ESCUELA POLITÉCNICA NACIONAL

FACULTAD DE INGENIERÍA EN GEOLOGÍA Y PETRÓLEOS

"ESTUDIO DE LA FACTIBILIDAD DEL CAMBIO DE CONEXIÓN
BTC POR TSH-ER EN TUBERÍA DE REVESTIMIENTO DE 20" Y 13
3/8" PARA POZOS A PERFORAR EN EL CSSFD"

PROYECTO PREVIO A LA OBTENCIÓN DEL TITULO DE INGENIERO EN PETRÓLEOS

EDUARDO AUGUSTO AULES ALMEIDA eduardo-aules@hotmail.com

DIRECTOR: ING. RAÚL ARMANDO VALENCIA TAPIA.Msc. raul.valencia@epn.edu.ec

Quito, Diciembre 2013

Ш

DECLARACIÓN

Yo, Eduardo Augusto Aules Almeida, declaro bajo juramento que el trabajo aquí

descrito es de mi autoría; que no ha sido previamente presentada por ningún

grado o calificación profesional; y, que he consultado las referencias bibliográficas

que se incluyen en este documento.

A través de la presente declaración cedo mis derechos de propiedad intelectual

correspondientes a este trabajo, a la Escuela Politécnica Nacional, según lo

establecido por la Ley de Propiedad Intelectual, por su Reglamento y por la

normativa institucional vigente.

Eduardo Augusto Aules Almeida

CERTIFICACIÓN

Certifico que el presente trabajo fue desarrollado por Eduardo Augusto Aules Almeida, bajo mi supervisión.

Ing. Raúl Valencia, Msc
DIRECTOR DEL PROYECTO.

AGRADECIMIENTO

Agradezco ante todo a Dios por protegerme durante toda mi vida.

A mis padres Yolanda y Eduardo, que siempre me ayudaron y aconsejaron para ser una mejor persona cada día, por aguantar todas mis locuras; gracias de todo corazón me da mucha felicidad poder tenerles a mi lado en este gran paso en mi vida.

A mi hermana Karina, que siempre fue la autoridad en mi vida, esa autoridad que me ayudo a coger el rumbo correcto, no existe persona en este mundo que me haya dado más consejos que tú, unos consejos que siempre llegaron en el momento correcto.

A mis buenos amigos que más que amigos han sido mis hermanos Francisco V., Juan Pablo T., Luis G. y Vladimir P.; quienes me han acompañado en mi vida y espero que Dios me permita seguir contando con ustedes hasta que me alcance la vida.

A Gaby F., una persona maravillosa que paso junto a mí durante toda mi carrera, con la que crecí mucho y pase muchos momentos inolvidables.

A SCHULUMBERGER en especial a IPM-SHUSHUFINDI, por haberme permitido ser parte del "team", personas tan valiosas con las aprendí mucho, especialmente a Luis Bolívar y Pablo Chica, que fueron personas que me guiaron con mucha sabiduría para enseñarme a ser un trabajador organizado a extremo para que las cosas marchen de mejor manera.

Dios les bendiga a todos y muchas gracias nuevamente.

Eduardo.

DEDICATORIA

Dedico este proyecto a de titulación a mi familia y amigos.

Una dedicatoria especial a mis dos abuelitos que en paz descansen y que sé que donde están siempre me bendijeron para que todo salga bien.

TABLA DE CONTENIDO

ECLA	RA	CIÓN					II
ERTIF	FICA	ACIÓN					III
GRAD	DEC	IMIENTO					IV
EDIC	ATC	RIA					V
ABLA	DE	CONTENIDO					VI
DICE	DE	FIGURAS					XII
DICE	DE	TABLAS					XIII
ESUN	ΙEΝ						XIV
RESE	NT	ACIÓN					XV
APÍTU	JLO	1					1
1.1	INT	RODUCCIÓN.					1
1.2	PE	RFIL DE POZC)				1
1.3	TIP	OS DE PERFI	L DE POZO				1
1.3	3.1	POZOS VERT	TCALES				2
1.3	3.2	POZOS DIRE	CCIONALES				2
1.3	3.3	EN FORMA D	E "J":				2
1.3	3.4	EN FORMA D	E "S"				3
1.3	3.5	TIPO "S"					4
1.3	3.6	TIPO "S" MOD	IFICADO				5
1.3	3.7	POZOS HORI	ZONTALES				5
1.4	TU	BERÍAS DE RE	EVESTIMIENTO.				7
	ERTII BRAI BLA DICE SUN RESE APÍTI 1.1 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3	ERTIFICA ERADEC EDICATO ABLA DE DICE DE ESUMEN RESENTA APÍTULO INDAME ESTIMIE 1.1 INT 1.2 PEI 1.3 TIP 1.3.1 1.3.2 1.3.3 1.3.4 1.3.5 1.3.6 1.3.7 1.4 TUI 1.5 PRI	ERTIFICACIÓN	ERTIFICACIÓN	ERTIFICACIÓN	ERTIFICACIÓN BRADECIMIENTO BILA DE CONTENIDO DICE DE FIGURAS BILA DE TABLAS ESUMEN RESENTACIÓN APÍTULO 1 INTRODUCCIÓN 1.1 INTRODUCCIÓN 1.2 PERFIL DE POZO 1.3.1 POZOS VERTICALES 1.3.2 POZOS DIRECCIONALES 1.3.3 EN FORMA DE "J": 1.3.4 EN FORMA DE "S" 1.3.5 TIPO "S" 1.3.6 TIPO "S" MODIFICADO 1.3.7 POZOS HORIZONTALES 1.4 TUBERÍAS DE REVESTIMIENTO 1.5 PROPIEDADES MECÁNICAS DE LA STIMIENTO.	ECLARACIÓN

	1.5.2	? TE	NSIÓN	. 8
	1.5.3	B PR	ESIÓN INTERIOR.	10
1.	6 T	IPOS	DE TUBERÍA DE REVESTIMIENTO.	11
	1.6.1	TU	BERÍA DE REVESTIMIENTO CONDUCTORA	12
	1.6.2	2 TU	BERÍA DE REVESTIMIENTO SUPERFICIAL	13
	1.6.3	3 TU	BERÍA DE REVESTIMIENTO INTERMEDIA	13
	1.6.4	ł TU	BERÍA DE REVESTIMIENTO DE PRODUCCIÓN	14
	1.6.5	TU	BERÍA DE REVESTIMIENTO CORTA (LINER)	14
1.	7 C	ÓDIG	O DE LAS TUBERÍAS DE REVESTIMIENTO	15
1.	8 P	ROPI	EDADES DE LA TUBERÍA DE REVESTIMIENTO	15
	1.8.1	DIÁ	METRO EXTERIOR.	16
	1.8.2	e ES	PESOR DE LA PARED.	16
	1.8.3	B PE	SO POR UNIDAD DE LONGITUD	17
	1.8.4	GR	ADO DEL ACERO	17
	1.8.5	LO	NGITUD DEL TRAMO Ó JUNTA	23
	1.8.6	TIP	PO DE CONEXIÓN O JUNTA	23
1.	9 C	ONE	XIONES O JUNTAS	28
1.	10	SELI	LO DE LAS ROSCAS	29
	1.10	.1 SI	ELLO RESILENTE	29
	1.10	.2 SI	ELLO DE INTERFERENCIA.	29
1.	11	CLAS	SIFICACIÓN DE JUNTAS	29
	1.11	.1 AI	PI	29
	1.11	.2 PI	REMIUM O PROPIETARIAS	30
1.	12	TIPC	OS DE ROSCAS.	30
1.	13	ROS	CAS API	31
	1.13	.1 R	OSCAS PARA TUBERÍA DE REVESTIMIENTO	31
	1.13	.2 R	OSCAS PARA TUBERÍA DE PRODUCCIÓN API	36

1.14	CONEXIONES PREMIUM TENARIS	37
1.14	.1 TSH – ER	37
1.15	FALLAS EN LAS JUNTAS Y ROSCAS	40
1.15	.1 FALLA POR CARGA AXIAL	41
1.15	5.2 SALTO DE ROSCAS	41
1.15	.3 FRACTURA	41
1.15	.4 FALLAS EN LAS JUNTAS POR CARGA DE PRESIÓN	41
1.15	5.5 FUGA	41
1.15	6.6 GALLING (DESPRENDIMIENTO DE MATERIAL)	42
1.15	.7 CEDENCIA EN EL PIÑÓN	42
1.16	MAQUINADO DE UNA ROSCA	42
1.16	.1 RECEPCIÓN DE TUBERÍA	43
1.16	2.2 PREPARACIÓN DE EXTREMOS	43
1.16	3.3 CORTE Y BISELADO	43
1.17	ROSCADO	43
1.18	CALIBRACIÓN DE LA ROSCA	44
1.18	8.1 MEDICIÓN DEL AHUSAMIENTO DE LA ROSCA	44
1.18	3.2 MEDICIÓN DEL PASO DE ROSCA	44
1.18	3.3 MEDICIÓN DE LA ALTURA DE LA ROSCA	44
1.18	3.4 LONGITUD TOTAL DE LA ROSCA	44
1.19	GRASAS PARA ROSCAS.	45
1.20	EFICIENCIA DE LA CONEXIÓN	46
1.20	0.1 EFICIENCIA A LA TENSIÓN	46
	0.2 EFICIENCIA A LA COMPRESIÓN	
1.20	0.3 EFICIENCIA A LA FLEXIÓN	47
САРІ	ITUI O 2	40

CONEXIONE								LECCION	
2.1	GUÍ	A DE SEI	_ECCIÓN	N DE (CONEXIO	ONES			49
2.	1.1	FACTORI	ES DE L	A SEL	ECCIÓN	DE CO	NEXIC	NES	49
2.	1.2	OPERAC	IONES G	BENEF	RALES P	ARA CC	ONEXIO	ONES	50
2.	1.3	GUIA DE	SELECC	CIÓN E	DE CONE	EXIÓN D	DE 20".		52
2. ²		CONSIDE 53	RACION	NES D	E SELE	CCIÓN	DE CO	ONEXION	IES DE
2.	1.5	GUIA DE	SELECC	CIÓN E	DE CONE	EXIÓN D	DE 13 3	3/8"	54
2. ² 13 3/8".		CONSIDE 57	ERACION	NES D	E SELE	CCIÓN	DE CO	ONEXION	IES DE
		TIPO DE							
2.2	PRO	OGRAMA	DE SELI	ECCIÓ	N DE C	ONEXIC	NES [DE TENA	RIS. 61
2.2	2.1	PASOS P	ARA ELI	EGIR	LA CONI	EXIÓN A	ADECL	JADA	62
3 CA	PITU	ILO 3							67
ANÁLI	ISIS	Y EVALU	JACIÓN	DE L	OS TIEI	MPOS [DE INS	STALACI	ÓN DE
LAS CONEX							_		_
SHUSHUFIN									
3.1	INT	RODUCC	IÓN						67
3.2	COI	RRIDA DE	LA TUE	BERÍA	DE REV	'ESTIMII	ENTO.		67
		PASOS NTO DE 2							
		PASOS NTO DE 1							
		ORGANIZ SPECCIÓ							
3.2	2.4	RECOME	NDACIO	NES	PARA	A LA	INS	SPECCIÓ	N E
INSTALA	ACIÓI	N DE LAS	CONEX	IONE	S				70

3.3 AC	COPLE DE UNA CONEXION 7	'2
3.3.1	APLICACIÓN DE TORQUE	'3
3.3.2	EQUIPOS DE MONITOREO DE TORQUE	'4
3.3.3	CARACTERÍSTICAS DE LAS LLAVES DE FUERZA 7	'5
3.3.4	UBICACIÓN DE LA LLAVE	'6
3.3.5	CALIBRACIÓN DE LA CELDA DE CARGA	'7
3.3.6	APLICACIÓN DEL TORQUE	'7
3.3.7	APLICACIÓN DE TORQUE EN UNIONES API BUTTRESS 7	'8
3.3.8	RECOMENDACIONES DE CONTROL DE TORQUE PAR	ŀΑ
CONEXION	ES PREMIUM CON CUPLA7	' 9
	EMPO DE OPERACIÓN PARA UN REVESTIDOR DE 20" CO ÓN API BUTTRESS7	
3.4.1	ENROSQUE Y APRIETE	'9
3.4.2	TIEMPO DE CORRIDA POR TUBO	30
3.4.3	CRUCE DE HILOS	32
3.4.4	VELOCIDAD DE LA CORRIDA	3
	NÁLISIS DE LA TABLA DE TIEMPOS COMPARATIVA EN L 20"8	
3.6 TII	EMPO DE OPERACIÓN PARA UN REVESTIDOR DE 13 3/3	8"
CON UNA CO	NEXIÓN API BUTTRESS 8	36
3.7 AN	NÁLISIS DE LA TABLA DE TIEMPOS COMPARATIVA EN L	.A
CORRIDA DE	13 3/8"	37
CAPITULO	O 4 8	3 9
4 ANÁL	ISIS TÉCNICO - ECONÓMICO8	19
4.1 AN	NÁLISIS ECONÓMICO8	39
4.1.1	CRITERIOS PARA LA EVALUACIÓN ECONÓMICA9) 0
4.2 AN	NÁLISIS TÉCNICO9)4
4.3 OE	BJETIVOS DEL ESTUDIO TÉCNICO9)5

4.3.1 DETERMINAR LA CONEXIÓN MÁS ADECUADA EN BASE A
FACTORES QUE CONDICIONEN SU MEJOR RENDIMIENTO 95
4.3.2 ENUNCIAR LAS CARACTERÍSTICAS CON QUE CUENTA EL
CAMPO SHUSHUFINDI DONDE SE UTILIZARAN LAS CONEXIONES 98
4.3.3 DEFINIR EL TAMAÑO Y CAPACIDAD DEL PROYECTO 100
4.3.4 HACER UNA HOJA TÉCNICA DE LAS CONEXIONES PARA VER LAS CARACTERÍSTICAS QUE HACEN QUE LA CONEXIÓN TSH-ER UNA CONEXIÓN OPTIMA EN EL CAMPO SHUSHUFINDI100
4.3.5 DESCRIBIR LA VIABILIDAD TÉCNICA NECESARIA PARA LA INSTALACIÓN DE LAS CONEXIONES DENTRO DEL CAMPO SHUSHUFINDI
4.3.6 ESPECIFICAR EL PRESUPUESTO DE INVERSIÓN, DENTRO DEL CUAL QUEDEN COMPRENDIDOS LOS RECURSOS MATERIALES, HUMANOS Y FINANCIEROS NECESARIOS PARA SU OPERACIÓN 101
4.3.7 INCLUIR UN CRONOGRAMA DE INVERSIÓN DE LAS ACTIVIDADES QUE SE CONTEMPLAN EN EL PROYECTO HASTA SU FINALIZACIÓN
5 CAPITULO 5 104
CONCLUSIONES Y RECOMENDACIONES 104
5.1 CONCLUSIONES104
5.2 RECOMENDACIONES
REFERENCIAS BIBLIOGRÁFICAS 106
ANEXOS 107

ÍNDICE DE FIGURAS

FIGURA 1: POZO TIPO "J"	3
FIGURA 2: POZO TIPO "S".	4
FIGURA 3: PROPIEDADES MECÁNICAS DE LA TUBERÍA DE REVESTIMIE	ENTO.
	11
FIGURA 4: CÓDIGO DE COLORES	20
FIGURA 5: CÓDIGO DE COLORES	21
FIGURA 6: CÓDIGO DE COLORES	
FIGURA 7 : CONEXIÓN DEL TIPO RECALCADA	24
FIGURA 8: CONEXIÓN SEMILISA	25
FIGURA 9 : CONEXIÓN DEL TIPO LISA	26
FIGURA 10 : CONEXIÓN ACOPLADA	
FIGURA 11: ROSCAS REDONDAS (ROUND)	
FIGURA 12 : PERFIL DE CONEXIÓN BTC	33
FIGURA 13 : CONEXIÓN BTC.	34
FIGURA 14 : APRIETE ÓPTIMO	
FIGURA 15 : CONEXIÓN TSH – ER	
FIGURA 16 : CONEXIÓN TSH – ER	
FIGURA 17 : SELECCIÓN DE TUBERÍA	63
FIGURA 18 : DATOS DE LA TUBERÍA	
FIGURA 19 : DATOS DE LA CONEXIÓN.	65
FIGURA 20 : GRAFICA DE LA CURVA DEL VALOR ACTUAL NETO DEL	
PROYECTO SHUSHUFINDI.	93

ÍNDICE DE TABLAS

TABLA 1.1 VALORES DE C PARA LAS ECUACIONES 1.2 Y 1.3 10
TABLA 1.2 GRADOS DE ACERO API 18
TABLA 1.3 ESFUERZOS DE CEDENCIA 19
TABLA 1.4 LONGITUD DE LAS TUBERÍAS DE REVESTIMIENTO 23
TABLA 2.1 FUNCIONES Y CONDICIONES DONDE SON RECOMENDADAS
LAS CONEXIONES PREMIUM50
TABLA 2.2 DESEMPEÑO DE LA CONEXIÓN DE 20" API BUTTRESS GRADO
K55 – 94 LBS/FT 51
TABLA 2.3 DESEMPEÑO DE LA CONEXIÓN DE 20" TSH-ER GRADO K55 -
94 LBS/FT52
TABLA 2.4 DESEMPEÑO DE LA CONEXIÓN DE 13 3/8" API BUTTRESS
GRADO K55 - 68 LBS/FT54
TABLA 2.5 DESEMPEÑO DE LA CONEXIÓN DE 13 3/8" BTC GRADO K-55 -
54.5 LBS/FT55 TABLA 2.6 DESEMPEÑO DE LA CONEXIÓN DE 13 3/8" TSH-ER GRADO K55
– 68 LBS/FT55 TABLA 2.7 DESEMPEÑO DE LA CONEXIÓN DE 13 3/8" TSH-ER GRADO K55
TABLA 2.7 DESEMPEÑO DE LA CONEXIÓN DE 13 3/8" TSH-ER GRADO K55
– 54.5 LBS/FT56
TABLA 2.8 DATOS PARA ELEGIR LA CONEXIÓN61
TABLA 3.1. TIEMPO DE OPERACIÓN DE UNA CONEXIÓN API BUTTRESS
EN LA CORRIDA DE TUBERÍA DE REVESTIMIENTO DE 20"83
TABLA 3.2. TIEMPO DE OPERACIÓN DE UNA CONEXIÓN TSH-ER EN LA
CORRIDA DE TUBERÍA DE REVESTIMIENTO DE 20"
TABLA 3.3. TIEMPO DE OPERACIÓN DE UNA CONEXIÓN API BUTTRESS
EN LA CORRIDA DE TUBERÍA DE REVESTIMIENTO DE 13 3/8" 85
TABLA 3.4. TIEMPO DE OPERACIÓN DE UNA CONEXIÓN TSH-ER EN LA
CORRIDA DE TUBERÍA DE REVESTIMIENTO DE 13 3/8"
TABLA 4.1. INTERPRETACIÓN DEL VALOR ACTUAL NETO90
TABLA 4.2. DATOS PARA EL CÁLCULO DEL VALOR ACTUAL NETO 91
TABLA 4.3. CÁLCULO DE LAS CAJAS DE FLUJO ANUALES91
TABLA 4.4. CÁLCULO DEL VAN A DIFERENTES TASAS DE
ACTUALIZACIÓN92
TABLA 4.5 TUBERÍAS DE REVESTIMIENTO USADAS EN CAMPO
SHUSHUFINDI
TABLA 4.6 INVERSIÓN PARA LA CAMPAÑA DE PERFORACIÓN EN CAMPO
SHUSHUFINDI 102

RESUMEN

El presente proyecto, consiste en analizar la factibilidad del cambio de conexión en tubería de revestimiento para pozos a perforar en el campo Shushufindi, para lo cual se necesita analizar dos conexiones que son la conexión BUTTRESS convencional que nos indica la norma API -5CT y la conexión TSH-ER, que es propietaria de la compañía prestadora de servicios TENARIS.

El proyecto se desarrollará con la ayuda de 5 capítulos que los presento a continuación:

Capítulo 1: En el cual se detallara las conexiones que tienen las tuberías de revestimiento de diámetro externo de 20" y las conexiones de la tubería de revestimiento de 13 3/8".

Capítulo 2: En base al manual de IPM de SCHLUMBERGER de CASING DESIGN MANUAL en su capítulo 17, se elabora una guía para poder seleccionar la conexión adecuada en las tuberías de revestimiento antes mencionadas.

Capítulo 3: En este capítulo experimental se llevó a cabo la toma de datos de tiempo respecto a los factores que intervienen en la corrida de una tubería de revestimiento tanto con las conexiones BUTTRESS como con las conexiones TSH-ER.

Capítulo 4: Aquí se analizó las diferencias técnicas que tienen las conexiones demostrando claramente cual conexión es superior; además, de hacer el análisis económico para demostrar la factibilidad del cambio de conexión.

Capítulo 5: Finalmente aquí se presentará las conclusiones y recomendaciones en base al proyecto para que sean consideradas.

PRESENTACIÓN

La perforación de pozos de petróleo tiene dos objetivos principales: Perforar para llegar el objetivo, y delinear el hoyo mediante una tubería de revestimiento.

La tubería de revestimiento es un conjunto de tuberías unidas mediante una conexión, esta conexión es un dispositivo mecánico que permite unir las tuberías para formar una tubería continua funcional.

En la práctica operacional, las conexiones de las tuberías involucran ya sean cuplas o conexiones integrales en cada parte de la tubería de revestimiento, las cuales son atornilladas juntas para formar la sarta de la tubería.

Las conexiones representan menos del 3% de la longitud total de la tubería de revestimiento pero debe ser considerada cuidadosamente debido a que la selección de la conexión y rendimiento de la misma puede afectar la selección adecuada del diseño del pozo.

Algunos factores importantes a considerar son:

- Más del 90% de las fallas de la tubería se da en las conexiones.
- El costo de las conexiones va desde el 10% hasta el 50% de costo total de la tubería.

Es debido a esto que se realizó el presente análisis de factibilidad en el campo Shushufindi, que es operado por la alianza Petroecuador y el Consorcio Shushufindi.

Esta información será de utilidad para Schlumberger prestadora de servicios petroleros, la principal entidad interesada en el mismo, así como, la Escuela Politécnica Nacional y estudiantes en general que necesiten más información sobre selección de conexiones para tubería de revestimiento

CAPÍTULO 1

FUNDAMENTOS TEÓRICOS DE LAS CONEXIONES DE LAS TUBERÍAS DE REVESTIMIENTO

1.1 INTRODUCCIÓN.

La perforación de pozos petroleros tiene dos partes esenciales: La primera parte consiste en la perforación del hoyo el cual tiene como finalidad atravesar formaciones y llegar al objetivo del mismo. Y la segunda parte es introducir un tubular de acero para aislar las formaciones. Los diámetros de estos tubulares pueden variar desde 4" hasta 20" y estos tubulares de acero se acoplan a través de uniones roscadas para poder alcanzar el yacimiento.

1.2 PERFIL DE POZO.

Perfil de pozo nos sirve para poder dirigir un pozo a través de una trayectoria predeterminada e interceptar un objetivo (target) en el subsuelo.

Para el diseño del perfil de pozo se toma en cuenta las condiciones de superficie, ubicación del reservorio, tecnología disponible y regulaciones ambientales.

1.3 TIPOS DE PERFIL DE POZO.

Los principales tipos de perfiles de pozos son:

- 1. Verticales.
- 2. Direccionales.
- 3. Horizontales.

1.3.1 POZOS VERTICALES.

Estos pozos son económicos, fáciles de perforar y no necesitan una tecnología avanzada. Usualmente, los pozos exploratorios tienen un perfil vertical. Sin embargo, estos tipos de pozos no son la mejor alternativa para proteger el medio ambiente, en vista de que es necesario limpiar vastas áreas para perforar los mismos.

Los pozos verticales dependiendo de las condiciones del yacimiento pueden o no producir grandes volúmenes de hidrocarburos.

Hoy en día, es muy importante que los pozos puedan producir grandes volúmenes de hidrocarburos debido a la elevada demanda de los mismos en el mercado internacional.

1.3.2 POZOS DIRECCIONALES

Los pozos direccionales pueden clasificarse de acuerdo a la forma que toma el ángulo de inclinación en:

- 1. En Forma de "J".
- 2. En Forma de S:
 - a. Tipo "S".
 - b. Tipo "S" Especial.

1.3.2.1 En forma de "J":

Este tipo de pozos es muy parecido al tipo tangencial, pero el hoyo comienza a desviarse más profundo y los ángulos de desviación son relativamente altos y se tiene una sección de construcción de ángulo permanente hasta el punto final, como se muestra en la Figura 1.

AGUJERO 26" Tuberia de Revestimiento 20" Chalcana AGUJERO 16" Tubería de Revestimiento 13 3/8" OR TY TE BT NA CM1 **AGUJERO 12 1/4"** Tubería de Revestimiento 9-5/8" CM2 CA US UI CB TS TI **AGUJERO 8-1/2"** HS Tubería de Revestimiento Corta 7"

Figura 1: Pozo tipo "J".

FUENTE: Consorcio Shushufindi. **ELABORADO:** Eduardo Aules.

1.3.2.2 En forma de "S".

Son pozos inicialmente perforados en sentido vertical; después se desvían siguiendo un determinado ángulo máximo que se mantiene hasta cierta

profundidad, para entonces volver a la vertical, disminuyendo el ángulo, alcanzando el objetivo final, como se muestra en la Figura 2.

Estos tipos de pozos pueden ser de dos formas:

1.3.2.2.1 Tipo "S".

Constituido por una sección de aumento de ángulo, una sección tangencial y una sección de caída de ángulo que llega a 0º.

AGUJERO 26" Tubería de Revestimiento 20" Chalcana AGUJERO 16" Tubería de Revestimiento 13 3/8" TE BT NA CM1 **AGUJERO 12 1/4"** CM2 Tuberia de Revestimiento 9-5/8" CA us UI TI **AGUJERO 8-1/2"** Tuberia de Revestimiento Corta 7" HS

Figura 2: Pozo tipo "S".

FUENTE: Consorcio Shushufindi.

ELABORADO: Eduardo Aules.

1.3.2.2.2 Tipo "S" modificado.

Constituido por una sección de aumento de ángulo, una sección tangencial intermedia, una sección de caída de ángulo diferente a 0º y una sección de mantenimiento de ángulo hasta llegar al objetivo.

Estos pozos son más costosos debido a que usan tecnología de avanzada y son usados para alcanzar reservorios en lugares inaccesibles.

Además, estos pozos son usados para perforar reservorios con formas complejas. Este perfil de pozo puede ser una alternativa para disminuir la degradación ambiental debido a que estos pueden alcanzar reservorios que se encuentran en ecosistemas frágiles sin instalar el equipo dentro de estos lugares.

Los tipos de pozos direccionales empleados en la cuenca amazónica son (Perfil S, S modificado).

1.3.3 POZOS HORIZONTALES.

Se denominan pozos horizontales aquellos con un ángulo de inclinación no menor de 86º respecto a la vertical.

La longitud de la sección horizontal depende de la extensión del yacimiento y del área a drenar en el mismo.

La tecnología horizontal está basada en la sección horizontal del pozo, cada año existen pozos con secciones horizontales más largas. Esto ayuda a que se perforen menos pozos verticales y direccionales.

Además, los pozos horizontales más largos podrían evitar invadir ecosistemas sensibles.

Sin embargo, la perforación de pozos horizontales significa usar equipos más grandes y costosos lo cual incrementa el costo de la perforación, pero generalmente este tipo de pozo produce más que los pozos verticales y direccionales con una relación de 3 a 1.

Adicionalmente, existen otras consideraciones que se toman en cuenta tales como la geología y la litología del reservorio.

Pero, la decisión final de perforar un pozo horizontal dependerá de la producción diaria, ya que solo pozos con una alta producción de hidrocarburos pueden amortizar estas operaciones en un corto tiempo.

1.3.3.1 Perforación Horizontal Vs. Perforación Vertical.

El pozo vertical atraviesa todo el espesor de la formación, mientras que en el horizontal la mecha penetra por el centro del espesor de la formación hasta la longitud que sea mecánicamente aconsejable.

El ángulo de penetración del hoyo horizontal en la formación tiene que ver con la facilidad de meter y sacar la sarta de perforación del hoyo.

A medida que la longitud del hoyo horizontal se prolonga, la longitud y el peso de la sarta que descansa sobre la parte inferior del hoyo son mayores. Esto crea más roce, más fricción, más esfuerzo de torsión y más esfuerzo de arrastre al extraer la sarta de perforación.

Condiciones similares de esfuerzos se presentan durante la inserción y cementación del revestidor de terminación y durante la toma de registros o perfiles corrientes o integrantes de la sarta de perforación.

1.3.3.1.1 Ventajas de los pozos horizontales.

Mejora la eficiencia de barrido.

- ➤ Incrementa la productividad del yacimiento y mejora el recobro final del mismo, debido a que se incrementa el área de contacto entre el yacimiento y el pozo.
- Reduce la conificación de los fluidos viscosos.

1.3.3.1.2 Desventajas de los pozos horizontales.

- Altos costos de perforación, debido a que se incrementa el tiempo y el riesgo de problemas operacionales.
- Las opciones de recompletación son limitadas especialmente cuando se trata de alto corte de agua y/o alta relación gas/petróleo.

1.4 TUBERÍAS DE REVESTIMIENTO.

La tubería de revestimiento es una parte importante en la perforación de un pozo petrolero. Consiste en un tubular de acero basado en la norma API 5CTque se corre desde la superficie y sirve para delinear las paredes de un pozo perforado y así poder asegurar el pozo.

Su diámetro externo puede ir desde 4" hasta 20" en el Ecuador de acuerdo a la sección en que se use y estos tubulares pueden ser unidos mediante una conexión para alcanzar la profundidad deseada.

1.5 PROPIEDADES MECÁNICAS DE LA TUBERÍA DE REVESTIMIENTO.

Las propiedades más importantes de las tuberías de revestimiento, son los valores promedios de: colapso, tensión y estallido; las tablas proporcionadas por los fabricantes de acuerdo a las especificaciones API indican estas propiedades según los diversos tipos y grados de ellas, la dirección de acción de estas propiedades mecánicas se indican en la Figura 3.

1.5.1 **COLAPSO.**

El promedio de presión de colapso o aplastamiento es la mínima presión requerida para aplastar el tubo, en ausencia de presión interior y carga axial.

El diseño de la resistencia al aplastamiento esta generalmente basado en la carga hidrostática del lodo en el agujero al momento de correr la tubería de revestimiento dentro del pozo.

Al analizar los factores que afectan la resistencia de la tubería de revestimiento al colapso, se ha encontrado que la resistencia a la tensión del acero es uno de los elementos básicos, al aumentar esta resistencia también aumenta la resistencia al colapso de la tubería. Sin embargo la resistencia al colapso de una tubería de revestimiento de un grado determinado de acero se altera materialmente cuando se aplican esfuerzos en más de una dirección.

Cuando la tubería de revestimiento se coloca en un pozo las fuerzas que tienden a colapsarla no solo se deben a la presión externa ejercida sino también, al peso de la tubería abajo del punto del diseño.

La carga biaxial como se la llama debido a que las cargas están en ángulo una con respecto a la otra, de hecho reduce la resistencia a la tensión del acero.

1.5.2 TENSIÓN.

El valor de la fuerza de tensión o elongación representa la mínima resistencia a la cedencia del cuerpo del tubo para que exceda su límite a la deformación. Cualquier tramo de tubería de revestimiento en la columna debe soportar el peso de toda la tubería suspendida debajo de ella.

En la tubería de revestimiento sin costura API, la fuerza de unión en los acoplamientos es el lugar más débil y es la fuerza de unión la que se usa para

diseñar la resistencia a la tensión. La tensión se puede determinar a partir de la cedencia del material y el área de la sección transversal.

Se debe considerar la mínima cedencia del material para este efecto. Es decir:

$$RT = \frac{\pi}{4} (d_e^2 - d_i^2) \sigma y$$
 Ec. 1.1.

Dónde:

RT = Resistencia a la tensión (psi)

 $d_e = Diámetro exterior (plg)$

 $d_i = Diámetro interior (plg)$

 $\sigma y = Esfuerzo de cedencia (psi)$

La fórmula recomendada por el A.P.I. para determinar los esfuerzos de tensión en los acoplamientos para las tuberías H-40, J-55, N-80 y P-110 se muestran a continuación, donde se tiene que usar valores de la constante de acero, como se muestra en la Tabla 1.1.

Para acoplamientos cortos

$$P = 0.80 \left(C(86 - D) * \left(\frac{1}{t - 0.18} + 62 \right) Aj \right)$$
 Ec. 1.2.

Para acoplamientos largos.

$$P = 0.80 \left(C(65 - D) * \left(\frac{1}{t - 0.18} + 62 \right) Aj \right)$$
 Ec. 1.3.

$$Aj = 0.7856 [(D - 0.36)^2 - d^2]$$
 Ec. 1.4.

Dónde:

P = Fuerza de unión mínima, kg.

D = Diámetro exterior de la tubería de revestimiento, cm.

d = Diámetro interior de la tubería de revestimiento, cm.

t = Espesor de pared, cm.

Aj =Área bajo la ultima rosca perfecta, cm2.

C = Constante del acero

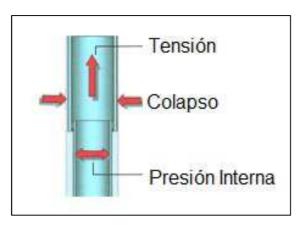
Tabla 1.1: Valores de C para las ecuaciones 1.2 y 1.3.

Grado	Acoplamiento	Acoplamiento
	Corto	largo
H-40	72,5	N.A.
J-55	96,5	159
N-80	112,3	185
P-110	149,6	242

FUENTE: Drilling Data Handbook.

ELABORADO: Eduardo Aules.

1.5.3 PRESIÓN INTERIOR.


El promedio de presión interior o estallido se calcula como la mínima presión interior necesaria para ocasionar la ruptura del tubo en ausencia de presión exterior y carga axial de tensión.

Normalmente, en el fondo del pozo la presión en el exterior de la tubería de revestimiento es mayor o igual que la presión interior.

Esta presión externa se debe ya sea a la carga hidrostática del lodo de perforación o tal vez, a la presión del agua en los poros de la roca adyacente al área cementada del espacio anular detrás de la tubería de revestimiento.

Sin embargo, en la parte superior del agujero, no hay fluido con carga hidrostática que ejerza esa presión externa, cualquier presión interna que exista ahí debe ser resistida por la tubería.

Figura 3: Propiedades mecánicas de la tubería de revestimiento.

FUENTE: Drilling Data Handbook.

MODIFICADO: Eduardo Aules.

1.6 TIPOS DE TUBERÍA DE REVESTIMIENTO.

Existen algunos tipos de tuberías de revestimiento cada una con diferentes funciones especializadas pero en conjunto tienen varias funciones dentro de los trabajos de perforación de un pozo.

Los tipos de tuberías de revestimiento son:

- 1. Conductora.
- 2. Superficial.
- 3. Intermedia.

- 4. Producción
- 5. Liner.

De acuerdo a las condiciones del pozo que será perforado se deben analizar, determinar el tipo y la cantidad de tubería de revestimiento necesaria.

1.6.1 TUBERÍA DE REVESTIMIENTO CONDUCTORA.

La tubería de revestimiento Conductora es la primera sarta de tubería que nos ayuda a atravesar las formaciones someras y puede llegar a una profundidad aproximada entre los 40 y 150 pies.

Si la formación ó formaciones superficiales son blandas es posible hacer un "piloteo", procedimiento en el cual la tubería de revestimiento no necesitara conexiones; pero si las formaciones superficiales son duras se perforara para introducir la tubería de revestimiento.

La tubería conductora puede ser:

- Tubería especial sin costura.
- Tubería de línea.
- Serie de tambores metálicos soldados.

1.6.1.1 Funciones de la tubería de revestimiento conductora.

- Proporcionar un primer conducto para la circulación del fluido de perforación desde la superficie hasta la broca y de regreso hasta la superficie.
- Minimizar los problemas de pérdida de circulación en las formaciones superficiales
- Minimizar los problemas de derrumbes de las formaciones no consolidadas.

1.6.2 TUBERÍA DE REVESTIMIENTO SUPERFICIAL.

La tubería de revestimiento superficial es la segunda sarta de tubería que asegura el pozo, pero también es la primera tubería de revestimiento que permite la colocación del conjunto de preventores del pozo (BOP: Blowout Preventer), además de que soportará el peso de las sartas de revestimiento subsecuentes.

1.6.2.1 Funciones de la tubería de revestimiento superficial.

- Cubrir y proteger los acuíferos que intercepte el pozo.
- Mantener la integridad del pozo.
- Minimizar las pérdidas de circulación del fluido de perforación en las zonas someras.
- Cubrir las zonas débiles de brotes más profundos.

1.6.3 TUBERÍA DE REVESTIMIENTO INTERMEDIA.

La tubería de revestimiento intermedia es la tercera sarta de tubería que se ingresa y cementa en el pozo, de acuerdo a las características del pozo puede no ser necesaria su utilización y dependerá de las condiciones del pozo.

En algunos casos es necesario usar más de una sección de tubería de revestimiento intermedia dependiendo de algunos factores como la profundidad y la presión del pozo.

1.6.3.1 Funciones de la tubería de revestimiento intermedia.

- Aislar zonas con presión anormalmente alta, debido a que las zonas con presión anormal requieren densidades altas del fluido para su control.
- Proteger las formaciones superiores más débiles para evitar pérdidas de circulación o pega de tubería por presión diferencial.
- Aislar formaciones salinas o zonas que presenten problemas tales como lutitas hinchables.

1.6.4 TUBERÍA DE REVESTIMIENTO DE PRODUCCIÓN.

La tubería de revestimiento de producción es la cuarta tubería de revestimiento que se ingresa y cementa en el pozo.

Esta sarta va desde la superficie y su asentamiento dependerá de la formación productora.

1.6.4.1 Funciones de la tubería de revestimiento de producción.

- Aislar la zona productora de otras formaciones.
- Proporcionar un conducto de trabajo de diámetro conocido en el intervalo productor.
- Proteger al equipo y/o sarta de producción.

1.6.5 TUBERÍA DE REVESTIMIENTO CORTA (LINER).

El Liner es una tubería de revestimiento corta que no va desde la superficie hasta el fondo, debido a que se toma en cuenta un traslape respecto a la sarta anterior de más o menos de 100 a 200 pies desde donde se asentara el Liner.

Se emplean principalmente por economía o por limitaciones de la capacidad de carga del equipo, siendo una alternativa para tener un control de las presiones de formación o fractura a un costo menor que el que implica correr una sarta hasta la superficie.

Cuando se emplea un liner, la sarta de tubería de revestimiento superior expuesta, comúnmente la sarta intermedia, dependerá de las condiciones del pozo. En ocasiones donde la capacidad del equipo no permite bajar una tubería a fondo desde superficie es necesario usar un tieback que consiste en asentar primero un Liner en fondo y luego bajar una tubería desde superficie para conectar al Liner.

1.7 CÓDIGO DE LAS TUBERÍAS DE REVESTIMIENTO.

El código usado para describir el grado consiste en una letra seguida de un número.

La letra designada arbitrariamente por el *American Petroleum Institute* (API) sirve para proporcionar una asignación única para cada grado de acero y este fue adoptado como un estándar de la industria petrolera.

Las tuberías de revestimiento son fabricadas de acuerdo a la especificación API 5CT.

El número de la asignación representa el mínimo esfuerzo a la cedencia del acero en miles de psi (Pounds per scuare inch).

Ejemplo:

Una tubería de revestimiento en grado de acero **N-80**, significa que tiene un esfuerzo a la cedencia de 80,000 lb/pg².

$$N-80 = 80,000 \text{ lb/pg}^2 \text{\'o psi.}$$

1.8 PROPIEDADES DE LA TUBERÍA DE REVESTIMIENTO.

La tubería de revestimiento viene usualmente especificada por las siguientes propiedades:

- Diámetro exterior.
- Espesor de la pared.
- Peso por unidad de longitud.
- Grado del acero.
- Longitud de la junta.

• Tipo de conexión o junta.

1.8.1 DIÁMETRO EXTERIOR.

El diámetro exterior estará dentro de las tolerancias especificadas en API 5CT.Para la tubería roscada, el diámetro externo en los extremos roscados será mayor al diámetro externo de la tubería. Los diámetros internos están gobernados por las tolerancias del diámetro externo y del peso.

Para la tubería lisa no recalcada, el diámetro extremo liso no recalcado aplicará para la longitud completa. El cuerpo de la tubería tiene un diámetro exterior diferente al diámetro exterior de las conexiones cupladas y semilisas; pero tiene un diámetro igual en las conexiones lisas.

Ambas medidas son importantes, pero el diámetro exterior de las conexiones nos ayuda a determinar el tamaño mínimo del agujero donde la tubería de revestimiento puede ser corrida.

1.8.2 ESPESOR DE LA PARED.

El espesor de la pared es una medida del ancho de la tubería de revestimiento que se la puede calcular mediante una relación entre el diámetro externo menos el diámetro interno de la tubería.

El espesor de la pared nos ayuda a determinar el diámetro interno de la tubería de revestimiento y a su vez nos ayuda a tener en cuenta el tamaño máximo de la broca que se puede correr dentro de la tubería.

Cada tramo de tubería será medido de acuerdo con los requerimientos del espesor de pared. El espesor de pared en cualquier lugar no será menor que el espesor tabulado.

1.8.3 PESO POR UNIDAD DE LONGITUD.

Los pesos de la tubería de revestimiento se expresan en libras por cada pie (lb/ft), cada grado de acero y diámetro de las tuberías se fabrican para diferentes pesos. Un ejemplo se puede indicar a continuación:

Una tubería de revestimiento de grado N-80 de 7" de diámetro exterior puede existir de 17, 20, 23, 26,29, 32, 35 y 38 lb/ft, el peso por pie afecta al diámetro interior de la tubería (espesor), es decir que a mayor peso por unidad de longitud el diámetro interior de la tubería de revestimiento va a ser menor.

1.8.4 GRADO DEL ACERO.

Las propiedades mecánicas y físicas de la tubería de revestimiento dependen de la composición química del acero y el tratamiento térmico que recibe durante su fabricación.

API ha adoptado una designación de grado a la tubería de revestimiento definiendo la característica del esfuerzo de cedencia de la tubería en miles de psi.

La carta de designación API da una indicación sobre el tipo de acero y el tratamiento que recibió durante su fabricación.

El código del grado consiste en una letra seguida de un número, la letra designada por API fue seleccionada arbitrariamente para proporcionar una asignación única para cada grado de acero que fue adoptada como estándar (TABLA 1.2.), el número de la asignación representa el mínimo esfuerzo a la cedencia del acero en miles de psi, (TABLA 1.3.).

API define cuatro grupos de grados de acero para tubería de revestimiento:

Tabla 1.2: Grados de acero API.

SMYS 1000PSI	40	55	65	80	90	95	110	125
GRUPO	H40	J55 /		N80		R95		
1		K55						
GRUPO			M65	L80 / 13CR,	C90	T95	C110	
2				L809Cr				
GRUPO							P110	
3								
GRUPO								Q125
4								

FUENTE: Norma API 5CT.

ELABORACIÓN: Eduardo Aules.

1.8.4.1 Identificación del grado de acero por su código de colores.

De acuerdo con la norma API 5CT/ISO 11960. Cada producto será identificado con colores a menos que otra cosa sea especificada en la orden de compra. Tal identificación con código de colores será con uno o más de los siguientes métodos:

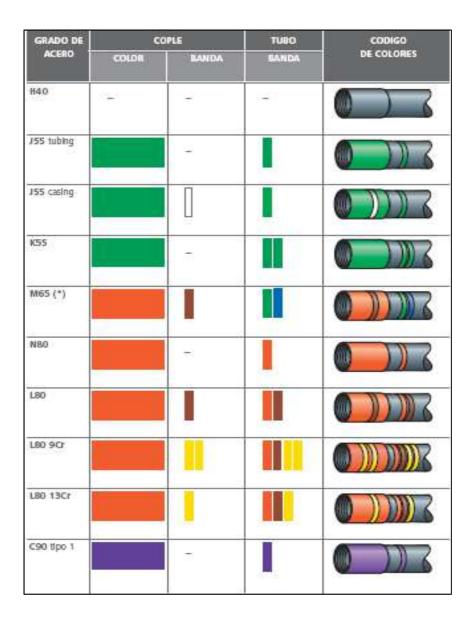
- a) Para tubos y tubos madrina de 6 pies o más de longitud usar uno de los siguientes métodos:
 - Una banda de pintura circundando alrededor del tubo a una distancia no mayor de 2 pies desde el cople o caja o desde cualquier extremo de tubería lisa o roscada piñón por piñón.
 - 2. Pintado de la superficie completa del cople incluidas las bandas de color apropiadas del cople.

 Si el tubo es terminado con coples de rebajado especial o si el tubo y el cople son de diferentes grados (excepto los Grados H-40, J-55, y K-55 con coples aplicados), pintar tanto el tubo como el cople como se especifica en los sub-puntos 1 y 2 anteriores.

Tabla 1.3: Esfuerzos de cedencia.

Grado	Punto de cedencia mínima (psi)	Punto de cedencia máximo (psi)		
H40	40000	80000		
J55	55000	80000		
K55	55000	80000		
N80	80000	110000		
R95	95000	110000		
M65	65000	85000		
L80	80000	95000		
C90	90000	105000		
T95	95000	110000		
C110	110000	120000		
P110	110000	140000		
Q125	125000	150000		

FUENTE: Norma API 5CT.


ELABORACIÓN: Eduardo Aules.

- b) Para coples sueltos pintar completamente la superficie exterior del cople incluyendo las bandas del color apropiado.
- c) Para tubos madrina y conectores menores de 6 pies de longitud, pintar completamente la superficie exterior, excepto las roscas, incluyendo las bandas del color apropiado.

d) Los coples con rebajado especial serán pintados con los colores indicativos del grado de acero del cual los coples fueron fabricados y también serán pintados con una banda de pintura negra alrededor del centro.

Los colores y número de bandas para cada grado serán como se muestra en las Figuras 4, 5 y 6.

Figura 4: Código de colores.

FUENTE: API 5CT/ISO 11960.

Figura 5: Código de colores.

GRADO DE	C	PLE	TUBO	CODIGO	
ACERO	COLOR	BANDA	BANDA	DE COLORES	
C90 tpo 2					
195 tipo 1		IT.	1		
T95 tlpo 2					
C95		<u>.</u>	I		
P110		5			
Q125 tipo 1		F			
Q125 tipo 2					
Q125 tipo 3					
Q125 tipo 4					

FUENTE: API 5CT/ISO 11960.

Figura 6: Código de colores.

GRADO DE	COPLE		TUBO	CODIGO
ACERO	COLOR	BANDA	BANDA	DE COLORES
TRC80				
TRC85		1		
TRC90				
TRC95				
TRC95HC				
TRC100		5		
TRC110		I		
TAC80				
TAC95				
TAC110				
TAC140				

FUENTE: API 5CT/ISO 11960.

1.8.5 LONGITUD DEL TRAMO O JUNTA.

Los tramos o juntas de revestimiento no son fabricados en longitudes exactas. API ha especificado tres rangos entre los cuales debe encontrarse la longitud de la tubería, como se indica en la Tabla 1.4.

Tabla 1.4: Longitud de las tuberías de revestimiento.

Rango	Longitud (pies)	Longitud (metros)
1	16 - 25	4.88 – 7.62
2	25 - 34	7.62 – 10.36
3	34 - 48	10.36- 14.63

FUENTE: Norma API 5CT.

ELABORACIÓN: Eduardo Aules.

El rango de longitud 3 es el más utilizado en las tuberías de revestimiento, debido a que se reduce el número de conexiones y así ayuda a reducir tiempo de corrida y dinero.

1.8.6 TIPO DE CONEXIÓN O JUNTA.

Debido a que las tuberías de revestimiento que se utilizan en los pozos tienen un límite de longitud es necesario unir estas tuberías para introducirlas al pozo, con la premisa de que la unión sea capaz de soportar cualquier esfuerzo al que se someterá la tubería, a esta unión se le conoce como junta o conexión.

Las conexiones pueden definirse de acuerdo con el maquilado de los extremos de la tubería como:

- Recalcadas.
- Semilisas o formadas (Semiflush).

- Lisas o integrales (Flush).
- Acopladas.

En una nueva nomenclatura a nivel internacional, se identifican los anteriores tipos de juntas con las siguientes siglas

MIJ: Recalcadas.

• SLH: Semilisas o formadas.

• IFJ: Lisas o integrales.

MTC: Acopladas.

1.8.6.1 Juntas para tubería de Revestimiento y Producción.

1.8.6.1.1 MIJ: Recalcadas.

Se incrementa el espesor y diámetro exterior de la tubería en uno o en ambos extremos en un proceso de forja en caliente, a los que posteriormente se les aplica un relevado de esfuerzos, indicado en la Figura 7.

Estas tienen una resistencia a la tensión del 100%.

Aplicaciones

- Tubería de producción y columnas de trabajo.
- Pozos horizontales y de largo alcance.
- Perforación con tubería.

Figura 7 : Conexión del tipo recalcada.

FUENTE: Tenaris.

1.8.6.1.2 SLH: Semilisas o formadas.

El extremo piñón es suajeado (cerrado) y el extremo caja es expandido en frío sin rebasar el 5% en diámetro externo de la tubería de revestimiento y el 2% en espesor de la tubería de revestimiento, aplicando un relevado de esfuerzos posterior, indicado en la Figura 8.

Estas tienen una resistencia a la tensión del 70-85%.

Aplicaciones

- Casing de superficie e intermedio.
- Perforación con casing.
- Liners.
- Pozos horizontales y de largo alcance.
- Pozos geotérmicos.

Figura 8: Conexión semilisa.

FUENTE: Tenaris.

1.8.6.1.3 IFJ: Lisas o Integrales.

Son las que se unen en un extremo de la tubería roscado exteriormente como piñón y se conectan en el otro extremo de la tubería roscado internamente como caja, indicado en la Figura 9.

Se maquila las roscas directamente sobre los extremos del tubo sin aumentar el diámetro exterior del mismo.

Estas tienen una resistencia a la tensión del 55-65%.

Aplicaciones

- Casing, liners y tie-backs de producción, tie-backs y liners.
- Pozos HP/HT (alta presión, alta temperatura) y pozos profundos.

Figura 9 : Conexión del tipo lisa.

FUENTE: Tenaris.

1.8.6.1.4 MTC: Acopladas.

Son las que integran un tercer elemento denominado cople, pequeño tramo de tubería de diámetro ligeramente mayor y roscado internamente, el cual, une dos tramos de tubería roscados exteriormente en sus extremos. El piñón (espiga o pin) de un extremo del tubo es enroscado en la caja (cuello) del extremo del otro tubo, indicado en la Figura 10.

Se maquila un piñón en cada extremo del tubo y se le enrosca un cople o una doble caja, quedando el tubo con piñón de un extremo y caja en el otro extremo.

Estas tienen una resistencia a la tensión del 85-94%.

Aplicaciones

• Casing, liners y tie-backs de producción, tie-backs y liners.

Figura 10 : Conexión acoplada.

FUENTE: Tenaris

1.8.6.2 Juntas para Tubería de Perforación.

Las conexiones en tuberías de perforación generalmente son del tipo recalcado, debido a que son sometidas como sartas de trabajo, a grandes esfuerzos durante las operaciones de perforación. Estas juntas están diseñadas para trabajar en tensión. A continuación se mencionan las juntas para tuberías de perforación más comunes:

1.8.6.2.1 Junta IEU (Internal - Extremal Upset).

Este tipo de juntas tiene un diámetro mayor que el del cuerpo del tubo y un diámetro interno menor que el cuerpo del tubo.

1.8.6.2.2 Junta IF (Internal - Flush).

Este tipo de junta tiene un diámetro interno aproximadamente igual al del tubo y el diámetro externo mayor que el tubo, ya que es en este diámetro donde está el esfuerzo.

1.8.6.2.3 Junta IU (Internal-Upset).

Este tipo de junta tiene un diámetro interno menor que el del tubo y un diámetro externo casi igual al del tubo.

1.9 CONEXIONES O JUNTAS.

Básicamente una junta o conexión está constituida por dos elementos principales que son:

• Un piñón (miembro roscado externamente).

• Una caja (miembro roscado internamente).

Una junta también puede tener:

- Un sello.
- Un hombro.

Estos elementos representan o simbolizan parte de los esfuerzos realizados por alcanzar lo ideal en una conexión.

1.10 SELLO DE LAS ROSCAS.

1.10.1 SELLO RESILENTE.

Es el sello mediante un anillo u O Ring de teflón o materiales similares (utilizados para presiones excesivamente bajas), a veces sólo funcionan como barreras contra la corrosión.

1.10.2 SELLO DE INTERFERENCIA.

Es el sello entre roscas originado por la interferencia entre los hilos de la rosca al momento de conectarse mediante la conicidad del cuerpo de la junta y la aplicación de torsión, el sellado propiamente dicho es causado por la grasa aplicada, la cual rellena los micro huecos entre los hilos de la rosca.

1.11 CLASIFICACIÓN DE JUNTAS.

Las juntas pueden clasificarse de acuerdo con el tipo de rosca como:

1.11.1 API

De acuerdo con las especificaciones API de elementos tubulares, existen únicamente cuatro tipos de roscas.

- Redondas.
- Buttress.
- Enganchadas.
- Doble Enganchadas.

1.11.2 PREMIUM O PROPIETARIAS

Son juntas mejoradas a las API y maquinadas por fabricantes que patentan el diseño en cuanto a cambios en la rosca y/o a la integración de elementos adicionales como sellos y hombros que le proporciona a la junta características y dimensiones especiales para cubrir requerimientos específicos para la actividad petrolera, tales como:

- Evitar el brinco de roscas (jump out) en pozos con alto ángulo de desviación.
- Mejorar la resistencia a la presión interna y externa.
- Disminuir esfuerzos tangenciales en coples.
- Facilitar la introducción en agujeros reducidos.
- Evitar la turbulencia del flujo por cambio de diámetro interior.
- Múltiples conexiones y desconexiones en pozos de prueba, sellos mejorados.

1.12 TIPOS DE ROSCAS.

Una rosca se define como el mecanismo con el cual dos tubos son conectados, el cual es un factor de suma importancia dentro de una tubería, se puede decir que es el lugar donde sufre mayor daño al igual que el tipo de junta.

Las especificaciones de tubos API cubren 4 tipos de roscas a continuación se presentan los diferentes tipos geométrico de roscas existentes en diseño, tanto para Juntas API como para Juntas Premium:

31

Roscas redondas (round).

Roscas trapezoidales (buttress).

Roscas enganchadas.

Roscas doble enganchadas.

1.13 ROSCAS API

1.13.1 ROSCAS PARA TUBERÍA DE REVESTIMIENTO.

1.13.1.1 Roscas redondas (round).

Estas rocas como su nombre lo indica básicamente tiene la forma redonda

tanto en la cresta como en la raíz de la rosca.

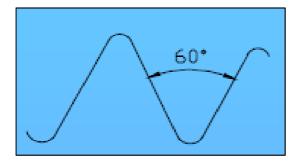
El propósito de la parte superior redonda (Cresta) y la base redonda (Raíz)

es mejorar la resistencia de las roscas, en la fabricación entre la cresta de la

rosca y la raíz elimina la acumulación de partículas extrañas o contaminantes y se

fabrica las crestas menos susceptibles a daños menores e irregularidades de

superficie en la superficie de la rosca que son ocasionalmente encontradas y no


pueden ser necesariamente ser un daño.

Fueron las roscas utilizadas para conectar tramos de tubos en los inicios de

la perforación, se fabricaban con hilos en forma de "V" de 60°, indicado en la

(FIGURA 11).

Figura 11: Roscas redondas (round).

FUENTE: API 5CT.

Este tipo de roscas para tuberías de revestimiento han sido las más populares en toda la historia de la perforación de pozos petroleros.

En la actualidad se sigue utilizando en gran escala para pozos de gran complejidad, así como para producir todo tipo de fluidos, incluyendo gas.

Se conoce como 8HRR (Ocho Hilos Rosca Redonda) debido a que en los diámetros más usuales, se fabrica con 8 hilos por pulgada. En tuberías de revestimiento de 4 ½" a 20", solo se fabrican en tubo liso.

Se conocen como LTC (Long Thread Coupled – Roscas Redondas de acople largo), y como STC (Short Thread Coupled- Roscas Redondas con acople corto). Para lograr su apriete Óptimo durante el enrosque se debe aplicar el torque pre-establecido para cada diámetro, grado y peso.

Al llegar a este valor, la cara del acople deberá coincidir con el punto donde termina la rosca; punto conocido como "desvanecimiento de la rosca" ó "vanish point".

1.13.1.2 Roscas Trapezoidales (Buttress).

La rosca BTC (Buttress) es una de las primeras conexiones acopladas que apareció en el mercado petrolero durante los años treinta.

33

Las roscas trapezoidales (Buttress) están diseñadas para resistir alta

tensión a las cargas de compresión, en adición a ofrecer resistencia a las

filtraciones.

Para diámetros desde 4 1/2" hasta 13 3/8" las roscas tienen 5 hilos por

pulgada en unos 3/4" de ahusamiento por pie de diámetro.

Las roscas trapezoidales de la tubería de revestimiento en diámetros de

16" y más grandes tienen 5 hilos por pulgada en 1 pulgada de ahusamiento por

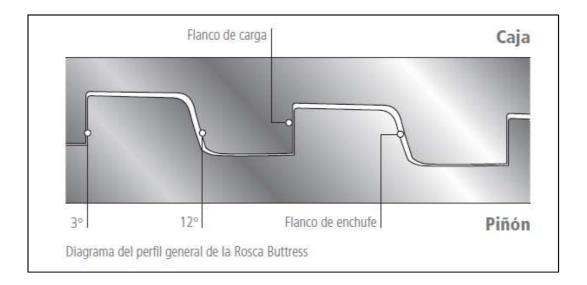
pie de diámetro y tiene crestas planas y raíces paralelas al eje del tubo.

Las demás dimensiones y radios de roscas son los mismos que aquellos

para 13 3/8" y diámetros pequeños.

Debido a que varias de las conexiones actuales como las Roscas Premium

basan su diseño en el principio de la rosca BTC, ésta se considera la madre de


las conexiones acopladas.

La rosca BTC se utiliza en conexiones de tubos de revestimiento cuyo

diámetro va desde 4 ½" hasta 20", su fabricación debe estar sujeta a la

especificación API 5B, y su perfil está indicado en la Figura 12.

Figura 12 : Perfil de conexión BTC.

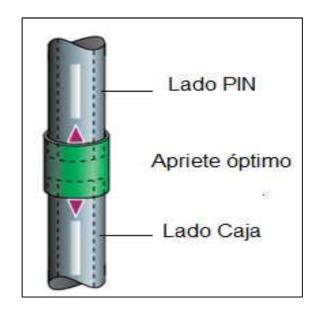
FUENTE: Tenaris.

En la rosca BTC existe un triángulo que es muy importante ubicarlo debido a que el mismo nos sirve de referencia para poder realizar el apriete geométrico.

Posición del triángulo a 4 13/16" (122.1 mm) a partir de la base del piñón para diámetros de 20" y 13 3/8".

El triángulo de referencia puede quedar en el cuerpo del tubo o en los hilos de la rosca, como queda indicado en la Figura 13.

La franja de color blanco de 1" x 24" y el triángulo de 3/8" son dos elementos básicos que ayudarán a apretar de manera correcta la rosca Buttress, indicada en la Figura 14.


Figura 13 : Conexión BTC.

FUENTE: Tenaris.

La franja de color blanco de 1" x 24" y el triángulo de 3/8" son dos elementos básicos que ayudarán a apretar de manera correcta la rosca Buttress, indicada en la Figura 14.

FIGURA 14 : Apriete óptimo.

FUENTE: Tenaris.

Esta figura indica de mejor manera como se debe realizar el apriete óptimo, guiándose por la franja blanca de 1" x 24" y el triángulo de 3/8".

1.13.2 ROSCAS PARA TUBERÍA DE PRODUCCIÓN API.

1.13.2.1 Rosca redonda no recalcada (Non-Upset)

El propósito de la parte superior redonda y la base redonda es que: mejora la resistencia de las roscas. La tubería de producción API no recalcada (Non-Upset), esta externamente roscada en ambos extremos del tubo. Las longitudes individuales están unidas por un acoplamiento regular internamente roscado.

El perfil de la rosca tiene cresta redondas y raíces con flancos de 30° de ángulo con respecto al eje vertical del tubo con 8 ó 10 roscas por pulgada en unos ¾ de pulgada por pie de ahusamiento o inclinación.

1.13.2.2 Rosca redonda con extremos recalcados (External-Upset)

La tubería de producción API con refuerzos externos esta externamente roscado en ambos extremos del tubo, las longitudes individuales esta unidos por un acoplamiento roscado y raíces con flancos de 30º grados con respecto al eje vertical del tubo con 8 o 10 roscas por pulgada en unos ¾ de pulgada por pie de

ahusamiento o inclinación, presentan una resistencia a la tracción dada por la eficiencia de la junta, da un sello capaz de evitar escapes de fluido.

1.13.3 ROSCA PARA TUBERÍA DE PERFORACIÓN. (DRILL-PIPE)

La tubería de perforación (Drill - Pipe) con refuerzo externo esta internamente soldada dentro del cuerpo de la tubería a este extremo es también conocido como "Tool Joint" el cual tiene un diámetro mayor que el del cuerpo del tubo y un diámetro interno menor que el cuerpo del tubo.

1.13.3.1.1 Roscas Trapezoidales con extremo recalcado (External-Upset).

Las funciones principales son de suministrar tracción que asegure la unidad de la sarta, dar un buen sello entre el interior y el exterior del tubo para evitar fuga del lodo de perforación hacia fuera (washout), poder ser enroscada y desenroscada sin sufrir deterioros graves, así como el torque adecuado según el tipo de conexión, que ayudan a evitar el desgaste prematuro y las deformaciones. Para diámetros desde 2 3/8" hasta 6 5/8" las roscas tienen cinco pasos (paso = 0,200") por pulgada en unos 3/4" de ahusamiento por pie de diámetro ver Tabla 6.

Existen otro tipo de roscas que en nuestro medio no se las utilizan debido a que las operadoras, no las creen convenientes.

1.14 CONEXIONES PREMIUM TENARIS.

1.14.1 TSH -ER.

Es una conexión premium cuplada de alto rendimiento sin sello metalmetal, diseñada especialmente para casing de superficie e intermedio, indicada en la Figura 15.

FIGURA 15: Conexión TSH - ER.

FUENTE: Tenaris Premium Connections Catalogue.

1.14.1.1 Característica de la conexión TSH-ER.

- Se la tiene disponible en diámetros de 7" a 24 ½".
- Fácil emboque, enrosque rápido sin riesgo de hilos cruzados.
- Tiene menos hilos por pulgada (TPI threads per inch) que la rosca API BTC.
- No es sello metal-metal.
- Permite rotar el revestidor.
- El revestidor y la Tubería tiene un soporte mecánico.

1.14.1.2 Aplicaciones de la conexión TSH-ER.

- Casing de superficie e intermedio.
- Perforación con casing.
- Pozos geotérmicos.

1.14.1.3 Perfil de rosca TSH – ER.

En la Figura 16, se tiene una vista total del perfil de la rosca TSH-ER cuando esta acoplada, y se pueden observar la forma de la rosca.

Figura 16: Conexión TSH – ER.

FUENTE: Tenaris Premium Connections Catalogue.

Tiene una mejorada eficiencia en tuberías de gran diámetro en enrosque debido a que tiene menos hilos por pulgada que las roscas API BTC que tienen 5 hilos por pulgada, estas conexiones Premium se componen de 3 hilos por pulgada y esto ayuda a disminuir el tiempo de enrosque.

También tienen una mayor eficiencia debido a que tiene una conicidad de 8.5% hasta las tubería de 13 3/8" lo que podemos observar en la Figura 16.1.

Figura 16.1: Conexión TSH – ER.

FUENTE: Tenaris Premium Connections Catalogue.

MODIFICADO: Eduardo Aules.

Al tener un hombro de Pin y uno de Caja hace que la rosca llegue a un 100% de acople dando así una fuerza de compresión al 100%, lo que podemos observar en la Figura 16.2.

1.15 FALLAS EN LAS JUNTAS Y ROSCAS.

Las conexiones roscadas o juntas de tuberías son elementos mecánicos con dimensiones geométricas variables que hacen difícil a diferencia de las tuberías establecer una condición de falla en las mismas.

FIGURA 16.2: CONEXIÓN TSH - ER.

FUENTE: Tenaris Premium Connections Catalogue.

MODIFICADO: Eduardo Aules.

Sin embargo, se han detectado diferentes modos de falla en las juntas por efecto de la carga impuesta a continuación se menciona los diferentes tipos de fallas de roscas.

1.15.1 FALLA POR CARGA AXIAL

Las cargas axiales pueden dividirse en cargas de tensión y cargas compresivas.

Las cargas de tensión generalmente son soportadas por la forma de la rosca de la conexión. Mientras que las cargas compresivas, se soportan por la forma de la rosca y por los hombros de paro o por ambos.

1.15.2 SALTO DE ROSCAS.

Es una situación de falla originada por una carga de tensión en la que se presenta una separación de la rosca del piñón o de la caja con poco o sin ningún daño sobre los elementos de la rosca. En caso de una carga compresiva, el piñón se incrusta dentro de la caja.

1.15.3 FRACTURA.

La carga de tensión genera la separación del piñón del cuerpo del tubo, que generalmente ocurre en la última rosca enganchada.

1.15.4 FALLAS EN LAS JUNTAS POR CARGA DE PRESIÓN.

Las cargas de presión en una junta pueden aplicarse internamente o externamente, generalmente el mismo mecanismo de sello en la conexión puede usarse para el sellado en cualquier dirección. Algunas juntas usan un sello en cada dirección.

1.15.5 FUGA.

Se presenta cuando existe comunicación de fluidos hacia el interior o exterior de la junta. Es una de las principales condiciones que debe observar una junta para soportar las cargas por presión. La fuga en una junta es causada

generalmente por falla en el diseño de la junta, por las condiciones de fondo, o por algún daño ocurrido en los elementos de la junta durante el manejo o corrida de la tubería.

1.15.6 GALLING (DESPRENDIMIENTO DE MATERIAL).

Esta es una condición de falla ocasionada por el desgaste de los metales en contacto (interferencia de las roscas piñón-caja) durante las operaciones de manejo y apriete de las conexiones.

Un apriete excesivo genera una alta interferencia de contacto entre las superficies de sello (rosca o los sellos metal-metal). Esto propicia el desprendimiento de metal. Este problema también se presenta por el uso continuo de apriete y desapriete (quebrar tubería) de las conexiones.

1.15.7 CEDENCIA EN EL PIÑÓN.

Es una condición de falla en el piñón que se presenta cuando se alcanzan esfuerzos (tangenciales) superiores a la cedencia del material por efecto simultaneo de la alta interferencia en el apriete y el efecto actuante de la presión.

Esta situación incrementa el riesgo de una falla por agrietamiento del piñón, al trabajar en ambientes amargos. Además, al tener un piñón con problemas de cedencia (deformación plástica) existe la posibilidad de que en las operaciones de apriete y desapriete de las conexiones, no se alcance el sello adecuado en la misma.

1.16 MAQUINADO DE UNA ROSCA.

A continuación se presenta el procedimiento de maquinado de una rosca donde la operación consta de los siguientes pasos.

1.16.1 RECEPCIÓN DE TUBERÍA.

La tubería se descarga de los tráileres en el patio de materiales colocando la tubería en los Rack o burros y se comprueba de acuerdo con la documentación de recepción.

1.16.2 PREPARACIÓN DE EXTREMOS.

Se marca con pintura blanca el rango correspondiente.

1.16.3 CORTE Y BISELADO.

Se procede a cortar la sección de rosca que ha sido encontrada con defectos o daños cuya longitud mínima de corte debe ser de ½ pulgada en el caso de la tubería de 3 ½ EUE tomando como ejemplo.

1.17 ROSCADO.

- a) Medir la longitud de roscado del tubo haciendo referencia desde el mandril o copa de la máquina roscadora (Torno), la longitud debe estar entre 7 u 8 pulgadas.
- b) Se procede al centrado del tubo asegurando el cuerpo del mismo.
- c) Se procede al análisis de rosca, se observa si la rosca no se encuentra cristalizada o endurecida, esto por lo general ocurre por el calentamiento de la rosca en el momento de realizar el corte por falta de la lubricación.
- d) Una vez realizado los pasos anteriores procedemos a colocar la cabeza en posición inicial para el roscado correspondiente, así mismo una vez definido el tipo de rosca a realizar o elaborar en la tubería, se utilizara los peines o cuchillas de roscar.
- e) Una vez seleccionado las cuchillas y estando todo en posición se enciende la máquina de roscar hasta que llegue a la longitud deseada indicada en el medidor de avance.

1.18 CALIBRACIÓN DE LA ROSCA.

Una vez diseñada la rosca, las mediciones o calibraciones se procede a realizar lo siguiente:

1.18.1 MEDICIÓN DEL AHUSAMIENTO DE LA ROSCA.

El ahusamiento es el incremento en el diámetro de inclinación de la rosca, expresado en pulgadas por pie de longitud de rosca. Para el propósito practico de calibración de rosca las mediciones de ahusamiento esta expresado en pulgadas por pie.

1.18.2 MEDICIÓN DEL PASO DE ROSCA.

El paso es la distancia desde el punto específico en una rosca al punto correspondiente en la siguiente rosca medida paralelamente al eje de la rosca. La distancia es pequeña, así la precisión será excesiva, si el paso estuviera determinado de rosca a rosca consecuentemente, el paso es medido en una pulgada por cada pulgada, tanto de 8 roscas redondas, como de 10 roscas redondas por pulgada.

1.18.3 MEDICIÓN DE LA ALTURA DE LA ROSCA.

La altura de la rosca, es la distancia desde la cresta de la rosca hasta la raíz de la misma, medida perfectamente al eje de la rosca, el indicador del dial debe registrar cero antes de realizar la medición y la tolerancia debe estar entre 0.004 y 0.002 pulgadas.

1.18.4 LONGITUD TOTAL DE LA ROSCA.

La longitud total de la rosca es medida paralelamente al eje de la rosca, desde el extremo de la tubería, hasta el punto donde termina la rosca. La

medición es realizada utilizando una escala métrica, La tolerancia es de 0.125 ó 1/8 de pulgada.

Una vez realizado todos los pasos anteriores y si la rosca ha cumplido con los procesos de calibración, la rosca será calificada como aceptada y llevada para la aplicación de la grasa respectiva y ser colocado su protector.

1.19 GRASAS PARA ROSCAS.

De acuerdo con el API (Bul5A2), se debe utilizar un elemento graso para generar una buena conexión entre los elementos piñón y caja.

Por lo que es necesario agregar un componente graso al piñón de un junta para mejorar el apriete y garantizar la hermeticidad.

Las características que debe tener este elemento graso son las siguientes:

- Cualidades de lubricación adecuada para prevenir el desgarre de las roscas.
- Ninguna tendencia a desintegrarse ni observar cambios radiales de volumen a temperaturas de hasta 300°F.
- No comportarse excesivamente fluida a temperaturas de hasta 300°F.
- Propiedades de sello suficientes para prevenir fugas a temperaturas de hasta 300°F.
- No secarse, endurecerse, evaporarse u oxidarse cambiando sus propiedades físicas.
- Resistencia a la absorción de agua.
- Suficiente capacidad para rellenar micro huecos y prevenir fugas en roscas redondas API para casing y Tubing bajo presiones tan altas como 10000 psi.
- Debe ser fácilmente aplicable con brocha a las rocas en clima frío.

1.20 EFICIENCIA DE LA CONEXIÓN

Una forma directa de dimensionar la capacidad de resistencia de una junta se ha establecido mediante el concepto de eficiencia de las juntas o conexiones.

Se define como un número expresado en porcentaje de resistencia, generalmente a la tensión, respecto a la resistencia a la tensión del cuerpo del tubo.

Esto quiere decir que una junta con 100% de eficiencia tiene una resistencia similar ó mayor a la resistencia de la tubería de revestimiento.

$$Eficiencia = \frac{Tensi\'{o}n\ en\ la\ junta}{Tensi\'{o}n\ en\ el\ tubo} \times 100 \qquad \textbf{Ec. 1.5.}$$

1.20.1 EFICIENCIA A LA TENSIÓN

$$E_{fc-tensi\'on} = \frac{A_{scc}}{A_{sct}} \times 100$$
 Ec. 1.6.

Dónde:

 $E_{fc-tensión} = Eficiencia de la conexión a la tensión con respecto al cuerpo del tubo (porcentaje)$

 $A_{scc} = \text{Área de la sección crítica de la conexión } (pg^2)$

 $A_{sct} =$ Área de la sección crítica del cuerpo del tubo (pg^2)

1.20.2 EFICIENCIA A LA COMPRESIÓN

$$E_{fc-compresión} = (0.5)E_{fc-tensión}(100)$$
 Ec. 1.7.

Dónde:

 $E_{fc-compresión} = Eficiencia de la conexión a la tensión con respecto al cuerpo del tubo (porcentaje).$

 $E_{fc-tensi\'on} = Eficiencia de la conexi\'on a la tensi\'on (fracci\'on).$

Ejemplo de eficiencia de la conexión

Datos:

- Diámetro exterior de la tubería = 9 7/8" = 9.875".
- Diámetro interior de la tubería = 8.625".
- Área de la sección crítica de la conexión = A_{scc} = 12.369 pg².

Cálculo del área de cuerpo del tubo:

$$A_{sct} = \frac{\pi(9.875^2 - 8.625^2)}{4} = 18.162 \, pg2$$
 Ec. 1.8.

Calculo de la eficiencia a la tensión de la conexión:

$$E_{fc-tensi\'on} = \frac{A_{scc}}{A_{sct}} \times 100 = \left(\frac{12.369}{18.162}\right) \times (100) = 68 \%$$

Cálculo de la eficiencia a la compresión:

$$E_{fc-compresión} = (0.5)E_{fc-tensión}(100) = (0.5)(.68)(100) = 34\%$$

1.20.3 EFICIENCIA A LA FLEXIÓN

$$\theta_{conexi\'on} = (E_{fc-compresi\'on})(\theta_{tubo})(100)$$
 Ec. 1.9.

Dónde:

 $\theta_{conexi\'on} = Flexi\'on de la conexi\'on (grados/30 m).$

 $E_{fc-compresión} = Eficiencia de la conexión a la compresión.$

 $\theta_{tubo} = Flexión de la tubería (grados/30 m).$

$$\theta_{tubo} = \frac{\sigma_y}{211(De)}$$

Dónde:

 $\theta_{tubo} = Flexión de la tubería (grados/30 m).$

 $\sigma_y = Esfuerzos$ a la cedencia de la tubería (psi).

De = Diámetro exterior (pg).

Ejemplo de eficiencia a la flexión

Datos:

- Diámetro exterior de la tubería = 13 3/8" = 13.375".
- Esfuerzo a la cedencia = 110,000 psi.
- E_{fc-compresión}= 38%.

Cálculo de la flexión del cuerpo del tubo:

$$\theta_{tubo} = \frac{\sigma_y}{211(De)} = \frac{(110,000)}{(211)(13.375)} = 39^{\circ}/30 \, m$$

Cálculo de la flexión de la conexión:

$$\theta_{conexi\'on} = (E_{fc-compresi\'on})(\theta_{tubo})(100) = (0.38)(39)(100) = 15^{\circ}/30 \, m$$

CAPITULO 2.

2 METODOLOGÍA Y ALTERNATIVAS PARA SELECCIÓN DE CONEXIONES DE TUBERÍAS DE REVESTIMIENTO.

Tomando la mayor información del pozo se procede a la selección apropiada de las tuberías de revestimiento que es uno de los aspectos más importantes en la programación, planificación y operaciones de perforación de pozos.

La capacidad de la sarta de revestimiento seleccionada tendrá que soportar las presiones y cargas para una serie de condiciones de operación, además es un factor importante en la seguridad y economía del proceso de perforación y en la futura vida productiva del pozo.

El objetivo es diseñar un programa de revestidores que sea confiable, sencillo y económico.

Luego de que se realiza la selección apropiada de la tubería de revestimiento según el diseño del revestimiento, uno puede seleccionar la conexión más adecuada de acuerdo a las cargas que se darán en el pozo así como las condiciones de presión y temperatura.

2.1 GUÍA DE SELECCIÓN DE CONEXIONES.

2.1.1 FACTORES DE LA SELECCIÓN DE CONEXIONES.

En la selección de conexiones se tienen que considerar los siguientes factores:

- La aplicación para la cual la conexión será requerida.
- La capacidad de rendimiento de la conexión en su aplicación prevista.
- La disponibilidad y la entrega de la conexión dentro del tiempo previsto en el proyecto.
- Disponibilidad de servicios de respaldo de la fábrica incluyendo los servicios de roscado en el área de operaciones para futuras reparaciones y rehabilitación.
- Los procesos de control de calidad y la reputación de la compañía.

2.1.2 OPERACIONES GENERALES PARA CONEXIONES.

Las conexiones siempre deben ser idóneas para prestar el servicio al cual serán destinadas, por ejemplo:

En una tubería de revestimiento superficial ó intermedia se puede o no requerir una conexión Premium con gas tight (hermeticidad al gas); por lo tanto una conexión BTC ó LTC puede ser más práctica para estas secciones.

Para la tubería de producción de un pozo que tiene presiones de 3500 psi a 5000 psi será necesaria una conexión con un sello premium que garantice la continua integridad en un ambiente severo.

La tabla 2.1 muestra las funciones generales de la tubería de revestimiento y las condiciones de servicio donde las conexiones premium son recomendadas.

Para la tubería de revestimiento con un diámetro exterior ≥ 11-3/4", la resistencia a las fugas debería ser considerada con la máxima presión diferencial que atraviesa la conexión.

Tabla 2.1: Funciones y condiciones donde son recomendadas las conexiones premium.

Tubería de revestimiento	Condiciones de operación	Tipo de conexión
Superficial e Intermedio	Diferencial de presión ≥ 7500 psi	Conexiones premium con sello metal-metal o conexiones API precalificadas con un diseño de acoplamiento mejorado (como GBTC BTC)
Superficial, Intermedio, Producción y Tubería de producción	Aleación resistente a la corrosión	Conexiones Premium con sello metal-metal
Superficial, Intermedio, Producción y tubería de producción	La fuerza de la conexión puede ser igual o menor al 100% de la fuerza de la tubería de acuerdo al tipo de conexión usada	Conexiones Premium roscadas y acopladas, conexiones integrales lisas y conexiones integrales semilisas.

Fuente: Casing Design Manual Schlumberger.

Elaborado: Eduardo Aules.

Para condiciones menos severas que las que se encuentran en la tabla 2.1, pueden ser usadas las conexiones API.

Los valores de resistencia a las fugas para conexiones API los podemos obtener en la norma API 5C2.

El desgarre de los hilos o el uso de una fuerza de conexión más alta incrementarán la Resistencia a la fuga de las conexiones API.

2.1.3 GUIA DE SELECCIÓN DE CONEXIÓN DE 20".

Para poder seleccionar adecuadamente la conexión para la tubería de revestimiento de 20", es necesario comprender para que nos sirva esta tubería como se indicó en el capítulo anterior. Si la tubería de revestimiento de 20" es piloteada no será necesario ocupar conexiones. Es muy importante seleccionar técnicamente la conexión adecuada de 20" de acuerdo al tipo de instalación para la cual la conexión será corrida. Si es solicitada una conexión que tenga hermeticidad por presencia de gas se tiene que utilizar necesariamente una conexión que tenga un sello metal-metal y por lo tanto la conexión TSH-ER no sería recomendada. El desempeño de la conexión de 20" se puede observar en las tablas 2.2 y 2.3.

Tabla 2.2: Desempeño de la conexión de 20" API BTC grado K55 – 94 lbs/ft.

TUBERÍA		CONEXIÓN	
OD	20.000 in.	TIPO	API BUTTRESS
ID	19.124 in.	TENSIÓN	1479 x 1000 lbs.
GRADO	K55	TPI	5.
RESISTENCIA DE TENSIÓN DEL CUERPO	1480 x 1000 lbs.	OD	21.000 in.
PESO NOMINAL	94.00 lbs/ft.	PRESIÓN INTERNA	2110 psi
DRIFT	18.937 in.	BENDING	-
ESPESOR DE LA PARED	0.438 in.	APRIETE	TRIÁNGULO.
PRESIÓN INTERNA	2110 psi.	FACILIDAD DE ENROSQUE	Pobre
COLAPSO	520 psi.		

Fuente: Tenaris.

Elaborado: Eduardo Aules.

Tabla 2.3: Desempeño de la conexión de 20" TSH-ER GRADO K55 – 94 lbs/ft.

TUBERÍA		CONEXIÓN	
OD	20.000 in.	TIPO	API BUTTRESS
ID	19.124 in.	TENSIÓN	1480 x 1000 lbs.
GRADO	K55	TPI	3.
RESISTENCIA DE TENSIÓN DEL CUERPO	1480 x 1000 lbs.	OD	21.000 in.
PESO NOMINAL	94.00 lbs/ft.	PRESIÓN INTERNA	2110 psi.
DRIFT	18.937 in.	BENDING	13 °/100 ft.
ESPESOR DE LA PARED	0.438 in.	APRIETE	100 %.
PRESIÓN INTERNA	2110 psi.	FACILIDAD DE ENROSQUE	Muy buena
COLAPSO	520 psi.		

Fuente: Tenaris.

Elaborado: Eduardo Aules.

Nota: La facilidad de enrosque se basa en las capacidades de centrado, enroscado, cruzado de hilos y la velocidad de marcha.

Por este motivo la capacidad de enrosque de la conexión BTC es muy pobre y la conexión TSH-ER es muy buena, ya que la conexión TSH-ER tiene menos TPI que la conexión BTC.

2.1.4 CONSIDERACIONES DE SELECCIÓN DE CONEXIONES DE 20".

Los siguientes parámetros deben ser considerados para la selección de una conexión de 20".

- Facilidad para ser corridas en cualquier equipo de perforación.
- Soportar las cargas estallido, colapso y tensión.

- Facilidad de apriete.
- Facilidad de emboque.
- El apoyo técnico por parte de los fabricantes de la conexión.
- Disponibilidad.
- Facilidad para el maquinado y fabricación de accesorios.
- El costo beneficio y la facilidad de reparación.

Los rangos de los momentos de flexión de las conexiones TSH -ER, se ponen a prueba con 13 ° / 100 pies.

Los rangos de tensión para la conexión API Buttress son según la norma API 5C3 siempre considerando el límite elástico.

En la tubería de revestimiento de 20" la conexión BTC tiene 5 hilos por pulgada y según la experiencia de campo en la conexión BTC cada 6 tubos existe un cruce de hilos debido a que es una conexión API de alta interferencia y eso hay que tener en cuenta debido a que se tiene limitada roscabilidad según la norma API puede realizarse hasta 4+1 enrosque y desenrosque por lo que la alineación es básica.

En la tubería de revestimiento de 20" la conexión TSH-ER tiene 3 hilos por pulgada por lo que es considerada una conexión de baja interferencia.

2.1.5 GUIA DE SELECCIÓN DE CONEXIÓN DE 13 3/8".

Es muy importante seleccionar técnicamente la conexión adecuada de 13 3/8" de acuerdo al tipo de instalación para la cual la conexión será corrida.

El desempeño de la conexión de 13 3/8" se puede observar desde la tabla 2.4. hasta la tabla 2.7.

En la sección de 13 3/8" se está utilizando los grados de acero K55 de 54.5 lbs/ft hasta un intervalo y luego se utiliza la tubería K55 de 68 lbs/ft hasta el punto de asentamiento de la tubería de 13 3/8".

Tabla 2.4: Desempeño de la conexión de 13 3/8" API BTC grado K55 - 68 lbs/ft.

TUBERÍA		CONEXIÓN	
OD	13.375 in.	TIPO	API BUTTRESS
ID	12.415 in.	TENSIÓN	1300 x 1000 lbs.
GRADO	K55.	TPI	5.
RESISTENCIA DE TENSIÓN DEL CUERPO	1069 x 1000 lbs.	OD	14.375 in
PESO NOMINAL	68.00 lbs/ft.	PRESIÓN INTERNA	3450 psi.
DRIFT	12.259 in.	BENDING	-
ESPESOR DE LA PARED	0.480 in.	APRIETE	TRIÁNGULO.
PRESIÓN INTERNA	3450 psi.	FACILIDAD DE ENROSQUE	Pobre
COLAPSO	1950 psi.		

Fuente: Tenaris.

Elaborado: Eduardo Aules.

Nota: La facilidad de enrosque se basa en las capacidades de centrado, enroscado, cruzado de hilos y la velocidad de marcha.

Ademas en la tubería de revestimiento de 13 3/8" la conexión BTC tiene 5 hilos por pulgada la cual hace que sea una conexión de mayor interferencia que la conexión TSH-ER que solo tiene 4 hilos por pulgada.

Tabla 2.5: Desempeño de la conexión de 13 3/8" API BTC grado K55 - 54.5 lbs/ft.

TUBERÍA		CONEXIÓN	
OD	13.375 in.	TIPO	API BUTTRESS
ID	12.615 in.	TENSIÓN	1038 x 1000 lbs.
GRADO	K55.	TPI	5.
RESISTENCIA DE TENSIÓN DEL CUERPO	853 x 1000 lbs.	OD	14.375 in.
PESO NOMINAL	54.50 lbs/ft.	PRESIÓN INTERNA	2730 psi.
DRIFT	12.459 in.	BENDING	-
ESPESOR DE LA PARED	0.380 in.	APRIETE	TRIÁNGULO.
PRESIÓN INTERNA	2730 psi.	FACILIDAD DE ENROSQUE	Pobre
COLAPSO	1130 psi.		

Fuente: Tenaris.

Elaborado: Eduardo Aules.

Tabla 2.6: desempeño de la conexión de 13 3/8" TSH-ER grado K55 – 68 lbs/ft.

TUBERÍA		CONEXIÓN	
OD	13.375 in.	TIPO	TSH-ER
ID	12.415 in.	TENSIÓN	1069 x 1000 lbs.
GRADO	K55.	TPI	4.
RESISTENCIA DE TENSIÓN DEL CUERPO	1069 x 1000 lbs.	OD	14.374 in.
PESO NOMINAL	68.00 lbs/ft.	PRESIÓN INTERNA	3450 psi.
DRIFT	12.259 in.	BENDING	19 °/100 ft.
ESPESOR DE LA PARED	0.480 in.	APRIETE	100 %.
PRESIÓN INTERNA	3450 psi.	FACILIDAD DE ENROSQUE	Muy buena
COLAPSO	1950 psi.		

Fuente: Tenaris.

Elaborado: Eduardo Aules.

Tabla 2.7: Desempeño de la conexión de 13 3/8" TSH-ER grado K55 – 54.5 lbs/ft.

TUBERÍA		CONEXIÓN	
OD	13.375 in.	TIPO	TSH-ER
ID	12.615 in.	TENSIÓN	853 x 1000 lbs.
GRADO	K55.	TPI	4.
RESISTENCIA DE TENSIÓN DEL CUERPO	853 x 1000 lbs.	OD	14.374 in.
PESO NOMINAL	54.50 lbs/ft.	PRESIÓN INTERNA	2730 psi.
DRIFT	12.459 in.	BENDING	19 °/100 ft.
ESPESOR DE LA PARED	0.380 in.	APRIETE	100 %.
PRESIÓN INTERNA	2730 psi.	FACILIDAD DE ENROSQUE	Muy buena
COLAPSO	1130 psi.		

Fuente: Tenaris.

Elaborado: Eduardo Aules.

2.1.6 CONSIDERACIONES DE SELECCIÓN DE CONEXIONES DE 13 3/8".

Los siguientes parámetros deben ser considerados para la selección de una conexión de 13 3/8".

- Facilidad para ser corridas en cualquier equipo de perforación.
- Soportar las cargas estallido, colapso y tensión.
- Facilidad de apriete.
- Facilidad de emboque.
- El apoyo técnico por parte de los fabricantes de la conexión.
- Disponibilidad.
- Facilidad para el maquinado y fabricación de accesorios.

El costo beneficio y la facilidad de reparación.

Los rangos de tensión para la conexión API Buttress se basan en la norma API 5C3 siempre considerando el límite elástico.

2.1.7 TIPO DE PERFIL DE LAS CONEXIONES DE TUBERÍA DE REVESTIMIENTO.

Para las tuberías de revestimiento son usadas 7 tipos de conexiones genéricas las cuales son las siguientes.

- 1. STC ó LTC.
- 2. API BTC.
- 3. Roscadas Y Acopladas (Threaded and Coupled T&C).
- 4. Integral Recalcada (Integral Upset).
- 5. Integral Lisa (Flush).
- 6. Integrales Semilisas (Semi Flush).
- 7. Integrales Recalcadas Soldadas.

2.1.7.1 Características de las conexiones genéricas.

2.1.7.1.1 Conexiones STC, LTC.

- Fáciles de maquinar y muy bien conocidas
- Buena disponibilidad y precio.
- Capacidad de sellado del líquido hasta aproximadamente 210 º F.
- El sellado es dado por una combinación de la geometría de conexión y el paso del hilo.
- Poca hermeticidad.
- Medidores y experiencia están ampliamente disponibles para retrabajo y renovación.
- Propenso al desgaste y al cruce de hilos debido a la redondez, sobre todo en las tuberías de revestimiento de grandes diámetros externos.

- Ensamble con alta tensión circunferencial en la cupla.
- Eficiencia a la tensión (STC, LTC) = 70% a 75% dependiendo del tipo de hilo.
- Resistencia de fugas debe ser verificada por la norma API 5C3.

2.1.7.1.2 Conexiones API BTC.

- Buena disponibilidad y precio.
- Capacidad de sellado del líquido hasta aproximadamente 210 º F.
- El sellado es dado por una combinación de la geometría de conexión y el paso del hilo.
- Poca hermeticidad.
- Recubrimiento de estaño mejora la resistencia a las fugas.
- Medidores y experiencia están ampliamente disponibles para retrabajo y renovación.
- Propenso al desgaste y al cruce de hilos debido a la redondez, sobre todo en las tuberías de revestimiento de grandes diámetros externos.
- Ensamble con alta presión circunferencial (aro) en la conexión.
- La eficiencia de tensión es generalmente 85% a 95% del cuerpo de tubería.
- Resistencia de fugas de BTC debe ser verificada por la norma API 5C3.

2.1.7.1.3 Conexiones roscadas y acopladas (threaded and coupled T&C).

- En general buena hermeticidad de gas.
- Son fabricadas con Special Clearance (Rebajada Especial) para mejorar el espesor anular y reducir la Drag Force (Fuerza de Arrastre) durante la bajada de la tubería.
- Susceptible a da
 ños de manipulaci
 ón se sigue los procedimientos adecuados.

- Piñones deben ser maquinados concéntricamente a las juntas para obtener el sellado efectivo.
- Adecuadas para ser maquinadas en frío.
- Mejores características de enrosque, debido a la interferencia de rosca reducida en comparación con conexiones API.
- Medidores y calificación disponibles, dependiendo del tipo, para retrabajo y rehabilitación y se puede volver a cortar.
- La eficiencia de tensión es generalmente por lo menos igual a BTC y en muchos casos igual o superior al cuerpo del tubo.

2.1.7.1.4 Conexión integral recalcada (integral upset).

- Escasa disponibilidad de conexiones y recortes limitados para renovación de la tubería, debido a que si se termina el recalque se tiene que descartar la conexión.
- Costosamente, especialmente los extremos recalcados.
- Buena hermeticidad al gas.
- Por lo general, exhiben muy buenas capacidades de roscado y desenroscado (Make & Break).
- Susceptible a da
 ños de manipulaci
 ón se sigue los procedimientos adecuados.
- Eficiencia a la tensión por lo menos igual o mayor que el cuerpo de tubería.

2.1.7.1.5 Conexiones integral lisa (Flush).

- El diámetro exterior del tubo es igual al diámetro exterior de la conexión.
- Excelentes características de limpieza del hoyo en las perforaciones debido a que es son diámetros exteriores iguales de conexión y tubería.

- Buena disponibilidad, fácil de renovar o recortar, sin necesidad de acoplamientos.
- Buena hermeticidad al gas.
- Eficiencia a la tensión igual al 50% hasta un 75% de cuerpo del tubo dependiendo del tipo de conexiones.
- Las conexiones pueden ser más débiles que el cuerpo de la tubería de presión nominal interna si no se realiza un proceso especial denominado Match Strength (proceso en el cual la conexión se le realiza una igualación de fuerza en la fábrica).

2.1.7.2 Conexiones integrales recalcadas soldadas.

- Muy costosas (conexión, soldaduras y ensayos no destructivos NDT)
- Eliminación de la terminación pulida con una caja soldada.
- Hilos gruesos para resistir el enroscado cruzado o galling (desgarre y arrastre de material).
- Hilos continuos producen resistencia al desenrosque bajo flexión severa.
- Solo se puede soldar en los grados de acero H-40, K-55 ó J-55.
- Eficiencia de tensión generalmente mayor que el cuerpo de tubería.
- La mayoría de las empresas de diseño de conexiones tienen variantes en cada tipo.
- Calificaciones de conexión para estallido, tensión, flexión, compresión y colapso se debe obtener de los ensayos realizados por el fabricante.

2.2 PROGRAMA DE SELECCIÓN DE CONEXIONES DE TENARIS.

Tenaris ofrece una herramienta muy útil a través de su página en internet con la que se puede elegir el tipo de conexiones de acuerdo a las especificaciones del cliente.

Para poder ingresar a este programa es necesario conocer los algunos parámetros de nuestra tubería de revestimiento para que así el programa nos despliegue las diferentes opciones de conexiones normales API o Premium.

Los parámetros que necesitaremos conocer para la selección adecuada de la conexión son los siguientes:

- Diámetro de la tubería.
- Grado de acero.
- Peso de la tubería.

El programa en línea que se va a ocupar para seleccionar la conexión será el "PREMIUM CONNECTION PERFOMANCE DATA", y esté nos ayudara a ver las opciones de conexión y los datos de rendimiento de la conexión.

2.2.1 PASOS PARA ELEGIR LA CONEXIÓN ADECUADA.

Ya dentro del programa tendremos que ingresar los datos ya mencionados tomando en cuenta las unidades que se vaya a utilizar para el caso del campo Shushufindi se utilizara las unidades USC (United States Customary).

Se ingresa los datos ya mencionados en este ejemplo ingresaremos lo siguiente que se indica en la Tabla 2.8.

Tabla 2.8: Datos para elegir la conexión.

Dato	Cantidad	Unidades
Size	20	pulgadas
Grade	API K55	
Wall	94	libras / pie

Fuente: Consorcio Shushufindi.

Elaborado: Eduardo Aules.

Luego de ingresar los datos anteriores se desplegará una nueva opción en la que nos mostrara el tipo de conexión disponible que cumpla con los datos ingresados en este caso nos desplegará la conexión TSH-ER como se muestra en la figura 17.

Premium Connections Performance Data
Choose pipe size, weight and grade to view connection options and performance data.

PRODUCT
PIPE SELECTION DATA
Unit USC unit

Wall (Weight:lbs/ft)

Connection

0.438 (94.00)

ER™ *

Figura 17 : Selección de tubería.

Fuente: Tenaris.

PIN

Size

Grade

Elaboración: Eduardo Aules.

20.000

API K55 ▼

Luego de seleccionar la conexión el programa nos desplegará toda la información de la tubería de revestimiento así como de la conexión que esta tendrá.

La información de la tubería de revestimiento que nos desplegará el programa será la siguiente indicada en la Figura 18.

Figura 18 : Datos de la tubería.

PIPE BODY DATA					
		GEOME	TRY		
Nominal OD	20.000 in.	Nominal Weight	94.00 lbs/ft	Standard Drift Diameter	18.937 in.
Nominal ID	19.124 in.	Wall Thickness	0.438 in.	Special Drift Diameter	N/A
Plain End Weight	91.59 lbs/ft				
PERFORMANCE					
Body Yield Strength	1480 × 1000 lbs	Internal Yield	2110 psi	Collapse	520 psi

Fuente: Tenaris.

Modificado: Eduardo Aules.

2.2.1.1.1.1 Geometría de la tubería

- Diámetro externo nominal.
- Diámetro interno nominal.
- Peso planeado en el extremo.
- · Peso nominal.
- Espesor de la pared.
- Diámetro de drift estándar.
- Diámetro de drift especial o drift alternativo.

2.2.1.1.1.2 Desempeño de la tubería

- Fuerza de rotura del cuerpo.
- Fuerza de rotura interna.
- Fuerza de colapso.

La información que nos desplegará el programa de la conexión será la siguiente indicada en la Figura 19.

Figura 19 : Datos de la conexión.

	ER™ CONNECTION DATA				
		GEOME	ΓRY		
Regular OD	21.000 in.	Special Clearance OD	N/A in.	Connection ID	19.177 in.
Critical Section Area	41.515 sq. in.	Make-Up Loss	4.232 in.	Threads per in.	3.00
Coupling Length	9.646 in.				
		PERFORM	ANCE		
Regular OD Tension Efficiency	100 %	Joint Yield Strength	1480 × 1000 lbs	Internal Pressure Capacity	2110 psi
Compression Efficiency	100 %	Compression Strength	1480 × 1000 lbs	External Pressure Capacity	520 psi
Bending	13 °/100 ft				

Fuente: Tenaris

Modificado: Eduardo Aules

2.2.1.1.1.3 Geometría de la conexión

- Diámetro externo regular.
- Área de la sección critica.
- > Longitud del acoplamiento.
- > Diámetro externo especial de clearance.
- > Perdida en ensamble.
- > Diámetro interno de la conexión.
- > Hilos por pulgada.

DESEMPEÑO DE LA CONEXIÓN

- Eficiencia de tensión regular del diámetro externo.
- Eficiencia de compresión.
- Doblamiento.

- Fuerza de rotura de la junta.
- Fuerza de compresión.
- Capacidad interna de presión.
- Capacidad externa de presión.

Gracias a estos datos de desempeño tanto de la tubería como de la conexión se puede analizar si esa conexión soportara las condiciones del pozo donde será introducida y si es la más adecuada para aguantar todas las cargas a las que estará sometida durante la vida productiva del pozo.

CAPITULO 3

3 ANÁLISIS Y EVALUACIÓN DE LOS TIEMPOS DE INSTALACIÓN DE LAS CONEXIONES DE LAS TUBERÍAS DE REVESTIMIENTO EN EL CAMPO SHUSHUFINDI.

3.1 INTRODUCCIÓN.

En el presente capítulo se analizará y evaluará los tiempos de corrida de las tuberías de revestimiento de 20" y de 13 3/8" con la conexión BTC basada en la norma de API y con la conexión propuesta de Tenaris la TSH-ER.

Se comenzará con el análisis de la corrida de revestimiento y los pasos a seguir para su realización óptima.

3.2 CORRIDA DE LA TUBERÍA DE REVESTIMIENTO.

Se solicita una cantidad de revestidores igual en longitud a la profundidad que se va a revestir, más un 10% por seguridad, dado el caso que algunos resulten dañados.

En hoyos de 26" se reviste con casing de 20" y en hoyos de 16" se reviste con casing de 13 3/8".

Al considerar el diseño y la selección de la sarta de revestimiento, los factores técnicos se centran sobre el diámetro, el peso (en libras por pie), la longitud y la naturaleza de las formaciones a revestir.

La sarta debe resistir a las presiones y todos los factores que pudieran afectarle en el subsuelo.

La longitud de cada revestidor está alrededor de los 40 pies. Sin embargo, estos al ser recibidos en el taladro han de ser medidos, revisados, y que los mismos sean los que hayan sido previamente solicitados, en cuanto a diámetro y peso para luego poder seguir el procedimiento que consta de los siguientes pasos:

3.2.1 PASOS PARA LA CORRIDA DE LA TUBERÍA DE REVESTIMIENTO DE 20".

- Chequear que todas las herramientas y equipos para la corrida del revestidor estén en sitio.
- Realizar una reunión pre-operacional y de seguridad con todas las personas involucradas antes de empezar la operación de corrida del revestidor.
- Armar las herramientas de corrida del revestidor y asegurarse que el equipo de flotación sea perforable con una broca tricónica.
- Realizar simulación de suabeo y surgencia, bajo las condiciones del fluido de perforación presente en el agujero para determinar la velocidad máxima de corrida de la tubería.
- La zapata (stab-in) será enroscada a la tubería de revestimiento de 20" en la locación, ya que TIW no cuenta con las herramientas en su taller para enroscar la zapata.
- Correr el revestidor de 20", K-55, 94 libras/pie, BTC o TSH-ER llenando cada junta.
- Bajar la tubería "stinger" interna con un centralizador en la punta de tal manera que se conecte la tubería al zapato stab in.

- Asegurarse de llenar el anular de la tubería de 5" y casing de 20", el cual será una referencia para asegurarse que el stab in este acoplado a la zapata.
- Si se tienen problemas bajando el revestimiento de 20" hasta la profundidad planificada comunicar a las oficinas en Quito para verificar si se deja el revestimiento a la profundidad actual y evitar la necesidad de trabajar el revestimiento para asegurar el trabajo de cementación.

3.2.2 PASOS PARA LA CORRIDA DE LA TUBERÍA DE REVESTIMIENTO DE 13-3/8".

- Realizar una reunión pre-operacional y de seguridad con todas las personas involucradas antes de iniciar la operación de corrida del revestidor.
- Armar las herramientas de corrida del revestidor. Asegurar que la zapata flotadora y el cuello flotador sean perforables con PDC, tener una zapata y un cuello adicionales como reserva.
- Asegurar que los accesorios de cementación sean no rotatorios, perforables con broca PDC.

Importante:

Si durante la bajada del revestimiento se presentan puntos apretados u obstrucciones, analizar la formación en la que se encuentre y la necesidad de continuar o no trabajando el revestidor para alcanzar la profundidad final perforada.

Si se tienen problemas durante la corrida del revestimiento de 13 3/8" hasta la profundidad planificada, es necesario comunicarse con las oficinas de Quito para verificar la factibilidad de dejar el revestimiento a la profundidad actual y evitar la necesidad de trabajar el revestimiento y asegurar el trabajo de cementación.

3.2.3 ORGANIZACIÓN DEL CASING TALLY, MEDIDA DE LA TUBERÍA E INSPECCIÓN.

Una vez recibidos y chequeados los revestidores, se procede a su ordenamiento y medición. Por lo general se enumeran con tiza especial de manera acorde al orden en que van a ser retirados del burro de almacenamiento al de la corredera por el montacargas. Por lo general dado el peso del revestidor, se enumeran de 5 en 5, y se va anotando para cada tubería medida su respectiva longitud.

Ya con estos datos, el supervisor del pozo procederá a realizar el Casing Tally, que no es más que un listado donde se presentan enumeradas y ordenadas cada una de las tuberías del revestidor, Y se bajan en función al requerimiento del diseño de tubería, enviado por el ingeniero del pozo.

En el casing tally de igual forma se dispone el equipo de flotación, en combinación con los revestidores. El primer casing es bajado teniendo la zapata ciega como base, y en el segundo, el cuello flotador. La disposición de los centralizadores dependerá del programa de cementación basado en estudios de ingeniería dependiendo del ángulo del pozo y otros parámetros.

De igual manera, el casing tally permite llevar un control sobre la profundidad que se lleva de acuerdo al número de tuberías que se han bajado, así como la longitud acumulada y el peso acumulado. El mismo se toma de acuerdo con el peso por pie de cada uno de los casing por el número de estos que hayan sido bajados.

3.2.4 RECOMENDACIONES PARA LA INSPECCIÓN E INSTALACIÓN DE LAS CONEXIONES

3.2.4.1 Preparación de las conexiones

Para un óptimo desempeño de las conexiones es sumamente importante seguir las recomendaciones respecto a la aplicación de la grasa de enrosque y del pegamento para roscas. Se recomienda especialmente colocar tapones de

manejo en las conexiones integrales cada vez que el tubo sea movido hacia o desde el piso del equipo de perforación/reparación (workover). Maneje todos los tubos con los protectores de rosca colocados.

Para las conexiones del Grupo 1 y Grupo 2 se recomienda utilizar grasa de enrosque del tipo API-Modificado. Si la temperatura de servicio supera los 120°C (250°F), se recomienda emplear una grasa de enrosque de grado térmico.

Si la temperatura ambiente está bajo cero, se recomienda emplear una grasa de enrosque de grado ártico. La grasa debe mantenerse libre de contaminación por agua y partículas de hielo. También debe protegérsela del frío resguardándola en una caseta o empleando algún elemento calefactor.

3.2.4.2 Inspección de las conexiones

- Las roscas genuinas de los Grupos 1 y 2 pueden identificarse mediante el estencilado en el cuerpo del tubo. Adicionalmente, las roscas genuinas del Grupo 2 pueden identificarse por una marca en bajo relieve en los extremos Pin y Box.
- Los tubos deben colocarse de tal manera que las conexiones puedan rotar 360º para facilitar una completa limpieza e inspección.
- Inspeccione todas las conexiones para detectar problemas tales como ovalidad, abolladuras, áreas golpeadas y óxido. Las áreas de los sellos deben estar libres de cortes longitudinales o transversales, rayas, picaduras por corrosión y óxido.

Segregue e identifique adecuadamente todos los tubos con sospecha de daños en las conexiones. La evaluación y reparación posterior de los mismos debe ser realizada por un especialista.

Para comenzar el análisis del tiempo de la conexión vamos a explicar el proceso de acople de una conexión.

3.3 ACOPLE DE UNA CONEXIÓN

Una vez que el tubo se encuentra en posición vertical respecto de la boca de pozo, se debe bajar lentamente. Para ello es conveniente utilizar un compensador de peso hasta que el pin se encuentre exactamente encima del box. Se Inspecciona el box para observar cualquier daño o presencia de material extraño, suciedad o agua, para luego aplicar la grasa API a las roscas.

Antes de proceder al acople, se verifica que no haya daños o material extraño, como suciedad o agua, en el pin antes de aplicar la grasa API. Una vez que se haya aplicado la cantidad necesaria de grasa, se baja el tubo lentamente. Se tiene que asegurar de que los tubos estén alineados verticalmente usando una guía de alineado, si la hay disponible.

Una vez que el tubo se encuentra debidamente alineado en posición vertical, bajarlo lentamente para comenzar a enroscar los filetes y así poder llegar hasta la posición de ajuste manual.

Durante el enrosque, se tiene que controlar que el tubo no oscile. Si el tubo se inclina después del enrosque inicial, es necesario levantarlo, limpiar y corregir cualquier filete dañado o bien retirarlo para luego inspeccionarlo y repararlo o en su defecto para descartarlo. Es aconsejable no poner en riesgo el costo de un pozo por usar un tubo cuyo pin o box pueda estar dañado.

Los tubos de materiales resistentes a la corrosión (CRA) y otros destinados a servicios críticos se deben enroscar hasta la posición de ajuste manual utilizando una llave de correa.

Si se utilizan llaves de fuerza para el enrosque, se debe comenzar muy lentamente para asegurarse de que no haya cruzamiento de hilos y enroscar la unión hasta la posición de ajuste manual.

Colocar las llaves de fuerza aproximadamente a 7-10 cm por encima del pin enroscado. Para facilitar la bajada de los tubos al pozo, se recomienda llenar la columna periódicamente con lodo de perforación.

De esta manera se asegurará un mejor balance hidrostático de presiones. La bajada de tubería en tiros dobles o triples incrementa el riesgo de daño por engrane de las conexiones.

3.3.1 APLICACIÓN DE TORQUE

3.3.1.1 Llaves de fuerza

Se deberán usar llaves de fuerza para el torqueado final de la conexión. Las llaves deberán estar en condiciones de operar a un mínimo de 3 r.p.m.

Es necesario que estén equipadas con insertos curvos para impedir que el tubo o la cupla se safen y queden marcados. Debe seleccionarse una celda de carga calibrada para colocar en el brazo de la llave de fuerza. La llave de contrafuerza debe estar en un ángulo de 90º respecto de la llave de fuerza cuando se aplique el torque.

La velocidad de la llave de fuerza durante el enrosque debe ser menor a 25 r.p.m. Para la última vuelta anterior a la aplicación del torque, se recomienda que la velocidad de la llave sea inferior a 10 r.p.m. En el caso de aceros especiales, la velocidad de la llave durante la aplicación del torque deberá ser inferior a 5 r.p.m.

La llave de fuerza debe permitir el movimiento vertical para evitar que se deforme o se golpee durante el enrosque del tubo. Una vez que se ha instalado la llave de fuerza, se recomienda colocar en ella un trozo de tubo del mismo diámetro que el tubo que se está bajando y ajustar las mordazas a fin de asegurar un contacto adecuado y una rotación suave de las cabezas de los insertos sin que se produzca ninguna obstrucción ni interrupción de la rotación durante el torqueado.

3.3.2 EQUIPOS DE MONITOREO DE TORQUE.

Los equipos de monitoreo de torque que se utilicen deben poder aceptar o rechazar automáticamente el enrosque de una conexión.

Existen tres tipos básicos de equipos que permiten obtener una lectura de torque:

3.3.2.1 Medidor de torque

Generalmente hay un medidor de torque montado a la llave de fuerza, este debe calibrarse por lo menos cada tres meses y debe tener un certificado donde figuren los datos de la calibración actual, así como la fecha de la siguiente calibración. El medidor de torque y el indicador del dispositivo para control de torque tiempo/vueltas deben dar lecturas coincidentes durante el ajuste preliminar.

3.3.2.2 Dispositivo de monitoreo torque/vueltas

Las conexiones API deben enroscarse hasta el número correcto de vueltas pasada la posición de ajuste manual. Para poder determinar esta posición, se puede utilizar un sistema de monitoreo torque/vueltas que permita medir vueltas en centésimas de revolución.

3.3.2.3 Dispositivo de monitoreo torque/tiempo

Este dispositivo se utiliza con suma frecuencia en las conexiones premium que tienen hombros internos y externos y sellos metal-metal. Estas superficies metálicas deben enroscarse hasta alcanzar la posición adecuada.

Esto ocurre cuando los hombros de la conexión llegan a la posición correcta, para luego torquear el hombro para energizar el sello. Este equipo debe ser capaz de realizar veinte mediciones por segundo.

Dado que la mayoría de los displays tiempo/vueltas de torque convencionales son inadecuados para mostrar de manera exhaustiva las anomalías de enrosque, se debe utilizar un display realzado por computadora para monitorear el proceso. El equipo de monitoreo debe ser capaz de imprimir los gráficos de enrosque.

3.3.3 CARACTERÍSTICAS DE LAS LLAVES DE FUERZA

Las llaves de fuerza deben ser las adecuadas de acuerdo a la conexión que se vaya a enroscar. Por ejemplo:

No se recomienda usar una llave de 50.000 lb. pie para una junta que sólo requiere 4.000 lb/pie, dado que la inercia inherente durante el enrosque y la escala del medidor darán como resultado falta de precisión en la aplicación del torque.

Las llaves para barras de sondeo y portamechas son demasiado potentes e imprecisas como para enroscar las uniones de tubing y casing.

- 1. Si el enrosque se realiza a alta velocidad, las llaves resultan demasiado potentes. Por lo tanto, no deben utilizarse.
- 2. Utilizar insertos especiales o de alta densidad.

Se debe solicitar al contratista un certificado de calibración de fecha reciente. Debido al movimiento vertical del tubo cuando se enrosca o desenrosca una conexión, las llaves de fuerza deben tener libertad de moverse con el tubo.

Cuando se utilicen llaves con dispositivo de contrafuerza, es importante que exista libertad de movimiento entre la llave de fuerza y la de contrafuerza. Para ello, es necesario que:

• La llave de contrafuerza tenga suficiente carrera para compensar el acortamiento por enrosque.

- Las llaves de fuerza/contrafuerza tengan la suficiente flexibilidad para admitir un pin o box ligeramente curvado.
- Las llaves de fuerza/contrafuerza tengan suficiente flexibilidad para compensar la excentricidad normal entre el pin y box.

Nota

 Como el torque debe aplicarse por lo menos durante dos segundos, las válvulas de descarga deben usarse sólo como un sistema de seguridad para evitar el exceso de torque.

Se puede lograr un enrosque más preciso usando un sistema de monitoreo y/o registrador gráfico que presente los valores torque/vuelta. La precisión de la medición deberá ser superior a una centésima de vuelta.

3.3.4 UBICACIÓN DE LA LLAVE

Es importante verificar que la posición relativa de la llave de fuerza y cuña sea la correcta. Asimismo, hay que controlar que el cable de donde se suspenden las llaves permita quitarlas del medio y que no interfiera con otros cables o con el aparejo. Verificar que el compensador de peso se utilice para compensar el acortamiento por enrosque.

Controlar los insertos y mordazas de la llave para asegurarse de que tengan el diámetro adecuado y estén en buenas condiciones. Cuando se utilizan llaves hidráulicas, la presión en las mordazas debe ser lo suficientemente alta como para evitar que el tubo se deslice, pero no tan alta como para colapsarlos.

Es necesario verificar que la llave de contrafuerza esté a 90° respecto de la llave y del eje del tubo (vertical y horizontal) cuando la llave se encuentra en la posición en la que se aplicará el torque final.

3.3.5 CALIBRACIÓN DE LA CELDA DE CARGA

Se debe garantizar que la celda de carga fue calibrada inmediatamente antes de realizar el trabajo o presentar registro de calibración. La celda de carga puede ser calibrada en el equipo suspendiendo de ella un peso conocido.

Ejemplo de Calibración de la Celda de Carga:

- Torque a aplicar de 12.000 lb. pie.
- Brazo de la llave de 3 pies.

Entonces, la tensión sobre la línea será de: 12.000/3 = 4.000 lb.

Significa que si se suspende un peso 4.000 lb sobre la celda de carga, ésta deberá marcar 12.000.

Ejemplo:

Si tuviéramos un casing de 20 lb/pie, entonces se necesitarían 200 pies para llegar al peso de 4.000 lb (200 x 20).

3.3.6 APLICACIÓN DEL TORQUE

Durante el enrosque final, el torque debe monitorearse continuamente. Si se advierte un torque excesivo en el comienzo del enrosque, hay que detener el proceso y verificar la alineación vertical. Desenroscar la unión e inspeccionar que no se hayan producido daños en el pin o box.

Para conexiones API se utiliza un máximo de 25 r.p.m. y de 5 r.p.m. para las últimas vueltas.

En conexiones premium se utiliza un máximo de 20 r.p.m. y de 5 r.p.m. en las dos últimas vueltas. Si corresponde, se deben reemplazar los anillos de

sello en la conexión, si no hay evidencia de daños, se deberá aplicar grasa nuevamente y repetir el enrosque.

Una vez que la conexión se ha enroscado hasta la posición adecuada y/o dentro de los valores de torque especificados, liberar la llave de fuerza del cuerpo del tubo. Antes de continuar, es imprescindible verificar que los datos obtenidos mediante el sistema de monitoreo sean aceptables. Esto incluye el torque final, el torque aplicado al hombro y la forma general de las curvas torque/vueltas y/o torque/tiempo.

Todo enrosque que sea rechazado por cualquiera de los motivos antes mencionados deberá evaluarse antes de continuar. La evaluación consistirá en desenroscar la conexión y llevar a cabo una inspección visual exhaustiva de las roscas y las superficies de sello.

Si no se encuentran indicios de daños, podrá enroscarse nuevamente, si corresponde. Si la conexión tuviera anillos de sello, se deberán reemplazar por nuevos.

Después de cada enrosque, el área del tubo/cupla que fue sujetado por las llaves de fuerza/contrafuerza, así como el área de mordazas, deberá inspeccionarse visualmente para determinar si se ha dañado. Si hay demasiadas marcas provocadas por la llave en el tubo o en las cuplas, deberán evaluarse de acuerdo con la norma API 5CT ISO 11960(1) respecto a profundidad permisible. (VER ANEXO 1).

3.3.7 APLICACIÓN DE TORQUE EN UNIONES API BUTTRESS.

3.3.7.1 Rosca Buttress.

El valor de torque debe determinarse enroscando hasta que la cupla llegue a la base del triángulo marcado en el tubo. Luego de varias determinaciones se promediará un valor de torque a aplicar.

3.3.8 RECOMENDACIONES DE CONTROL DE TORQUE PARA CONEXIONES PREMIUM CON CUPLA

Las roscas premium son de fácil enrosque e instalación debido a su diseño a partir de una rosca Buttress modificada y hombro de torque en la cupla. Se recomiendan llaves de fuerza acordes al torque a aplicar e indicadores de torque bien calibrados que aseguren una correcta medición del torque aplicado.

Es importante que el sello metal-metal de la conexión premium se encuentre energizado por el torque aplicado. Esto asegurará la estanqueidad de la conexión. El hombro de torque de la cupla actúa como energizador del sello y tope de torque. Se recomienda no exceder los valores de torque dados para esta conexión, para no provocar deformaciones en el hombro.

3.4 TIEMPO DE OPERACIÓN PARA UN REVESTIDOR DE 20" CON UNA CONEXIÓN API BUTTRESS.

Dentro del tiempo de operación se considerara 4 factores importantes los cuales son:

- Enrosque y apriete.
- Tiempo de corrida por tubo.
- Cruce de Hilos.
- Velocidad de la corrida.

3.4.1 ENROSQUE Y APRIETE

Dentro de este concepto se toma en consideración los procedimientos necesarios para unir la conexión a la tubería de revestimiento.

En el procedimiento de unión se tiene lo siguientes procesos:

- Vueltas teóricas.
- Enrosque.
- Ultima vuelta.

3.4.1.1 Vueltas teóricas.

Se refiere al número de vueltas que se puede dar a la conexión según la teoría y geometría de la conexión, en el caso de una rosca API Buttress de 20" las vueltas teóricas para tener un acople adecuado son 11.80.

3.4.1.2 Enrosque

Es el proceso de unión de la conexión según lo expuesto anteriormente y se refiere a las r.p.m. que se le puede aplicar a la conexión de acuerdo al tipo de conexión en el caso de una conexión API Buttress de 20" es de 10 r.p.m. antes de llegar a la última vuelta.

3.4.1.3 Última vuelta.

Luego de haber aplicado correctamente los principios de enrosque se llega a la última vuelta en el enrosque en el que se tiene que controlar la llave de fuerza y bajar las r.p.m., en este caso de una conexión API Buttress de 20" es 4 r.p.m.

Al acabar de enroscar y apretar la conexión API Buttress de 20" se tomó el tiempo total que se demoró ese proceso y el tiempo total de este proceso fue de 1.33 minutos.

3.4.2 TIEMPO DE CORRIDA POR TUBO.

Dentro de este concepto se toma en consideración los procedimientos necesarios para manejar la tubería de revestimiento y la unión de la conexión a la tubería de revestimiento.

En el procedimiento de corrida de tubo se tiene lo siguientes procesos:

- Manejo.
- Emboque.

- Enrosque y apriete.
- Bajada.

3.4.2.1 *Manejo*.

Maneje todos los tubos con los protectores de rosca colocados. Antes de hacer rodar o levantar tubos de conexiones integrales, instale un tapón de maniobra en el extremo box y asegúrese que los protectores del lado pin están colocados. Si un extremo box no permite la colocación del tapón de maniobra, el tubo correspondiente debe ser segregado.

En el caso de una conexión API Buttress de 20" el tiempo de manejo en la corrida del tubo de revestimiento es de 1.20 minutos.

3.4.2.2 Emboque

La guía de emboque se usa para guiar el ensamble del pin en el box y minimizar los daños que puedan producirse en la conexión cuando la junta se acopla incorrectamente. La guía de emboque debe inspeccionarse antes de proceder a la bajada al pozo, para que los insertos de elastómetro se encuentren correctamente ajustados y en buenas condiciones. En el caso de una conexión API Buttress de 20" el tiempo de emboque en la corrida del tubo de revestimiento es de 0.20 minutos.

3.4.2.3 Enrosque y apriete.

En el caso de una conexión API Buttress de 20" el tiempo de enrosque y apriete de la tubería en la corrida del tubo de revestimiento es de 1.33 minutos.

3.4.2.4 Bajada

El proceso luego del enrosque y apriete de una tubería con otra es la bajada de la tubería de revestimiento este es un proceso que en el caso de una conexión API Buttress de 20" se demora 1 minuto aproximadamente por tubería de revestimiento hasta llegar al punto donde se podrá enroscar la siguiente tubería.

3.4.3 CRUCE DE HILOS

Dentro de este concepto se toma en consideración los procedimientos necesarios para desenroscar, revisar y volver a enroscar una conexión si esta sigue funcional o cambiar la conexión si esta ha sido dañada en el caso de que exista un cruce de hilos que en el mejor de los casos en una conexión API Buttress de 20" se da una vez cada seis tubos.

En el procedimiento de reparación de cruce de hilos se tiene lo siguientes procesos:

- Manejo.
- Enrosque y apriete.
- Limpieza, inspección y reparación.
- Llave en reversa.

3.4.3.1 *Manejo*

Es un proceso en el cual al intentar manejar la conexión se da cuenta en los diagramas o según experiencia de campo que ha existido un cruce de hilo y es necesario desenroscar y revisar los hilos de la conexión.

El manejo que se le da a una conexión en el caso de existir un cruce de hilos en una conexión API Buttress de 20" es de 0.40 minutos.

3.4.3.2 Enrosque y Apriete

Debido a que si existe un cruce de hilo es necesario desenroscar y volver a enroscar la misma conexión o una nueva de ser el caso el tiempo de enrosque y apriete será el doble por este motivo el tiempo de enrosque y apriete en una conexión API Buttress de 20" es de 2.66 minutos.

3.4.3.3 Limpieza, inspección y reparación.

Una vez desenroscada la conexión se procede a hacer una limpieza de la conexión de impurezas como limallas o residuos de la grasa API, para realizar la inspección en campo de la conexión para ver si puede volver a ser utilizada o tiene que ser reemplazada para no arriesgar el pozo; luego de la inspección la conexiones que son reemplazadas son sometidas a un proceso de reparación ya sea en campo o en las fábricas.

El tiempo que se demora en la limpieza, la inspección y la reparación de una conexión API Buttress de 20" es de 1.80 minutos.

3.4.3.4 Llave en reversa

Para desenroscar la conexión se tiene que poner la llave en reversa y el tiempo necesario para este proceso en una conexión API Buttress de 20" es de 0.50 minutos.

3.4.4 VELOCIDAD DE LA CORRIDA

Dentro de este concepto se toma en consideración tres resultados finales que son:

- Average de tiempo por tubo.
- Tubos bajados en el hoyo por hora.
- Tiempo de reducción de la operación.

3.4.4.1 Average de tiempo por tubo.

Es un tiempo promedio en minutos que se demora en bajar una junta y se expresa en [min/jt].

El Average de tiempo por tubo en una conexión API Buttress de 20" es de 4.62 minutos/junta.

3.4.4.2 Tubos bajados en el hoyo por hora.

Es la cantidad de tubos que se bajan en el hoyo en una hora de corrida esta relación se la puede calcular en base al Average de tiempo por tubo y se la expresa en [jt/hora].

$$Tubos\ bajados\ en\ el\ hoyo\ por\ hora = \frac{60\ minutos}{1\ hora*4.62\ minutos/jt} = 12.98\ jt/hora$$

Los tubos bajados en una hora con una conexión API Buttress de 20" dentro del hoyo son 12.98 juntas.

3.4.4.3 Tiempo de reducción de la operación.

Este tiempo de reducción de la operación será el tiempo resultante de comparar la corrida de la tubería de revestimiento con una conexión API Buttress de 20" y con una conexión TSH-ER de 20", y lo podremos observar en las tablas 3.1. y 3.2.

Tabla 3.1: Tiempo de operación de una conexión API BTC en la corrida de tubería de revestimiento de 20".

		Unidades	API Buttress
	Vueltas teóricas.	vueltas	11,8
Бически	Enrosque.	rpm	10
Enrosque y apriete	Última vuelta.	rpm	4
y apriete	Tiempo total	minutos	1,33
	ERTM reducción de tiempo.	%	
T'	Manejo.	minutos	1,2
Tiempo De Corrida Por	Emboque.	minutos	0,2
Tubo.	Enrosque y apriete.	minutos	1,33
Tubo.	Bajada.	minutos	1
	Manejo.	minutos	0,4
Cruce de	Enrosque y apriete.	minutos	2,66
Hilos	Limpieza, inspección y reparación.	minutos	1,8
	Llave en reversa.	minutos	0,5
	Average de tiempo por tubo.	minutos/junt	4,62
Velocidad		а	.,02
de la corrida	Tubos bajados en el hoyo por hora.	junta/hora	12,98
ia corrida	Tiempo de reducción de la operación.	%	

Fuente: Consorcio Shushufindi.

Elaborado: Eduardo Aules

Tabla 3.2: Tiempo de operación de una conexión TSH-ER en la corrida de tubería de revestimiento de 20".

		Unidades	TSH - ER
	Vueltas Teóricas.	vueltas	4,25
F	Enrosque.	rpm	10
Enrosque y apriete	Última Vuelta.	rpm	4
y aprilete	Tiempo Total	minutos	0,58
	ERTM Reducción de tiempo.	%	<mark>56,77</mark>
Tiomas Do	Manejo.	minutos	1,2
Tiempo De Corrida Por	Emboque.	minutos	0,2
Tubo.	Enrosque y apriete.	minutos	0,58
1450.	Bajada.	minutos	1
	Manejo.	minutos	
Cruce de	Enrosque y apriete.	minutos	
Hilos	Limpieza, inspección y reparación.	minutos	
	Llave en Reversa.	minutos	
Volocidod da	Average de tiempo por tubo.	minutos/junta	2,98
Velocidad de la corrida	Tubos bajados en el hoyo por hora.	junta/hora	20,17
ia corrida	Tiempo de reducción de la operación.	%	<mark>35,65</mark>

Fuente: Consorcio Shushufindi.

Elaborado: Eduardo Aules

3.5 ANÁLISIS DE LA TABLA DE TIEMPOS COMPARATIVA EN LA CORRIDA DE 20".

Como se puede observar en la tabla comparativa de tiempos una reducción bastante importante se da porque la conexión TSH-ER al tener menos TPI que la conexión API Buttress no existe el cruce de hilos lo cual nos ayuda a ahorrar cada seis tubos que es el promedio de cruce de hilos 5.36 minutos.

El otro factor en el cual nos permitimos ahorrar tiempo es en el enrosque ya que la conexión TSH-ER al tener menos TPI que la conexión API Buttress se puede enroscar en un tiempo de 0.58 minutos en comparación a 1.33

minutos de la conexión API Buttress. Esto nos ayuda a ahorrar un 35.65% de tiempo en la bajada de tubería de revestimiento de 20".

3.6 TIEMPO DE OPERACIÓN PARA UN REVESTIDOR DE 13 3/8" CON UNA CONEXIÓN API BUTTRESS.

Dentro del tiempo de operación se considerara 4 factores importantes los cuales son:

- Enrosque y apriete.
- Tiempo de corrida por tubo.
- Cruce de hilos.
- Velocidad de la corrida.

Las Tablas 3.3 y 3.4 indican los tiempos de operación en 13 3/8".

Tabla 3.3: Tiempo de operación de una conexión API BTC en la corrida de tubería de revestimiento de 13 3/8".

		Unidades	API Buttress
	Vueltas teóricas.	vueltas	12,42
Enrocauo	Enrosque.	rpm	10
Enrosque y apriete	Última vuelta.	rpm	4
y aprilete	Tiempo total	minutos	1,39
	ERTM Reducción de tiempo.	%	
Tiomno Do	Manejo.	minutos	0,85
Tiempo De Corrida Por	Emboque.	minutos	0,1
Tubo.	Enrosque y apriete.	minutos	1,39
Tubo.	Bajada.	minutos	0,66
	Manejo.	minutos	0,24
Cruce de	Enrosque y apriete.	minutos	2,78
Hilos	Limpieza, inspección y reparación.	minutos	1,8
	Llave en reversa.	minutos	0,5
Velocidad de	Average de tiempo por tubo.	minutos/junta	3,89
la corrida	Tubos bajados en el hoyo por hora.	junta/hora	15,43
ia corrida	Tiempo de reducción de la operación.	%	

Fuente: Consorcio Shushufindi.

Elaborado: Eduardo Aules.

Tabla 3.4: Tiempo de operación de una conexión TSH-ER en la corrida de tubería de revestimiento de 13 3/8".

		Unidades	TSH - ER
	Vueltas Teóricas.	vueltas	6,93
Enrocauov	Enrosque.	rpm	10
Enrosque y apriete	Última Vuelta.	rpm	4
apriete	Tiempo Total	minutos	0,84
	ERTM Reducción de tiempo.	%	<mark>39,44</mark>
Tiomno Do	Manejo.	minutos	0,85
Tiempo De Corrida	Emboque.	minutos	0,1
Por Tubo.	Enrosque y apriete.	minutos	0,84
TOT TUDO.	Bajada.	minutos	0,66
	Manejo.	minutos	
Cruce de	Enrosque y apriete.	minutos	
Hilos	Limpieza, inspección y reparación.	minutos	
	Llave en Reversa.	minutos	
Velocidad de	Average de tiempo por tubo.	minutos/junta	2,45
la corrida	Tubos bajados en el hoyo por hora.	junta/hora	24,46
ia corrida	Tiempo de reducción de la operación.	%	<mark>36,93</mark>

Fuente: Consorcio Shushufindi.

Elaborado: Eduardo Aules.

3.7 ANÁLISIS DE LA TABLA DE TIEMPOS COMPARATIVA EN LA CORRIDA DE 13 3/8".

Como se puede observar en la tabla comparativa de tiempos una reducción bastante importante se da porque la conexión TSH-ER al tener menos TPI que la conexión API Buttress no existe el cruce de hilos lo cual nos ayuda a ahorrar cada seis tubos que es el promedio de cruce de hilos 5.32 minutos.

El otro factor en el cual nos permitimos ahorrar tiempo es en el enrosque ya que la conexión TSH-ER al tener menos TPI que la conexión API Buttress

se puede enroscar en un tiempo de 0.84 minutos en comparación a 1.39 minutos de la conexión API Buttress.

Esto nos ayuda a ahorrar un 36.93% de tiempo en la bajada de tubería de revestimiento de 13 3/8".

CAPITULO 4

4 ANÁLISIS TÉCNICO - ECONÓMICO.

El estudio se enfoca en la factibilidad de implementar una nueva conexión de la tubería de revestimiento para los pozos a perforar en el campo Shushufindi.

En los capítulos anteriores se ha especificado las características de las conexiones a comparar así como el análisis de tiempo de corrida de la tubería de revestimiento con las diferentes conexiones tanto en 20" y 13 3/8".

Basados en estos aspectos previos, el estudio ahora se centrara en la parte técnica y económica del proyecto para ver la factibilidad que tiene el mismo.

4.1 ANÁLISIS ECONÓMICO.

En la industria petrolera la rentabilidad es alta, por lo cual las inversiones son recuperadas a corto plazo de 9 a 12 meses, para asegurar la recuperación de la inversión y obtener ganancias del proyecto.

A continuación se presentan la evaluación financiera del proyecto, considerando el pago que hará el Estado Ecuatoriano a Consorcio Shushufindi por cada barril de petróleo extraído por encima de la curva base cuyo precio se estableció en el contrato de \$30.6 por barril de petróleo.

El objetivo de la evaluación económica del presente estudio, es determinar si el proyecto es viable o no; y cuál es el beneficio económico que generará el mismo.

La información para la evaluación económica fue proporcionada por el Consorcio Shushufindi en el área de IPM (Integrated Project Management), Tenaris y TIW.

Los datos económicos proporcionados son los siguientes: costos de las corridas de tubería de revestimiento; así como los costos de las conexiones utilizadas en el estudio.

El este estudio económico analizaremos principalmente el valor actual neto o valor presente neto (V.A.N o V.P.N.), la tasa interna de retorno (T.I.R); además evaluaremos los costos que nos genere en un pozo con conexiones BTC y los costos que nos genera un pozo con conexión TSH-ER que determinarán si el proyecto es o no rentable.

4.1.1 CRITERIOS PARA LA EVALUACIÓN ECONÓMICA

4.1.1.1 Valor actual neto (V.A.N.):

También es conocido como Net Present Value N.P.V. y es la ganancia extraordinaria que genera el proyecto, medido en monedas actuales (monedas actuales es el valor del dinero medido al día de hoy).

Es un procedimiento que permite calcular el valor presente de un determinado número de flujos de caja futuros, originados por una inversión. La metodología consiste en descontar al momento actual (es decir, actualizar mediante una tasa) todos los flujos de caja futuros del proyecto. A este valor se le resta la inversión inicial, de tal modo que el valor obtenido es el valor actual neto del proyecto.

El método de valor presente es uno de los criterios económicos más ampliamente utilizados en la evaluación de proyectos de inversión. Consiste en determinar la equivalencia en el tiempo 0 de los flujos de efectivo futuros que genera un proyecto y comparar esta equivalencia con el desembolso inicial. Cuando dicha equivalencia es mayor que el desembolso inicial, entonces, es recomendable que el proyecto sea aceptado.

Para el cálculo del VAN se usa la siguiente fórmula:

$$VAN = \sum_{t=1}^{n} \frac{V_t}{(1+k)^t} - I_0$$
 Ec. 4.1

Dónde:

VAN=Valor Actual Neto.

V_t=Representa los flujos de caja en cada periodo t.

I₀=Es el valor del desembolso inicial de la inversión.

n=Es el número de periodos considerado.

K=Es el tipo de interés (tasa de descuento o actualización).

Si el proyecto no tiene riesgo, se tomará como referencia el tipo de la renta fija, de tal manera que con el VAN se estimará si la inversión es mejor que invertir en algo seguro, sin riesgo específico, esto se indica en la tabla 4.1.

Tabla 4.1.: Interpretación del valor actual neto.

VALO	R	SIGNIFICADO	DECISIÓN A TOMAR
VAN>	0	La inversión produciría	Se acepta el proyecto
		ganancias por encima de la	
		rentabilidad exigida	
VAN	<	La inversión produciría	No se acepta el proyecto
0		pérdidas por encima de la	
		rentabilidad exigida	
VAN	=	La inversión no produciría	Dado que el proyecto no agrega valor
0		ni ganancias ni pérdidas	monetario por encima de la rentabilidad
			exigida, la decisión debería basarse en
			otros criterios.

Fuente: La gran enciclopedia de Economía.

Elaborado: Eduardo Aules.

En el análisis económico vamos a tomar los datos mostrados en la tabla 4.2; y luego con los datos de la tabla 4.3 a 15 años del Consorcio Shushufindi se podrá realizar nuestra VAN.

Tabla 4.2.: Datos para el cálculo del valor actual neto.

DATOS		
CURVA BASE	45000	
PRECIO DE BARRIL	30,6	
AÑO FINANCIERO	360	
AÑOS DEL PROYECTO	5	
# DE POZOS POR AÑO	30	
COSTO PROMEDIO DEL POZO	4500000	
INVERSIÓN EN PERFORACIÓN	-675000000	
INVERSIÓN INICIAL DEL PROYECTO	-1678700000	

Fuente: Consorcio Shushufindi.

Realizado: Eduardo Aules.

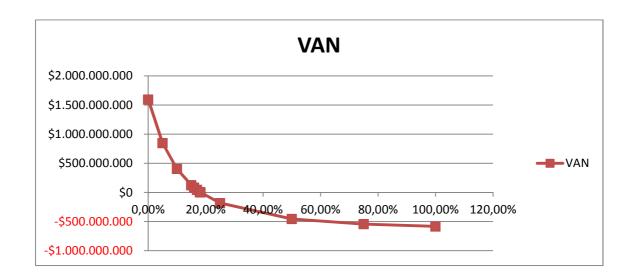
Tabla 4.3.: Cálculo de las cajas de flujo anuales.

			CAJA	DE FLUJO
AÑO	PRODUCCIÓN	DIFERENCIA	DIARIA	ANUAL
1	50000	5000	153000	55080000
2	55000	10000	306000	110160000
3	57000	12000	367200	132192000
4	59000	14000	428400	154224000
5	60000	15000	459000	165240000
6	60000	15000	459000	165240000
7	60000	15000	459000	165240000
8	60000	15000	459000	165240000
9	60000	15000	459000	165240000
10	60000	15000	459000	165240000
11	60000	15000 459000 16		165240000
12	60000	15000	459000	165240000
13	60000	15000	459000	165240000
14	60000	15000	459000	165240000
15	60000	15000	459000	165240000

Fuente: Consorcio Shushufindi.

Realizado: Eduardo Aules.

En la Tabla 4.4 se puede observar los valores que nos ha dado el VAN para diferentes tasas de actualización.


Tabla 4.4.: Cálculo del van a diferentes tasas de actualización.

D	VAN
0,00%	\$1.594.296.000
5,00%	\$847.650.229
10,00%	\$403.808.934
15,00%	\$125.751.707
16,00%	\$83.132.953
17,00%	\$43.865.279
18,00%	\$7.622.782
18,22%	\$0
25,00%	-\$182.107.392
50,00%	-\$455.162.703
75,00%	-\$543.004.648
100,00%	-\$583.434.543

Realizado: Eduardo Aules.

En la Figura 20 se observa la curva que toma en VAN en el proyecto Shushufindi.

Figura 20 : Gráfica de la curva del valor actual neto del proyecto Shushufindi.

Realizado: Eduardo Aules.

De acuerdo a las tablas y graficas realizadas en un programa de Excel se puede observar que el proyecto es factible ya que se tiene ganancias, incluso si la tasa de actualización es mayor a la tasa de actualización que se tiene en los bancos del país que va desde 3.85% 5.65%, de acuerdo al plazo que se deje el capital en el banco.

4.1.1.2 Tasa interna de retorno (T.I.R.)

La TIR es el indicador más conveniente para conocer la factibilidad de un proyecto. Es el indicador más utilizado, pues es más completo que el VAN Y B/C.

La TIR está basada en el VAN calculado para el proyecto que en el caso del Proyecto es de \$403.808.934, tomando la referencia del 10%.

El resultado de la tasa interna de retorno significa que si la máxima tasa de interés que pagan los bancos, es menor, el proyecto es factible. En el caso en que la TIR sea menor a las tasas de intereses que pagan los bancos, el proyecto no es factible. Cuando el VAN toma un valor igual a 0, k pasa a llamarse TIR (tasa interna de retorno). La TIR es la rentabilidad que nos está proporcionando el proyecto.

4.2 ANÁLISIS TÉCNICO.

Este estudio técnico conforma la segunda etapa de inversión del proyecto en el que se contemplara los aspectos técnicos operativos necesarios en el uso eficiente de las conexiones TSH-ER para la producción de petróleo en el campo Shushufindi.

La importancia de este estudio se deriva de la posibilidad de llevar a cabo una valorización económica de las variables técnicas del proyecto, que permitan una apreciación exacta o aproximada de los recursos necesarios para el proyecto además de proporcionar información de utilidad al estudio económico-financiero.

Todo estudio técnico tiene como principal objetivo el demostrar la viabilidad técnica del proyecto que justifique la alternativa técnica que mejor se adapte a los criterios de optimización.

En particular, los objetivos del estudio técnico para el presente estudio son los siguientes:

- Determinar la conexión más adecuada en base a factores que condicionen su mejor rendimiento.
- Enunciar las características con que cuenta el campo Shushufindi donde se utilizaran las conexiones.
- Definir el tamaño y capacidad del proyecto.
- Hacer una hoja técnica de las conexiones para ver las características que hacen que la conexión TSH-ER una conexión optima en el campo Shushufindi.
- Describir la viabilidad técnica necesaria para la instalación de las conexiones dentro del campo Shushufindi.
- Especificar el presupuesto de inversión, dentro del cual queden comprendidos los recursos materiales, humanos y financieros necesarios para su operación.
- Incluir un cronograma de inversión de las actividades que se contemplan en el proyecto hasta su finalización.

4.3 OBJETIVOS DEL ESTUDIO TÉCNICO

4.3.1 DETERMINAR LA CONEXIÓN MÁS ADECUADA EN BASE A FACTORES QUE CONDICIONEN SU MEJOR RENDIMIENTO.

Los perfiles de las rosca de las conexiones TSH-ER y BTC tienen variaciones significativas que nos ayudan a describir su mayor rendimiento, los factores que se analizarán dentro del perfil de rosca serán:

Hilos por pulgada.

- Conicidad.
- Lead (paso de rosca).
- Altura de rosca.

4.3.1.1 Hilos por pulgada

Los hilos por pulgada o TPI de una rosca son un factor que nos ayuda a mejorar la velocidad de funcionamiento de una conexión y también nos ayuda a minimizar el cruce de hilos que se da en el enrosque de una conexión.

Si se analiza el caso de una rosca TSH-ER de 20" y una rosca BTC de 20" se puede observar que en la rosca TSH-ER existen 3 hilos en una pulgada de rosca a comparación que los 5 hilos en una pulgada de rosca BTC, esta observación nos permite saber con exactitud que la conexión TSH-ER tendrá mayor rapidez de funcionamiento que la conexión BTC así dando en este punto un mayor rendimiento a la conexión TSH-ER.

4.3.1.2 *Conicidad*

La conicidad de nos permite saber que tan profundo puede ser el emboque de una rosca y es un factor que nos ayuda entre mayor sea la conicidad a reducir el cruce de hilos de una rosca y también a incrementar la velocidad de apriete de la conexión.

Si se analiza el caso de una rosca TSH-ER de 20" y una rosca BTC de 20" se puede observar que en la rosca TSH-ER tiene una conicidad de 12.5% en comparación de 8.33% de conicidad que tiene una rosca BTC, esta observación nos permite saber con exactitud que la conexión TSH-ER tendrá un emboque más profundo reduciendo el riesgo de cruce de hilos y así incrementando la velocidad de apriete de la conexión que la conexión BTC así dando en este punto un mayor rendimiento a la conexión TSH-ER.

4.3.1.3 Lead

Lead o también conocido como (paso de la rosca) se define como la distancia desde un punto en un hilo hasta un punto correspondiente en el siguiente hilo de la rosca, medido en paralelo al eje de la rosca. Las tolerancias

de pase de hilo se expresan en términos de "por pulgada" ("por milímetro") de hilos y "acumulativos", y los errores de pase de hilo deben ser determinados en consecuencia. Para mediciones de intervalos más largos que no sean de 1 pulgada (25,4 mm) de la desviación observada se debe calcular en por pulgada (por mm). Para las mediciones acumulativas, las desviaciones observadas representan la desviación acumulada.

La manera de llegar a esta medida de paso de hilo también se la puede comparar de acuerdo al perfil de rosca de estas conexiones, así por ejemplo:

TSH-ER de 20"

En una rosca TSH-ER de 20" se sabe que esta tiene 3 hilos en una pulgada de rosca entonces se procede al siguiente calculo básico.

$$lead = \frac{1 \ pulgada}{3 \ hilos} * \frac{25.4 \ mm}{1 \ pulgada} = 8,466 \ mm \ cada \ paso \ de \ hilo$$

• BTC de 20"

Y en una rosca BTC de 20" se sabe que esta tiene 5 hilos en una pulgada de rosca entonces se procede al siguiente calculo básico.

$$lead = \frac{1 \ pulgada}{5 \ hilos} * \frac{25.4 \ mm}{1 \ pulgada} = 5,08 \ mm \ cada \ paso \ de \ hilo$$

Si se analiza el caso de una rosca TSH-ER de 20" y una rosca BTC de 20" se puede observar que en la rosca TSH-ER tiene un paso de hilo de 8,466mm en comparación de 5,08mm de paso de hilo que tiene una rosca BTC, esta observación nos permite saber con exactitud que la conexión TSH-ER tendrá menor riesgo de cruce de hilos y así incrementando la velocidad de apriete de la conexión que la conexión BTC así dando en este punto un mayor rendimiento a la conexión TSH-ER.

4.3.1.4 Altura de rosca

Es la distancia entre la cresta y la raíz, perpendicular al eje de la rosca, si se analiza el caso de una rosca TSH-ER de 20" y una rosca BTC de 20" se puede observar que en la rosca TSH-ER tiene una altura de rosca de 2 mm en comparación a la altura de rosca de 1,575 mm que tiene una rosca BTC.

4.3.2 ENUNCIAR LAS CARACTERÍSTICAS CON QUE CUENTA EL CAMPO SHUSHUFINDI DONDE SE UTILIZARAN LAS CONEXIONES.

El campo Shushufindi es operado por la alianza entre Petroecuador y el Consorcio Shushufindi S.A., cuyo contrato fue firmado el 6 de Febrero del 2012.

El consorcio Shushufindi S.A. está integrado por la francesa Schlumberger en un 60%, por la argentina Tecpetrol en un 25% y por estadounidense KKR un 15%.

El consorcio se comprometió a invertir \$1.678,7 millones en los próximos cinco años para subir la producción hasta 60 mil barriles por día.

Una de las novedades del contrato es la posibilidad de perforar en el precretácico, una capa de subsuelo más profundo que la actual de donde se extrae el crudo, se abre la posibilidad de encontrar nuevas reservas de crudo que podría modificar completamente el horizonte de explotación petrolera, destacó el Gobierno.

De igual manera, la renta petrolera a favor del Estado en el campo Shushufindi, hasta el 2027 (sobre la producción adicional) será de \$3.132,6 millones, equivalente a un 94,57%, mientras que el consorcio se quedará con \$179,9 millones, igual al 5,43%.

El campo Shushufindi se encuentra ubicado, al Sur del campo Atacapi, al Sur-Oeste del campo Libertador y al Nor-Este del campo Sacha en las Provincias de Orellana y Sucumbíos.

El plan de perforación de esta alianza consiste en 5 años de Perforación y 15 años de reacondicionamiento de pozos en el campo Shushufindi-Aguarico, la producción que se tenía hasta el 21 de Enero del 2012 fue de 45.153 barriles de petróleo por día.

La alianza entre Petroecuador y el Consorcio Shushufindi S.A. comenzó la perforación del campo Shushufindi el 16 de Marzo del 2012 con el pozo SSF-136D en la plataforma SSF-03 utilizando el equipo de perforación SINOPEC-169 y que fue puesto en producción a inicios de mayo con 1,450 barriles al día. La profundidad total fue de 10,080' (MD) / 9,508.08 (TVD). Este pozo fue completado oficialmente en Mayo de 2012; las pruebas iniciales fueron de 1450 BPPD para el yacimiento "U" inferior.

Esos acuerdos le permitirán al Estado pagar una tarifa por la extracción del crudo \$30,62 en Shushufindi.

Este campo está en producción, pero con una declinación de extracción que supera el 60%, es decir que de cada barril de crudo sacado solo el 40% es petróleo, la diferencia es agua y otros componentes.

Según la información proporcionada por la petrolera, la producción promedio día de ese campo, reportada en febrero 2012, fue de 46324,4 barriles diarios, marzo 2012, 48051,3 y abril 2012, 45878 barriles diarios, mientras que la línea referencial de producción o curva base fue: 43633, 43169 y 42713 barriles diarios para febrero, marzo y abril, respectivamente, por lo que la diferencia en barriles diarios fue 2691,4; 4882, 3; y 3165 en esos meses.

EP Petroecuador paga por cada barril \$30,6, por lo que debió pagar en febrero \$2470338; en marzo \$4481676; y en abril \$2905470, lo que da un total de \$9857484 en ese trimestre.

Según informó EP-Petroecuador, desde el 6 de febrero, la producción de Shushufindi se situó en 46 699 barriles diarios.

4.3.3 DEFINIR EL TAMAÑO Y CAPACIDAD DEL PROYECTO.

En la fase de perforación en el campo Shushufindi que está siendo operado por la alianza EP-Petroecuador y el Consorcio Shushufindi S.A.; se tiene planificado realizar la perforación aproximada de 30 pozos por año desde Febrero del 2012 hasta Febrero de 2017, por lo tanto el tamaño de proyecto de perforación sobre el cual se realiza el presente análisis es de 150 pozos.

La capacidad de producción de este proyecto en los 5 años de perforación y los 15 años de reacondicionamiento de pozos pretende llegar a 60000 barriles de petróleo por día, con un pago por cada barril encima de la curva base de producción de 30,6 dólares americanos llegando a un total de 179.9 millones de dólares americanos durante los 15 años.

4.3.4 HACER UNA HOJA TÉCNICA DE LAS CONEXIONES PARA VER LAS CARACTERÍSTICAS QUE HACEN QUE LA CONEXIÓN TSH-ER UNA CONEXIÓN OPTIMA EN EL CAMPO SHUSHUFINDI.

Las hojas técnicas de las conexiones utilizadas para este análisis se las puede observar en los ANEXOS 2 y 3.

4.3.5 DESCRIBIR LA VIABILIDAD TÉCNICA NECESARIA PARA LA INSTALACIÓN DE LAS CONEXIONES DENTRO DEL CAMPO SHUSHUFINDI.

Como se ha hablado previamente en este análisis las conexiones TSH-ER son factibles técnicamente de utilizar en las tuberías de revestimiento que se usa actualmente en el campo Shushufindi, los pozos que se perforan en el campo Shushufindi utilizan actualmente por disponibilidad tuberías de grado K55, tanto para las tuberías de 20", como para las tuberías de 13 3/8".

Las tuberías de revestimiento en las que las conexiones TSH-ER se utilizan se muestran a continuación en la tabla 4.5.

Tabla 4.5: Tuberías de revestimiento usadas en campo Shushufindi.

GRADOS DE	CASING	PESO
ACERO	CASING	(lb/ft)
K55	20"	94
		106,5
K55	13,375 "	54,5
		68

FUENTE: Consorcio Shushufindi

ELABORADO: Eduardo Aules.

La viabilidad de usar estas conexiones técnicamente se da por las características mejoradas que estas conexiones tienen en comparación a las conexiones actualmente ocupadas en el campo Shushufindi, así como la que se ha explicado en capítulos anteriores que es el ahorro significativo de tiempo.

4.3.6 ESPECIFICAR EL PRESUPUESTO DE INVERSIÓN, DENTRO DEL CUAL QUEDEN COMPRENDIDOS LOS RECURSOS MATERIALES, HUMANOS Y FINANCIEROS NECESARIOS PARA SU OPERACIÓN.

Para el análisis de presupuesto que se tiene para el uso de la conexión solo se necesita considerar los dos factores que entran en una corrida de tubería de revestimiento normal y estos son los siguientes:

- Costo de la corrida de la tubería de revestimiento.
- Costo de la conexión en la tubería de revestimiento.

En la parte del costo de la corrida de tubería de revestimiento en el campo Shushufindi se maneja una modalidad conocida como LumpSum, la cual será una constante para todos los pozos en la misma sección, ya que solo depende del servicio más no del material utilizado.

Así por ejemplo para la tubería de revestimiento de 20", el costo por correr esta tubería dentro de 2 días es de \$ 8 000; y si se da un retraso y la corrida no se la puede realizar dentro del plazo de dos días, el cobro por cada día adicional de servicio será de \$ 1 600.

Este costo especificado anteriormente no cambiará si se usa una conexión u otra. En la parte del costo de la conexión en la tubería de revestimiento los costos si variaran debido a que se involucra la conexión en sí.

Así por ejemplo el costo de una tubería de revestimiento K55 de 94 lb/ft de 20" con una conexión BUTTRESS el costo de la misma será de \$ 147 por cada pie de tubería y en el caso de la misma tubería con la conexión TSH-ER el costo será de \$ 203 por cada pie de tubería.

Esto demuestra que la tubería de revestimiento con conexión TSH-ER tiene un costo mayor que la tubería con conexión BUTTRESS, pero estos valores son amortizados por la capacidad de corrida que se tiene en la misma. Así se tiene que dentro del presupuesto para la perforación de un pozo en el campo Shushufindi está comprendido el cambio de conexión.

4.3.7 INCLUIR UN CRONOGRAMA DE INVERSIÓN DE LAS ACTIVIDADES QUE SE CONTEMPLAN EN EL PROYECTO HASTA SU FINALIZACIÓN.

Debido a que el proyecto de perforación operado por el Consorcio Shushufindi se da en un campo maduro, no se tuvo que hacer ninguna inversión previa para comenzar con la campaña de perforación de 5 años.

Entonces en el cronograma de inversión se indicará la inversión prevista para los 5 años de campaña de perforación a partir de febrero del 2012.

Entonces se da el siguiente cronograma tomando solo en cuenta la actividad de perforación donde interfiere directamente las conexiones analizadas en este documento se obtiene la Tabla 4.6.

Tabla 4.6: Inversión para la campaña de perforación en campo Shushufindi.

	NUMERO DE	INVERSIÓN			
	NUMERO DE POZOS INVERSIÓN MM 30 135 USD 30 135 USD 30 135 USD 30 135 USD 30 135 USD				
2012-2013	30	135 USD			
2013-2014	30	135 USD			
2014-2015	30	135 USD			
2015-2016	30	135 USD			
2016-2017	30	135 USD			

FUENTE: Consorcio Shushufindi

ELABORADO: Eduardo Aules.

El costo de un pozo utilizando las conexiones API BUTTRESS y las conexiones TSH-ER se pueden observar en los ANEXOS 4 y 5 respectivamente.

CAPITULO 5

5 CONCLUSIONES Y RECOMENDACIONES

5.1 CONCLUSIONES

Tenaris ERTM, cambia el número de hilos por pulgada en tuberías de revestimiento de diámetro externo mayor a 14", lo que hace que tenga un número menor de hilos por pulgada que una conexión BUTTRESS con el fin de aumentar la velocidad de funcionamiento de la conexión permitiendo a la vez reducir el cruce de hilos que se da aproximadamente una vez cada 6 tuberías de revestimiento.

Tenaris ERTM, tiene una mayor conicidad con el fin de obtener un emboque más profundo minimizando el riesgo de cruce de hilos, y así, permitiendo un incremento de la velocidad de apriete de la conexión de la tubería de revestimiento.

Tenaris ERTM, tiene un fuerte hombro de ángulo negativo que proporciona una excelente resistencia a la compresión para conexiones de grandes diámetros externos, por este motivo la conexión Tenaris ERTM nos permite la rotación de la tubería de revestimiento.

La reducción de tiempo en la corrida de la tubería de revestimiento con la conexión Tenaris ERTM, fue muy significativa en tuberías de revestimiento con diámetros externos grandes, como por ejemplo en la tubería de revestimiento de 20", donde el tiempo se redujo en un 56.77% en el enrosque y apriete lo que al final nos dio una reducción de tiempo de 35.65% en la velocidad de la corrida.

Usar Tenaris ERTM, en lugar de la conexión BUTTRESS, según los análisis realizados nos lleva a un ahorro significativo de dinero ya que se

permite reducir el tiempo del enrosque y apriete de la conexión, reducir el tiempo de la corrida de la tubería, reducir el tiempo de operación de los equipos de perforación aproximadamente un 35% y lo más importante que nos permite ahorrar en horas riesgo hombre.

La factibilidad del proyecto se da más que por el factor económico, por el beneficio de reducir el riesgo que pasa el personal en el campo cuando se encuentra realizando la corrida de la tubería de revestimiento.

5.2 RECOMENDACIONES.

Se recomienda que siempre se analice las nuevas tecnologías disponibles en el mercado, que nos ayuden a recudir las horas riesgo hombre como es el caso de la conexión TSH-ER.

Se recomienda que los diseños de tubería se hagan con más tiempo y técnicamente basándose en todos los factores de seguridad ya que siempre se ha hecho esta selección basándose en lo que se tiene por disponibilidad, por este motivo la conexión BTC siempre ha sido la escogida, siendo una conexión antigua que presenta errores como el cruce de hilos aproximadamente cada 6 tubos.

REFERENCIAS BIBLIOGRÁFICAS

American Petroleum Institute, <u>Specification for Casing and Tubing API 5CT</u>. Novena Edición. Washington, 2012. Editorial API Publishing Services.

American Petroleum Institute, <u>Specification for Threading, Gauging and Thread Inspection of Casing, Tubing, and Line Pipe Threads</u>. API 5B.DécimaEdición. Washington, 2010. Editorial API Publishing Services.

Schulumberger, Casing Design Manual. Francia, 2009.

VAM, VAM Premium Connections. 2002.

Tenaris Marketing Communications, <u>Prontuario Tamsa</u>. Segunda Revisión, Mexico, 2009.

Viking Engineering. L.C, <u>Tubular Design Tecnology Training</u>.Houston, 2013.

Tenaris Marketing Communications, Manual Tubulares. Mexico, 2013.

Tenaris Marketing Communications, <u>Premium Connections Catalogue</u>. México, 2013.

Tenaris, <u>Conexiones Premium-Serie Legacy-ER,</u> http://premiumconnectiondata.tenaris.com/index.php

ANEXOS

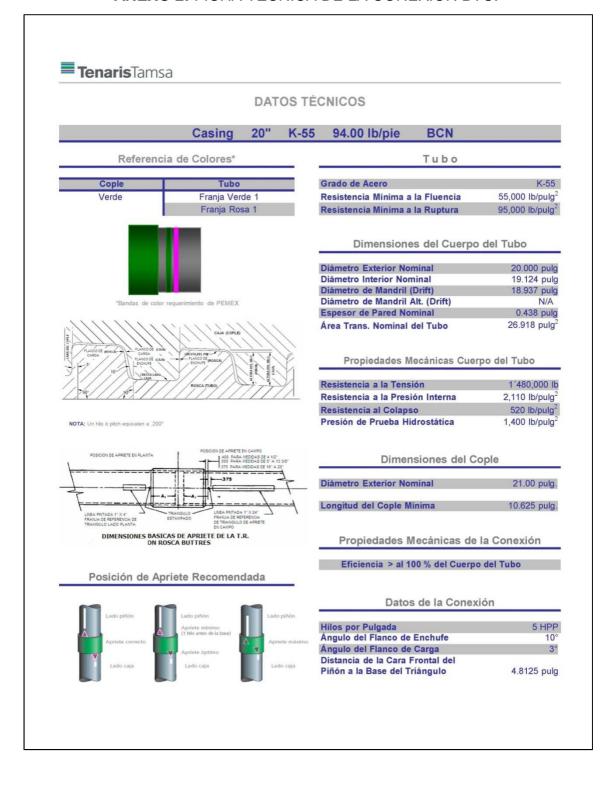
ANEXO 1: TABLA DE TORQUES DE LA CONEXIÓN TSH-ER.

SIZE	HOHINAL	WALL	SMYS OF		MAKE UPTORQU	E	SHOULDE	RTORQUE	YELD
(00)	WEIGHT	THICKNESS	STEEL GRADE	Minimum	Optimum	Maximum	Minimum	Maximum	TORQUE
in	Ib/ft	In	lesi	ff.lb	U1p	ft.lb	ft.lb	ft.fb	ff.lb
7	23.00	0.317	55	6480	7000	7530	1050	5250	10690
			80	7220	7800	8390	1170	5850	13930
			90	7630	8250	8870	1240	6190	15230
			95	7630	8250	8870	1240	6190	15870
			110	7630	8250	8870	1240	6190	17820
	35.00	0.000	125	8420	9100	9780	1370	6830	19760
	26.00	0.362	55	7400	8000	8600	1200	6000	12610
			80	8420	9100	9780	1370	6830	16570 18150
			90 95	8930 8930	9650 9650	10370 10370	1450 1450	7240 7240	18940
			110	8930	9650	10370	1450	7240	21310
			125	9340	10100	10860	1520	7580	23690
	29.00	0.406	55	8140	8800	9460	1320	6600	14680
	23.00	0.400	80	9250	10000	10750	1500	7500	19430
			90	9810	10600	11400	1590	7950	21330
			95	9810	10600	11400	1590	7950	22280
			110	9810	10600	11400	1590	7950	25130
			125	10550	11400	12260	1710	8550	27980
	32.00	0.453	55	8830	9550	10270	1430	7160	15970
			80	9990	10800	11610	1620	8100	21180
			90	10680	11550	12420	1730	8660	23270
			95	10680	11550	12420	1730	8660	24310
			110	10680	11550	12420	1730	8660	27440
			125	11290	12200	13120	1830	9150	30560
	35.00	0.496	55	9620	10400	11180	1560	7800	17210
			80	10450	11300	12150	1700	8480	22880
			90	11290	12200	13120	1830	9150	25150
			95	11290	12200	13120	1830	9150	26280
			110	11290	12200	13120	1830	9150	29680
			125	11840	12800	13760	1920	9600	33090
	38.00	0.540	55	9990	10800	11610	1620	8100	18210
			80	10920	11800	12690	1770	8850	24240
			90	11750	12700	13650	1910	9530	26650
			95	11750	12700	13650	1910	9530	27860
			110	11750	12700	13650	1910	9530	31480
			125	12210	13200	14190	1980	9900	35100
	41.00	0.590	55	10730	11600	12470	1740	8700	19410
			80 90	11660	12600	13550 14190	1890 1980	9450	25880 28480
				12210	13200			9900 9900	
			95 110	12210	13200	14190 14190	1980 1980	9900	29770 33660
			125	12210	14000	15050	2100	10500	37550
	44.00	0.640	55	11290	12200	13120	1830	9150	20570
	44.00	0.040	80	12210	13200	14190	1980	9900	27490
			90	12770	13800	14840	2070	10350	30260
			95	12770	13800	14840	2070	10350	31640
			110	12770	13800	14840	2070	10350	35800
			125	13510	14600	15700	2190	10950	39950
	46.00	0.670	55	11660	12600	13550	1890	9450	20680
			80	12580	13600	14620	2040	10200	27600
			90	13140	14200	15270	2130	10650	30370
			95	13140	14200	15270	2130	10650	31750
			110	13140	14200	15270	2130	10650	35900
			125	13880	15000	16130	2250	11250	40060
8 5/8	24.00	0.264	55	6600	7130	7660	1070	5350	11100
			80	7010	7580	8150	1140	5690	15060
			90	7260	7850	8440	1180	5890	16640
			95	7260	7850	8440	1180	5890	17430
			110	7510	8120	8730	1220	6090	19810
			125	7760	8390	9020	1260	6290	22180
	28.00	0.304	55	7640	8260	8880	1240	6200	13250
			80	8190	8850	9510	1330	6640	19040

SIZE	HOHINAL	WALL	SMYS OF		MAKE UPTORQU	E	SHOULD	ERTORQUE	YELD
(00)	WEIGHT	THICKNESS	STEEL GRADE	Minimum	Optimum	Maximum	Minimum	Maximum	TORQUE
in	Ib/lt	In	lesi	ff.lb	#Jb	ft.lb	ft.lb	ft.lb	ft.lb
8 5/8	28.00	0.304	90	8510	9200	9890	1380	6900	19960
			95	8510	9200	9890	1380	6900	20910
			110	8830	9550	10270	1430	7160	23780
			125	9160	9900	10640	1490	7430	26660
	32.00	0.352	55	8750	9460	10170	1420	7100	14760
			80	9420	10180	10940	1530	7640	20070
			90	9810	10610	11410	1590	7960	22190
			95	9810	10610	11410	1590	7960	23260
			110	10210	11040	11870	1660	8280	26440
			125	10620	11480	12340	1720	8610	29630
	36.00	0.400	55	10060	10870	11690	1630	8150	19130
			80	10980	11870	12760	1780	8900	26290
			90	11540	12470	13410	1870	9350	29160
			95	11540	12470	13410	1870	9350	30590
			110	12090	13070	14050	1960	9800	34880
	40.00	0.450	125 55	12650 11120	13670	14700	2050 1800	10250 9020	39180 20870
	40.00	0.430	80	12210	13200	14190	1980	9900	28680
			90	12870	13910	14950	2090	10430	31810
			95	12870	13910	14950	2090	10430	33370
			110	13520	14620	15720	2190	10970	38060
			125	14180	15330	16480	2300	11500	42740
	44.00	0.500	55	12150	13130	14110	1970	9850	22720
	44.00	0.500	80	13420	14510	15600	2180	10880	31250
			90	14200	15350	16500	2300	11510	34670
			95	14200	15350	16500	2300	11510	36370
			110	14970	16180	17390	2430	12140	41490
			125	15740	17010	18290	2550	12760	46610
	49.00	0.557	55	13270	14340	15420	2150	10760	24710
			80	14760	15960	17160	2390	11970	34040
			90	15670	16940	18210	2540	12710	37760
			95	15670	16940	18210	2540	12710	39630
			110	16570	17910	19250	2690	13430	45220
			125	17470	18890	20310	2830	14170	50810
	52.00	0.595	55	14050	15190	16330	2280	11390	26740
			80	15740	17010	18290	2550	12760	36920
			90	16750	18110	19470	2720	13580	40980
			95 110	16750 17760	18110 19200	19470 20640	2720 2880	13580 14400	43020 49120
			125	18780	20300	21820	3050	15230	55220
	54.00	0.625	55	14510	15690	16870	2350	11770	26870
	34.00	0,020	80	16280	17600	18920	2640	13200	37040
			90	17340	18740	20150	2810	14060	41110
			95	17340	18740	20150	2810	14060	43140
			110	18390	19880	21370	2980	14910	49240
			125	19450	21030	22610	3150	15770	55340
	58.70	0.687	55	15730	17000	18280	2550	12750	29860
			80	17800	19240	20680	2890	14430	41290
			90	19050	20590	22130	3090	15440	45860
			95	19050	20590	22130	3090	15440	48140
			110	20290	21930	23570	3290	16450	55000
			125	21530	23270	25020	3490	17450	61850
9 5/8	36.00	0.352	55	8510	9200	9890	1380	6900	20400
			80	9440	10200	10970	1530	7650	27280
			90	10080	10900	11720	1640	8180	30040
			95	10080	10900	11720	1640	8180	31410
			110	10080	10900	11720	1640	8180	35540
	40.00	0.305	125	12030	13000	13980	1950	9750	39670
	40.00	0.395	55 80	9530 10640	10300	11070 12360	1550 1730	7730 8630	25 200 34050
					11500				
			90 95	11290 11290	12200	13120 13120	1830 1830	9150 9150	37590 39360
			30	11290	12200	13120	1630	3130	33300

SØE	HOHINAL	WALL	SMYS OF		MAKE UPTORQUE		SHOULD	ERTORQUE	YELD
(00)	WEIGHT	THICKNESS	STEEL GRADE	Minimum	Optimum	Maximum	Minimum	Maximum	TORQUE
in	IbVIt	In	Icsi	ft.lb	#ID	ft.lb	ft.lb	ft.lb	ff.lb
9 5/8	40.00	0.395	110	11290	12200	13120	1830	9150	44660
			125	13510	14600	15700	2190	10950	49970
	43.50	0.435	55	10820	11700	12580	1760	8780	28250
			80	12030	13000	13980	1950	9750	38300
			90	12770	13800	14840	2070	10350	42320
			95	12770	13800	14840	2070	10350	44320
			110	12770	13800	14840	2070	10350	50350
			125	14430	15600	16770	2340	11700	56380
	47.00	0.472	55	11290	12200	13120	1830	9150	30210
			80	12490	13500	14510	2030	10130	40990
			90	13320	14400	15480	2160	10800	45300
			95	13320	14400	15480	2160	10800	47450
			110	13320	14400	15480	2160	10800	53920
			125	14800	16000	17200	2400	12000	60390
	53.50	0.545	55	12260	13250	14240	1990	9940	33820
			80	13410	14500	15590	2180	10880	45950
			90	14250	15400	16560	2310	11550	50810
			95	14250	15400	16560	2310	11550	53230
			110	14250	15400	16560	2310	11550	60520
			125	15170	16400	17630	2460	12300	67800
	58.40	0.595	55	12860	13900	14940	2090	10430	36360
	30.40		80	14060	15200	16340	2280	11400	49480
			90	14800	16000	17200	2400	12000	54730
			95	14800	16000	17200	2400	12000	57360
			110	14800	16000	17200	2400	12000	65230
			125	15730	17000	18280	2550	12750	73110
	59.40	0.609	55	12860	13900	14940	2090	10430	36460
	221.40	0.000	80	14060	15200	16340	2280	11400	49580
			90	14800	16000	17200	2400	12000	54830
			95	14800	16000	17200	2400	12000	57460
			110	14800	16000	17200	2400	12000	65330
			125	15730	17000	18280	2550	12750	73210
	61.10	0.625	55	13230	14300	15370	2150	10730	37350
	01.10	0.023	80	14430	15600	16770	2340	11700	50830
			90	15170	16400	17630	2460	12300	56230
			95	15170	16400	17630	2460	12300	58920
			110	15170	16400	17630	2460	12300	
			125	16100	17400	18710	2610	13050	67010 75100
	64.90	0.672	55	13690	14800	15910	2220	11100	39410
	04.50	0.072							
			80	14890	16100	17310	2420 2550	12080	53690
			90	15730	17000	18280		12750	59400
			95	15730	17000	18280	2550	12750	62260
			110	15730	17000	18280	2550	12750	70830
0.78	62.00	0.636	125	16650	18000	19350	2700	13500	79400
9 7/8	62.80	0.625	55	13320	14400	15480	2160	10800	32630
			80	13970	15100	16230	2270	11330	44000
			90	14800	16000	17200	2400	12000	48550
			95	14800	16000	17200	2400	12000	50830
			110	14800	16000	17200	2400	12000	57650
40.374	45.50	0.400	125	14800	16000	17200	2400	12000	64480
10 3/4	45.50	0.400	55	10180	11000	11830	1650	8250	32960
			80	11560	12500	13440	1880	9380	45170
			90	12490	13500	14510	2030	10130	50060
			95	12490	13500	14510	2030	10130	52510
			110	12490	13500	14510	2030	10130	59840
			125	14150	15300	16450	2300	11480	67170
	51.00	0.450	55	10920	11800	12690	1770	8850	33480
			80	12260	13250	14240	1990	9940	45700
			90	13140	14200	15270	2130	10650	50580
			95	13140	14200	15270	2130	10650	53030
			110	13140	14200	15270	2130	10650	60360
			125	14710	15900	17090	2390	11930	67690

SIZE	HOMINAL	WALL	SMYS OF		MAKE UPTORQUE		SHOULDE	RTORQUE	YELD
(00)	WEIGHT	THIOKNESS	STEEL GRADE	Minimum	Optimum	Maximum	Minimum	Maximum	TORQUE
in	Ib/ft	In	Ical	ff.lb	#1p	ft.lb	t.b	ft.lb	ft.lb
10 3/4	55.50	0.495	55	11660	12600	13550	1890	9450	33900
			80	12950	14000	15050	2100	10500	46120
			90	13880	15000	16130	2250	11250	51010
			95	13880	15000	16130	2250	11250	53450
			110	13880	15000	16130	2250	11250	60780
			125	14800	16000	17200	2400	12000	68110
	60.70	0.545	55	12490	13500	14510	2030	10130	48190
			80	13690	14800	15910	2220	11100	66710
			90 95	14710 14710	15900 15900	17090 17090	2390 2390	11930 11930	74120 77830
			110	14710	15900	17090	2390	11930	88940
			125	14800	16000	17200	2400	12000	100050
	65.70	0.595	55	13230	14300	15370	2150	10730	48580
			80	14430	15600	16770	2340	11700	67100
			90	14800	16000	17200	2400	12000	74510
			95	14800	16000	17200	2400	12000	78220
			110	14800	16000	17200	2400	12000	89330
			125	14800	16000	17200	2400	12000	100440
13 3/8	54.50	0.380	55	9760	10550	11340	1580	7910	43330
			80	10450	11300	12150	1700	8480	60080
			90	11100	12000	12900	1800	9000	66780
			95	11100	12000	12900	1800	9000	70130
			110	11100	12000	12900	1800	9000	80170
	61.00	0.430	125 55	14800 12030	16000	17200 13980	2400 1950	12000 9750	90220 54000
	01.00	0.430	80	12490	13500	14510	2030	10130	75320
			90	13690	14800	15910	2220	11100	83850
			95	13690	14800	15910	2220	11100	88120
			110	13690	14800	15910	2220	11100	100910
			125	14800	16000	17200	2400	12000	113700
	68.00	0.480	55	12770	13800	14840	2070	10350	54550
			80	13880	15000	16130	2250	11250	75870
			90	14710	15900	17090	2390	11930	84400
			95	14710	15900	17090	2390	11930	88660
			110	14710	15900	17090	2390	11930	101450
			125	14800	16000	17200	2400	12000	114240
	72.00	0.514	55	13410	14500	15590	2180	10880	54890
			80 90	14800 14800	16000 16000	17200 17200	2400 2400	12000	76210 84740
			95	14800	16000	17200	2400	12000	89000
			110	14800	16000	17200	2400	12000	101790
			125	14800	16000	17200	2400	12000	114590
13 1/2	80.40	0.576	55	13510	14600	15700	2190	10950	69560
			80	14800	16000	17200	2400	12000	97270
			90	14800	16000	17200	2400	12000	108350
			95	14800	16000	17200	2400	12000	113900
			110	14800	16000	17200	2400	12000	130520
			125	14800	16000	17200	2400	12000	147150
13 5/8	88.20	0.625	55	13230	14300	15370	2150	10730	80280
			80 90	13970	15100	16230	2270 2430	11330	112660
			95	14990 14990	16200 16200	17420 17420	2430	12150 12150	125610 132090
			110	14990	16200	17420	2430	12150	151510
			125	14990	16200	17420	2430	12150	170940
	105.00	0.760	55	14520	15700	16880	2360	11780	101440
	102100	21/44	80	15360	16600	17850	2490	12450	143020
			90	17480	18900	20320	2840	14180	159640
			95	17480	18900	20320	2840	14180	167960
			110	17480	18900	20320	2840	14180	192900
			125	17480	18900	20320	2840	14180	217840
14	82.50	0.562	55	13410	14500	15590	2180	10880	61380
			80	14800	16000	17200	2400	12000	83600


SEZE	HOMINAL	WALL	SMYS OF		MAKE UPTORQUE	E	SHOULDE	RTORQUE	YELD
(00)	WEIGHT	THIOXNESS	STEEL GRADE	Minimum	Optimum	Maximum	Minimum	Maximum	TORQUE
in	Ib/lt	In	ksi	ft.lb	filb	ft.lb	t.b	ft.lb	ft.lb
14	82.50	0.562	90	17950	19400	20860	2910	14550	92490
			95	17950	19400	20860	2910	14550	96940
			110	17950	19400	20860	2910	14550	110270
	94.80	0.656	55	14060	15 200	16340	2280	11400	75990
			80	15450	16700	17950	2510	12530	104300
			90	18780	20300	21820	3050	15230	115630
			95	18780	20300	21820	3050	15230	121290
			110	18780	20300	21820	3050	15230	138280
	99.30	0.688	55	14060	15200	16340	2280	11400	76370
			80	15450	16700	17950	2510	12530	104680
			90	18780	20300	21820	3050	15230	116010
			95	18780	20300	21820	3050	15230	121670
			110	18780	20300	21820	3050	15230	138660
	110.00	0.772	55	14800	16000	17200	2400	12000	85760
			80	16190	17500	18810	2630	13130	117950
			90	19610	21200	22790	3180	15900	130830
			95	19610	21200	22790	3180	15900	137260
			110	19610	21200	22790	3180	15900	156580
	111.00	0.779	55	14800	16000	17200	2400	12000	85830
			80	16190	17500	18810	2630	13130	118020
			90	19610	21200	22790	3180	15900	130890
			95	19610	21200	22790	3180	15900	137330
			110	19610	21200	22790	3180	15900	156650
	114.00	0.800	55	15170	16400	17630	2460	12300	90260
			80	16650	18000	19350	2700	13500	124370
			90	20170	21800	23440	3270	16350	138010
			95	20170	21800	23440	3270	16350	144830
45	100.00	0.715	110	20170	21800	23440	3270	16350	165300
15	109.00	0.715	80	14990	16200	17420	2430	12150	158370
			90	14990	16200	17420	2430	12150	176130
			95 110	14990 14990	16200 16200	17420 17420	2430 2430	12150 12150	185010 211650
16	65.00	0.375	125 55	14990	16200 12500	17420 13440	2430 1880	12150 9380	238300 52470
10	03.00	0.573	80	12770	13800		2070	10350	
			90	14430	15600	14840 16770	2340	11700	72040 79870
			95	14430	15600	16770	2340	11700	83780
			110	14430	15600	16770	2340	11700	95530
	75.00	0.438	55	11560	12500	13440	1880	9380	73840
	73.00	0.400	80	12770	13800	14840	2070	10350	102550
			90	14430	15600	16770	2340	11700	114040
			95	14430	15600	16770	2340	11700	119790
			110	14430	15600	16770	2340	11700	137020
	84.00	0.495	55	12950	14000	15050	2100	10500	73570
			80	14250	15400	16560	2310	11550	101410
			90	15360	16600	17850	2490	12450	112550
			95	15360	16600	17850	2490	12450	118120
			110	15360	16600	17850	2490	12450	134820
	94.50	0.562	55	13600	14700	15800	2210	11030	74650
			80	14890	16100	17310	2420	12080	102490
			90	19150	20700	22250	3110	15530	113630
			95	19150	20700	22250	3110	15530	119200
			110	19150	20700	22250	3110	15530	135900
	109.00	0.656	55	14710	15900	17090	2390	11930	93260
			80	16000	17300	18600	2600	12980	128960
			90	20260	21900	23540	3290	16430	143240
			95	20260	21900	23540	3290	16430	150380
			110	20260	21900	235.40	3290	16430	171810
	118.00	0.715	55	18960	20500	22040	3080	15380	102920
			80	21280	23000	24730	3450	17250	142060
			90	22850	24700	26550	3710	18530	157720
			95	22850	24700	26550	3710	18530	165550

SIZE	HOMINAL	WALL	SMYS OF		MAKE UPTORQU	E	SHOULDE	RTORQUE	YELD
(00)	WEIGHT	THIOXNESS	STEEL GRADE	Minimum	Optimum	Maximum	Minimum	Maximum	TORQUE
in	Ib/ft	In	lesi	ff.lb	UTP	ft.lb	t.b	ff.lb	ft.lb
16	118.00	0.715	110	22850	24700	26550	3710	18530	189040
		0.781	55	18960	20500	22040	3080	15380	109320
			80	21280	23000	24730	3450	17250	151010
			90	22850	24700	26550	3710	18530	167680
			95	22850	24700	26550	3710	18530	176020
			110	22850	24700	26550	3710	18530	201040
18 5/8	87.50	0.435	55	11930	12900	13870	1940	9680	87240
			80	12580	13600	14620	2040	10200	121070
			90 95	14430 14430	15600 15600	16770 16770	2340 2340	11700 11700	134600 141370
			110	14430	15600	16770	2340	11700	161670
	94.50	0.468	55	12770	13800	14840	2070	10350	88020
	34.30	0,400	80	13510	14600	15700	2190	10950	121860
			90	15360	16600	17850	2490	12450	135390
			95	15360	16600	17850	2490	12450	142160
			110	15360	16600	17850	2490	12450	162460
	96.50	0.485	55	13140	14200	15270	2130	10650	88410
			80	13970	15100	16230	2270	11330	122240
			90	15820	17100	18380	2570	12830	135780
			95	15820	17100	18380	2570	12830	142540
			110	15820	17100	18380	2570	12830	162840
	99.00	0.500	55	13510	14600	15700	2190	10950	96770
			80	14430	15600	16770	2340	11700	133900
			90	17480	18900	20320	2840	14180	148750
			95	17480	18900	20320	2840	14180	156180
			110	17480	18900	20320	2840	14180	178450
			125	19520	21100	22680	3170	15830	200730
	114.00	0.579	55	14150	15300	16450	2300	11480	114430
			80	15080	16300	17520	2450	12230	158820
			90	18130	19600	21070	2940	14700	176570
			95	18130	19600	21070	2940	14700	185450
			110	18130	19600	21070	2940	14700	212080
	845.00	0.594	125 55	20170	21800	23440	3270 2300	16350	238710
	115.00	0.594		14150	15300	16450		11480	114730
			80 90	15080 18130	16300 19600	17520 21070	2450 2940	12230 14700	159120 176870
			95	18130	19600	21070	2940	14700	185750
			110	18130	19600	21070	2940	14700	212380
			125	20170	21800	23440	3270	16350	239010
	126.00	0.636	55	14710	15900	17090	2390	11930	119500
	120.00	0.000	80	15630	16900	18170	2540	12680	165690
			90	18690	20200	21720	3030	15150	184170
			95	18690	20200	21720	3030	15150	193400
			110	18690	20200	21720	3030	15150	221120
			125	20720	22400	24080	3360	16800	248830
	136.00	0.693	55	14710	15900	17090	2390	11930	120520
			80	15630	16900	18170	2540	12680	166710
			90	18690	20200	21720	3030	15150	185180
			95	18690	20200	21720	3030	15150	194420
			110	18690	20200	21720	3030	15150	222130
			125	20720	22400	24080	3360	16800	249840
	139.00	0.720	55	15360	16600	17850	2490	12450	148870
			80	16280	17600	18920	2640	13200	207020
			90	19330	20900	22470	3140	15680	230280
			95	19330	20900	22470	3140	15680	241910
30	04.00	0.430	110	19330	20900	22470	3140	15680	276790
20	94.00	0.438	55	12030	13000	13980	1950	9750	98410
			80	12770	13800	14840	2070	10350	137600
			90 95	14620 14620	15800 15800	16990 16990	2370 2370	11850 11850	153270 161110
			110	14620	15800	16990	2370	11850	184620
	106.50	0.500	55	16190	17500	18810	2630	13130	113450
	100.30	0.300	20	10130	17300	10010	2030	13130	113400

SIZE	HOHINAL	WALL	SMYS OF		MAKE HETOBOH	E	NAKE UPTORQUE SHOULDER TORQUE YIELD			
(00)	WEIGHT	THICKNESS	STEEL GRADE	Minimum	Optimum	Maximum	Minimum	Maximum	TORQUE	
in	lb/ft	In	led	ft.lb	ff.lb	ft.lb	t.b	ft.lb	ft.lb	
20	106.50	0.500	80	17300	18700	20100	2810	14030	158600	
			90	20910	22600	24300	3390	16950	176660	
			95	20910	22600	24300	3390	16950	185690	
			110	20910	22600	24300	3390	16950	212790	
	118.50	0.563	55	16740	18100	19460	2720	13580	125710	
			80	17760	19200	20640	2880	14400	175920	
			90	21370	23100	24830	3470	17330	196000	
			95	21370	23100	24830	3470	17330	206040	
	131.50	0.635	110	21370	23100	24830	3470	17330	236160	
	131.50	0.625	55 80	17300	18700	20100	2810	14030 14700	137780 193020	
			90	18130 21740	19600 23500	21070 25260	2940 3530	17630	215110	
			95	21740	23500	25260	3530	17630	226160	
			110	21740	23500	25260	3530	17630	259290	
	133.00	0.635	55	17300	18700	20100	2810	14030	137930	
			80	18130	19600	21070	2940	14700	193170	
			90	21740	23500	25260	3530	17630	215260	
			95	21740	23500	25260	3530	17630	226300	
			110	21740	23500	25260	3530	17630	259440	
	147.00	0.709	55	18220	19700	21180	2960	14780	152740	
			80	18870	20400	21930	3060	15300	214230	
			90	22480	24300	26120	3650	18230	238820	
			95	22480	24300	26120	3650	18230	251120	
	155.00	0.750	110	22480	24300	26120	3650	18230	288010	
	156.00	0.750	55	19240	20800	22360	3120	15600	160570	
			80	19980	21600	23220	3240	16200	225380	
			90 95	23770 23770	25700 25700	27630 27630	3860 3860	19280 19280	251300 264270	
			110	23770	25700	27630	3860	19280	303150	
			125	23770	25700	27630	3860	19280	342040	
22	146.50	0.625	55	25440	16000	29560	2400	12000	141750	
			80	25440	17100	29564	2570	12830	197320	
			90	25440	19400	29565	2910	14550	219550	
l			95	25440	19400	29566	2910	14550	230670	
			110	25440	19400	29568	2910	14550	264010	
			125	25440	19400	29569	2910	14550	297350	
	180.00	0.781	55	25440	18100	29572	2720	13580	205580	
			80	25440	19300	29576	2900	14480	288960	
			90	25440	21900	29577	3290	16430	322310	
			95	25440	21900	29578	3290	16430	338990	
			110	25440	21900	29580	3290	16430	389010	
	226.00	1.000	125 55	25440 25440	21900 18700	29581 29584	3290 2810	16430 14030	439040 290020	
	220,00	1.000	80	25440	19900	29588	2990	14930	410500	
			90	25440	22500	29589	3380	16880	458680	
			95	25440	22500	29590	3380	16880	482780	
			110	25440	22500	29592	3380	16880	555060	
			125	25440	22500	29593	3380	16880	627350	
24	125.50	0.500	55	13880	15000	16130	2250	11250	161100	
			80	14430	15600	16770	2340	11700	227450	
			90	17480	18900	20320	2840	14180	253990	
			95	17480	18900	20320	2840	14180	267260	
			110	17480	18900	20320	2840	14180	307070	
	159.20	0.625	55	14800	16000	17200	2400	12000	199540	
			80	15820	17100	18390	2570	12830	281950	
			90	17950	19400	20860	2910	14550	314910	
			95	17950	19400 19400	20860	2910	14550	331390 380840	
	162.00	0.635	110 55	17950		20860	2910	14550		
	162,00	0.635	80	14800 15820	16000 17100	17200 18380	2400 2570	12000 12830	199710 282120	
			90	17950	19400	20860	2910	14550	315080	
			95	17950	19400	20860	2910	14550	331560	

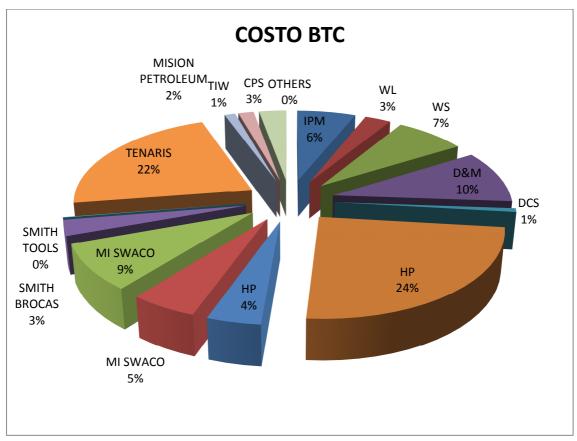
SIZE	HOMINAL	WALL	SMYS OF		MAKE UPTORQU	E	SHOULDE	RTORQUE	YIELD
(00)	WEIGHT	THIOKNESS	STEEL GRADE	Minimum	Optimum	Maximum	Minimum	Maximum	TORQUE
in	Tb/ft	In	Ical	ff.lb	#ID	ft.lb	ft.lb	ft.lb	ft.lb
24	162.00	0.635	110	17950	19400	20860	2910	14550	381010
	174.00	0.688	55	15730	17000	18280	2550	12750	214000
			80	16840	18200	19570	2730	13650	302520
			90	19060	20600	22150	3090	15450	337930
			95	19060	20600	22150	3090	15450	355640
			110	19060	20600	22150	3090	15450	408750
	189.00	0.750	55	16740	18100	19460	2720	13580	232320
			80	17850	19300	20750	2900	14480	328760
			90	20260	21900	23540	3290	16430	367330
			95	20260	21900	23540	3290	16430	386620
			110	20260	21900	23540	3290	16430	444480
24 1/2	133.00	0.500	55	13880	15000	16130	2250	11250	160960
			80	14430	15600	16770	2340	11700	226930
			90	17480	18900	20320	2840	14180	253320
			95	17480	18900	20320	2840	14180	266510
			110	17480	18900	20320	2840	14180	306090
	140.00	0.531	55	14800	16000	17200	2400	12000	176820
			80	15820	17100	18380	2570	12830	249360
			90	17950	19400	20860	2910	14550	278370
			95	17950	19400	20860	2910	14550	292880
			110	17950	19400	20860	2910	14550	336400
	162.00	0.625	55	15730	17000	18280	2550	12750	204120
			80	16740	18100	19460	2720	13580	288200
			90	19060	20600	22150	3090	15450	321830
			95	19060	20600	22150	3090	15450	338650
			110	19060	20600	22150	3090	15450	389090
	165.00	0.635	55	16470	17800	19140	2670	13350	204310
			80	17580	19000	20430	2850	14250	288380
			90	19980	21600	23220	3240	16200	322010
			95	19980	21600	23220	3240	16200	338830
			110	19980	21600	23220	3240	16200	389270
	182.00	0.709	55	17580	19000	20430	2850	14250	205580
			80	18780	20300	21820	3050	15230	289660
			90	21370	23100	24830	3470	17330	323290
			95	21370	23100	24830	3470	17330	340110
			110	21370	23100	24830	3470	17330	390550

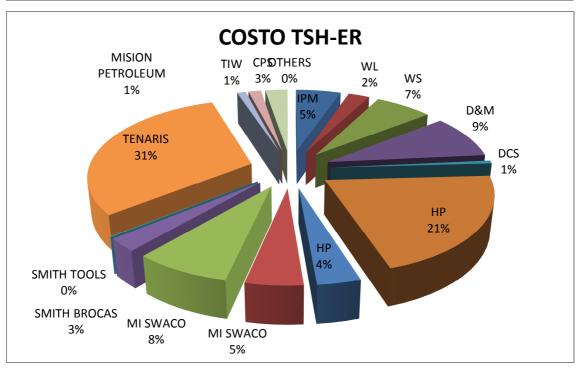
ANEXO 2: FICHA TÉCNICA DE LA CONEXIÓN BTC.

ANEXO 3: FICHA TÉCNICA DE LA CONEXIÓN TSH-ER.

ANEXO 4:COSTOS EN UN POZO CON UNA CONEXIÓN BTC.

		TUBERIA DE REVESTIMIENTO	Sur	POZO face		ediate 1	Interme	ediate 2	Prod	uction		
DIAS TOTALES		OD	20	0"	13	3/8"	9 5	5/8"	7	7"	COST	\$4.048
24,00		PROFUNDIDAD DEL CSG		0ft		00ft		OOft .		00ft	TOTAL	451,00
DRILLING	Unit	DIAS Cost/Unit	CANTI	97 TOTA	CANTI	TOTAL	CANTI	91 TOTAL	CANTI	TOTAL	TOTAL	
DRILLING		COSTOTILL	DAD	\$20.3	DAD	\$65.20	DAD	\$102.2	DAD	\$59.83	\$247.6	
IPM	día servici	\$10.317,00	1,97	24,49	6,32	3,44	9,91	41,47	5,80	8,60 \$110.0	08,00	
WIRELINE	o servici			\$0,00 \$27.2		\$0,00 \$94.93		\$0,00 \$87.48		00,00	00,00	
WELLSERVICES	0			69,00		2,00		5,00		4,00	70,00	
DRILLING &MEASURMENTS	servici 0			\$0,00		\$143.1 64,00		\$212.7 87,00		\$47.55 3,00	\$403.5 04,00	
DCS	servici 0	\$28.393,00	0,1	\$2.83 9,30	0,2	\$5.678 ,60	0,3	\$8.517 ,90	0,4	\$11.35 7,20	\$28.39 3,00	
DRILLING RIG	día	\$41.270,00	1,97	\$81.3 01,90	6,32	\$260.8 26,40	9,91	\$408.9 85,70	5,80	\$239.3 66,00	\$990.4 80,00	
RIG FUEL	gal/dí a	\$4,70	1500	\$13.8 88,50	1500	\$44.55 6,00	1500	\$69.86 5,50	1500	\$40.89 0,00	\$169.2 00,00	
SOLIDS CONTROL &WASTE MANAGEMENT	servici 0	¥ 1,1 · s		\$15.9 17,00		\$55.68 9,00		\$94.56 6,00	1	\$44.68 3,00	\$210.8 55,00	
	servici	4050.554.0		\$35.3		\$70.71		\$106.0		\$141.4	\$353.5	
DRILLING FLUIDS	Lump	\$353.551,00	0,1	55,10 \$12.0	0,2	0,20 \$24.00	0,3	65,30 \$54.00	0,4	\$30.00	\$1,00 \$120.0	
DRILL BITS	Sum	\$120.000,00	0,1	00,00 \$344,	0,2	0,00 \$1.106	0,45	0,00 \$1.734	0,25	0,00 \$1.015	00,00 \$4.200	
JARS&ACCELERATOR	día 	\$175,00	1,97	75	6,32	,00	9,91	,25	5,80	,00	,00	\$887.0
CASING	well			\$0,00		\$0,00		\$0,00		\$0,00	\$0,00	0,0
Casing 20" K55 106.5 lb/ft BTC	feet	\$181,00	250ft	\$45.2 50,00		\$0,00		\$0,00		\$0,00	\$45.25 0,00	
Casing 20" K55 94 lb/ft BTC	feet	\$147,00		\$0,00		\$0,00		\$0,00		\$0,00	\$0,00	
Casing 20" K55 106,5 lb/ft TSH-ER	feet	\$237,00		\$0,00		\$0,00		\$0,00		\$0,00	\$0,00	
Casing 20" K55 94 lb/ft TSH-ER	feet	\$203,00		\$0,00		\$0,00		\$0,00		\$0,00	\$0,00	
Casing 13 3/8" K55 68 lb/ft BTC	feet	\$64,00		\$0,00	1250ft	\$80.00 0,00		\$0,00		\$0,00	\$80.00 0,00	
Casing 13 3/8" K55 54,5 lb/ft BTC	feet	\$52,00		\$0,00	4250ft	\$221.0 00,00		\$0,00		\$0,00	\$221.0 00,00	
Casing 13 3/8" K55 68 lb/ft TSH-ER	feet	\$100,00		\$0,00	izooit	\$0,00		\$0,00		\$0,00	\$0,00	
Casing 13 3/8" K55 54,5 lb/ft TSH-ER	feet	\$88,00		\$0,00		\$0,00		\$0,00		\$0,00	\$0,00	
Casing 9 5/8" N80Q 47 lb/ft	feet											
BTC Casing 9 5/8" N80Q 53.5	feet	\$51,00		\$0,00		\$0,00		\$0,00		\$0,00	\$0,00	
lb/ft BTC Casing 9 5/8" L80 47 lb/ft	feet	\$58,00		\$0,00		\$0,00		\$0,00 \$432.0		\$0,00	\$0,00 \$432.0	
BTC Casing 9 5/8" L80 53,5 lb/ft	feet	\$54,00		\$0,00		\$0,00	8000	00,00 \$78.40		\$0,00	00,00 \$78.40	
BTC Casing 9 5/8" P110 47 lb/ft		\$56,00		\$0,00		\$0,00	1400ft	0,00		\$0,00	0,00	
BTC Casing 9 5/8" P110 53,5	feet	\$62,00		\$0,00		\$0,00		\$0,00		\$0,00	\$0,00	
lb/ft BTC Casing 9 5/8" N80Q 47 lb/ft	feet	\$64,00		\$0,00		\$0,00		\$0,00		\$0,00	\$0,00	
TSH-ER	feet	\$77,00		\$0,00		\$0,00		\$0,00		\$0,00	\$0,00	
Casing 9 5/8" N80Q 53.5 lb/ft TSH-ER	feet	\$84,00		\$0,00		\$0,00		\$0,00		\$0,00	\$0,00	
Casing 9 5/8" L80 47 lb/ft TSH-ER	feet	\$80,00		\$0,00		\$0,00		\$0,00		\$0,00	\$0,00	
Casing 9 5/8" L80 53,5 lb/ft TSH-ER	feet	\$88,00		\$0,00		\$0,00		\$0,00		\$0,00	\$0,00	
Casing 9 5/8" P110 47 lb/ft TSH-ER	feet	\$86,00		\$0,00		\$0,00		\$0,00		\$0,00	\$0,00	
Casing 9 5/8" P110 53,5 lb/ft TSH-ER	feet	\$94,00		\$0,00		\$0,00		\$0,00		\$0,00	\$0,00	
Casing 7" N80 29 lb/ft BTC	feet	\$33,80		\$0,00		\$0,00		\$0,00	900ft	\$30.42 0,00	\$30.42 0,00	
Casing 7" N80 29 lb/ft TSH-ER	feet	\$52,00		\$0,00		\$0,00		\$0,00	200.1	\$0,00	\$0,00	
	servici	ψ32,00										\$45.60
CASING RUNNIG Casing Runnig 20" - Lump	ea			\$0,00 \$8.80		\$0,00		\$0,00		\$0,00	\$0,00 \$8.800	,0
Sum Casing Runnig 13 3/8" -		\$8.800,00	1	0,00		\$0,00 \$13.20		\$0,00		\$0,00	,00 \$13.20	
Lump Sum Casing Runnig 9 5/8" -	ea	\$13.200,00		\$0,00	1	0,00		\$0,00 \$14.80		\$0,00	0,00	
Lump Sum Liner Runnig 7" - Lump	ea	\$14.800,00		\$0,00		\$0,00	1	0,00		\$0,00 \$8.800	0,00	
Sum	ea	\$8.800,00		\$0,00		\$0,00 \$26.31		\$0,00 \$34.50	1	,00	,00 \$65.32	
WELL HEAD	ea			\$0,00		1,00		9,00		\$4.500 ,00	0,00	
LINER HANGER	servici 0			\$0,00		\$0,00		\$0,00		\$115.5 00,00	\$115.5 00,00	
OTROS COSTOS	otros			\$0,00		\$0,00		\$0,00		\$0,00	\$0,00	


ANEXO 5: COSTOS DE UN POZO CON UNA CONEXIÓN TSH-ER


		TUBERÍA DE		POZO T		adlet - 1	led -	adia: - ^	ъ.			
DÍAS TOTALES	ı	REVESTIMIENTO OD	Suri 20			ediate 1		ediate 2		uction	COST	\$4.529.
24,00		PROFUNDIDAD		Oft		00ft		00ft		00ft	O TOTAL	\$4.529. 631,00
· '	l	DEL CSG DIAS	1,			,32	- /	91		80		
DRILLING	Unit	Cost/Unit	CANTI DAD	TOTA L	CANTI DAD	TOTAL	CANTI DAD	TOTAL	CANTI DAD	TOTAL	TOTAL	
IPM	día	\$10.317,00	1,97	\$20.3 24,49	6,32	\$65.20 3,44	9,91	\$102.2 41,47	5,80	\$59.83 8,60	\$247.6 08,00	
WIRELINE	servici o			\$0,00		\$0,00		\$0,00	_	\$110.0 00,00	\$110.0 00,00	
WELLSERVICES	servici o			\$27.2 69.00		\$94.93 2,00		\$87.48 5,00		\$87.48 4,00	\$297.1 70,00	
DRILLING &MEASURMENTS	servici o			\$0,00		\$143.1 64,00		\$212.7 87,00		\$47.55 3,00	\$403.5 04,00	
DCS	servici o	\$28.393,00	0,1	\$2.83 9,30	0,2	\$5.678 ,60	0,3	\$8.517	0,4	\$11.35 7,20	\$28.39 3,00	
DRILLING RIG	día	\$41.270,00	1,97	\$81.3 01,90	6,32	\$260.8 26,40	9,91	\$408.9 85,70	5,80	\$239.3 66,00	\$990.4 80,00	
	gal/dí			\$13.8		\$44.55		\$69.86		\$40.89	\$169.2	
RIG FUEL SOLIDS CONTROL	a servici	\$4,70	1500	\$8,50 \$15.9	1500	6,00 \$55.68	1500	5,50 \$94.56	1500	0,00 \$44.68	00,00 \$210.8	
&WASTE MANAGEMENT	o servici			17,00 \$35.3		9,00 \$70.71		6,00 \$106.0		3,00 \$141.4	55,00 \$353.5	
DRILLING FLUIDS	o Lump	\$353.551,00	0,1	55,10 \$12.0	0,2	0,20 \$24.00	0,3	65,30 \$54.00	0,4	20,40 \$30.00	51,00 \$120.0	
DRILL BITS	Sum	\$120.000,00	0,1	00,00 \$344,	0,2	0,00 \$1.106	0,45	0,00 \$1.734	0,25	0,00 \$1.015	00,00 \$4.200	
JARS&ACCELERATOR	día 	\$175,00	1,97	75	6,32	,00	9,91	,25	5,80	,00	,00	\$1.368.
CASING Casing 20" K55 106.5 lb/ft	well			\$0,00		\$0,00		\$0,00		\$0,00	\$0,00	250,00
BTC Casing 20" K55 94 lb/ft	feet	\$181,00		\$0,00		\$0,00		\$0,00		\$0,00	\$0,00	
BTC Casing 20" K55 106,5 lb/ft	feet	\$147,00		\$0,00		\$0,00		\$0,00		\$0,00	\$0,00	
TSH-ER	feet	\$237,00	250ft	\$59.2 50,00		\$0,00		\$0,00		\$0,00	\$59.25 0,00	
Casing 20" K55 94 lb/ft TSH-ER	feet	\$203,00		\$0,00		\$0,00		\$0,00		\$0,00	\$0,00	
Casing 13 3/8" K55 68 lb/ft BTC	feet	\$64,00		\$0,00		\$0,00		\$0,00		\$0,00	\$0,00	
Casing 13 3/8" K55 54,5 lb/ft BTC	feet	\$52,00		\$0,00		\$0,00		\$0,00		\$0,00	\$0,00	
Casing 13 3/8" K55 68 lb/ft TSH-ER	feet	\$100,00		\$0,00	1250ft	\$125.0 00,00		\$0,00		\$0,00	\$125.0 00,00	
Casing 13 3/8" K55 54,5 lb/ft TSH-ER	feet	\$88,00		\$0,00	4250ft	\$374.0 00,00		\$0,00		\$0,00	\$374.0 00,00	
Casing 9 5/8" N80Q 47 lb/ft BTC	feet	\$51,00		\$0,00		\$0,00		\$0,00		\$0,00	\$0,00	
Casing 9 5/8" N80Q 53.5 lb/ft BTC	feet	\$58,00		\$0,00		\$0,00		\$0,00		\$0,00	\$0,00	
Casing 9 5/8" L80 47 lb/ft BTC	feet	\$54,00		\$0,00		\$0,00		\$0,00		\$0,00	\$0,00	
Casing 9 5/8" L80 53,5 lb/ft BTC	feet	\$56,00		\$0,00		\$0,00		\$0,00		\$0,00	\$0,00	
Casing 9 5/8" P110 47 lb/ft BTC	feet	\$62,00		\$0,00		\$0,00		\$0,00		\$0,00	\$0,00	
Casing 9 5/8" P110 53,5 lb/ft BTC	feet	\$64,00		\$0,00		\$0,00		\$0,00		\$0,00	\$0,00	
Casing 9 5/8" N80Q 47 lb/ft TSH-ER	feet	\$77,00		\$0,00		\$0,00		\$0,00		\$0,00	\$0,00	
Casing 9 5/8" N80Q 53.5 lb/ft TSH-ER	feet	\$84,00		\$0,00		\$0,00		\$0,00		\$0,00	\$0,00	
Casing 9 5/8" L80 47 lb/ft TSH-ER	feet	\$80,00		\$0,00		\$0,00	8000ft	\$640.0 00,00		\$0,00	\$640.0 00,00	
Casing 9 5/8" L80 53,5 lb/ft TSH-ER	feet	\$88,00		\$0,00		\$0,00	1400ft	\$123.2 00,00		\$0,00	\$123.2 00,00	
Casing 9 5/8" P110 47 lb/ft TSH-ER	feet	\$86,00		\$0,00		\$0,00		\$0,00		\$0,00	\$0,00	
Casing 9 5/8" P110 53,5 lb/ft TSH-ER	feet	\$94,00		\$0,00		\$0,00		\$0,00		\$0,00	\$0,00	
Casing 7" N80 29 lb/ft BTC Casing 7" N80 29 lb/ft	feet	\$33,80		\$0,00		\$0,00		\$0,00		\$0,00 \$46.80	\$0,00 \$46,80	
TSH-ER	feet servici	\$52,00		\$0,00		\$0,00		\$0,00	900ft	0,00	0,00	\$45.600
CASING RUNNIG	0			\$0,00		\$0,00		\$0,00		\$0,00	\$0,00 \$8.800	,00
Casing Runnig 20" - Lump Sum	ea	\$8.800,00	1	\$8.80 0,00		\$0,00		\$0,00		\$0,00	,00	
Casing Runnig 13 3/8" - Lump Sum	ea	\$13.200,00		\$0,00	1	\$13.20 0,00		\$0,00		\$0,00	\$13.20 0,00	
Casing Runnig 9 5/8" - Lump Sum	ea	\$14.800,00		\$0,00		\$0,00	1	\$14.80 0,00		\$0,00	\$14.80 0,00	
Liner Runnig 7" - Lump Sum	ea	\$8.800,00		\$0,00		\$0,00		\$0,00	1	\$8.800 ,00	\$8.800 ,00	
WELL HEAD	ea			\$0,00		\$26.31 1,00		\$34.50 9,00		\$4.500 ,00	\$65.32 0,00	
LINER HANGER	servici o			\$0,00		\$0,00		\$0,00		\$115.5 00,00	\$115.5 00,00	
OTROS COSTOS	otros			\$0,00		\$0,00		\$0,00		\$0,00	\$0,00	

ANEXO 6: COMPARACIÓN DE COSTOS ENTRE BTC Y TSH-ER.

	EMPRESA	COSTO BTC	COSTO TSH-ER
IPM	IPM	\$247.608,00	\$247.608,00
WIRELINE	WL	\$110.000,00	\$110.000,00
WELLSERVICES	ws	\$297.170,00	\$297.170,00
DRILLING &MEASURMENTS	D&M	\$403.504,00	\$403.504,00
DCS	DCS	\$28.393,00	\$28.393,00
DRILLING RIG	НР	\$990.480,00	\$990.480,00
RIG FUEL	НР	\$169.200,00	\$169.200,00
SOLIDS CONTROL &WASTE MANAGEMENT	MI SWACO	\$210.855,00	\$210.855,00
DRILLING FLUIDS	MI SWACO	\$353.551,00	\$353.551,00
DRILL BITS	SMITH BROCAS	\$120.000,00	\$120.000,00
JARS&ACCELERATOR	SMITH TOOLS	\$4.200,00	\$4.200,00
CASING	TENARIS	\$887.070,00	\$1.368.250,00
CASING RUNNIG	TIW	\$45.600,00	\$45.600,00
WELL HEAD	MISION PETROLEUM	\$65.320,00	\$65.320,00
LINER HANGER	CPS	\$115.500,00	\$115.500,00
OTROS COSTOS	OTHERS	\$0,00	\$0,00
		\$4.048.451,00	\$4.529.631,00

ANEXO 7: TABLAS COMPARATIVAS.

