga; ya que este tipo de conexión en determinadas

circunstancias puede salir de estabilidad y poner en riesgo la vida de los transformadores que forman parte del banco transformador y a la carga debido a los excesivos voltajes que pueden aparecer sobre estos.

- En un Sistema Eléctrico de Potencia en general el uso de la conexión estrella - estrella sin conexión del neutro en el banco debería evitarse, a menos de que las condiciones en la que ha de trabajar el banco no produzcan problemas en el sistema.
- E1 la conexión estrella - estrella uso de CON conexión del neutro sobre el primario o sobre el lado secundario debe ser evitado cuando en paralelo con las lineas de transmisión se llevan lineas de telecomunicaciones, ya que puede ser molestoso para las lineas de telecomunicaciones debido а las interferencias de tercer armónico producido por la corriente que circula por el hilo neutro.
- Cuando las estructuras de soporte de las lineas de transmisión van a servir para soportar adicionalmente las lineas de telecomunicaciones, es recomendable el uso de una conexión delta en el banco de transformación, ya sea sobre el lado primario o sobre el lado secundario.

- Con el criterio de simulación utilizado en el presente trabajo, se debería en trabajos posteriores analizar los resultados que se tendrían cuando se conectan tres transformadores monofásicos con características de magnetización diferentes en un banco de transformación.
- Con el mismo criterio de simulación utilizado se debería analizar la respuesta transitoria de alimentación y desconexión del banco; así como también los resultados que se obtendrían cuando el banco sufre cualquiera de las fallas sobre los terminales del transformador.
- Se recomienda en trabajos futuros simular el comportamiento inestable de bancos de transformación con conexión estrella - estrella con carga capacitiva en el lado secundario con conexión estrella y neutros interconectados.

1. DEDUCCION DE V_3 , W, W_{max} , SOBREVOLTAJES CON COMPENSACION Y W CON COMPENSACION PARA EL CIRCUITO TRIPLICADOR DE FRECUENCIA.

 $(\wedge^2+i_0) \setminus I^2 \ \sqcap -\Theta = (\wedge^2 \setminus I^2) \ \sqcap \Theta =$

 $X = (V_3 / I_3)$ Sen Θ

 V_3 Sen $\Theta = X I_3$

 $V_3 = X I_3 / Sen \Theta$

 $I_{*} = \wedge^{2}, - \vee, I^{2},$

 $E^{2} = \Lambda^{2} + 5\Lambda^{2}I^{2}X^{2} \operatorname{Seu}_{\theta} + I^{2}, X^{2},$ $E^{2} = \Lambda^{2} + 5\Lambda^{2}I^{2}X^{2}\operatorname{Seu}_{\theta} + I^{2}, X^{2}, \operatorname{Seu}_{\theta} + I^{2}, X^{2}, \operatorname{Col}_{\theta}, \Theta$ $E^{2} = (\Lambda^{2} + I^{2}X^{2}\operatorname{Seu}_{\theta}) + (I^{2}X^{2}\operatorname{Col}_{\theta}) =$

V₃' = E₃' − I₃' X₃' − 2 V₃I₃X₃ SenΘ

Reemplazando V $_3 Sen \Theta$ por X I_3 en la última expresión se tiene,

 $\wedge^{2}, = E^{2}, -1^{2}, \times^{2}, -51^{2} \times^{2} \times 1^{2} = E^{2}, -1^{2}, \times^{2}, -51^{2}, \times^{2} \times$

Agrupando términos,

.

$$\nabla^{2}_{3} = E^{2}_{3} - I^{2}_{3} \times^{2} (X^{2} + ZX)$$

por tanto,

 $\Lambda^{2} = \ 1 \ [E^{2}, - I^{2}, X^{2} \ (X^{2} + 5X)]$

 $W = V_3 I_3 Cos \Theta$

Elevando al cuadrado cada miembro se tiene,

$$W' = V_3' I_3' Cos \Theta$$

Del triángulo ABC,

 $Cos \Theta = (\uparrow (\land^{2}, - \chi, I^{2},)) \setminus \wedge^{2}$

Entonces,

D,

$$Cos^*\Theta = (V_3^* - X^*I_3^*) / V_3^*$$

Reemplazando Cos² θ y $V_{3}{}^2$ en la expresión para W se tiene,

 $M_{*} = I^{2}_{*} (E^{2}_{*} - I^{2}_{*} X^{2}_{*} - 5I^{2}_{*} X^{2} X - X_{*} I^{2}_{*})$

For tanto,

 $M_{*} = I^{2} L [E^{2} - I^{2} (X^{2} + X)]$

 $qM \ \langle qI^3 = (E^2, -SI^2, (X^2 + X),) / [\gamma(E^2, -I^2, (X^2 + X),)] = 0$

Entonces,

$$E_{3}' - 2I_{3}' (X_{3} + X)' = 0$$
$$E_{3}' = 2I_{3}' (X_{3} + X)'$$

por tanto,

 $I^{2} = E^{2} \setminus (\ TS (X^{2} + X))$

Reemplazando I, en la expresión para W se tiene,

 $W_{mmx} = E_3' / (2 (X_3 + X))$

Cuando se compensa la carga con un capacitor en serie, la potencia máxima será,

 $W_{m,m,x} = E_{3} / (2 (X_{3} + X - 1 / (WC)))$

Básicamente el circuito secundario es un circuito R-L-C trabajando a un punto cercano a resonancia; cuyo funcionamiento puede ser explicado a través del siguiente circuito,

 $I_{\,3}\,=\,\mathsf{E}_{3}\,\mathrel{\mbox{L}}\,\mathrel{\mbox{O}}^\circ\,\mathrel{/}\,(\,\mathrel{\mbox{R}}\,+\,j\,\mathrel{(}\,\mathrel{\mbox{X}_{3}}\,-\,\mathrel{\mbox{X}_{c}}\,)\,)$

 $| I_3 | = E_3 / \sqrt{(R^* + (X_3 - X_c)^*)}$

 $-\Gamma$ (R^* + ($X_3 - X_c$)*) > R

213

 $V_{\times = 2} = |X_3| =$

$$\forall \mathbf{x}_{\mathbf{c}} = |X_{\mathbf{c}}| \quad \mathbf{E}_{\mathbf{x}} \neq \mathbf{r} \quad (\mathbf{R}^{\mathbf{s}} + (\mathbf{X}_{\mathbf{x}} - \mathbf{X}_{\mathbf{c}})^{\mathbf{s}})$$

En resonancia,

- --

 $|I_3| = E_3 / R$

$$V_{XSR} = |X_3| E_3 / R$$

$$V_{XCR} = |X_c| = X_c | E_3 / R$$

El subindice R se utiliza para indicar la condición de resonancia. Como puede observarse, los voltajes sin compensación en el transformador y en el capacitor son menores que con compensación; siendo el caso crítico cuando se aproxima a la resonancia, donde el voltaje en los bobinados del transformador y en el capacitor pueden alcanzar valores mucho más grandes que los normales.

2. ENERGIA ALMACENADA Y PERDIDAS DE ENERGIA EN EL NUCLEO DEL TRANSFORMADOR.

Se sabe que cuando una bobina es excitada por una fuente alterna de voltaje, se creará en el núcleo un flujo; el cual a su vez inducirá una fuerza electromotriz en la bobina expresada a través de la siguiente relación,

$$e = d\Gamma / dt = d(N\emptyset) / dt$$
(1)

Si se considera que el flujo enlaza todas las vueltas se tendrá,

$$e = d\emptyset / dt$$
 (2)

La energia eléctrica suministrada por la fuente despreciando las pérdidas vendrá expresada por la siguiente relación en un tiempo dt,

$$dW = e i_{\bullet} dt \tag{3}$$

Sustituyendo la expresión (2) en la expresión (3) se tiene,

$$dW = N (d\emptyset / dt) i, dt = i, d\Gamma = F d\emptyset$$
 (4)

;

Con condiciones iniciales iguales a cero, se tiene que la energía total suministrada a un tiempo t estará dada por,

$$W_{\bullet} = \int_{\circ}^{r} i_{\bullet} d\Gamma = \int_{\circ}^{\bullet} F d\emptyset$$
 (5)

donde l' y \emptyset son los valores de las concatenaciones del flujo y el flujo al tiempo t respectivamente.

Esto demuestra que cuando se incrementa el campo magnético, la energía fluye de la fuente al campo y la energía es almacenada en el campo magnético el tiempo en que el campo se mantenga en dicho valor. Si se denota esta energía como W_{compo},

$$W_{campo} = W_{\bullet} = \int_{0}^{r} i_{\bullet} d\Gamma = \int_{0}^{\bullet} F d\emptyset \quad (6)$$

Si se representa esta área en la curva de magnetización \emptyset - F se tiene lo siguiente,

Si se consideran estructuras magnéticas formadas por varias ramas en serie o paralelo, la expresión para la energía total almacenada y la coenergía vendrán dadas por las siguientes expresiones,

ENERGIA TOTAL ALMACENADA =
$$\sum_{i=1}^{n} V_i \int_{0}^{\infty} H_i dE$$
 (8)

$$COENERGIA TOTAL = \sum_{i=1}^{n} V_i \int_{0}^{H_i} B_i dH$$
(7)

donde
$$V_i = A_i \times 1_i$$

Cuando el campo es disminuido, parte de la energia almacenada es devuelta a la fuente o aprovechada en energia útil, mientras que otra parte son disipadas en inevitables pérdidas en el núcleo. Estas pérdidas son debidas a las características de histéresis y a corrientes de remolino en el núcleo. Se considerarán los siguientes casos,

puede ser expresada en términos de la densidad de energía $W_{mmmpe} = W_{mmmpe} / V$ para conseguir la siguiente expresión,

wcampo =
$$\int_{B_{\rm I}}^{B_{\rm Z}} H \, dB \qquad (10)$$

Se considerará el anillo de histéresis con fines de ilustración y análisis; para lo cual se designan cuatro regiones,

Región 1. Esta región esta formada por la sección establecida entre los puntos (a) y (c); donde H es positivo y B incrementa; en este caso la densidad volumétrica de energía será,

$$W_{ac} = \int_{-B-}^{+B-ac} H dB;$$

encuentra indicado con este caso se lineas horizontales en la. figura ≡, el valor de energia obtenida de esta manera es positiva, ya que H es positivo y el limite de integración superior es mayor que el limite inferior de integración.

Región 2. Esta región esta formada por la sección establecida entre los puntos (c) y (d); en este caso H es positivo, pero el límite superior de integración es menor que el límite de integración inferior; y por tanto,

$$W_{cd} = \int_{-\mu_{Bmax}}^{+\mu_{c}} H dB$$

es negativo; lo que significa que se esta entregando energia del campo magnético a la fuente. Sobre la curva este sector esta identificado por lineas verticales :::

Región 3. Esta región esta formada por la sección establecida entre los puntos (d) y (f); en este caso H es negativo y el límite superior de integración es menor que el límite de integración inferior y,

wdf =
$$\int_{-\infty}^{-\infty} H dB$$

es positivo, por tanto la energía es absorvida por el campo ≡.

Región 4. Esta región esta formada por la sección establecida entre los puntos (f) y (a); en este caso H es negativo y el limite inferior de integración es menor que el limite de integración superior; por tanto,

220

es negativo; por tanto esta es energía entregada a la fuente y representada en la figura con lineas verticales :::.

For tanto, la energia neta absorvida por el campo magnético es el área encerrada por el anillo de histéresis y expresada de la siguiente manera,

$$W_n = W_{ne} + W_{ed} + W_{dr} + W_{rn} \qquad (11)$$

La pérdida en un segundo debido al anillo de histéresis por unidad de volumen de núcleo es dada por la siguiente expresión,

$$P_n = f w_n \tag{12}$$

Ahora, si se considera que el flujo varía con el tiempo; este inducirá corrientes en el material del núcleo, éstas corrientes circularán en una dirección tal que producirán una oposición al cambio en el flujo y tenderán a contrarrestar su cambio. Estas corrientes son conocidas como parásitas o de remolino. Si se analiza el circuito de la figura 27 a través de las componentes simétricas,

$$e_{m1} + e_{m2} + e_{m3} = 0 \tag{1}$$

Para las componentes de secuencia de fase cero,

$$e_{b1} = e_{b2} = e_{b3} = e_{b}$$
 (2)

Cualquier voltaje en cualquier transformador puede ser resuelto en base a estas componentes de la siguiente manera,

$$e_{t1} = e_{n1} + e_{b1}$$

$$e_{t2} = e_{n2} + e_{b2} \qquad (3)$$

$$e_{t3} = e_{n3} + e_{b3}$$

Ahora, para el circuito de la figura 28 se tiene las siguientes relaciones,

$$e_{t1} = e_n + e_{g1}$$

$$e_{t2} = e_n + e_{g2} \qquad (4)$$

$$e_{t3} = e_n + e_{g3}$$

Si se suman los voltajes en los tres transformadores en la expresión (4),

 $e_{ti} + e_{ti} + e_{ti} = 3e_0 + e_{0i} + e_{0i} + e_{0i}$ (5)

Debido a que la fuente de alimentación es de voltajes balanceados senoidales se tiene que $e_{gi} + e_{gz}$ + e_{gz} es igual a cero y por tanto de la expresión (5) se tiene,

 $e_{tx} + e_{tx} + e_{tx} = 3e_n$

por tanto,

 $e_n = (e_{t,1} + e_{t,2} + e_{t,3}) / 3$ (6)

Si ahora se consideran las expresiones 1, 2 y 3 en conjunto se tiene,

 $e_{t1} + e_{t2} + e_{t3} = 3e_b$

por tanto,

 $e_{b} = (e_{t1} + e_{t2} + e_{t3}) / 3$ (7)

De las expresiones (6) y (7) se puede observar que e_b es igual a e_n , y en condiciones estables estos serán iguales a cero.

Si ahora se consideran las corrientes en el circuito de la figura 27 se tienen las siguientes expresiones; asi,

$$i_{\pm 1} + i_{\pm 2} + i_{\pm 3} = i_n \tag{8}$$

Mientras que en los capacitores se tiene,

$$i_{c1} + i_{c2} + i_{c3} = -i_n$$
 (9)

En términos de los voltajes en los transformadores,

 $i_{c1} = C_1 de_{t1} / dt = C_1 (de_{n1} / dt + de_n / dt)$ $i_{c2} = C_2 de_{t2} / dt = C_2 (de_{n2} / dt + de_n / dt) (10)$ $i_{c3} = C_3 de_{t3} / dt = C_3 (de_{n3} / dt + de_n / dt)$

De la relación (9),

 $- i_{n} = C_{1} de_{a1}/dt + C_{2} de_{a2}/dt + C_{3} de_{a3}/dt + (C_{1}+C_{2}+C_{3}) de_{n}/dt$ (11)

En el caso en que $C_1 = C_2 = C_3 = C_1$

donde,

J,

$$i_n = -3C de_n / dt$$
(12)

De los resultados de la expresión (12) se puede decir que la corriente que circula por el neutro es solamente dependiente de la capacitancia del circuito y el voltaje en éste, y no dependerá de las relaciones voltaje - corriente en los transformadores, sino que estas alterarán indirectamente en el voltaje sobre el capacitor.

Si se considera el circuito de la figura 28,

$$e_{a1} + e_{a2} + e_{a3} = 0$$
 (13)

Donde cualquiera de los tres circuitos monofásicos cumplirá con las siguientes relaciones.

$$e_{q1} = e_{t1} + e_{t}$$

$$e_{q2} = e_{t2} + e_{t}$$

$$e_{q3} = e_{t3} + e_{t}$$

$$(14)$$

por tanto,

 $e_{01} + e_{02} + e_{03} = e_{11} + e_{12} + e_{13} + 3e_{2}$

De esta manera,

 $e_c = e_n = -(e_{tx} + e_{tx} + e_{tx}) / 3$ (15)

D,

225

Donde la corriente en el neutro será,

.

$$i_n = -C_n de_n / dt$$
 (16)

Con C_n = 3 C, eléctricamente el circuito de la figura 28 es idéntico al de la figura 27.

LISTADO DEL PROGRAMA

El presente trabajo simula la forma de onda de la corriente de excitación en transformadores construidos con núcleos con materiales ferromagnéticos, lo cual debido a la característica no lineal que estos presentan, producen formas de onda distorsionadas. Distorsiones que se presentan debido a la característica de magnetización del núcleo y al anillo de histéresis en el material del núcleo.

Fara mayor detalle de estos fenómenos referirse a la parte teórica que se encuentra adjunta con este trabajo.

SIMULACION DE ARMONICOS EN BANCOS DE TRANSFORMADORES

TRABAJO REALIZADO POR ALEX ORELLANA OVIEDO

En la siguiente parte se introducen los valores característicos del transformador y los resultados obtenidos en las pruebas de circuito abierto y de cortocircuito

disp('Introduzca los valores que a continuación se especifican:')

disp('Los valores nominales del transformador')

while m==0

KVAN=input('Potencia nominal en KVA:');

KV:();

FN=input('Frecuencia en HZ:');

disp('Introduzca resultados de pruebas:');

PO=input('Potencia de entrada en vatios:'); VCA=input('Voltaje de alimentación en KV:'); ICA=input('Corriente de entrada en A:'); PCC=input('Potencia de entrada en vatios:'); VCC=input('Voltaje de alimentación en KV:'); ICC=input('Corriente de entrada en A:');

- if norm(KVAN)==NaN;norm(KVH)==NaN;norm(KVL)==NaN; norm(FN)==NaN ;norm(PO)==NaN ;norm(VCA)==NaN ; norm(ICA)==NaN;norm(PCC)==NaN;norm(VCC)==NaN ; norm(ICC)==NaN;
 - disp('Usted ha ingresado los valores de manera
 incorrecta');

disp('Presione la tecla que se indica a continuación')

if s==O

PCC=120;VCC=0.012;ICC=10;
KVAN=2.2;KVH=.22;KVL=.22;FN=60;P0=32;
VCA=.22;ICA=0.41;
m=1;
else m=0;
end
```
else m=1;
```

end

end

),

ZBH=abs(((KVH*1000)^2)/(KVAN*1000)); r1=PCC/(2*(ICC^2)); r1pu=r1/ZBH; ZCC=VCC*1000/ICC; X11=(sqrt(ZCC^2-r1^2))/2; X11pu=X11/ZBH; Pnucleo=P0-(PCC/2)*((ICA/ICC)^2); P0pu=Pnucleo/(1000*KVAN); C=45.714;

SIMULACION EN PROCESO

k11=(r1pu/(r1pu^2+(X11pu+C)^2))^2; k12=((X11pu+C)/(r1pu^2+(X11pu+C)^2))^2; k1=sqrt(2)*sqrt(k11+k12); Tet1=atan((X11pu+C)/r1pu); F=0.001;

En la siguiente parte se procede al cálculo de los puntos de trabajo sobre la curva de magnetización.

m1=0;

229

while m1==0

if (F>=0.001 & F<0.439)

E=-40.064*F+41.224;

end

if (F>=0.439 & F<0.933)

E=-25.917*F+35.014;

end

if (F>=0.933)

E=-12.421*F+22.422;

end

if E<=0
disp('VERIFICAR CARACTERISTICA DE MAGNETIZACION')
end</pre>

```
IA=F/(C-E);
IR=POpu/(4*C*IA);
IP=(F-C*IR)/(C-E);
IQ=2*IA-IP;
k21=(r1pu/(r1pu^2+(X11pu+E)^2))^2;
k22=((X11pu+E)/(r1pu^2+(X11pu+E)^2))^2;
k2=sqrt(2)*sqrt(k21+k22);
Tet2=atan((X11pu+E)/r1pu);
```

if (IP/k1>1;IQ/k1>1;IP/k2>1;IQ/k2>1)
F=F+0.001;
else m1=1;
end

end

۲

D,

TO=Tet1+asin(-IF/k1); T1=Tet1+asin(IQ/k1); DT1=T1-TO; T1p=Tet2+asin(IQ/k2); Tet3=Tet2+asin(IP/k2); DT3p=T1p-Tet3; DT2p=(pi-DT1-DT3p)/2; T2p=T1p+DT2p; T2=T1+DT2p; kte1=T1-T1p; T3=T2+DT2p; TSp=pi+2*Tet2-T2p; T4p=T3p+DT2p; kte2=T2-T3p; T4≕T3+DT3p; kte3=T3-T4p; T5=T4+DT1;T6=T5+DT2p; T7=T6+DT2p; T8=T7+DTSp; p≕O;

corriente de excitación para cada valor de Wt Ш ך ⊉ siguiente parte ហ ល procede ត្<u></u> calculo ርር. በጋ **ப** ற

N M N

fioir Wt=T0:0.0122718:T8

i T+d=d

j. f (Wt>=TO & Wt<=T1) A(p,1)=Wt; FI=C*(I1-IR);Il=k1*sin(Wt-Tet1);

end

(Wt>=T1 & Wt<=T2)

A(p,3)=FI;

A(p,2)=I1;

j. f A(p,3)=FI; A(p,2)=I1; A(p,1)=Wt; FI=E*I1+F; Wtp=Wt-kte1; I1=k2*sin(Wtp-Tet2);

Ô

A(p,1)=Wt;

FI=E*I1+F;

ŗ. Ļ

(Wt>=T2 & Wt<=T3)

Wtp=Wt-kte2;

Il=k2*sin(Wtp-Tet2);

D D D d

A(p,3)=FI;

end

j. F (Wセン=T3 & Wセく=T4)

Wtp=Wt-kte3;

I1=k2*sin(Wtp-Tet2);

FI=E*I1+F;

A(p,1)=Wt;

A(p,2)=I1;

A(p,3)=FI;

end

i.f (₩t>=T4 & ₩t<=T5)

FI=C*(I1+IR); 11=k1*sin(Wt-Tet1);

A(p,1)=Wt;

A(p,2)=I1;

A(p,3)=FI;

n L L U

₽• ∱ (Wt>=T5 & Wt<=T6)

Wtp=Wt-ktei;

11=k2*sin(Wtp-Tet2);

FI=E*I1-F;

A(p,1)=Wt;

A(p,2)=I1;

A(p,3)=FI;

1

N 14 14

end

if (Wt>=T6 & Wt<=T7)

Wtp=Wt-kte2;

I1=k2*sin(Wtp-Tet2);

FI=E*I1-F;

A(p,1)=Wt;

A(p,2)=I1;

A(p,3) = FI;

end

if (Wt>=T7 & Wt<=T8)
Wtp=Wt-kte3;
I1=k2*sin(Wtp-Tet2);
FI=E*I1-F;
A(p,1)=Wt;
A(p,2)=I1;
A(p,3)=FI;</pre>

end

La matriz A estará formada de los siguientes términos:

A=[Wt I1 FI]

end

Se procederá a encontrar en forma gráfica la aproximación del anillo de histéresis que se utilizará en el análisis

IM=A(:,2); IMAX=max(IM);

Cálculo del flujo en el transformador cuando no es permitida la circulación de componentes de tercera armónica y sus múltiplos en la corriente de excitación

```
BETA=TO-asin(-IP/IMAX);
d=0;
for Wt=T0:0.0122718:T6
```

d=d+1;

```
if (Wt>=TO & Wt<=T1)
```

```
FIP=C*(IMAX*sin(Wt-BETA)-IR);
```

`B(d,1)=Wt;

```
B(d,2) = FIP;
```

end

```
if (Wt>=T1 & Wt<=T3)
FIP=E*IMAX*sin(Wt-BETA)+F;
B(d,1)=Wt;
B(d,2)=FIP;</pre>
```

end

- -

```
if (Wt>=T3 & Wt<=T4)
```

FIF=C*(IMAX*sin(Wt-BETA)+IR);

B(d,1) = Wt;

B(d,2) = FIP;

end

```
if (Wt>=T4 & Wt<=T6)
FIP=E*IMAX*sin(Wt-BETA)-F;
B(d,1)=Wt;
B(d,2)=FIP;</pre>
```

end

end

q=O ş

```
for ih=-IMAX:0.0122718:IMAX
    q=q+1;
    if (ih>=-IMAX & ih<=-IP)</pre>
```

fih=E*ih-F;

end

```
if (ih>=-IP & ih<=IQ)
fih=C*(ih-IR);</pre>
```

end

end HIS(q,1)=ih;if (ih>=IQ & ih<=IMAX) fih=E*ih+F; .

•

end

HIS(q,2)=fih;

for ih=IMAX:-0.0122718:-IMAX

d=d+1'

if (ih<=IMAX & ih>=IP)

fih=E*ih+F;

₽Ud

if (ih<=IP & ih>=-IQ)

fih=C*(ih+IR);

end

end

.

HIS(q,1)=ih;

HIS(q,2)=fih;

BUD

۲. ۴

(ih<=−IQ & ih>=−IMAX)

fih=E*ih-F;

297 297

•

•

HIS=[ih fih]

plot(HIS(:,1),HIS(:,2),'g') title('AFROXIMACION AL ANILLO DE HISTERESIS') xlabel('Corriente en por unidad') ylabel('Flujo en por unidad') grid keyboard

Se procederá al cálculo de los coeficientes de Fourier de la forma de onda de la corriente de excitación calculada anteriormente

SERIES DE FOURIER EN PROCESO

a01=k1*cos(T1-Tet1)-k1*cos(T0-Tet1)+k2*cos(T2-kte1-Tet2))-k2*cos(T1-kte1-Tet2);

a02=k2*cos(T3-kte2-Tet2)-k2*cos(T2-kte2-Tet2)+k2*cos(T4 -kte3-Tet2)-k2*cos(T3-kte3-Tet2);

a03=k1*cos(T5-Tet1)-k1*cos(T4-Tet1)+k2*cos(T6-kte1-Tet2) .)-k2*cos(T5-kte1-Tet2); a04=k2*cos(T7-kte2-Tet2)-k2*cos(T6-kte2-Tet2)+k2*cos(T8 . -kte3-Tet2)-k2*cos(T7-kte3-Tet2);

a0=-(a01+a02+a03+a04)/pi;

a11=k1*((cos(Tet1)/2)*((sin(T1))^2-(sin(T0))^2)-(sin(Te t1)/2)*((sin(2*T1)-sin(2*T0))/2+(T1-T0)));

a12=k2*((cos(kte1+Tet2)/2)*((sin(T2))^2-(sin(T1))^2)-(s in(kte1+Tet2)/2)*((sin(2*T2)-sin(2*T1))/2+(T2-T1)))

a13=k2*((cos(kte2+Tet2)/2)*((sin(T3))^2-(sin(T2))^2)-(s in(kte2+Tet2)/2)*((sin(2*T3)-sin(2*T2))/2+(T3-T2)))

a14=k2*((cos(kte3+Tet2)/2)*((sin(T4))^2-(sin(T3))^2)-(s in(kte3+Tet2)/2)*((sin(2*T4)-sin(2*T3))/2+(T4-T3)))

a15=k1*((cos(Tet1)/2)*((sin(T5))^2-(sin(T4))^2)-(sin(Te t1)/2)*((sin(2*T5)-sin(2*T4))/2+(T5-T4)));

a16=k2*((cos(kte1+Tet2)/2)*((sin(T6))^2-(sin(T5))^2)-(s in(kte1+Tet2)/2)*((sin(2*T6)-sin(2*T5))/2+(T6-T5)))

a17=k2*((cos(kte2+Tet2)/2)*((sin(T7))^2-(sin(T6))^2)-(s in(kte2+Tet2)/2)*((sin(2*T7)-sin(2*T6))/2+(T7-T6)))

a18=k2*((cos(kte3+Tet2)/2)*((sin(T8))^2-(sin(T7))^2)-(s in(kte3+Tet2)/2)*((sin(2*T8)-sin(2*T7))/2+(T8-T7))) a1=(a11+a12+a13+a14+a15+a16+a17+a18)/pi;

b12=k2*((cos(kte1+Tet2)/2)*((T2-T1)-(sin(2*T2)-sin(2*T1)))/2)-(sin(kte1+Tet2)/2)*((sin(T2))^2-(sin(T1))^2))

b13=k2*((cos(kte2+Tet2)/2)*((T3-T2)-(sin(2*T3)-sin(2*T2)))/2)-(sin(kte2+Tet2)/2)*((sin(T3))^2-(sin(T2))^2))

b14=k2*((cos(kte3+Tet2)/2)*((T4-T3)-(sin(2*T4)-sin(2*T3))/2)-(sin(kte3+Tet2)/2)*((sin(T4))^2-(sin(T3))^2))

b15=k1*((cos(Tet1)/2)*((T5-T4)-(sin(2*T5)-sin(2*T4))/2) -(sin(Tet1)/2)*((sin(T5))^2-(sin(T4))^2));

b16=k2*((cos(kte1+Tet2)/2)*((T6-T5)-(sin(2*T6)-sin(2*T5))/2)-(sin(kte1+Tet2)/2)*((sin(T6))^2-(sin(T5))^2))

b17=k2*((cos(kte2+Tet2)/2)*((T7-T6)-(sin(2*T7)-sin(2*T6))/2)-(sin(kte2+Tet2)/2)*((sin(T7))^2-(sin(T6))^2))

b18=k2*((cos(kte3+Tet2)/2)*((T8-T7)-(sin(2*T8)-sin(2*T7)))/2)-(sin(kte3+Tet2)/2)*((sin(T8))^2-(sin(T7))^2))

b1=(b11+b12+b13+b14+b15+b16+b17+b18)/pi;

c1=sqrt(a1^2+b1^2);

FIC(1,1)=0;

FIC(2,1)=1;

FIC(1,2) = a0/2;

FIC(2,2)=c1;

FIC(1,3) = a0/2;

FIC(2,3) = a1;

FIC(1, 4) = a0/2;

FIC(2, 4) = b1;

afiO1=-k1*C*(cos(T1-Tet1)-cos(TO-Tet1))-C*IR*(T1-TO);

afi02=-E*k2*(cos(T2-kte1-Tet2) - cos(T1-kte1-Tet2)) +
F*(T2-T1);

afi03=-E*k2*(cos(T3-kte2-Tet2) - cos(T2-kte2-Tet2)) +
F*(T3-T2);

afiO5=-k1*C*(cos(T5-Tet1)-cos(T4-Tet1))+C*IR*(T5-T4);

afi06=-E*k2*(cos(T6-kte1-Tet2) - cos(T5-kte1-Tet2)) -

F*(T6-T5);

afi07=-E*k2*(cos(T7-kte2-Tet2) - cos(T6-kte2-Tet2)) - F*(T7-T6);

afi08=-E*k2*(cos(T8-kte3-Tet2) - cos(T7-kte3-Tet2)) - F*(T8-T7);

afi0=(afi01+afi02+afi03+afi04+afi05+afi06+afi07+afi08)/ pi;

afi11=(k1*C/2)*(((cos(2*T0-Tet1))/2)-((cos(2*T1-Tet1))/ 2)-(T1-T0)*sin(Tet1))-C*IR*(sin(T1)-sin(T0));

afi12=(E*k2/2)*(((cos(2*T1-kte1-Tet2))/2) - ((cos(2*T2kte1-Tet2))/2)-(T2-T1)*sin(kte1+Tet2))+F*(sin (T2)-sin(T1));

afi13=(E*k2/2)*(((cos(2*T2-kte2-Tet2))/2) - ((cos(2*T3kte2-Tet2))/2)-(T3-T2)*sin(kte2+Tet2))+F*(sin(T3) -sin(T2));

afi14=(E*k2/2)*(((cos(2*T3-kte3-Tet2))/2) - ((cos(2*T4kte3-Tet2))/2)-(T4-T3)*sin(kte3+Tet2))+F*(sin(T4) -sin(T3));

afi15=(k1*C/2)*(((cos(2*T4-Tet1))/2)-((cos(2*T5-Tet1))/ 2)-(T5-T4)*sin(Tet1))+C*IR*(sin(T5)-sin(T4));

- afi17=(E*k2/2)*(((cos(2*T6-kte2-Tet2))/2) ((cos(2*T7kte2-Tet2))/2)-(T7-T6)*sin(kte2+Tet2))-F*(sin(T7) -sin(T6));
- afi18=(E*k2/2)*(((cos(2*T7-kte3-Tet2))/2) ((cos(2*T8kte3-Tet2))/2)-(T8-T7)*sin(kte3+Tet2))-F*(sin(T8) -sin(T7));

afi1=(afi11+afi12+afi13+afi14+afi15+afi16+afi17+afi18);

- bfi12=(E*k2/2) *((T2-T1)*cos(kte1+Tet2)-(sin(2*T2-kte1-Tet2)) / 2 + (sin(2*T1-kte1-Tet2))/2)+F*(cos(T1)cos(T2));
- bfi13=(E*k2/2)*((T3-T2)*cos(kte2+Tet2)-(sin(2*T3-kte2-Tet2))/2+(sin(2*T2-kte2-Tet2))/2)+F*(cos(T2)-cos (T3));
- bfi14=(E*k2/2)*((T4-T3)*cos(kte3+Tet2)-(sin(2*T4-kte3-Tet2))/2+(sin(2*T3-kte3-Tet2))/2)+F*(cos(T3)-cos (T4));

-

bfi16=(E*k2/2)*((T6-T5)*cos(kte1+Tet2)-(sin(2*T6-kte1-Tet2))/2+(sin(2*T5-kte1-Tet2))/2)-F*(cos(T5)-cos (T6));

bfi17=(E*k2/2)*((T7-T6)*cos(kte2+Tet2)-(sin(2*T7-kte2-Tet2))/2+(sin(2*T6-kte2-Tet2))/2)-F*(cos(T6)-cos (T7));

bfi18=(E*k2/2)*((T8-T7)*cos(kte3+Tet2)-(sin(2*T8-kte3-Tet2))/2+(sin(2*T7-kte3-Tet2))/2)-F*(cos(T7)-cos (T8));

bfi1=(bfi11+bfi12+bfi13+bfi14+bfi15+bfi16+bfi17+bfi18)/
pi;

fc1=sqrt(afi1^2+bfi1^2);

FIC(1,5) = afi0/2;

FIC(2,5)=fc1;

J

for n=2:1:30

an1=k1*(n^2/(n^2-1))*((sin(n*T1)*sin(T1-Tet1))/n+
 (cos(n*T1)*cos(T1-Tet1))/(n^2)-(sin(n*T0)*sin
 (T0-Tet1))/n-(cos(n*T0)*cos(T0-Tet1))/(n^2));

an2=k2*(n^2/(n^2-1))*((sin(n*T2)*sin(T2-kte1-Tet2))/n+(cos(n*T2)*cos(T2-kte1-Tet2))/(n^2)-(sin (n*T1)*sin(T1-kte1-Tet2))/n-(cos(n*T1)*cos(T1 -kte1-Tet2))/(n^2));

an3=k2*(n^2/(n^2-1))*((sin(n*T3)*sin(T3-kte2-Tet2
))/n+(cos(n*T3)*cos(T3-kte2-Tet2))/(n^2)-(sin
 (n*T2)*sin(T2-kte2-Tet2))/n-(cos(n*T2)*cos(T2
 -kte2-Tet2))/(n^2));

an4=k2*(n^2/(n^2-1))*((sin(n*T4)*sin(T4-kte3-Tet2
))/n+(cos(n*T4)*cos(T4-kte3-Tet2))/(n^2)-(sin
 (n*T3)*sin(T3-kte3-Tet2))/n-(cos(n*T3)*cos(T3
 -kte3-Tet2))/(n^2));

an5=k1*(n^2/(n^2-1))*((sin(n*T5)*sin(T5-Tet1))/n+ (cos(n*T5)*cos(T5-Tet1))/(n^2)-(sin(n*T4)*sin (T4-Tet1))/n-(cos(n*T4)*cos(T4-Tet1))/(n^2));

an6=k2*(n^2/(n^2-1))*((sin(n*T6)*sin(T6-kte1-Tet2
))/n+(cos(n*T6)*cos(T6-kte1-Tet2))/(n^2)-(sin
 (n*T5)*sin(T5-kte1-Tet2))/n-(cos(n*T5)*cos(T5
 -kte1-Tet2))/(n^2));

an7=k2*(n^2/(n^2-1))*((sin(n*T7)*sin(T7-kte2-Tet2
))/n+(cos(n*T7)*cos(T7-kte2-Tet2))/(n^2)-(sin
 (n*T6)*sin(T6-kte2-Tet2))/n-(cos(n*T6)*cos(T6
 -kte2-Tet2))/(n^2));

i

an8=k2*(n^2/(n^2-1))*((sin(n*T8)*sin(T8-kte3-Tet2
))/n+(cos(n*T8)*cos(T8-kte3-Tet2))/(n^2)-(sin
 (n*T7)*sin(T7-kte3-Tet2))/n-(cos(n*T7)*cos(T7
 -kte3-Tet2))/(n^2));

an=(an1+an2+an3+an4+an5+an6+an7+an8)/pi;

bn1=(k1/2)*(sin((1-n)*T1-Tet1)/(1-n)-sin((1+n)*T1
-Tet1)/(1+n)-sin((1-n)*T0-Tet1)/(1-n)+sin((1+
n)*T0-Tet1)/(1+n));

bn2=(k2/2)*(sin((1-n)*T2-ktel-Tet2)/(1-n)-sin((1+ n)*T2-ktel-Tet2)/(1+n)-sin((1-n)*T1-ktel-Tet2)/(1-n)+sin((1+n)*T1-ktel-Tet2)/(1+n));

bn3=(k2/2)*(sin((1-n)*T3-kte2-Tet2)/(1-n)-sin((1+ n)*T3-kte2-Tet2)/(1+n)-sin((1-n)*T2-kte2-Tet2)/(1-n));

bn4=(k2/2)*(sin((1-n)*T4-kte3-Tet2)/(1-n)-sin((1+ n)*T4-kte3-Tet2)/(1+n)-sin((1-n)*T3-kte3-Tet2)/(1-n)+sin((1+n)*T3-kte3-Tet2)/(1+n));

bn5=(k1/2)*(sin((1-n)*T5-Tet1)/(1-n)-sin((1+n)*T5 --Tet1)/(1+n)-sin((1-n)*T4-Tet1)/(1-n)+sin((1+ n)*T4-Tet1)/(1+n)); bn6=(k2/2)*(sin((1-n)*T6-kte1-Tet2)/(1-n)-sin((1+ n)*T6-kte1-Tet2)/(1+n)-sin((1-n)*T5-kte1-Tet2)/(1-n)+sin((1+n)*T5-kte1-Tet2)/(1+n));

bn=(bn1+bn2+bn3+bn4+bn5+bn6+bn7+bn8)/pi;

cn=sqrt(an^2+bn^2);

FIC(n+1,1)=n;
FIC(n+1,2)=cn;
FIC(n+1,3)=an;
FIC(n+1,4)=bn;

afin1=(k1*C/2)*((cos((1+n)*T0-Tet1))/(1+n)+(cos((1n)*T0-Tet1))/(1-n)-(cos((1+n)*T1-Tet1))/(1+n) -(cos((1-n)*T1-Tet1))/(1-n))-(C*IR/n)*(sin(n* T1)-sin(n*T0));

afin2=(E*k2/2)*((cos((1+n)*T1-kte1-Tet2))/(1+n)+(co s((1-n)*T1-kte1-Tet2))/(1-n)-(cos((1+n)*T2-kt e1-Tet2))/(1+n)-(cos((1-n)*T2-kte1-Tet2))/(1n))+(F/n)*(sin(n*T2)-sin(n*T1));

afin3=(E*k2/2)*((cos((1+n)*T2-kte2-Tet2))/(1+n)+(co s((1-n)*T2-kte2-Tet2))/(1-n)-(cos((1+n)*T3-kt e2-Tet2))/(1+n)-(cos((1-n)*T3-kte2-Tet2))/(1n))+(F/n)*(sin(n*T3)-sin(n*T2));

- afin4=(E*k2/2)*((cos((1+n)*T3-kte3-Tet2))/(1+n)+(co s((1-n)*T3-kte3-Tet2))/(1-n)-(cos((1+n)*T4-kt e3-Tet2))/(1+n)-(cos((1-n)*T4-kte3-Tet2))/(1n))+(F/n)*(sin(n*T4)-sin(n*T3));
- afin5=(k1*C/2)*((cos((1+n)*T4-Tet1))/(1+n)+(cos((1n)*T4-Tet1))/(1-n)-(cos((1+n)*T5-Tet1))/(1+n) -(cos((1-n)*T5-Tet1))/(1-n))+(C*IR/n)*(sin(n* T5)-sin(n*T4));
- afin6=(E*k2/2)*((cos((1+n)*T5-kte1-Tet2))/(1+n)+(co s((1-n)*T5-kte1-Tet2))/(1-n)-(cos((1+n)*T6-kt e1-Tet2))/(1+n)-(cos((1-n)*T6-kte1-Tet2))/(1n))-(F/n)*(sin(n*T6)-sin(n*T5));

afin7=(E*k2/2)*((cos((1+n)*T6-kte2-Tet2))/(1+n)+(co s((1-n)*T6-kte2-Tet2))/(1-n)-(cos((1+n)*T7-kt e2-Tet2))/(1+n)-(cos((1-n)*T7-kte2-Tet2))/(1-

afin≃(afin1+afin2+afin3+afin4+afin5+afin6+afin7+afin8)/ pi;

bfin3=(E*k2/2)*((sin((1-n)*T3-kte2-Tet2))/(1-n)-(si n((1-n)*T2-kte2-Tet2))/(1-n)-(sin((1+n)*T3-kt e2-Tet2))/(1+n)+(sin((1+n)*T2-kte2-Tet2))/(1+ n))-(F/n)*(cos(n*T3)-cos(n*T2));

bfin4=(E*k2/2)*((sin((1-n)*T4-kte3-Tet2))/(1-n)-(si n((1-n)*T3-kte3-Tet2))/(1-n)-(sin((1+n)*T4-kt e3-Tet2))/(1+n)+(sin((1+n)*T3-kte3-Tet2))/(1+

bfin7=(E*k2/2)*((sin((1-n)*T7-kte2-Tet2))/(1-n)-(si
n((1-n)*T6-kte2-Tet2))/(1-n)-(sin((1+n)*T7-kt
e2-Tet2))/(1+n)+(sin((1+n)*T6-kte2-Tet2))/(1+
n))+(F/n)*(cos(n*T7)-cos(n*T6));

bfin8=(E*k2/2)*((sin((1-n)*T8-kte3-Tet2))/(1-n)-(si n((1-n)*T7-kte3-Tet2))/(1-n)-(sin((1+n)*T8-kt e3-Tet2))/(1+n)+(sin((1+n)*T7-kte3-Tet2))/1+n))+(F/n)*(cos(n*T8)-cos(n*T7));

bfin=(bfin1+bfin2+bfin3+bfin4+bfin5+bfin6+bfin7+bfin8)/
pi;

```
fcn=sqrt(afin^2+bfin^2);
FIC(n+1,5)=fcn;
```

end

La matriz FIC estará formada por los siguientes términos:

FIC=[Orden del armónico ci ai bi fci]

En los siguientes cálculos se procederá al cálculo de las corrientes para las diferentes conexiones.

r≖0;

for Wt=T0:0.0122718:T8

r=r+1;

iexca2=FIC(18,3) * cos(17*Wt)+FIC(20,3)*cos(19*Wt)+
FIC(22,3) * cos(21*Wt)+FIC(24,3)*cos(23*Wt)+
FIC(26,3) * cos(25*Wt)+FIC(28,3)*cos(27*Wt)+
FIC(30,3)*cos(29*Wt);

iexca=iexca1+iexca2;

iexcb1=FIC(2,4)*sin(Wt)+FIC(4,4)*sin(3*Wt)+FIC(6,4)

* sin(5*Wt) + FIC(8,4)*sin(7*Wt)+ FIC(10,4)*
sin(9*Wt) + FIC(12,4)*sin(11*Wt)+FIC(14,4) *
sin(13*Wt)+FIC(16,4)*sin(15*Wt);

iexcb2=FIC(18,4) * sin(17*Wt)+FIC(20,4)*sin(19*Wt)+
FIC(22,4) * sin(21*Wt)+FIC(24,4)*sin(23*Wt)+
FIC(26,4) * sin(25*Wt)+FIC(28,4)*sin(27*Wt)+
FIC(30,4)*sin(29*Wt);

iexcb=iexcb1+iexcb2;

iexc=iexca+iexcb;

- iTERa=FIC(4,3) * cos(3*Wt) + FIC(10,3) * cos(9*Wt)+
 FIC(16,3) * cos(15*Wt) +FIC(22,3)*cos(21*Wt)+
 FIC(28,3)*cos(27*Wt);
- iTERb=FIC(4,4) * sin(3*Wt) + FIC(10,4) * sin(9*Wt)+
 FIC(16,4) * sin(15*Wt) +FIC(22,4)*sin(21*Wt)+
 FIC(28,4)*sin(27*Wt);

iTER=iTERa+iTERb;

ilinea=iexc-iTER;

IEXC(r,1)=Wt; IEXC(r,2)=iexc; IEXC(r,3)=iTER; IEXC(r,4)=ilinea;

La matriz IEXC se encuentra formada por los siguientes términos:

IEXC=[Wt iexc iTER ilinea]

Cálculo de los coeficientes de fourier del flujo en el transformador cuando no es permitida la circulación de componentes de tercera armónica y sus múltiplos en la corriente de excitación.

FIPal=(C*((IMAX/2)*(cos(2*T0-BETA)-cos(2*T1-BETA)-2*(T1-T0)*sin(BETA))+2*IR*(sin(T0)-sin(T1))) +(E*IMAX/2)*(cos(2*T1-BETA)-cos(2*T3-BETA)-2* (T3-T1)*sin(BETA))+2*F*(sin(T3)-sin(T1)))/pi;

FIPc1=sqrt(FIPa1^2+FIPb1^2);

TERF(1,1)=1; TERF(1,2)=FIPa1; TERF(1,3)=FIPb1; TERF(1,4)=FIPc1;

for nn=2:1:30

G2n=-(1/2)*((cos((1+nn)*T1-BETA)-cos((1+nn)*T0-BETA) + cos((1+nn)*T4-BETA) -cos((1+nn)*T3-BETA))/(1+nn)+(cos((1-nn)*T1-BETA)- cos((1nn)*T0-BETA)+cos((1-nn)*T4-BETA)-cos((1-nn)
*T3-BETA))/(1-nn));

H2n=(1/nn)*(sin(nn*T4)-sin(nn*T3)-sin(nn*T1)+ sin(nn*T0));

I2n=-(1/2)*((cos((1+nn)*T3-BETA)-cos((1+nn)*T1-BETA) + cos((1+nn)*T6-BETA) -cos((1+nn)*T4-BETA))/(1+nn)+(cos((1-nn)*T3-BETA) -cos((1nn)*T1-BETA)+cos((1-nn)*T6-BETA)-cos((1-nn) *T4-BETA))/(1-nn));

J2n=(1/nn)*(sin(nn*T3)~sin(nn*T1) - sin(nn*T6)+ sin(nn*T4));

FIPan=(C*(IMAX*G2n+IR*H2n)+E*IMAX*I2n+F*J2n)/pi;

- G3n=(1/2)*((sin((1-nn)*T1-BETA)-sin((1-nn)*T0-BETA) + sin((1-nn)*T4-BETA)-sin((1-nn)*T3-BETA))/(1-nn) - (sin((1+nn)*T1-BETA) -sin((1+nn)*T0-BETA) + sin((1+nn)*T4-BETA)-sin((1+nn)*T3-BETA))/(1+nn));
- H3n=(1/nn) * (cos(nn*T1)-cos(nn*T0)-cos(nn*T4)+ cos(nn*T3));

I3n=(1/2) *((sin((1-nn)*T3-BETA)-sin((1-nn)*T1-BETA) + sin((1-nn)*T6-BETA) -sin((1-nn)*T4-

- EETA)) / (1-nn) (sin((1+nn)*T3-BETA)-sin((1+nn)*T1-BETA) + sin((1+nn)*T6-BETA) -sin((1+nn)*T4-BETA))/(1+nn));
- JEn=(1/nn) # (cos(nn*T6)-cos(nn*T4)-cos(nn*TE)+ cos(nn*T1));

FIPbn=(C*(IMAX*G3n+IR*H3n)+E*IMAX*I3n+F*J3n)/pi;

FIPcn=sqrt(FIPan^2+FIPbn^2);

TERF(nn,1)=nn; TERF(nn,2)=FIFan; TERF(nn,3)=FIFbn; TERF(nn,4)=FIFcn;

⊜nd

Desarrollo de la matriz de las componentes impares de las series de FOURIER.

۱

MM=0;

for M=1:1:15

MM=MM+1;

FOUIA(MM,:)=FIC(2*M,:);

end

FIA6=FOUIA(15,:);

FIA=[FIA1;FIA2;FIA3;FIA4;FIA5;FIA6];

ARLI=sqrt(3)*FIA(:,2:4);

En la matriz DELI se tendrá la corriente que circula en las lineas cuando existe una conexión Delta en el circuito sobre cualquier lado,

u=O;

for Wt=T0:0.0122718:T8

u=u+1;

 30*pi/180)+ARLI(10,2)*cos(29*Wt+30*pi/180);

delia=delia1+delia2;

delib=delib1+delib2;

deli=delia+delib;

DELI(u,1)=Wt; DELI(u,2)=deli;

end

D,

m2=0;

while m2==0

```
CON=input('O Estrella-Estrella,1 Delta-Estrella,2
Delta-Delta,3 Estrella-Delta,4 Salir:');
```

if CON==0

NEU=input('O Neutro conectado , 1 Neutro sin conexión:');

disp('Conexión Estrella-Estrella')

if NEU==0

keyboard

```
disp('Conexión Y-Y con conexión del neutro
a la fuente')
pause(3)
```

plot(IEXC(:,1),IEXC(:,2),'g')
title('Corriente de fase IA')
xlabel('Wt')
ylabel('Corriente')
grid

plot(A(:,1),A(:,3),'g') title('Flujo en el núcleo') xlabel('Wt') ylabel('Flujo') grid keyboard

258

plot(FIC(:,1),FIC(:,2),'g')
title('Serie de Fourier de la corriente de
 excitación')
xlabel('Orden del armónico')
ylabel('Amplitud')
grid
keyboard

Serie de Fourier en forma porcentual para la corriente de excitación

FICM=FIC(2,2);
FICP=(100/FICM)*FIC(:,2);

```
plot(FIC(:,1),FICP(:,1),'g')
title('Serie de Fourier de la corriente de
            excitación')
xlabel('Orden del armónico')
ylabel('Porcentaje del fundamental')
grid
keyboard

plot(FIC(:,1),FIC(:,5),'g')
title('Serie de Fourier del flujo')
```

```
xlabel('Orden del armónico')
```

ylabel('Amplitud')

grid

keyboard

FFCM=FIC(2,5);
FFCP=(100/FFCM)*FIC(:,5);

plot(FIC(:,1),FFCP(:,1),'g')
title('Serie de Fourier del flujo')
xlabel('Orden del armónico')
ylabel('Porcentaje del fundamental')
grid
keyboard

end

```
if NEU==1
```

disp('Conexión Y-Y sin conexión del neutro a la fuente') pause(3)

plot(IEXC(:,1),IEXC(:,4),'g')
title('Corriente de linea IA')
xlabel('Wt')
ylabel('Corriente')
grid
keyboard

plot(B(:,1),B(:,2),'g') title('Flujo en el núcleo')

xlabel('Wt')

ylabel('Amplitud')

grid

keyboard

plot(FIA(:,1),FIA(:,2),'g')

title('Serie de Fourier de la corriente de linea IA') xlabel('Orden del armònico') ylabel('Amplitud') grid

keyboard

Series de Fourier en forma porcentual de la componente fundamental de la corriente.

FIAP=(100/FIA(1,2))*FIA(:,2);

plot(TERF(:,1),TERF(:,4),'g')
title('Flujo en el núcleo')
xlabel('Orden del armónico')
ylabel('Intensidad')
grid
keyboard

Series de Fourier en forma porcentual de la componente fundamental del flujo.

TERFF=(100/TERF(1,4))*TERF(:,4);

plot(TERF(:,1),TERFP(:,1),'g')
title('Series de Fourier del flujo')
xlabel('Orden del armónico')
ylabel('Porcentaje del fundamental')
grid

keyboard

end

end

if CON==1

disp('Conexión Delta-Estrella')

pause(3)

```
plot(DELI(:,1),DELI(:,2),'g')
title('Corriente de linea IA')
xlabel('Wt')
ylabel('Corriente')
grid
keyboard
plot(A(:,1),A(:,2),'g')
title('Corriente en el circuito delta I1')
xlabel('Wt')
ylabel('Corriente')
grid
keyboard
plot(A(:,1),A(:,3),'g')
title('Flujo en el núcleo')
xlabel('Wt')
ylabel('Flujo')
grid
keyboard
plot(FIA(:,1),ARLI(:,1),'g')
title('Serie de Fourier de la corriente de
       linea IA')
xlabel('Orden del armónico')
ylabel('Amplitud')
grid
keyboard
```

componente fundamental de la corriente en el circuito DELTA. FICL=(100/FIA(1,2))*ARLI(:,1); plot(FIA(:,1),FICL(:,1),'g') title('Serie de Fourier de la corriente de linea IA') xlabel('Orden del armònico') ylabel('Porcentaje del fundamental de la corriente en el DELTA') grid keyboard

Series de Fourier en forma porcentual de la

```
plot(FIC(:,1),FIC(:,2),'g')
```

title('Serie de Fourier de la corriente en el circuito delta') ×label('Orden del armónico') ylabel('Amplitud')

```
grid
```

keyboard

Series de Fourier en forma porcentual de la componente fundamental de la corriente en el circuito DELTA.

FICD=(100/FIA(1,2))*FIC(:,2);
```
plot(FIC(:,1),FICD(:,1),'g')
title('Serie de Fourier de la corriente en el
       circuito delta')
xlabel('Orden del armónico')
ylabel('Porcentaje del fundamental de
                                             la
        corriente en el DELTA')
grid
keyboard
plot(FOUIA(:,1),FOUIA(:,5),'g')
title('Serie de Fourier del flujo')
xlabel('Orden del armónico')
ylabel('Amplitud')
grid
keyboard
FLUJO=(100/FIC(2,5))*FDUIA(:,5);
plot(FDUIA(:,1),FLUJO(:,1),'g')
title('Serie de Fourier del flujo')
xlabel('Orden del armónico')
ylabel('Forcentaje del fundamental')
grid
```

keyboard

end

```
266
```

```
if CON==2
```

۲

D,

```
disp('Conexión Delta-Delta')
pause(3)
```

plot(DELI(:,1),DELI(:,2),'g')
title('Corriente de linea IA')
xlabel('Wt')
ylabel('Corriente')
grid
keyboard

ITER1=0.5*IEXC(:,3);

En la matriz DELI1 se almacenarán los datos de la corriente que circulará en el circuito DELTA.

DELI1=IEXC(:,2)-ITER1;

ITER2=(-1)*ITER1;

```
plot(IEXC(:,1),ITER2(:,1), 'g')
title('Corriente
                    en el circuito
                                         delta
       secundario I1A')
xlabel('Wt')
ylabel('Corriente')
grid
keyboard
plot(A(:,1),A(:,3),'g')
title('Flujo en el núcleo')
xlabel('Wt')
ylabel('Flujo')
grid
keyboard
plot(FIA(:,1),ARLI(:,1),'g')
title('Serie de Fourier de la corriente de
       linea IA')
xlabel('Orden del armónico')
ylabel('Amplitud')
grid
keyboard
```

Series de Fourier en forma porcentual de la componente fundamental de la corriente en el circuito DELTA.

FIAP(:,1)=(100/FIA(1,2))*ARLI(:,1);

plot(FIA(:,1),FIAP(:,1),'g')

title('Serie de Fourier de la corriente de linea IA')

xlabel('Orden del armónico')

ylabel('Porcentaje del fundamental de la corriente en el DELTA')

grid

keyboard

Desarrollo de la matriz que contiene solo las componentes de FOURIER múltiplos del tercero.

FOUIA1(1,1)=FOUIA(1,2);

FOUIA1(2,1)≕FOUIA(2,2)/2;

FOUIA1(3,1)=FOUIA(3,2);

FOUIA1(4,1) = FOUIA(4,2);

FOUIA1(5,1)=FOUIA(5,2)/2;

FOUIA1(6,1) = FOUIA(6,2);

FOUIA1(7,1)=FOUIA(7,2);

FOUIA1(8,1)=FOUIA(8,2)/2;

FOUIA1(9,1) = FOUIA(9,2);

FOUIA1(10,1)=FOUIA(10,2);

FOUIA1(11,1)=FOUIA(11,2)/2;

FOUIA1(12,1)=FOUIA(12,2);

FOUIA1(13,1)=FOUIA(13,2);

FOUIA1(14,1)=FOUIA(14,2)/2;

FOUIA1(15,1)=FOUIA(15,2);

Series de Fourier en forma porcentual de la componente fundamental de la corriente en el circuito DELTA.

FTERP=(100/FIA(1,2))*FOUIA1(:,1);

plot(FOUIA(:,1),FTERF(:,1),'g')

title('Serie de Fourier de la corriente en el circuito delta')

xlabel('Orden del armónico')

ylabel('Forcentaje del fundamental de la

corriente en el DELTA')

grid

keyboard

plot(FIC(:,1),FIC(:,5),'g')
title('Serie de Fourier del flujo')
xlabel('Orden del armónico')
ylabel('Amplitud')
grid

```
keyboàrd
```

```
Series de Fourier en forma porcentual de la componente fundamental del flujo.
```

```
FFCM=FIC(2,5);
FFCP=(100/FFCM)*FIC(:,5);
```

plot(FIC(:,1),FFCP(:,1),'g')
title('Serie de Fourier del flujo')
xlabel('Orden del armónico')
ylabel('Porcentaje del fundamental')
grid

end

`..

```
if CON==3
```

keyboard.

Υ.

```
if NE==0
```