ESCUELA POLITÉCNICA NACIONAL

FACULTAD DE INGENIERÍA EN GEOLOGÍA Y PETRÓLEOS

ESTUDIO PARA LA OPTIMIZACIÓN DE PRODUCCIÓN MEDIANTE LOS SISTEMAS DE COMPLETACIÓN INTELIGENTE (INTELLIGENT WELL SYSTEMS-IWS) EN POZOS DEL ÁREA AUCA Y CUYABENO

PROYECTO PREVIO A LA OBTENCIÓN DEL TÍTULO DE INGENIEROS EN PETRÓLEOS

ALEXANDER ANTONIO TORRES RAMÍREZ alex.pptr@gmail.com

JOSÉ LUIS TORRES GARCÉS jltorresg@hotmail.es

DIRECTOR: ING. FRANCISCO PAZ francisco_paz@petroamazonas.ec

Quito, Mayo 2014

DECLARACIÓN

Nosotros, Alexander Antonio Torres Ramírez, José Luis Torres Garcés, declaramos bajo juramento que el trabajo aquí descrito es de nuestra autoría; que no ha sido previamente presentada para ningún grado o calificación profesional; y, que hemos consultado las referencias bibliográficas que se incluyen en este documento.

A través de la presente declaración cedemos nuestros derechos de propiedad intelectual correspondientes a este trabajo, a la Escuela Politécnica Nacional, según lo establecido por la Ley de Propiedad Intelectual, por su Reglamento y por la normatividad institucional vigente.

ALEXANDER TORRES RAMÍREZ

JOSÉ LUIS TORRES GARCÉS

CERTIFICACIÓN

Certifico que el presente trabajo fue desarrollado por Alexander Antonio Torres Ramírez y José Luis Torres Garcés, bajo mi supervisión.

> Ing. Francisco Paz DIRECTOR DE PROYECTO

AGRADECIMIENTO

A Dios por haberme dado la oportunidad de culminar una etapa más de mi vida, por iluminar y guiar mi vida.

A mis padres queridos Mercy, Nico y mi hermano José Javier, por haber confiado en mí, por entregarme su apoyo incondicional, consejos, palabras de aliento y por su sacrificio que se ve reflejado con la culminación de mi proyecto de titulación, los quiero.

A Jessica, por ser la persona que inspira mi vida, que a pesar de la distancia siempre ha estado apoyándome y compartiendo los buenos y malos momentos; brindándome su tiempo para enfrentar mis miedos y cumplir mis metas.

A José Luis, mi compañero del proyecto de titulación, por haber demostrado con esfuerzo lo capaces que somos de realizar y cumplir las metas propuestas.

Al Ingenieros Robinson Freire y Francisco Paz, por su tiempo y dedicación para el desarrollo del proyecto. Al grupo de Optimización y Baker Oil Tools de Baker Hughes en especial a los Ingenieros: Einstein, Roberth, Karina, Maria de Lourdes, Atahualpa, Jorge, Manuel Fabricio, Víctor, Freddy y Edgar, por compartir sus conocimientos, y colaborado con los medios necesarios para la elaboración del presente proyecto.

Finalmente, a la Escuela Politécnica Nacional y especialmente a la Facultad de Ingeniería en Geología y Petróleos, por haberme acogido y formado durante mi etapa universitaria, brindándome el conocimiento para enfrentar los retos futuros.

Alexander

AGRADECIMIENTO

Primeramente agradezco a DIOS por haberme guiado y brindado la fortaleza para culminar con éxito una meta más en mi vida.

Agradezco de manera infinita a mis padres Hugo y Marcela, por su amor y sacrificio absoluto que realizan, para que yo pueda seguir siempre adelante.

A mis hermanos Marcelo y Danny, al amor de mi vida Karina, a mi Abuelita Delia y a toda mi familia; por sus consejos, motivaciones y su apoyo incondicional.

A mi compañero Alexander, por su esfuerzo y paciencia para cumplir con nuestra objetivo.

Un agradecimiento muy especial al Ingeniero Robinson Freire, con quien me encuentro en deuda por su valioso tiempo y ayuda desinteresada para el desarrollo de nuestro proyecto.

Al Ingeniero Francisco Paz por su acertada orientación y paciencia para dirigir este proyecto de titulación.

A los Ingenieros Einstein Andrade, Roberth Almeida, Víctor Bastidas, Luis Constante, Edgar de la Cueva, Freddy Delgado; y a todo el equipo de Optimización y BOT de Baker Hughes, porque supieron recibirnos con afecto, compartirnos sus valiosos conocimientos y brindarnos su colaboración.

A mi grupo de amigos los "YAJAMINES", con los que se compartió muchos momentos durante toda mi vida universitaria, me llevo un grato recuerdo de ellos.

A la prestigiosa Escuela Politécnica Nacional y a la Faculta de Ingeniería en Geología y Petróleos, por abrirme sus puertas y acogerme como mi segundo hogar; y a sus docentes por el conocimiento impartido.

J.L.T.G.

DEDICATORIA

A mis padres, Mercy y Nico, por ser pilar fundamental en mi vida por brindarme su apoyo y cariño incondicional, por estar pendientes a pesar de la distancia, por haber depositado su confianza y darme esta oportunidad.

A José Javier, por ser a más de hermano mi mejor amigo por apoyarme en todo por cumplir este sueño.

A mi familia, gracias por su estar presentes en todos los momentos de mi vida, por sus consejos.

A Jessica por bríndame su cariño y fuerza para caminar por esta vida al éxito.

Alexander

DEDICATORIA

A Dios, mí amigo fiel, que nunca me ha abandonado y me ha amparado en todo momento.

A mís padres Hugo y Marcela, por su sacrificio y confianza en mí, porque sé el orgullo y alegría que representa para ellos que haya logrado culminar esta etapa importante en mí vída, los quiero mucho.

A mis hermanos Danny y Marcelo, por sus consejos y apoyo que siempre me supieron brindar.

A mi compañera de siempre, Karina, por tu incansable amor y comprensión, Te amo.

A toda mí família, por su preocupación y cuando lo he necesitado.

J.L.T.G.

CONTENIDO

	II
CERTIFICACIÓN	III
AGRADECIMIENTO	IV
DEDICATORIA	VI
CONTENIDO	VIII
ÍNDICE TABLAS	XIV
ÍNDICE DE FIGURAS	XVII
ÍNDICE DE ANEXOS	XXII
SIMBOLOGIA	XXIII
RESUMEN	
PRESENTACIÓN	XXVII
	1
1 1 GENERALIDADES DELOS CAMPOS) 27 1 1
1.1. GENERALIDADES DE LOS CAMPOS 1.1.1. CAMPO CONONACO) 27 1 1 1
1.1. GENERALIDADES DE LOS CAMPOS 1.1.1. CAMPO CONONACO 1.1.1.1. Ubicación Geográfica) 27 1
1.1. GENERALIDADES DE LOS CAMPOS 1.1.1. CAMPO CONONACO 1.1.1.1. Ubicación Geográfica 1.1.1.2. Breve Reseña Histórica del Campo Conona) 27 1
1.1. GENERALIDADES DE LOS CAMPOS) 27 1
 1.1. GENERALIDADES DE LOS CAMPOS	D 27 1
 1.1. GENERALIDADES DE LOS CAMPOS) 27 1
 1.1. GENERALIDADES DE LOS CAMPOS) 27 1 1 1 1 1 aco 2 2 2 3 4
 1.1. GENERALIDADES DE LOS CAMPOS	D 27 1 1 1 1 1 1 1 1 2 2 2 3 4 4 4
 1.1. GENERALIDADES DE LOS CAMPOS	D 27 1 1 1 1 1 aco 2 2 2 3 4 4 5 5 5
 1.1. GENERALIDADES DE LOS CAMPOS	D 27 1 1 1 1 1 1 1 1 2 2 2 2 2 3 4 4 5 5 5
 1.1. GENERALIDADES DE LOS CAMPOS	27 1 1 1 1 1 aco 2 2 2 3 4 4 4 5 5 5 5 5 5 5 5 6 6
 1.1. GENERALIDADES DE LOS CAMPOS	27 1 1 1 1 1 aco 2 2 2 2 2 3 4 4 5 5 5 eno 6 7 7
 1.1. GENERALIDADES DE LOS CAMPOS	D 27 1 1 1 1 1 aco 2 2 2 3 4 4 5 5 5 eno 6 7 7
 1.1. GENERALIDADES DE LOS CAMPOS	D 27 1 1 1 1 1 aco 2 2 2 2 2 3 4 4 4 5 5 eno 6 7 7

1.2.1.3. Perforaciones, completación y pruebas iniciales	9
1.2.1.4. Historial de reacondicionamiento1	1
1.2.1.5. Historial de producción 1	1
1.2.1.6. Producción acumulada1	2
1.2.1.7. Curvas de Chan 1	4
1.2.2. POZO CONONACO 14 1	16
1.2.2.1. Descripción	16
1.2.2.2. Registros eléctricos	17
1.2.2.3. Perforaciones, completación y pruebas iniciales	20
1.2.2.4. Historial de reacondicionamiento	22
1.2.2.5. Historial de producción	22
1.2.2.6. Producción acumulada 2	25
1.2.2.7. Curvas de Chan	27
1.2.3. POZO CONONACO 23	29
1.2.3.1. Descripción	29
1.2.3.2. Registros eléctricos	30
1.2.3.3. Perforaciones, completación y pruebas iniciales	31
1.2.3.4. Historial de reacondicionamiento	34
1.2.3.5. Historial de producción 3	34
1.2.3.6. Producción acumulada3	36
1.2.3.7. Curvas de Chan	37
1.2.4. POZO YUCA 22	38
1.2.4.1. Descripción	88
1.2.4.2. Registros eléctricos	39
1.2.4.3. Perforaciones, completación y pruebas iniciales	1
TABLA 1.8 PRUEBAS DE PRODUCCIÓN INICIALES Y FINALES YUC-2 41	22
1.2.4.4. Historial de reacondicionamiento 4	13
1.2.4.5. Historial de producción 4	3
1.2.4.6. Producción acumulada 4	4
1.2.4.7. Curvas de Chan 4	6
1.2.5. POZO YULEBRA 03 4	18
1.2.5.1. Descripción	8
1.2.5.2. Registros eléctricos 4	9
1.2.5.3. Perforaciones, completación y pruebas iniciales	50
1.2.5.4. Historial de reacondicionamiento5	52
1.2.5.5. Historial de producción5	52
1.2.5.6. Producción acumulada5	53
1.2.5.7. Curvas de Chan	55
1.2.6. POZO CUYABENO 27 5	55

1.2.6.1. Descripción	55
1.2.6.2. Registros eléctricos	56
1.2.6.3. Perforaciones, completación y pruebas iniciales	57
1.2.6.4. Historial de reacondicionamiento	59
1.2.6.5. Historial de producción	59
1.2.6.6. Producción acumulada	60
1.2.6.7. Curva de Chan	60
CAPÍTULO 2	62
ACTUALIZACIÓN DE PRESIONES Y CÁLCULO DE PARÁMETRO	os
PETROFÍSICOS DE LOS RESERVORIOS	62
2.1. PRESIONES DE RESERVORIO ACTUALES	62
2.1.1. CONONACO 08	62
2.1.1.1. Napo "U" Inferior	62
2.1.1.2. Napo "T" Superior	63
2.1.1.3. Napo "T" Inferior	65
2.1.1.4. Hollín Superior	66
2.1.1.5. Hollín Inferior	67
2.1.2. CONONACO 14	68
2.1.2.1. Napo "U" Inferior	68
2.1.2.2. Napo "T" Superior	69
2.1.2.3. Napo "T" Inferior	70
2.1.2.4. Hollín Superior	71
2.1.2.5. Hollín Inferior	72
2.1.3. CONONACO 23	74
2.1.3.1. Napo "U" Inferior	74
2.1.3.2. Napo "T" Superior	75
2.1.3.3. Napo "T" Inferior	76
2.1.3.4. Hollín Superior	78
2.1.3.5. Hollín Inferior	79
2.1.4. YUCA 22	80
2.1.4.1. Napo "U" Inferior	80
2.1.4.2. Napo "T" Inferior	81
2.1.5. YULEBRA 03	82
2.1.5.1. Basal Tena	82
2.1.5.2. Napo "U" Inferior	84
2.1.6. CUYABENO 27	85
2.1.6.1. Napo "U" Superior	85
2.1.6.2. Napo "U" Inferior	86
2.1.6.3. Napo "T" Superior	88

2.2. DETERMINACIÓN DE PARÁMETROS PETROFÍSICOS	89
2.2.1. REGISTROS ELÉCTRICOS CORRIDOS EN LOS POZOS	89
2.2.2. REEVALUACIÓN DE REGISTROS ELÉCTRICOS	91
2.2.2.1. Cálculo del Volumen de Arcilla (V _{CL})	92
2.2.2.2. Efecto de la Arcillosidad en el Comportamiento de los Perfiles	93
2.2.2.3. Indicadores de Arcillosidad	94
2.2.2.4. Cálculo del Volumen de Arcilla	95
2.2.2.5. Cálculo de la Porosidad Total y Efectiva	97
2.2.2.6. Cálculo de la Saturación de Agua (Sw)	100
2.2.2.7. Valores de Corte (Cut-Off)	102
2.2.3. EVALUACIÓN EN INTERACTIVE PETROPHYSICS™	102
2.2.3.1 Resultados	119
	127
DETERMINACION DE PARAMETROS PVT Y CALCULO DE RESERVAS D	2 LU3
	121
3.1. CORRELACIONES NUMERICAS P.V.T.	127
3.1.1. PROCEDIMIENTO PARA OBTENER LAS PRINCIPALES	
PROPIEDADES DE LOS FLUIDOS	127
3.1.2. PRESENTACION DE RESULTADOS PVT	135
3.2. RESERVAS	139
3.2.1. CLASIFICACION DE LAS RESERVAS	139
3.2.2. METODOS PARA EL CALCULO DE RESERVAS	140
3.2.2.1 Los métodos existentes para este cálculo son:	141
3.2.2.2 Método Volumétrico	141
3.2.2.3 Curvas de Declinación de Producción	141
3.2.2.4 Balance de materiales	145
3.2.2.5 Simulación Numérica	146
3.2.3. CALCULO DE RESERVAS ORIGINALES PROBADAS Y	
REMANENTES	146
3.2.4. PREDICCION DE LA PRODUCCION	150
3.2.4.1. Pozo Cononaco 08	150
3.2.4.2. Pozo Cononaco 14	155
3.2.4.3. Pozo Cononaco 23	163
3.2.4.4. Pozo Yuca 22	167
3.2.4.5. Pozo Yulebra 03	171
3.2.4.6. Pozo Cuyabeno 27	173
CAPÍTULO 4	175

DESCRIPCIÓN DEL SISTEMA DE COMPLETACIÓN INT (INTELLIGENT WELL SYSTEMS – IWS)	ELIGENTE 175
 4.1. INTRODUCCIÓN	175 STEMA DE
4 2 1 SISTEMA DE CONTROL DE SUPEREICIE	
4.2.2. INFORMER	
4.2.3. PAQUETE DE LÍNEAS DE CONTROL	177
4.2.4. EMPACADURAS DE PRODUCCIÓN	178
4.2.5. CAMISAS DESLIZABLES O REGULADORES DE FLUJO 4.2.5.1. Tipos de camisas deslizables disponibles para los sistemas de	179 ?
completaciones inteligentes	179
4.2.6. SENSORES DE FONDO	
4.2.4.1. Sensores de presion y temperatura	
4.3. VENTAJAS DE LA IMPLEMENTACIÓN DE LOS SISTEMAS DE	
COMPLETACIÓN INTELIGENTE (IWS)	186
CAPÍTULO 5	189
DISEÑO DEL SISTEMA DE COMPLETACIÓN INTELIGENTE (INT	
WELL SYSTEMS – IWS) EN EL O LOS POZOS SELECCIONADOS	
5.1 SELECCIÓN DEL POZO CANDIDATO	189
5.1.1. CLASIFICACIÓN DE LOS POZOS CANDIDATOS	
5.2. ANÁLISIS NODAL DEL POZO SELECCIONADO	194
5.2.1 DESCRIPCIÓN DEL PROGRAMA WELL EVALUATION MODEL 195	_, "WEM"
5.2.2 INFORMACIÓN REQUERIDA	196
5.2.3 ANÁLISIS DE LOS RESULTADOS	198
5.3. DISENO DEL EQUIPO ELECTROSUMERGIBLE	
5.4. DIAGRAMA DE COMPLETACION INTELIGENTE PARA EL POZO 22D 219	YUCA-
CAPITULO 6	221
ANÁLISIS ECONÓMICO	221
6.1. INTRODUCCIÓN	
6.2. PRECIO DEL BARRIL DEL PETRÓLEO	
6.3. PRODUCCIÓN DURANTE LA EVALUACIÓN ECONÓMICA	222
6.4. COSTO DE INVERSIÓN INICIAL, INGRESOS Y EGRESOS	223
6.5. EVALUACIÓN DEL PROYECTO	225

	6.5.1 VALOR ACTUAL NETO (VAN)	225
	6.5.2 TASA INTERNA DE RETORNO (TIR)	226
	6.5.3 RELACIÓN BENEFICIO COSTO (B/C)	226
	6.5.4 PERÍODO DE RECUPERACIÓN DE LA INVERSIÓN	227
	6.5.5 RESULTADOS	227
CAPITU	JLO 7	229
CONCL	USIONES Y RECOMENDACIONES	229
CONCL 7.1	USIONES Y RECOMENDACIONES	229 229
CONCL 7.1 7.2	USIONES Y RECOMENDACIONES CONCLUSIONES RECOMENDACIONES	229 229 231
7.1 7.2 REFER	USIONES Y RECOMENDACIONES CONCLUSIONES RECOMENDACIONES ENCIAS BIBLIOGRÁFICAS	229 229 231 233

ÍNDICE TABLAS

TABLA 1.1. INTERVALOS PERFORADOS CONONACO 08	9
TABLA 1.2. PRUEBAS DE PRODUCCIÓN INICIALES Y FINALES CON-08	9
TABLA 1.3. INTERVALOS PERFORADOS CONONACO 14	20
TABLA 1.4. PRUEBAS DE PRODUCCIÓN INICIALES Y FINALES CON-14	20
TABLA 1.5. INTERVALOS PERFORADOS CONONACO 23	31
TABLA 1.6. PRUEBAS DE PRODUCCIÓN INICIALES Y FINALES CON-23	32
TABLA 1.7. INTERVALOS PERFORADOS YUCA 22	41
TABLA 1.8. PRUEBAS DE PRODUCCIÓN INICIALES Y FINALES YUC-22	41
TABLA 1.9. INTERVALOS PERFORADOS YUL-03	50
TABLA 1.10. PRUEBAS DE PRODUCCIÓN INICIALES Y FINALES YUL-03	50
TABLA 1.11. INTERVALOS PERFORADOS CUY-27	57
TABLA 1.12. PRUEBAS DE PRODUCCIÓN INICIALES Y FINALES CUY-27	57
TABLA 2.1. PRESIÓN DE RESERVORIO CONONACO 08 - "UI"	63
TABLA 2.2. PRESIÓN DE RESERVORIO CONONACO 08 - "TS"	64
TABLA 2.3. PRESIÓN DE RESERVORIO CONONACO 08 - "TI"	65
TABLA 2.4. PRESIÓN DE RESERVORIO CONONACO 08 - "HS"	66
TABLA 2.5. PRESIÓN DE RESERVORIO CONONACO 08 – "HI"	67
TABLA 2.6. PRESIÓN DE RESERVORIO CONONACO 14 "UI"	68
TABLA 2.7. PRESIÓN DE RESERVORIO CONONACO 14 - "TS"	69
TABLA 2.8. PRESIÓN DE RESERVORIO CONONACO 14 - "TI"	70
TABLA 2.9. PRESIÓN DE RESERVORIO CONONACO 14 - "HS"	72
TABLA 2.10 .PRESIÓN DE RESERVORIO CONONACO 14 – "HI"	73
TABLA 2.11. PRESIÓN RESERVORIO CONONACO 23 - "UI"	74
TABLA 2.12. PRESIÓN DE RESERVORIO CONONACO 23 - "TS"	76
TABLA 2.13. PRESIÓN DE RESERVORIO CONONACO 23 - "TI"	77
TABLA 2.14. PRESIÓN DE RESERVORIO CONONACO 23 – "HS"	78
TABLA 2.15. PRESIÓN DE RESERVORIO CONONACO 23 – "HI"	79
TABLA 2.16. PRESIÓN DE RESERVORIO YUCA 22 - "UI"	80
TABLA 2.17. ANÁLISIS DE PRESIÓN YUCA 22 - "TI"	81
TABLA 2.18. PRESIÓN DE RESERVORIO YULEBRA 03 – "BT"	83
TABLA 2.19. PRESIÓN DE RESERVORIO YULEBRA 03 - "UI"	84
TABLA 2.20. PRESIÓN DE RESERVORIO CUYABENO 27 - "US"	85
TABLA 2.21. PRESIÓN DE RESERVORIO CUYABENO 27 - "UI"	87
TABLA 2.22. PRESIÓN DE RESERVORIO CUYABENO 27 - "TS"	88
TABLA 2.23. REGISTROS CORRIDOS EN LOS POZOS	89
TABLA 2.24. PARÁMETROS PETROFÍSICOS CONONACO 08	120

TABLA 2.25. PARÁMETROS PETROFÍSICOS CONONACO 14	121
TABLA 2.26. PARÁMETROS PETROFÍSICOS CONONACO 23	122
TABLA 2.27. PARÁMETROS PETROFÍSICOS YUCA 22	123
TABLA 2.28. PARÁMETROS PETROFÍSICOS YULEBRA 03	124
TABLA 2.29. PARÁMETROS PETROFÍSICOS CUYABENO 27	126
TABLA 3.1. CONSTANTES AGRUPADAS SEGÚN SU GRAVEDAD	128
TABLA 3.2. CONSTANTES PARA EL CÁLCULO DEL FACTOR VOLUMÉTRICO	131
TABLA 3.3. PROPIEDADES PVT CALCULADAS POR CORRELACIONES	
CONONACO 08	136
TABLA 3.4. PROPIEDADES PVT CALCULADAS POR CORRELACIONES	
CONONACO 14	136
TABLA 3.5. PROPIEDADES PVT CALCULADAS POR CORRELACIONES	
CONONACO 23	137
TABLA 3.6. PROPIEDADES PVT CALCULADAS POR CORRELACIONES YUCA	22
	137
TABLA 3.7. PROPIEDADES PVT CALCULADAS POR CORRELACIONES	
YULEBRA 03	138
TABLA 3.8. PROPIEDADES PVT CALCULADAS POR CORRELACIONES	
CUYABENO 27	138
TABLA 3.9. CLASIFICACIÓN DE LAS CURVAS DE DECLINACIÓN	144
TABLA 3.10. RESERVAS ORIGINALES PROBADAS Y REMANENTES	147
TABLA 3.11. FACTORES DE RECOBRO DE LOS RESERVORIOS DE LOS	
CAMPOS	148
TABLA 3.12. RESERVAS ORIGINALES PROBADAS, NUEVAS ARENAS	149
TABLA 3.13. PREDICCIÓN DE LA PRODUCCIÓN, CONONACO 08 – "HS"	152
TABLA 3.14. PREDICCIÓN DE LA PRODUCCIÓN, CONONACO 08 – "HI"	154
TABLA 3.15. PREDICCIÓN DE LA PRODUCCIÓN , CONONACO 14 - "TS"	156
TABLA 3.16. PREDICCIÓN DE LA PRODUCCIÓN, CONONACO 14 - "TI"	158
TABLA 3.17. PREDICCIÓN DE LA PRODUCCIÓN, CONONACO 14 - "HS"	160
TABLA 3.18. PREDICCIÓN DE LA PRODUCCIÓN, CONONACO 14 - "HI"	162
TABLA 3.19. PREDICCIÓN DE LA PRODUCCIÓN, CONONACO 23 - "TI"	164
TABLA 3.20. PREDICCIÓN DE LA PRODUCCIÓN, CONONACO 23 – "HI"	166
TABLA 3.21. PREDICCIÓN DE LA PRODUCCIÓN, YUCA 22 "UI"	168
TABLA 3.22. PREDICCIÓN DE LA PRODUCCIÓN, YUCA 22 – "HI"	170
TABLA 3.23. PREDICCIÓN DE LA PRODUCCIÓN, YULEBRA 03 - "UI"	172
TABLA 3.24. PREDICCIÓN DE LA PRODUCCIÓN, CUYABENO 27 - "UI"	174
TABLA 5.1 PRODUCCIÓN Y RESERVAS REMANENTES DE LOS POZOS	
PRESELECCIONADOS	190
TABLA 5.2 ESTUDIO COMPARATIVO DE LOS POZOS CUYABENO 27 Y YUCA	ι
22.	194

TABLA 5.3 HOJA DE DATOS NECESARIOS PARA EL DISEÑO DE LA	
COMPLETACIÓN INTELIGENTE	196
TABLA 5.4 ANÁLISIS NODAL, ESCENARIO 1	199
TABLA 5.5 ANÁLISIS NODAL, ESCENARIO 2	200
TABLA 5.6 ANÁLISIS NODAL, ESCENARIO 3	201
TABLA 5.7 DATOS PARA LA CONSTRUCCIÓN CURVA IPR CONJUNTO	203
TABLA 5.8 DATOS PARA EL DISEÑO DEL EQUIPO BES	205
TABLA 5.9 RESULTADOS BES MODELO P18SSD	212
TABLA 5.10 CARACTERÍSTICAS BES SELECCIONADA	213
TABLA 5.11 CARACTERÍSTICAS MOTOR SELECCIONADO	214
TABLA 5.12 FACTORES DE CORRECCIÓN POR TEMPERATURA	217
TABLA 5.13 CARACTERÍSTICAS DEL VARIADOR Y TRANSFORMADOR	
SELECCIONADOS	219
TABLA 6.1 PRODUCCIÓN DURANTE EL PERÍODO DE EVALUACIÓN	
ECONÓMICA	223
TABLA 6.2 INGRESOS Y EGRESOS DURANTE LA EVALUACIÓN ECONÓM	ICA
	224
TABLA 6.3 RESULTADOS DE LA EVALUACIÓN ECONÓMICA	228

ÍNDICE DE FIGURAS

FIGURA 1.1 UBICACIÓN GEOGRÁFICA DEL CAMPO CONONACO	1
FIGURA 1.2 UBICACIÓN GEOGRÁFICA DEL CAMPO YUCA	3
FIGURA 1.3 UBICACIÓN GEOGRÁFICA DEL CAMPO YULEBRA	4
FIGURA 1.4 UBICACIÓN GEOGRÁFICA DEL CAMPO CUYABENO	6
FIGURA 1.5 UBICACIÓN GEOGRÁFICA POZO CONONACO 08	7
FIGURA 1.6 REGISTRO ELÉCTRICO, CONONACO 08 - "HS"	8
FIGURA 1.7 REGISTRO ELÉCTRICO, CONONACO 08 - "HI"	8
FIGURA 1.8 DIAGRAMA DE COMPLETACIÓN CONONACO 08	10
FIGURA 1.9 HISTORIAL DE PRODUCCIÓN, CONONACO 08 "HS"	11
FIGURA 1.10 HISTORIAL DE PRODUCCIÓN, CONONACO 08 "HI"	12
FIGURA 1.11. ACUMULADO PRODUCCIÓN, CONONACO 08 "HS"	13
FIGURA 1.12. ACUMULADO PRODUCCIÓN, CONONACO 08 "HI"	14
FIGURA 1.13. ANÁLISIS DE CHAN, CONONACO 08 "HS"	15
FIGURA 1.14. ANÁLISIS DE CHAN, CONONACO 08 "HI"	16
FIGURA 1.15. UBICACIÓN GEOGRÁFICA POZO CONONACO 14	17
FIGURA 1.16. REGISTRO ELÉCTRICO, CONONACO 14 - "TS"	18
FIGURA 1.17. REGISTRO ELÉCTRICO, CONONACO 14 - "TI"	18
FIGURA 1.18. REGISTRO ELÉCTRICO, CONONACO 14 - "HS"	19
FIGURA 1.19. REGISTRO ELÉCTRICO, CONONACO 14 - "HI"	19
FIGURA 1.20. DIAGRAMA DE COMPLETACIÓN CON-14	21
FIGURA 1.21. HISTORIAL DE PRODUCCIÓN, CONONACO 14 - "TS"	22
FIGURA 1.22. HISTORIAL DE PRODUCCIÓN, CONONACO 14 - "TI"	23
FIGURA 1.23. HISTORIAL DE PRODUCCIÓN, CONONACO 14 - "HS"	24
FIGURA 1.24. HISTORIAL DE PRODUCCIÓN, CONONACO 14 - "HI"	24
FIGURA 1.25. ACUMULADO PRODUCCIÓN, CONONACO 14 - "TS"	25
FIGURA 1.26. ACUMULADO PRODUCCIÓN, CONONACO 14 - "TI"	26
FIGURA 1.27. ACUMULADO PRODUCCIÓN, CONONACO 14 - "HS"	26
FIGURA 1.28. ACUMULADO PRODUCCIÓN, CONONACO 14 "HI"	27
FIGURA 1.29. ANÁLISIS DE CHAN, CONONACO 14 "HI"	28
FIGURA 1.30. UBICACIÓN GEOGRÁFICA POZO CONONACO 23	29
FIGURA 1.31. REGISTRO ELÉCTRICO, CONONACO 23 - "TI"	30
FIGURA 1.32. REGISTRO ELÉCTRICO, CONONACO 23 - "HS"	30
FIGURA 1.33. REGISTRO ELÉCTRICO, CONONACO 23 - "HI"	31
FIGURA 1.34. DIAGRAMA DE COMPLETACIÓN CONONACO 23	33
FIGURA 1.35. HISTORIAL DE PRODUCCIÓN, CONONACO 23 - "TI"	35
FIGURA 1.36. HISTORIAL DE PRODUCCIÓN, CONONACO 23 - "HS"	35

FIGURA 1.37. ACUMULADO PRODUCCIÓN, CONONACO 23 – "TI"	. 36
FIGURA 1.38. ACUMULADO PRODUCCIÓN, CONONACO 23 - "HI"	. 37
FIGURA 1.39. ANÁLISIS DE CHAN, CONONACO 23 - "HS"	. 38
FIGURA 1.40. UBICACIÓN GEOGRÁFICA POZO YUCA 22	. 39
FIGURA 1.41. REGISTRO ELÉCTRICO, POZO YUCA 22 - "UI"	. 40
FIGURA 1.42. REGISTRO ELÉCTRICO, POZO YUCA 22 - "HI"	. 40
FIGURA 1.43. DIAGRAMA DE COMPLETACIÓN YUCA 22	. 42
FIGURA 1.44. HISTORIAL DE PRODUCCIÓN, YUCA 22 - "UI"	. 43
FIGURA 1.45. HISTORIAL DE PRODUCCIÓN, YUCA 22 - "HI"	. 44
FIGURA 1.46. ACUMULADO PRODUCCIÓN, YUCA 22 - "UI"	. 45
FIGURA 1.47. ACUMULADO PRODUCCIÓN, YUCA 22 - "HI"	. 46
FIGURA 1.48. ANÁLISIS DE CHAN, YUCA 22 - "UI"	. 47
FIGURA 1.49. ANÁLISIS DE CHAN, YUCA 22 - "HI"	. 47
FIGURA 1.50. UBICACIÓN GEOGRÁFICA POZO YUL-03	. 48
FIGURA 1.51. REGISTRO ELÉCTRICO, YULEBRA 03 - "BT"	. 49
FIGURA 1.52. REGISTRO ELÉCTRICO, YULEBRA 03 - "UI"	. 49
FIGURA 1.53. DIAGRAMA DE COMPLETACIÓN YUL-03	. 51
FIGURA 1.54. HISTORIAL DE PRODUCCIÓN, YULEBRA 03 - "BT"	. 52
FIGURA 1.55. HISTORIAL DE PRODUCCIÓN, YULEBRA 03 - "UI"	. 53
FIGURA 1.56. ACUMULADO DE PRODUCCIÓN, YULEBRA 03 - "BT"	. 54
FIGURA 1.57. ACUMULADO DE PRODUCCIÓN, YULEBRA 03 "BT"	. 55
FIGURA 1.58. UBICACIÓN GEOGRÁFICA POZO CUY-27	. 56
FIGURA 1.59. REGISTRO ELÉCTRICO, POZO CUYABENO 27 NAPO "UI"	. 57
FIGURA 1.60. DIAGRAMA DE COMPLETACIÓN CUY-27	. 58
FIGURA 1.61. HISTORIAL DE PRODUCCIÓN, CUYABENO 27 - "UI"	. 59
FIGURA 1.62. ACUMULADO PRODUCCIÓN, CUYABENO 27 - "UI"	. 60
FIGURA 1.63. ANÁLISIS DE CHAN, CUYABENO 27 - "UI"	. 61
FIGURA 2.1. CAÍDA DE PRESIÓN CONONACO 08 - "UI"	. 63
FIGURA 2.2. CAÍDA DE PRESIÓN CONONACO 08 - "TS"	. 64
FIGURA 2.3. CAÍDA DE PRESIÓN CONONACO 08 - "TI"	. 65
FIGURA 2.4. CAÍDA DE PRESIÓN CONONACO 08 - "HS"	. 66
FIGURA 2.5. CAÍDA DE PRESIÓN CONONACO 08 – "HI"	. 67
FIGURA 2.6. CAÍDA DE PRESIÓN CONONACO 14 - "UI"	. 69
FIGURA 2.7. CAÍDA DE PRESIÓN CONONACO 14 - "TS"	. 70
FIGURA 2.8. CAÍDA DE PRESIÓN CONONACO 14 - "TI"	. 71
FIGURA 2.9. CAÍDA DE PRESIÓN CONONACO 14 – "HS"	. 72
FIGURA 2.10. CAÍDA DE PRESIÓN CONONACO 14 – "HI"	. 73
FIGURA 2.11. CAÍDA DE PRESIÓN CONONACO 23 - "UI"	. 75
FIGURA 2.12. CAÍDA DE PRESIÓN CONONACO 23 - "TS"	. 76
FIGURA 2.13. CAÍDA DE PRESIÓN CONONACO 23 - "TI"	. 77

FIGURA 2.14.	CAÍDA DE PRESIÓN CONONACO 23 – "HS"	78
FIGURA 2.15.	CAÍDA DE PRESIÓN CONONACO 23 – "HI"	79
FIGURA 2.16.	CAÍDA DE PRESIÓN YUCA 22 - "UI"	81
FIGURA 2.17.	CAÍDA DE PRESIÓN YUCA 22 - "TI"	82
FIGURA 2.18.	CAÍDA DE PRESIÓN YULEBRA 03 – "BT"	83
FIGURA 2.19.	CAÍDA DE PRESIÓN YULEBRA 03 - "UI"	84
FIGURA 2.20.	CAÍDA DE PRESIÓN CUYABENO 27 - "US"	86
FIGURA 2.21.	CAÍDA DE PRESIÓN CUYABENO 27 - "UI"	87
FIGURA 2.22.	CAÍDA DE PRESIÓN CUYABENO 27 "TS"	88
FIGURA 2.23.	DIAGRAMA DE FLUJO, CÁLCULO DE LA POROSIDAD	97
FIGURA 2.24.	DIAGRAMA DE FLUJO, CÁLCULO DE LA SATURACIÓN DE AGU	JA
		101
FIGURA 2.25.	MENÚ INPUT/OUTPUT	103
FIGURA 2.26.	LOAD ASCII FILE	104
FIGURA 2.27.	LOAD ASCII, INGRESO DE PARÁMETROS DE POZO	105
FIGURA 2.28.	INGRESO DE LA PRESENTACIÓN DEL PERFIL	106
FIGURA 2.29.	TRIPLE COMBO	106
FIGURA 2.30.	MODIFICACIÓN DEL FORMATO DEL TRIPLE COMBO	107
FIGURA 2.31.	MODIFICACIÓN DEL FORMATO DEL TRIPLE COMBO	108
FIGURA 2.32.	INGRESO DE TOPES Y BASES	109
FIGURA 2.33.	TOPES Y BASES CARGADOS	109
FIGURA 2.34.	VISUALIZACION DE CAMBIOS REALIZADOS A TOPES Y BASES	5
		110
FIGURA 2.35.	GRADIENTE DE TEMPERATURA	111
FIGURA 2.36.	VOLUMEN DE ARCILLA	111
FIGURA 2.37.	ANALISIS DE VOLUMEN DE ARCILLA	112
FIGURA 2.38.	VOLUMEN DE ARCILLA DE GR Y NEUTRON-DENSITY	112
FIGURA 2.39.	PLOT VCLGR Y VCLND	113
FIGURA 2.40.		114
FIGURA 2.41.		114
FIGURA 2.42.	PARAMETROS PARA CALCULO DE SATURACIÓN DE AGUA Y	445
POROSIDAD		115
FIGURA 2.43.	VALORES REALES DE RW, RMF Y TEMPERATURA	116
FIGURA 2.44.	PHISW MODIFICADO LUEGO DE INGRESAR RW, RMF Y	110
		110
FIGURA 2.45.		11/
FIGURA 2.46.		ΙΙð
FIGURA 2.47.	SUIVIARIO DE LUIVAS DE RESERVORIO I LUIVAS DE PAGO	110
		110
FIGURA 2.40.	REGISTRU ELECTRICU, CUNUNACU VO - 15	119

FIGURA 2.49. REGISTRO ELÉCTRICO, CONONACO 14 "UI"	120
FIGURA 2.50. REGISTRO ELÉCTRICO, YUCA 22 - "TS"	122
FIGURA 2.51.REGISTRO ELÉCTRICO, YULEBRA 03 - "HS"	123
FIGURA 2.52. REGISTRO ELÉCTRICO, CUYABENO 27 – "US&UM"	125
FIGURA 2.53. REGISTRO ELÉCTRICO, CUYABENO 27 - "TS"	125
FIGURA 3.1. CURVAS TIPO PARA ANÁLISIS DE DECLINACIÓN	145
FIGURA 3.2. AJUSTE PERÍODO DE DECLINACIÓN, CONONACO 08 - "HS".	
	151
FIGURA 3.3. CURVA DE DECLINACIÓN, CONONACO 08 – "HS"	152
FIGURA 3.4. AJUSTE PERÍODO DE DECLINACIÓN, CONONACO 08 - "HI"	
	153
FIGURA 3.5. CURVA DE DECLINACIÓN, CONONACO 08 – "HI"	154
FIGURA 3.6. AJUSTE PERÍODO DE DECLINACIÓN, CONONACO 14 - "TS" .	
	155
FIGURA 3.7. CURVA DE DECLINACIÓN, CONONACO 14 - "TS"	156
FIGURA 3.8. AJUSTE PERÍODO DECLINACIÓN, CONONACO 14 - "TI"	157
FIGURA 3.9. CURVA DE DECLINACIÓN, CONONACO 14 – "TI"	158
FIGURA 3.10 .AJUSTE PERÍODO DE DECLINACIÓN, CONONACO 14 - "HS"	
	159
FIGURA 3.11. CURVA DE DECLINACIÓN, CONONACO 14 - "HS"	160
FIGURA 3.12. AJUSTE PERÍODO DECLINACIÓN, CONONACO 14 - "HI"	161
FIGURA 3.13. CURVA DE DECLINACIÓN, CONONACO 14 - "HI"	162
FIGURA 3.14. AJUSTE PERÍODO DE DECLINACIÓN, CONONACO 23 - "TI"	
	163
FIGURA 3.15. CURVA DE DECLINACIÓN, CONONACO 23 - "TI"	164
FIGURA 3.16. AJUSTE PERÍODO DE DECLINACIÓN, CONONACO 23 - "HI".	
	165
FIGURA 3.17. CURVA DE DECLINACIÓN CON-23, HOLLÍN INFERIOR	166
FIGURA 3.18. AJUSTE PERÍODO DE DECLINACIÓN, YUCA 22 - "UI"	167
FIGURA 3.19. CURVA DE DECLINACIÓN, YUCA 22 - "UI"	168
FIGURA 3.20. AJUSTE PERÍODO DECLINACIÓN, YUCA 22 – "HI"	169
FIGURA 3.21. CURVA DE DECLINACIÓN, YUCA 22 – "HI"	170
FIGURA 3.22. AJUSTE PERÍODO DE DECLINACIÓN, YULEBRA03 - "UI"	171
FIGURA 3.23. CURVA DE DECLINACIÓN, YULEBRA 03 - "UI"	172
FIGURA 3.24. AJUSTE PERÍODO DE DECLINACIÓN, CUYABENO 27 - "UI"	
	173
FIGURA 3.25. CURVA DE DECLINACIÓN. CUYABENO 27 - "UI"	174
FIGURA 4.1. COMPONENTES DE UN SISTEMA DE COMPLETACIÓN	-
INTELIGENTE	176
FIGURA 4.2. LÍNEAS DE CONTROL	177

FIGURA 4.3. PACKER FEED-THROUGH	179
FIGURA 4.4. CAMISA HIDRÁULICA HCM-A [™]	181
FIGURA 4.5. AJUSTE DE CHOQUES DE LA CAMISA HIDRÁULICA HCM-A [™]	
	181
FIGURA 4.6. CAMISA SHROUDED HCM [™]	183
FIGURA 4.7. ESQUEMA DE COMPONENTES DE UN SENSOR	184
FIGURA 4.8. MEDIDOR DE FLUJO SUREFLO-298	185
FIGURA 4.9. VENTAJAS DE LOS SISTEMAS DE COMPLETACION INTELIGEN	ΤE
(IWS)	188
FIGURA 5.1 FLUJO DE FLUIDOS	195
FIGURA 5.2 CURVA IPR CONJUNTO	204
FIGURA 5.3 CURVAS DE RENDIMIENTO BOMBA ELECTROSUMERGIBLE,	
P18SSD	212
FIGURA 5.4 CAÍDA DE VOLTAJE POR CADA 1000 PIES EN EL CONDUCTOR.	215
FIGURA 5.5 CÁLCULO DE LA TEMPERATURA DEL CONDUCTOR	216
FIGURA 5.6 DIAGRAMA COMPLETACIÓN INTELIGENTE PROPUESTO	220
YUCA-22D	220
FIGURA 6.1 PRECIO BARRIL DE PETRÓLEO SEPTIEMBRE-OCTUBRE 2013	
	222
FIGURA 6.2 PERÍODO DE RECUPERACIÓN DE LA INVERSIÓN	228

ÍNDICE DE ANEXOS

ANEXO NO 1
HISTORIALES DE WORK OVER DE LOS POZOS CANDIDATOS 236
ANEXO NO 2
REGISTROS DE CEMENTACIÓN 242
ANEXO NO 3
CURVA IPR POZO YUCA 22
ARENISCAS "U" INFERIOR Y "T" INFERIOR 251
ANEXO NO 4
RESULTADOS OBTENIDOS EN EL PROGRAMA AUTOGRAPHPC TM PARA EL POZO YUCA 22
ANEXO NO 5
PROCEDIMIENTO OPERACIONAL DE CORRIDA DE LA COMPLETACIÓN INTELIGENTE EN EL POZO YUCA 22
ANEXO NO 6
DIAGRAMA Y TALLY DE LA COMPLETACIÓN INTELIGENTE PROPUESTA PARA EL POZO YUCA 22

SIMBOLOGIA

- Pr: Presión de Yacimiento
- Pb: Presión de Burbuja
- Pwf: Presión de Fondo Fluyente
- Pwh: Presión de Cabeza
- Psep: Presión del separador
- PIP: Presión de entrada a la bomba
- Ø: Porosidad
- μ: Viscosidad
- Sw: Saturación de Agua
- So: Saturación de Petróleo
- Sg: Saturación de Gas
- K: Permeabilidad Absoluta
- Kro: Permeabilidad Relativa al petróleo
- Krw: Permeabilidad Relativa al agua
- Krg: Permeabilidad Relativa al gas
- J: Índice de productividad
- βo: Factor volumétrico del petróleo
- βg: Factor volumétrico de gas
- Re: Radio de drenaje

- Rw: Radio del pozo
- S: Factor de daño o estimulación
- H: Espesor de la formación
- MD: Profundidad medida
- TVD: Profundidad vertical verdadera
- Qf: Tasa de flujo de fluido
- Qo: Tasa de flujo de petróleo
- Qg: Tasa de flujo de gas
- ΔP: Caída de presión
- GOR: Relación gas-petróleo
- GLR: Relación gas-líquido
- WOR: Relación agua-petróleo
- TDH: Levantamiento del equipo BES
- BSW: Sedimentos básicos y agua
- **BOT: Baker Oil Tools**
- IWS: Intelligent Well Systems
- **IPS: Intelligent Production Systems**
- PVT: Presión, Volumen, Temperatura
- FR: Factor de recobro
- **BES:** Bombeo Electrosumergible
- API: American Petroleum Institute

- BFPD: Barriles de fluido por día
- BPPD: Barriles de petróleo por día
- BAPD: Barriles de agua por día
- Mbbl: Miles de Barriles
- bls: barriles
- **BN: Barril normal**
- EF: Eficiencia
- HP: Caballos de fuerza
- ID: Diámetro Interno
- OD: Diámetro externo
- WO: Workover
- Psig: Libra- fuerza pulgada cuadrada

RESUMEN

El presente proyecto se enfocó en identificar el o los pozos potenciales que presenten las condiciones óptimas de reservorio, que permitan la factibilidad del Sistema de Completación Inteligente (Intelligent Well Systems - IWS).

Para lo cual se revisaron registros eléctricos, pruebas de restauración de presión y pruebas PVT de los pozos; lo cual nos permitió validar las características petrofísicas de las arenas, determinar a condiciones actuales las presiones de los reservorios y las propiedades de los fluidos.

Igualmente se realizaron cálculos de reservas mediante el método de curvas de declinación para las arenas que han registrado producción, mientras que para las nuevas arenas prospectivas se aplicó el método volumétrico, que más adelante los detallaremos en el desarrollo del proyecto.

Sobre esta información se identificaron y se seleccionaron las zonas potenciales para nuestro objetivo, se realizó el diseño más apropiado de sistema de Completación Inteligente para el o los pozos seleccionados y finalmente se realizó un análisis económico que permita justificar la implementación de este sistema.

PRESENTACIÓN

BAKER HUGHES comprometida con el desarrollo tecnológico de la Industria Petrolera Ecuatoriana propone el estudio para la factibilidad del Sistema de Completación Inteligente (Intelligent Well Systems - IWS), tecnología que actualmente dispone, en los pozos de PETROAMAZONAS EP.

Nuestro proyecto "Estudio para la Optimización de Producción mediante los Sistemas de Completación Inteligente (Intelligent Well Systems-IWS) en los pozos del área Auca y Cuyabeno", hace referencia a las ventajas de este sistema mediante la extracción de los fluidos del pozo con un proceso de control fundamental, monitoreando la producción en tiempo real a través de sensores instalados en el pozo, de manera que permitan al operador cambiar las características de flujo de fluidos desde superficie sin necesidad de intervenir en el mismo.

El primer capítulo hace referencia a una descripción general de los campos, lo cual incluye una breve reseña histórica y su ubicación; así como también el estado actual de los pozos en estudio.

El segundo capítulo detalla las presiones de reservorio actualizadas y las características petrofísicas de las arenas.

El tercer capítulo presenta las propiedades de los fluidos a condiciones actuales, el cálculo de reservas, y las curvas IPR de las arenas que presentan buenas características petrofísicas y productivas.

El cuarto capítulo describe en qué consiste el sistema de Completación Inteligente.

El quinto capítulo contiene el diseño de completación propuesto para el o los pozos seleccionados.

El sexto capítulo presenta el análisis económico del proyecto.

El séptimo capítulo menciona las conclusiones del estudio realizado con sus respectivas recomendaciones, para su aplicación en proyectos futuros relacionados con el tema.

CAPÍTULO 1

SITUACIÓN ACTUAL DE LOS POZOS CONONACO 08, CONONACO 14, CONONACO 23, YUCA 22, YULEBRA 03 Y CUYABENO 27

1.1. GENERALIDADES DE LOS CAMPOS

1.1.1. CAMPO CONONACO

1.1.1.1. Ubicación Geográfica

El Campo Cononaco se encuentra localizado en la cuenca sedimentaria de la región amazónica del Ecuador, Provincia de Orellana a 194 Km. al Sur-Este de Quito, limita al Norte del Campo Tigüino y al Sur del Campo Rumiyacu, (figura 1.1).

FIGURA 1.1. UBICACIÓN GEOGRÁFICA DEL CAMPO CONONACO

FUENTE: PETROAMAZONAS EP

1.1.1.2. Breve Reseña Histórica del Campo Cononaco

El Campo Cononaco fue descubierto por la compañía TEXACO-GULF, con la perforación del pozo exploratorio Cononaco 01, iniciando su perforación el 26 de octubre y posteriormente fue completado el 19 de diciembre de 1972, alcanzado una profundidad de 11.233 pies llegando hasta la Formación Chapiza.

A continuación se presenta los valores registrados en la prueba producción inicial: 1.342 BFPD (1.341 BPPD; 1 BAPD; 0.1 % BSW; 34° API) a flujo natural, procedente de la Arenisca Hollín Inferior, además se logró probar por pistoneo y reversa a las areniscas Napo "U" y "T" produciendo (110 bls; 17° API) y (21 bls; 13° API) respectivamente.

El principal yacimiento productor del Campo Cononaco es Hollín, tanto Napo "U" y "T" son considerados reservorios secundarios.

La ubicación de este pozo es considerada como parte del tren estructural Auca -Sacha con una orientación de Norte a Sur.

Su producción comercial comenzó el 14 de febrero de 1983, bajo el Consorcio CEPE-TEXACO, en la actualidad el campo Cononaco forma parte del activo Auca operado por PETROAMAZONAS EP.

1.1.2. CAMPO YUCA

1.1.2.1. Ubicación Geográfica

El Campo Yuca se encuentra localizado al Centro-Oeste de la cuenca oriental ecuatoriana, en la provincia de Orellana, entre los campos Culebra-Yulebra y Primavera, (ver figura 1.2).

FIGURA 1.2. UBICACIÓN GEOGRÁFICA DEL CAMPO YUCA

FUENTE: PETROAMAZONAS EP

1.1.2.2. Breve Reseña Histórica del Campo Yuca

El Campo Yuca fue descubierto por la compañía TEXACO-GULF, con la perforación del pozo exploratorio Yuca 01, iniciando su perforación el 31 de octubre y posteriormente fue completado el 06 de diciembre de 1970, alcanzado una profundidad de 10.426 pies.

A continuación se presenta los valores registrados en la prueba producción inicial: 440 BFPD (220 BPPD; 220 BAPD; 50 % BSW; 23.6° API) procedente de la Arenisca Hollín Superior, además se logró probar las Areniscas Napo "U" y "T" produciendo (184 BPPD; 0.3 % BSW; 21.4° API) y (520 BPPD; 2 % BSW; 29.7° API) respectivamente. Su producción comercial comenzó en el 1980, bajo el Consorcio CEPE-TEXACO, en la actualidad el campo Cononaco forma parte del activo Auca operado por PETROAMAZONAS EP.

1.1.3. CAMPO YULEBRA

1.1.3.1. Ubicación Geográfica

El Campo Yulebra se encuentra localizado en el Centro-Norte de la cuenca oriental ecuatoriana, en la provincia de Orellana, a 12 Km. al Sur-Oeste de la ciudad Francisco de Orellana, ubicado en el Sur del Campo Sacha y a unos 80 Km. al Sur de la frontera con Colombia, (ver figura 1.3).

FIGURA 1.3. UBICACIÓN GEOGRÁFICA DEL CAMPO YULEBRA

FUENTE: PETROAMAZONAS EP

1.1.3.2. Breve Reseña Histórica del Campo Yulebra

El Campo Yulebra fue descubierto por la compañía TEXACO-GULF, con la perforación del pozo exploratorio Yulebra 01, el mismo que fue completado el 21 de junio de 1980, alcanzando una profundidad 10.345 pies.

Su producción inicial fue de 1.803 BPPD de los reservorios: Basal Tena (1.614 BPPD; 23.3° API), Hollín Inferior (189 BPPD; 27° API), además obteniendo mediante pistoneo se obtuvo adicionalmente de la arenisca Napo "U" Inferior (252 bls; 22° API) y de una caliza situada sobre la caliza "M2" (63 bls; 20° API), mientras que de la arenisca Napo "T" Inferior y Hollín Superior no registraron aporte de crudo.

El campo registro producción en febrero de 1986 se registró la máxima producción alrededor de 22.100 BPPD, bajo el Consorcio CEPE-TEXACO, en la actualidad el campo Yulebra forma parte del Activo Auca operado por PETROAMAZONAS EP.

1.1.4. CAMPO CUYABENO

1.1.4.1. Ubicación Geográfica

El Campo Cuyabeno se encuentra localizado al nororiente de la Cuenca Amazónica, en la provincia de Sucumbíos, a 23 Km. aproximadamente al Norte de Tarapoa, pertenece al área Cuyabeno conformado por Cuyabeno, Sansahuari y VHR.

Esta limitado el campo Cuyabeno al Norte por el campo Sansahuari, al Sur el campo Tarapoa, y al Oeste el campo Libertador (ver figura 1.4).

FIGURA 1.4. UBICACIÓN GEOGRÁFICA DEL CAMPO CUYABENO

FUENTE: PETROAMAZONAS EP

1.1.4.2. Breve Reseña Histórica del Campo Cuyabeno

El Campo Cuyabeno fue descubierto por la compañía TEXACO-GULF, con la perforación del pozo exploratorio Cuyabeno 01, el mismo que fue completado el 23 de noviembre 1972, alcanzando una profundidad 8.157 pies.

Su producción inicial fue de 648 BPPD de 26° API procedente de la arenisca Napo "U", adicionalmente se obtuvo trazas de crudo pesado proveniente de la arenisca Basal Tena.

Inicialmente el Campo Cuyabeno se consideraba independiente hasta el año 1.996, mediante estudios geológicos y sísmicos por parte de PETROECUADOR concluyeron que el Campo Cuyabeno y Sansahuari, son una sola estructura, se confirmó mediante la perforaciones de los pozos Cuyabeno 21 y Sansahuari 10, en la actualidad el campo Cuyabeno forma parte del activo Cuyabeno operado por PETROAMAZONAS EP.

1.2. ESTADO ACTUAL DE LOS POZOS

1.2.1. POZO CONONACO 08

1.2.1.1. Descripción

El pozo Cononaco 08 se encuentra ubicado estructuralmente en la parte Central, al Este con respecto a la falla principal del campo, con las siguientes coordenadas UTM: X coord. 284996.31, Y coord. 9889055.94.

Su completación y pruebas iniciales fue en la arenisca Hollín Inferior el 04 de julio de 1984, con una producción de 5.323 BFPD (5.323 BPPD; 0 BAPD; 0 % BSW; 33° API), finalizó el 25 de febrero del 2000, posteriormente se realizó cambio de zona a la arenisca Hollín Superior, aportando producción desde 17 de marzo del 2000 hasta la actualidad, produce actualmente mediante un equipo BES con las siguientes características 2 BOMBAS DN-1100, 346 ETAPAS, 150HP, (ver figura 1.5).

FIGURA 1.5. UBICACIÓN GEOGRÁFICA POZO CONONACO 08

FUENTE: PETROAMAZONAS EP

1.2.1.2. Registros eléctricos

En las figuras 1.6 y 1.7 se observa los registros eléctricos de las areniscas que han presentado producción durante la etapa activa del pozo. A partir de los registros eléctricos se obtuvieron los valores de porosidad, saturación de petróleo y espesor neto de los reservorios; y se realiza una validación entre los intervalos disparados y la producción obtenida.

FIGURA 1.6. REGISTRO ELÉCTRICO, CONONACO 08 - "HS"

MODIFICADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

FIGURA 1.7. REGISTRO ELÉCTRICO, CONONACO 08 - "HI"

MODIFICADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

FUENTE: BAKER HUGHES INC.

FUENTE: BAKER HUGHES INC.
1.2.1.3. Perforaciones, completación y pruebas iniciales

La completación del pozo Cononaco 08 finalizó el 04 de julio de 1984; en la tabla 1.1 se presenta los intervalos perforados en la arenisca Hollín Superior e Inferior con su respectivo estado, a continuación en la tabla 1.2 se detallan las pruebas iniciales y finales de producción realizadas.

TABLA 1.1. INTERVALOS PERFORADOS CONONACO 08

ARENA	INTERVALOS	ESTADO
Hollín Superior	10270' - 10272' (2') (MD)	Squeeze
Hollin Superior	10293' - 10310' (17') (MD)	Abierto
Hollín Inforior	10326' - 10350' (24') (MD)	Abierto
Homm Interior	10351' - 10353' (2') (MD)	Squeeze

FUENTE: PETROAMAZONAS EP

MODIFICADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

TABLA 1.2. PRUEBAS DE PRODUCCIÓN INICIALES Y FINALES CON-08

CONO	NACO 08	PRUEBAS INICIALES					ÚLTIMA PRUEBA				
ZONA	ACTUAL	LEV	FECHA	BFPD	BPPD	BSW	LEV	FECHA	BFPD	BPPD	BSW
Hsup	ON	PPS	05-mar-00	1112.5	1068	4	PPS	30-mar-13	768	461	40
Hinf	OFF	PPF	05-jul-84	5323	5323	0	PPS	17-dic-08	733	513	30

FUENTE: PETROAMAZONAS EP

MODIFICADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

A continuación se presenta el diagrama mecánico de la completación con bombeo electrosumergible que se encuentra en el pozo al 31 de marzo del 2013.

FUENTE: PETROAMAZONAS EP

1.2.1.4. Historial de reacondicionamiento

En el pozo se han realizado ocho trabajos de work over, el último se lo efectuó el 05 de diciembre del año 2008. La mayoría trabajos se realizaron en el yacimiento Hollín Superior, donde los principales fueron por reparación y rediseño de BES. En el Anexo 1 se presenta descrito el historial de reacondicionamiento del pozo.

1.2.1.5. Historial de producción

> Arenisca Hollín Superior

Inicia su producción en marzo del año 2000, presentó una producción promedia de 1.000 BPPD y un BSW de 2 % hasta mayo del año 2004, actualmente tiene una producción promedia de 290 BPPD y un BSW estabilizado de 50 %. En las figura 1.9 se observa la producción de petróleo, agua y comportamiento de BSW y gas con respecto al tiempo para la arenisca Hollín Superior.

FIGURA 1.9. HISTORIAL DE PRODUCCIÓN, CONONACO 08 "HS"

FUENTE: PETROAMAZONAS EP MODIFICADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

Arenisca Hollín Inferior

Inició su actividad el 04 de julio de 1984, en un principio mantuvo una producción de 2.800 BPPD hasta julio del año 1986, llegando a una máxima producción de 3.486 BPPD, a partir de ese momento su producción de petróleo bajó hasta finalizar en el año 2000 con una producción de 140 BPPD e incrementando a un BSW de 85 %, motivó por el cual se cambió a producir de Hollín Superior.

En las figura 1.10 se observa la producción de petróleo, agua y comportamiento de BSW y gas con respecto al tiempo para la arenisca Hollín Inferior.

FUENTE: PETROAMAZONAS EP REALIZADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

1.2.1.6. Producción acumulada

En las figuras 1.11 y 1.12 se observa las producciones acumuladas de fluido (rojo), petróleo (negro), agua (azul) y el comportamiento del BSW (celeste) a lo para las arenas Hollín Superior y Hollín Inferior respectivamente.

> Arenisca Hollín Superior

El acumulado de producción de petróleo para la arenisca Hollín Superior es de 5756.61 Mbbl hasta el 31/03/2013.

FUENTE: PETROAMAZONAS EP REALIZADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

Arenisca Hollín Inferior

El acumulado de la producción de petróleo para la arenisca Hollín Inferior es de 2953.71 Mbbl de petróleo hasta 02/29/2000.

FUENTE: PETROAMAZONAS EP REALIZADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

1.2.1.7. Curvas de Chan

> Arenisca Hollín Superior

La producción de arenisca Hollín Superior inició en marzo del año 2000 con un BSW de 4 %, el mismo que va incrementándose llegando a un 50 % BSW en marzo 2013.

En la gráfica de Chan (figura 1.13) se observa que inicialmente hay un comportamiento de conificación, en la parte final se da un incremento acelerado de la WOR' debido a una posible canalización o a problemas mecánicos en el pozo. Al revisar el historial de reacondicionamiento del pozo, se puede ver que en el W.O. No 6 (19/05/2006) y en el W.O. No 7 (05/02/2008) se realizó el cambio de completación por comunicación tubing-casing; en efecto se puede atribuir a este problema el incremento del corte de agua. Al revisar el registro compuesto (Anexo 2) no hay curva CCL en el intervalo de 10.282' – 10.316'.

FUENTE: PETROAMAZONAS EP REALIZADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

Arenisca Hollín Inferior

La producción de la arena Hollín Inferior inicia en julio de 1984 con un BSW 0,19 % el cual va incrementándose alcanzando hasta el mes de febrero del 2000 un BSW de 90 %.La gráfica de Chan representa inicialmente un problema típico de canalización debido al incremento paulatino de la WOR y la tendencia de una pendiente positiva de la WOR', como se observa en la figura 1.14, mientras que en un período final se observa que la tendencias de las curvas evidencian un fenómeno de conificación. En los historiales WO no se evidencia algún problema mecánico que se relacione con este incremento de BSW. Al revisar el registro compuesto (Anexo 2), no hay curva CCL de 10.316' – 10.390'.

FUENTE: PETROAMAZONAS EP REALIZADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

1.2.2. POZO CONONACO 14

1.2.2.1. Descripción

El pozo Cononaco 14 se encuentra ubicado estructuralmente en la parte Centro-Norte, al este con respecto a la falla principal del campo, con las siguientes coordenadas UTM: X coord. 285024.96, Y coord. 9890716.27.

Su completación y pruebas iniciales fue en la arenisca Hollín Inferior el 25 de marzo de 1991, registrando una producción de 3.960 BFPD (3.956 BPPD; 1 BAPD; 0.1 %; BSW; 33° API), finalizó el 03 de enero del 2003, posteriormente se realizó cambio de zona a la arenisca Hollín Superior, aportando producción desde 30 de mayo del 2000 hasta 02 de enero del 2004, luego se procedió a probar y producir la arena Napo "T" Superior e Inferior simultáneamente el 11 de noviembre del 2004 produciendo hasta

la actualidad, actualmente produce mediante un equipo BES con las siguientes características 2 BOMBAS P4XH6, 393 ETAPAS, 114 HP, (ver figura 1.15).

FUENTE: PETROAMAZONAS EP

1.2.2.2. Registros eléctricos

En las figuras 1.16, 1.17, 1.18 y 1.19 se observa los registros eléctricos de las areniscas que han presentado producción durante la etapa activa del pozo Cononaco 14. A partir de los registros eléctricos se obtuvieron los valores de porosidad, saturación de petróleo y espesor neto de los reservorios; y se realiza una validación entre los intervalos disparados y la producción obtenida.

FUENTE: BAKER HUGHES INC.

MODIFICADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

FUENTE: BAKER HUGHES INC.

MODIFICADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

FIGURA 1.18. REGISTRO ELÉCTRICO, CONONACO 14 - "HS"

FUENTE: BAKER HUGHES INC. MODIFICADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

FUENTE: BAKER HUGHES INC.

MODIFICADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

1.2.2.3. Perforaciones, completación y pruebas iniciales

La completación del pozo Cononaco 14 finalizó el 25 de marzo de 1991; en la tabla 1.3 se presenta los intervalos perforados en las areniscas Napo "T" Superior e Inferior y Hollín Superior e Inferior con su respectivo estado, a continuación en la tabla 1.4 se detallan las pruebas iniciales y finales de producción realizadas.

ARENA	INTERVALOS	ESTADO
Napo "T" Superior	10396' - 10408' (12') MD	Abierto
Napo "T" Inforior	10440' - 10456' (16') MD	Abierto
	10468' - 10486 (18') MD	Abierto
	10611' - 10616' (5') MD	Abierto
Hollín Superior	10624' - 10634' (10') MD	Abierto
	10636' - 10644' ('8) MD	Abierto
	10654' - 10664' (10') MD	Abierto
	10670' - 10678' (8') MD	Abierto
Hollín Inferior	10678' - 10684'('6)MD	Abierto
	10690' - 10698' (8') MD	Abierto
	10698' - 10704' (6') MD	Squeeze

TABLA 1.3. INTERVALOS PERFORADOS CONONACO 14

FUENTE: PETROAMAZONAS EP

REALIZADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

TABLA 1.4. PRUEBAS DE PRODUCCIÓN INICIALES Y FINALES CON-14

CONO	NACO 14	PRUEBAS INICIALES					ÚLTIMA PRUEBA				
ZONA	ACTUAL	LEV	FECHA	BFPD	BPPD	BSW	LEV	FECHA	BFPD	BPPD	BSW
Tsup	OFF	PPS	11-nov-04	480	432	10	PPS	01-sep-12	300	258	14
Tinf	ON	PPS	11-nov-04	384	276	28	PPS	25-mar-13	353	346	2
Hsup	OFF	PPS	30-may-03	906	761	16	PPS	02-ene-04	204	201	16
Hinf	OFF	PPF	25-mar-91	3960	3956	0.1	PPS	03-ene-03	380	376	1

FUENTE: PETROAMAZONAS EP

REALIZADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

A continuación se presenta el diagrama mecánico de la completación con bombeo electrosumergible que se encuentra en el pozo al 31 de marzo del 2013.

FUENTE: PETROAMAZONAS EP

1.2.2.4. Historial de reacondicionamiento

En el pozo se han realizado ocho trabajos de work over, el último se lo efectuó el 12 de agosto del año 2009. Las intervenciones se llevaron a cabo en las areniscas Napo "T" y Hollín, donde los principales trabajos fueron disparos de nuevos intervalos productores y rediseño de BES. En el Anexo 1 se presenta descrito el historial de reacondicionamiento del pozo.

1.2.2.5. Historial de producción

> Arenisca Napo "T" Superior e Inferior

A partir del año 2004 producen en conjunto las areniscas "T" Inferior y Superior mediante sistema BES llegando a una máxima producción de 480 BPPD; su producción promedio es aproximadamente 300 BPPD, con un BSW de 2 %.

En las figuras 1.21 y 1.22 podemos observar la producción de petróleo, agua, comportamiento de BSW y de gas para las arenas Napo "T" Superior e Inferior.

FUENTE: PETROAMAZONAS EP REALIZADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

FUENTE: PETROAMAZONAS EP REALIZADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

> Arenisca Hollín Superior e Inferior

La arenisca Hollín Inferior inicia su actividad el 25 de marzo de 1.991, manteniendo una producción promedio de 1,500 BPPD con un BSW de 35 % hasta agosto de 1993, desde ese momento se producción fue decayendo, posteriormente en el año 1996 se empieza a producir conjuntamente con Hollín Superior. Se produce de Hollín Inferior hasta abril del 2003 y de Hollín Superior hasta febrero 2004, presentando un BSW alto aproximadamente del 90 %.

En las figuras 1.23 y 1.24 podemos observar la producción de petróleo, agua, comportamiento del BSW y del gas con respecto al tiempo para las arenas Napo "T" y Hollín Superior e Inferior respectivamente.

FUENTE: PETROAMAZONAS EP REALIZADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

FUENTE: PETROAMAZONAS EP REALIZADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

1.2.2.6. Producción acumulada

En las figuras 1.25, 1.26, 1.27 y 1.28 se observa las producciones acumuladas de fluido (rojo), petróleo (negro), agua (azul) y el comportamiento del BSW (celeste) a lo largo de la historia productiva del pozo respectivamente para las arenas Napo "T" y Hollín Superior e Inferior respectivamente

Arenisca Napo "T" Superior

Los acumulados de producción de petróleo para la arenisca Napo "T" Superior e Inferior son 118.608 Mbbl y 842.03 Mbbl hasta el 31/03/2013 respectivamente;

FUENTE: PETROAMAZONAS EP REALIZADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

FUENTE: PETROAMAZONAS EP REALIZADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

> Arenisca Hollín Superior

La arenisca Hollín Superior presenta una producción acumulada de petróleo es de 148.183 Mbbl hasta 02/29/2000.

FUENTE: PETROAMAZONAS EP REALIZADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

> Arenisca Hollín Inferior

La arenisca Hollín Inferior presenta una producción acumulada de petróleo de 2381.54 Mbbl hasta el 04/30/2003.

FUENTE: PETROAMAZONAS EP REALIZADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

1.2.2.7. Curvas de Chan

Se revisó solamente la curva de Chan para la arenisca Hollín Inferior, debido a que para las demás areniscas "T" Superior e Inferior, Hollín Superior presentan valores de BSW bajos aproximadamente del 16 %.

Arenisca Hollín Inferior

La producción de la arenisca Hollín inferior inicia en abril de 1991 con un BSW de 0,30 %, el cual se incrementa hasta alcanzar un máximo BSW de 95 % en diciembre del 2000.

De la figura se observa que la tendencia de la curva de la WOR' disminuye con el tiempo en tanto que la WOR incrementa, esto es un claro indicio de conificación, con efecto de canalización retardada. Basado en el historial de producción y reacondicionamiento no revela que hayan existido problemas mecánicos. Al revisar el registro GR-CCL (Anexo 2), se observa que no se ha corrido el registro en el intervalo de 10646' - 10891', (figura 1.29).

FUENTE: PETROAMAZONAS EP REALIZADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

1.2.3. POZO CONONACO 23

1.2.3.1. Descripción

El pozo Cononaco 23 se encuentra ubicado estructuralmente en la parte Sur-Oeste, al Este con respecto a la falla principal del campo, con las siguientes coordenadas UTM: X coord. 283719.11, Y coord. 9887246.98.

Su completación y pruebas iniciales en la arenisca Hollín Superior el 16 de mayo de 1995, con una producción de 888 BFPD (533 BPPD; 355 BAPD; 40 % BSW; 33° API), finalizando el 01 de junio del 2004, luego se realizó evaluación y cambio de zona a la arenisca Napo "T" Inferior produciendo desde el 01 de septiembre de 1996 hasta la actualidad, además se probó con la arena Hollín Inferior el 21 de septiembre de 1996 sin resultados favorables por lo que fue abandonada.

Posteriormente se probó las arenas Basal Tena y Napo "U" Inferior el 28 de junio del 2004, se descartaron por alto corte de BSW, produce actualmente mediante equipo BES con las siguientes características 2 BOMBAS P4XH6, 465 ETAPAS, 132 HP.

FIGURA 1.30. UBICACIÓN GEOGRÁFICA POZO CONONACO 23

FUENTE: PETROAMAZONAS EP

1.2.3.2. Registros eléctricos

En las figuras 1.31, 1.32y 1.33 se observa los registros eléctricos de las areniscas que registran producción durante la etapa activa del pozo. A partir de los registros eléctricos se obtuvieron los valores de porosidad, saturación de petróleo y espesor neto; y se realiza una validación entre los intervalos disparados y la producción.

FIGURA 1.31. REGISTRO ELÉCTRICO, CONONACO 23 - "TI"

FUENTE: BAKER HUGHES INC.

MODIFICADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

FUENTE: BAKER HUGHES INC.

MODIFICADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

FIGURA 1.33. REGISTRO ELÉCTRICO, CONONACO 23 - "HI"

FUENTE: BAKER HUGHES INC.

MODIFICADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

1.2.3.3. Perforaciones, completación y pruebas iniciales

La completación del pozo Cononaco 23 finalizo el 23 de mayo de 1995; en la tabla 1.5 se presenta los intervalos perforados en las areniscas Basal Tena, Napo "U" y Hollín Superior e Inferior con sus respectivos estados.

ARENA	INTERVALOS	ESTADO
Basal Tena	9200' - 9210' (10') MD	Squeeze
Napo "U"	9890' - 9900' (10') MD	Squeeze
Napo "T"	10137' - 10148' (11') MD	Abierto
	10152' - 10200' (48') MD	Abierto
	10336' - 10364' (28')MD	Abierto
	10338' - 10358' (20')MD	Squeeze
Hollín	10370' - 10372' (2')MD	Squeeze
	10376' - 10384' (8')MD	Squeeze
	10420' - 10424' (4')MD	Squeeze

TABLA 1.5 .	INTERVALOS	PERFORADOS	CONONACO	23
--------------------	------------	------------	----------	----

FUENTE: PETROAMAZONAS EP

REALIZADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

A continuación en la tabla 1.6 se detallan las pruebas iniciales y finales de producción realizadas.

CONO	NACO 23	PRUEBAS INICIALES					ÚLTIMA PRUEBA				
ZONA	ACTUAL	LEV	FECHA	BFPD	BPPD	BSW	LEV	FECHA	BFPD	BPPD	BSW
Bt	OFF	PPS	28-jun-04	86	80	7	PPS	27-jun-12	86	80	7
Uinf	OFF	PPS	29-jun-04	96	0	100	PPS	28-jun-12	96	0	100
Tinf	OFF	PPS	01-sep-96	163	156.9	4	PPS	13-feb-12	145	128	12
Hsup	OFF	PPS	16-may-95	888	533	40	PPS	01-jun-04	61	42	31
Hinf	OFF	PPS	21-sep-96	528	211	60	PPS	11-jun-01	528	211	60

TABLA 1.6. PRUEBAS DE PRODUCCIÓN INICIALES Y FINALES CON-23

FUENTE: PETROAMAZONAS EP

REALIZADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

A continuación se presenta el diagrama mecánico de la completación con bombeo electrosumergible que se encuentra en el pozo al 31 de marzo del 2013.

FUENTE: PETROAMAZONAS EP

1.2.3.4. Historial de reacondicionamiento

En el pozo se han realizado ocho trabajos de work over, el último se lo efectuó el 14 de diciembre del año 2007, pero al mes de febrero del 2013 el pozo quedó parado en espera de un próximo work over, para un posible cambio a bombeo mecánico debido al bajo aporte del pozo.

Las intervenciones se llevaron a cabo en las areniscas "T" Inferior y Hollín Superior, donde los principales trabajos realizados fueron disparos de nuevos intervalos productores, fracturamiento a la arena "T" Inferior, reparación y rediseño de BES.

En el Anexo 1 se presenta descrito el historial de reacondicionamiento del pozo hasta las condiciones actuales.

1.2.3.5. Historial de producción

Arenisca Napo "T" Inferior

La arenisca Napo "T" inicia su actividad el 01 de septiembre de 1996, presentando en promedio una producción de 300 BPPD y BSW de 4 % hasta enero de 1998, y posteriormente se cambia a producir de la arenisca Hollín Inferior. Se reactiva la producción de producción de "T" Inferior el 10 de octubre de 1996, presentando hasta febrero del 2013 una producción promedio de 130 BPPD con un BSW de 12 %.

En la figura 1.35 se observa la producción de petróleo, agua, comportamiento de BSW y de gas con respecto al tiempo para las arenas Napo "T" Inferior.

FUENTE: PETROAMAZONAS EP REALIZADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

> Arenisca Hollín Superior

Presentó una producción promedia de 400 BPPD, su BSW se estabiliza en 50 % hasta septiembre del año 2000. En la figura 1.36 se observa la producción de petróleo, agua, comportamiento del BSW y del gas para la arenisca Hollín Superior.

REALIZADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

1.2.3.6. Producción acumulada

En las figuras 1.37 y 1.38 se observa las producciones acumuladas de fluido (rojo), petróleo (negro), agua (azul) y el comportamiento del BSW (celeste) a lo largo de la historia productiva del pozo respectivamente para las arenas Napo "T" Inferior y Hollín Inferior.

Arenisca Napo "T" Inferior

El acumulado de producción de petróleo para la arenisca Napo "T" Inferior es de 525.219 Mbbl hasta el 31/03/2013.

FUENTE: PETROAMAZONAS EP REALIZADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

> Arenisca Hollín Superior

El acumulado de producción de petróleo para la arenisca Hollín Superior es de 357.668 Mbbl hasta el 06/30/2004.

FIGURA 1.38. ACUMULADO PRODUCCIÓN, CONONACO 23 - "HI"

1.2.3.7. Curvas de Chan

Se revisó solamente la curva de Chan para la arenisca Hollín Inferior, debido a que para la arenisca Napo "T" Inferior presenta valores bajos de BSW que se estabiliza en un 12 % al 31 de marzo del 2013.

> Arenisca Hollín Superior

La producción de la arenisca Hollín Inferior inicia en mayo de 1995 con un BSW de 40 %, el cual llega a un de 50 % en junio del 2004.

Al graficar la WOR y su derivada WOR' en función del tiempo de producción acumulado en días, inicialmente se observa que se presenta un problema de conificación. En los historiales de work over no se observa algún problema mecánico

que se relacione con este incremento de BSW. Al revisar el registro GR-CCL (Anexo 2), se observa que no se ha corrido el registro en el intervalo de 10.330' – 10.433'.

FIGURA 1.39. ANÁLISIS DE CHAN, CONONACO 23 - "HS"

```
FUENTE: PETROAMAZONAS EP
REALIZADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES
```

1.2.4. POZO YUCA 22

1.2.4.1. Descripción

El pozo Yuca 22 se encuentra ubicado estructuralmente en la parte central en un alto estructural del anticlinal con una dirección Centro-Norte, con las siguientes coordenadas UTM: X coord. 301600, Y coord. 9949600.

Su completación y pruebas iniciales fue en la arenisca Hollín Inferior el 28 de marzo del 2008, con una producción de 992 BFPD (962 BPPD; 30 BAPD; 3 % BSW; 26° API). Posteriormente se realizó cambio de zona a la arenisca Napo "U" Inferior, 05 de

enero del 2010 hasta la actualidad, actualmente produce mediante sistema BES con las siguientes características 2 BOMBAS P12X, 330 ETAPAS, 275HP (figura 1.40).

FUENTE: PETROAMAZONAS EP

MODIFICADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

1.2.4.2. Registros eléctricos

En las figuras 1.41, y 1.42 se observa los registros eléctricos de las areniscas que han presentado producción del pozo Yuca 22. A partir de los registros eléctricos se obtuvieron los valores de porosidad, saturación de petróleo y espesor neto de los reservorios; y se realiza una validación entre los intervalos disparados y la producción obtenida.

FIGURA 1.41. REGISTRO ELÉCTRICO, POZO YUCA 22 - "UI"

FUENTE: BAKER HUGHES INC. MODIFICADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

FIGURA 1.42. REGISTRO ELÉCTRICO, POZO YUCA 22 - "HI"

FUENTE: BAKER HUGHES INC.

MODIFICADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

1.2.4.3. Perforaciones, completación y pruebas iniciales

La completación del pozo Yuca 22 finalizó el 28 de marzo del 2008; en la tabla 1.7 se presenta los intervalos perforados en las areniscas: Hollín Inferior y Napo "U" Inferior con su respectivo estado, a continuación en la tabla 1.8 se detallan las pruebas iniciales y finales de producción realizadas.

TABLA 1.7. INTERVALOS PERFORADOS YUCA 22

ARENA	INTERVALOS	ESTADO		
Napo "U" Inferior	10048' - 10084' (36') MD	Abierto		
Hollín Inferior	10500' - 10520' (20') MD	Squeeze		

FUENTE: PETROAMAZONAS EP

REALIZADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

TABLA 1.8. PRUEBAS DE PRODUCCIÓN INICIALES Y FINALES YUC-22

YUC	CA 22	PRUEBAS INICIALES					ÚLTIMA PRUEBA				
ZONA	ACTUAL	LEV	FECHA	BFPD	BPPD	BSW	LEV	FECHA	BFPD	BPPD	BSW
Uinf	ON	PPS	05-ene-10	1231	1108	10	PPS	25-mar-13	866	546	36
Hinf	OFF	PPF	28-mar-08	992	962	3	PPS	04-ene-10	1352	108	92

FUENTE: PETROAMAZONAS EP

REALIZADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

A continuación se presenta el diagrama mecánico de la completación con bombeo electrosumergible que se encuentra en el pozo al 31 de marzo del 2013.

FUENTE: PETROAMAZONAS EP

1.2.4.4. Historial de reacondicionamiento

Se han realizado cinco trabajos de W.O., el último se lo efectuó el 10 de septiembre del 2010. Las intervenciones se realizaron en Hollín Inferior y U Inferior, los principales trabajos realizados fueron cambio de completación de flujo natural a bombeo electrosumergible, reparación de equipo BES y disparos de nuevos intervalos. En el Anexo 1 se presenta el historial de reacondicionamiento del pozo.

1.2.4.5. Historial de producción

Arenisca Napo "U" Inferior

Inicialmente mantiene una producción aproximada de 1.000 BPPD y un BSW del 10 %, posteriormente su producción va decayendo hasta presentar una promedio de 600 BPPD y un BSW de 34 %. En las figura 1.44 se observa la producción de petróleo, agua, comportamiento del BSW y del para "U" Inferior.

REALIZADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

Arenisca Hollín Inferior

Esta arena inició su producción el 28 de marzo del 2008 con una producción aproximada de 900 BPPD la misma que va decayendo con el paso de los meses, y finaliza su producción en abril del 2010 con 105 BPPD y un alto BSW del 92 %.

En las figura 1.45 podemos observar la producción de petróleo, agua, comportamiento del BSW y del gas con respecto al tiempo para la arenisca Hollín Inferior.

FIGURA 1.45. HISTORIAL DE PRODUCCIÓN, YUCA 22 - "HI" HISTORIAL DE PRODUCCION YUC022D:HI Oilcalday (bbl/d) YUC022D:HI 2 09 Fecha Watercalday YUC022D:H MPD 8 90 09 Fecha BSW (%) YUC022D:H 20 **MSE** 60 20 10 09 Fe

1.2.4.6. Producción acumulada

En las figuras 1.46 y 1.47 se observa las producciones acumuladas de fluido (rojo), petróleo (negro), agua (azul) y el comportamiento del BSW (celeste) a lo largo de la historia productiva del pozo respectivamente para las arenas Napo "U" Inferior y Hollín Inferior.

FUENTE: PETROAMAZONAS EP REALIZADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES
Arenisca Napo "U" Inferior

El acumulado de producción de petróleo para la arenisca Napo "U" Inferior es de 760.97 Mbbl hasta el 01/09/2012.

FUENTE: PETROAMAZONAS EP REALIZADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

Arenisca Hollín Inferior

El acumulado de producción de petróleo para la arenisca Hollín Inferior es de 264.93 Mbbl hasta el 01/04/2010.

FIGURA 1.47. ACUMULADO PRODUCCIÓN, YUCA 22 - "HI"

1.2.4.7. Curvas de Chan

Arenisca Napo "U" Inferior

La arenisca Napo "U" Inferior comenzó su etapa productiva el 01/05/2010 con un BSW del 10 % y al 31/03/2013 presenta un BSW de 34 %, a pesar de que su BSW sea inferior al 50 %, se analizó su curva Chan debido a que evidencia un claro comportamiento de conificación, igualmente se revisaron los historiales de W.O. y no hay presencia de problemas mecánicos en el pozo, por lo que el avance de agua de formación hacia el pozo es debido a un caso conificación, (figura 1.48).

FUENTE: PETROAMAZONAS EP REALIZADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

FUENTE: PETROAMAZONAS EP REALIZADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

> Arenisca Hollín Inferior

Al finalizar su producción en mayo del 2010 tiene un BSW de 94%. Se revisaron los historiales de W.O. y no revelan inconveniente mecánico en el pozo, el alto BSW se debe a un problema de conificación (figura 1.49).

FUENTE: PETROAMAZONAS EP REALIZADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

1.2.5. POZO YULEBRA 03

1.2.5.1. Descripción

El pozo Yulebra se encuentra ubicado en el centro del alto estructural con orientación Oeste-Este, en la parte central del anticlinal, con las siguientes coordenadas UTM: X coord. 2917251, Y coord. 9947300.

Su completación y pruebas iniciales fueron en las areniscas Basal Tena con una producción 600 BFPD (595 BPPD; 0.8 % BSW; 22.3° API), Napo "U" Inferior con 1.248 BFPD (1.148BPPD; 8 % BSW; 18.4° API) y Hollín aportando 2.060 BFPD (1.813 BPPD; 12 % BSW; 20.7° API), produciendo de la arenisca Napo "U" Inferior desde el 28 de febrero de 1988 hasta 19 de septiembre del 2012, posteriormente se realizó cambio de completación a mecánica en la arenisca Basal Tena, produciendo desde 20 de septiembre del 2012 hasta la actualidad. Produce actualmente mediante 1 BOMBA MECÁNICA RHBC de 1.75" x 25' en 3/4" y 7/8", bomba de 120000 Lbs, (figura 1.50).

FIGURA 1.50. UBICACIÓN GEOGRÁFICA POZO YUL-03

MODIFICADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

FUENTE: PETROAMAZONAS EP

1.2.5.2. **Registros eléctricos**

En las figuras 1.51 y 1.52 se observa los registros eléctricos iniciales de las areniscas que han presentado producción durante la etapa activa del pozo. A partir de los registros eléctricos se obtuvieron los valores de porosidad, saturación de petróleo y espesor neto de los reservorios; y se realiza una validación entre los intervalos disparados y la producción obtenida.

FUENTE: BAKER HUGHES INC. MODIFICADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

REGISTRO ELÉCTRICO, YULEBRA 03 - "UI" FIGURA 1.52.

FUENTE: BAKER HUGHES INC. MODIFICADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

1.2.5.3. Perforaciones, completación y pruebas iniciales

La completación del pozo Yulebra 03 finalizo el 28 de febrero de 1988; en la tabla 1.9 se presenta los intervalos perforados en las areniscas Basal Tena, Napo "U" Inferior y Hollín Superior e Inferior con su respectivo estado, a continuación en la tabla 1.10 se detallan las pruebas iniciales y finales de producción realizadas.

TABLA 1.9. INTERVALOS PERFORADOS YUL-03

ARENA	INTERVALOS	ESTADO
Basal Tena	8812' - 8822'(10')MD	Abierto
News "II"	9549' - 9565' (16') MD	Abierto
маро О	9574' - 9603' (29') MD	Abierto
Hollín	9985' - 9995' (10') MD	Abierto

FUENTE: PETROAMAZONAS EP

REALIZADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

TABLA 1.10.PRUEBAS DE PRODUCCIÓN INICIALES Y FINALES YUL-03

YULE	BRA 03		PRUEBA	S INICI	ALES			ÚLTIN	IA PRUE	BA	
ZONA	ACTUAL	LEV	FECHA	BFPD	BPPD	BSW	LEV	FECHA	BFPD	BPPD	BSW
Bt	ON	PPH	28-feb-88	600	595	0,8	PPM	01-mar-13	210	202	3,4
U	OFF	PPH	28-feb-88	1248	1148	8	PPS	19-sep-12	148	127	14
Hsup	OFF	PPH	28-feb-88	2060	1813	12	PPH	28-feb-88	2060	1813	12

FUENTE: PETROAMAZONAS EP

REALIZADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

A continuación se presenta el diagrama mecánico de la completación con bombeo electrosumergible que se encuentra en el pozo al 31 de marzo del 2013.

FUENTE: PETROAMAZONAS EP

1.2.5.4. Historial de reacondicionamiento

Se han realizado nueve trabajos de work over, el último se lo efectuó el 12 de septiembre del año 2009. La mayoría de intervenciones se realizó en la arenisca Napo "U" Inferior por reparación del equipo BES y el último work over se realizó en la arenisca Basal Tena para cambiar a producir de esta zona mediante bombeo mecánico. En el Anexo 1 se presenta descrito el historial de reacondicionamiento del pozo.

1.2.5.5. Historial de producción

> Arenisca Basal Tena

La arenisca Basal Tena produce a partir del 15 de octubre del 2012, llegando a producir un máximo de 205 BPPD, actualmente se encuentra produciendo con un sistema de levantamiento mecánico a una tasa de 196 BPPD con un BSW estabilizado de 3,5 %.

REALIZADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

Arenisca Napo "U" Inferior

Inició su actividad el 1 de marzo de 1988, llegando a una máxima producción de cerca de 850 BPPD, produjo hasta septiembre del 2012 con una producción 387 BPPD de con un BSW de 2 %, pero se dejó de producir de esta arena por bajo Pwf alcanzo la Pb= 860 psi, (Pwf = 867,5 psi echometer junio/2012).

FUENTE: PETROAMAZONAS EP REALIZADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

1.2.5.6. Producción acumulada

En las figuras 1.56 y 1.57 se observa las producciones acumuladas de fluido (rojo), petróleo (negro), agua (azul) y el comportamiento del BSW (celeste) a lo largo de la historia productiva del pozo respectivamente para las arenas Basal Tena y Napo "U" Inferior.

> Arenisca Basal Tena

El acumulado de producción de petróleo para la arenisca Basal Tena es de 33.98 Mbbl hasta 31/03/2013.

FUENTE: PETROAMAZONAS EP REALIZADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

Arenisca Napo "U" Inferior

El acumulado de producción de petróleo para la arenisca Napo "U" Inferior es de 5625.08 Mbbl hasta 01/09/2012.

FUENTE: PETROAMAZONAS EP REALIZADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

1.2.5.7. Curvas de Chan

No se analizaron las curvas de Chan debido a que la arenisca Basal Tena tiene un corto período de producción de apenas seis meses; mientras que la arenisca Napo "U" Inferior presentan un BSW bajo de 2 %.

1.2.6. POZO CUYABENO 27

1.2.6.1. Descripción

Se ubica al Norte del alto estructural en la parte más alta, con una orientación Norte-Sur, con las coordenadas UTM: X coord. 3554200, Y coord. 1000450.

Su completación y pruebas iniciales fue en la arenisca Napo "U" Inferior el 29 de abril del 2006, con una producción de 1.206 BFPD (1.200 BPPD; 6 BAPD; 0,5 % BSW;

27° API), aportando de esta misma arena hasta la actualidad, produce actualmente mediante un equipo electrosumergible con las siguientes características 1 BOMBA P23X, 68 etapas, 114 HP, (figura 1.58).

FUENTE: PETROAMAZONAS EP MODIFICADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

1.2.6.2. Registros eléctricos

En la figura 1.59 se observa el registro eléctrico inicial de la arenisca Napo "U" Inferior, que es la única que ha presentado producción durante la etapa activa del pozo Cuyabeno 27. A partir de los registros eléctricos se obtuvieron los valores de porosidad, saturación de petróleo y espesor neto de los reservorios; y se realiza una validación entre los intervalos disparados y la producción obtenida.

FUENTE: PETROAMAZONAS EP MODIFICADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

1.2.6.3. Perforaciones, completación y pruebas iniciales

La completación del pozo Cuyabeno 27 finalizó el 28 de abril del 2006; en la tabla 1.11 se presenta los intervalos perforados en la arenisca Napo "U" Inferior y su respectivo estado, a continuación en la tabla 1.12 se detallan las pruebas iniciales y finales de producción realizadas.

TABLA 1.11.INTERVALOS PERFORADOS CUY-27

ARENA	INTERVALOS	ESTADO
Napo "U" Inferior	7784' - 7814' (30') MD	Abierto

FUENTE: PETROAMAZONAS EP

REALIZADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

TABLA 1.12.PRUEBAS DE PRODUCCIÓN INICIALES Y FINALES CUY-27

CUYAE	BENO 27		PRUEBA	AS INICI	ALES			ÚLTIN	IA PRUE	BA	
ZONA	ACTUAL	LEV	FECHA	BFPD	BPPD	BSW	LEV	FECHA	BFPD	BPPD	BSW
Uinf	ON	PPS	03-feb-06	1206	1200	0.5	PPS	31-mar-13	2442	415	83

FUENTE: PETROAMAZONAS EP REALIZADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES A continuación se presenta el diagrama mecánico de la completación con bombeo electrosumergible que se encuentra en el pozo al 31 de marzo del 2013.

FUENTE: PETROAMAZONAS EP

1.2.6.4. Historial de reacondicionamiento

En el pozo se han realizado dos trabajos de work over, el último se lo efectuó el 17 de septiembre del año 2011. Ambas intervenciones fueron en la arenisca Napo "U" Inferior por cambio de completación, la una por cambio de bombeo hidráulico a BES, y el otro por posible comunicación casing-tubing. En el Anexo 1 se presenta descrito el historial de reacondicionamiento del pozo.

1.2.6.5. Historial de producción

La arenisca "U" Inferior inicia su actividad el 28 de diciembre del 2006, presentando una producción promedio de 650 BPPD. Con el tiempo declina su producción, actualmente produce alrededor de 390 BPPD y su BSW se ha estabilizado en 83 %.

En la figura 1.61 podemos observar la producción de petróleo, agua, comportamiento del BSW y del gas con respecto al tiempo.

HISTORIAL DE PRODUCCIÓN, CUYABENO 27 - "UI" **FIGURA 1.61**.

REALIZADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

1.2.6.6. Producción acumulada

El pozo presenta producción de la arenisca Napo "U" Inferior 1129.75 Mbbl hasta el 31/03/2013.

En la figura 1.62 se observa la producción acumulada de fluido (rojo), petróleo (negro), agua (azul) y el comportamiento del BSW (celeste) a lo largo de la historia productiva del pozo respectivamente para la arena Napo "U" Inferior.

FIGURA 1.62. ACUMULADO PRODUCCIÓN, CUYABENO 27 - "UI"

FUENTE: PETROAMAZONAS EP REALIZADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

1.2.6.7. Curva de Chan

La producción de la arena Napo "U" Inferior inicia en abril del 2006 con un BSW de 0,51 %, el cual va incrementándose rápidamente hasta estabilizarse en un BSW de 83 % en marzo del 2003.

La curva de Chan (figura 1.63) muestra un comportamiento inicial típico de una aparente conificación y en el último tramo el rápido incremento de la curva de la WOR' puede ser debido a un problema mecánico debido a que al revisar los historiales de reacondicionamiento se observa en el W.O. Nº 2 (17/09/2011) existe un problema de comunicación casing-tubing, o puede ser a una mala cementación; debido a que al revisar el registro de cementación (Anexo 2) se observa una mala cementación tanto en el intervalo abierto de Napo "U" Inferior (7.784' – 7.812') como sobre la parte superior de las mismas (8'), esto se lo puede evidenciar con las curvas CBL, VDL y el mapa de impedancia.

FUENTE: PETROAMAZONAS EP REALIZADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

CAPÍTULO 2

ACTUALIZACIÓN DE PRESIONES Y CÁLCULO DE PARÁMETROS PETROFÍSICOS DE LOS RESERVORIOS

2.1. PRESIONES DE RESERVORIO ACTUALES

La presión de reservorio al mes de marzo del año 2013 se la obtuvo mediante una ecuación de tipo lineal, que representa la tendencia de la caída de presión, que se determina sobre un comportamiento promedio de los datos de presión de reservorio corregidas a la mitad de las perforaciones tomadas de las pruebas de build up realizadas en las arenas de los pozos en estudio; de igual manera se tomaron en cuenta las pruebas de build up de pozos aledaños debido a que en algunos casos no se contaba con el número de datos suficientes para obtener un resultado confiable.

2.1.1. CONONACO 08

2.1.1.1. Napo "U" Inferior

La presión correspondiente a la arenisca Napo "U" Inferior del pozo Cononaco 08 se la obtuvo considerando la data existente de las pruebas build up de los pozos Cononaco 05 y Cononaco 09 registradas durante los períodos de producción de la arenisca. La ecuación lineal definida es: y = -0,1145205 x + 7323,01589.

Sobre la ecuación anterior se estima la presión de reservorio a marzo del 2013 y el índice de caída de presión, que se presentan en la tabla 2.1.

TABLA 2.1. PRESIÓN DE RESERVORIO CONONACO 08 - "UI"

POZO CONONACO 008,	NAPO "U" INFERIOR
Pr actulizada (psig)	2586
Fecha actualización (dd/mm/aaaa)	31/03/2013
Indice de caida de presion (PSI/AÑO)	54

REALIZADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

En la figura 2.1 se observa la tendencia lineal de la caída de presión que permite conocer la presión de reservorio de **2.586 psig** al mes de marzo del 2013.

FIGURA 2.1. CAÍDA DE PRESIÓN CONONACO 08 - "UI"

REALIZADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

2.1.1.2. Napo "T" Superior

La presión correspondiente a la arenisca Napo "T" Superior del pozo Cononaco 08 se la obtuvo considerando la información de las pruebas build up de los pozos Cononaco 14, Cononaco 16 y Cononaco 22; a partir de aquello se estableció la siguiente ecuación: y = -0,1903 x + 10826.

Sobre la ecuación anterior se estima la presión de reservorio a marzo del 2013 y el índice de caída de presión, que se presentan en la tabla 2.2.

POZO CONONACO 08, NAPO	O "T" SUPERIOR
Pr actulizada (psig)	2954
Fecha actualización (dd/mm/aaaa)	31/03/2013
Indice de caida de presion (PSI/AÑO)	75

REALIZADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

En la figura 2.2 se observa la tendencia lineal de la caída de presión que permite conocer la presión de reservorio de **2.954 psig** al mes de marzo del 2013.

FIGURA 2.2. CAÍDA DE PRESIÓN CONONACO 08 - "TS"

REALIZADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

2.1.1.3. Napo "T" Inferior

La presión correspondiente a la arenisca Napo "T" Inferior del pozo Cononaco 08 se la obtuvo de las pruebas build up de los pozos Cononaco 02, Cononaco 16 y Cononaco 28; a partir de ello se estableció la ecuación: y = -0,4209 x + 19523.

Sobre la ecuación anterior se estima la presión de reservorio a marzo del 2013 y el índice de caída de presión, que se presentan en la tabla 2.3.

TABLA 2.3. PRESIÓN DE RESERVORIO CONONACO 08 - "TI"

POZO CONONACO 08, NA	APO "T" INFERIOR
Pr actulizada (psig)	2113
Fecha actualización (dd/mm/aaaa)	31/03/2013
Indice de caida de presion (PSI/AÑO)	197
DEALIZADO DOD. ALEVANI	

REALIZADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

En la figura 2.3 se observa la tendencia lineal de la caída de presión que permite conocer la presión de reservorio de *2.113 psig* al mes de marzo del 2013.

FIGURA 2.3. CAÍDA DE PRESIÓN CONONACO 08 - "TI"

2.1.1.4. Hollín Superior

La presión correspondiente a la arenisca Hollín Superior del pozo Cononaco 08 se la obtuvo de las pruebas de build up; a partir de aquello se estableció la siguiente ecuación: y = -0.0368 x + 5376.2.

Sobre la ecuación anterior se estima la presión de reservorio a marzo del 2013.

TABLA 2.4. PRESIÓN DE RESERVORIO CONONACO 08 - "HS"

POZO CONONACO 08, HOL	LÍN SUPERIOR
Pr actulizada (psig)	3853
Fecha actualización (dd/mm/aaaa)	31/03/2013
Indice de caida de presion (PSI/AÑO)	14

REALIZADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

En la figura 2.4 se observa la tendencia lineal de la caída de presión que permite conocer la presión de reservorio de **3.853** *psig* al mes de marzo del 2013.

FIGURA 2.4. CAÍDA DE PRESIÓN CONONACO 08 - "HS"

2.1.1.5. Hollín Inferior

La presión correspondiente a la arenisca Hollín Inferior del pozo Cononaco 08 se la obtuvo de las pruebas build up, a partir de aquello se estableció la siguiente ecuación: y = -0,0716 x + 6919,6.

Sobre la ecuación anterior se estima la presión de reservorio a marzo del 2013.

TABLA 2.5. PRESIÓN DE RESERVORIO CONONACO 08 - "HI"

POZO CONONACO 08, HO	OLLÍN INFERIOR
Pr actulizada (psig)	4124
Fecha actualización (dd/mm/aaaa)	31/03/2013
Indice de caida de presion (PSI/AÑO)	15

REALIZADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

En la figura 2.5 se observa la tendencia lineal de la caída de presión que permite conocer la presión de reservorio de *4.124 psig* al mes de marzo del 2013.

FIGURA 2.5. CAÍDA DE PRESIÓN CONONACO 08 - "HI"

2.1.2. CONONACO 14

2.1.2.1. Napo "U" Inferior

La presión correspondiente a la arenisca Napo "U" Inferior del pozo Cononaco 14 se la obtuvo de las pruebas build up de los pozos Cononaco 06 y Cononaco 21 registradas durante los períodos de producción de la arenisca. La ecuación lineal definida es: y = -0,0807 x + 6006,2.

Sobre la ecuación anterior se estima la presión de reservorio y el índice de caída de presión a marzo del 2013,

POZO CONONACO 14, NA	PO "U" INFERIOR
Pr actulizada (psig)	2668
Fecha actualización (dd/mm/aaaa)	31/03/2013
Indice de caida de presion (PSI/AÑO)	34

TABLA 2.6. PRESIÓN DE RESERVORIO CONONACO 14 "UI"

REALIZADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

En la figura 2.6 se observa la tendencia lineal de la caída de presión que permite conocer la presión de reservorio de **2.668 psig** al mes de marzo del 2013.

FIGURA 2.6. CAÍDA DE PRESIÓN CONONACO 14 - "UI"

2.1.2.2. Napo "T" Superior

La presión correspondiente a la arenisca Napo "T" Superior del pozo Cononaco 14 se la obtuvo considerando la información de las pruebas build up de los pozos Cononaco 14, Cononaco 16, Cononaco 22 y Cononaco; a partir de aquello se estableció la siguiente ecuación: $y = -0,2075 \times +11141$.

|--|

POZO CONONACO 14, NAPO "T" SUPERIOR	
Pr actulizada (psig)	2558
Fecha actualización (dd/mm/aaaa)	31/03/2013
Indice de caida de presion (PSI/AÑO)	103

REALIZADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

En la figura 2.7 se observa la tendencia lineal de la caída de presión que permite conocer la presión de reservorio de **2.558 psig** al mes de marzo del 2013.

FIGURA 2.7. CAÍDA DE PRESIÓN CONONACO 14 - "TS"

REALIZADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

2.1.2.3. Napo "T" Inferior

La presión correspondiente a la arenisca Napo "T" Inferior del pozo Cononaco 14 se la obtuvo considerando la información de las pruebas build up de los pozos Cononaco 02, Cononaco 13, Cononaco 14, Cononaco 20 y Cononaco 22; a partir de aquello se estableció la siguiente ecuación: y = -0,5306 x + 23994.

TABLA 2.8 .	PRESIÓN DE RESERVORIO	CONONACO	14 - "TI"

POZO CONONACO 14, NAPO "T" INFERIOR	
Pr actulizada (psig)	2046
Fecha actualización (dd/mm/aaaa)	31/03/2013
Indice de caida de presion (PSI/AÑO)	208

REALIZADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

En la figura 2.8 se observa la tendencia lineal de la caída de presión que permite conocer la presión de reservorio de **2.046 psig** al mes de marzo del 2013.

FIGURA 2.8. CAÍDA DE PRESIÓN CONONACO 14 - "TI"

REALIZADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

2.1.2.4. Hollín Superior

La presión correspondiente a la arenisca Hollín Superior del pozo Cononaco 14 se la obtuvo considerando la data existente de las pruebas build up de los pozos Cononaco 02, Cononaco 07, Cononaco 11 y Cononaco 14 registradas durante los períodos de producción de la arenisca. La ecuación lineal definida es: y = -0,2949 x + 15001.

Sobre la ecuación anterior se estima la presión de reservorio a marzo del 2013 y el índice de caída de presión, que se presentan en la tabla 2.9.

TABLA 2.9. PRESIÓN DE RESERVORIO CONONACO 14 - "HS"

POZO CONONACO 14, HOLLÍN SUPERIOR	
Pr actulizada (psig)	2803
Fecha actualización (dd/mm/aaaa)	31/03/2013
Indice de caida de presion (PSI/AÑO)	30

REALIZADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

En la figura 2.9 se observa la tendencia lineal de la caída de presión que permite conocer la presión de reservorio de **2.803** *psig* al mes de marzo del 2013.

FIGURA 2.9. CAÍDA DE PRESIÓN CONONACO 14 – "HS"

REALIZADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

2.1.2.5. Hollín Inferior

La presión correspondiente a la arenisca Hollín Inferior del pozo Cononaco 14 se la obtuvo de la data existente de las pruebas build up registradas durante los períodos de producción. La ecuación lineal definida es: y = -0,017041 x + 5229,7328.

Sobre la ecuación anterior se estima la presión de reservorio a marzo del 2013 y el índice de caída de presión, que se presentan en la tabla 2.10.

TABLA 2.10.PRESIÓN DE RESERVORIO CONONACO 14 – "HI"

POZO CONONACO 14, HOLLÍN INFERIOR	
Pr actulizada (psig)	4525
Fecha actualización (dd/mm/aaaa)	31/03/2013
Indice de caida de presion (PSI/AÑO)	6

REALIZADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

En la figura 2.10 se observa la tendencia lineal de la caída de presión que permite conocer la presión de reservorio de *4.525 psig* al mes de marzo del 2013.

REALIZADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

2.1.3. CONONACO 23

2.1.3.1. Napo "U" Inferior

La presión correspondiente a la arenisca Napo "U" Inferior del pozo Cononaco 23 se la obtuvo considerando la data existente de las pruebas build up de los pozos Cononaco 05 y Cononaco 09 registradas durante los períodos de producción de la arenisca. La ecuación lineal definida es: y = -0,1145205 x + 7323,01589.

Sobre la ecuación anterior se estima la presión de reservorio a marzo del 2013 y el índice de caída de presión, que se presentan en la tabla 2.11.

POZO CONONACO 23, NAPO "U" INFERIOR	
Pr actulizada (psig)	2586
Fecha actualización (dd/mm/aaaa)	31/03/2013
Indice de caida de presion (PSI/AÑO)	42

TABLA 2.11.PRESIÓN RESERVORIO CONONACO 23 - "UI"

REALIZADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

En la figura 2.11 se observa la tendencia lineal de la caída de presión que permite conocer la presión de reservorio de **2.586 psig** al mes de marzo del 2013.

FIGURA 2.11. CAÍDA DE PRESIÓN CONONACO 23 - "UI"

REALIZADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

2.1.3.2. Napo "T" Superior

La presión correspondiente a la arenisca Napo "T" Superior del pozo Cononaco 23 se la obtuvo considerando la data existente de las pruebas build up registradas durante los períodos de producción de la arenisca. La ecuación lineal definida es: y = -0.2647x + 13609.

Sobre la ecuación anterior se estima la presión de reservorio a marzo del 2013 y el índice de caída de presión, que se presentan en la tabla 2.12.

TABLA 2.12.PRESIÓN DE RESERVORIO CONONACO 23 - "TS"

POZO CONONACO 23, NAPO "T" SUPERIOR	
Pr actulizada (psig)	2660
Fecha actualización (dd/mm/aaaa)	31/03/2013
Indice de caida de presion (PSI/AÑO)	92

REALIZADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

En la figura 2.12 se observa la tendencia lineal de la caída de presión que permite conocer la presión de reservorio de **2.660 psig** al mes de marzo del 2013.

REALIZADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

2.1.3.3. Napo "T" Inferior

La presión correspondiente a la arenisca Napo "T" Inferior del pozo Cononaco 23 se la obtuvo de la data de las pruebas build up de los pozos Cononaco 02, Cononaco

16 y Cononaco 28 registradas durante los períodos de producción de la arenisca. La ecuación lineal definida es: y = -0,465758 x + 21452,1668.

Sobre la ecuación anterior se estima la presión de reservorio a marzo del 2013 y el índice de caída de presión, que se presentan en la tabla 2.13.

TABLA 2.13.PRESIÓN DE RESERVORIO CONONACO 23 - "TI"

POZO CONONACO 23, NAPO "T"INFERIOR	
Pr actulizada (psig)	2187
Fecha actualización (dd/mm/aaaa)	31/03/2013
Indice de caida de presion (PSI/AÑO)	170

REALIZADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

En la figura 2.13 se observa la tendencia lineal de la caída de presión que permite conocer la presión de reservorio de *2.187 psig* al mes de marzo del 2013.

REALIZADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

2.1.3.4. Hollín Superior

La presión correspondiente a la arenisca Hollín Superior del pozo Cononaco 23 se la obtuvo de la data de las pruebas build up registradas durante los períodos de producción de la arenisca. La ecuación lineal definida es: y = -0.0439x + 6072.7.

Sobre la ecuación anterior se estima la presión de reservorio a marzo del 2013 y el índice de caída de presión, que se presentan en la tabla 2.14.

TABLA 2.14.PRESIÓN DE RESERVORIO CONONACO 23 – "HS"

POZO CONONACO 23, HOLLÍN SUPERIOR	
Pr actulizada (psig)	4260
Fecha actualización (dd/mm/aaaa)	31/03/2013
Indice de caida de presion (PSI/AÑO)	16

REALIZADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

En la figura 2.14 se observa la tendencia lineal de la caída de presión que permite conocer la presión de reservorio de *4.260 psig* al mes de marzo del 2013.

REALIZADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

2.1.3.5. Hollín Inferior

La presión correspondiente a la arenisca Hollín Inferior del pozo Cononaco 23 se la obtuvo de las pruebas build up de los pozos Cononaco 17 y Cononaco 23. La ecuación lineal definida es: y = -0,0175 x + 5228,4.

Sobre la ecuación anterior se estima la presión de reservorio a marzo del 2013.

POZO CONONACO 23, HOLLÍN INFERIOR	
Pr actulizada (psig)	4505
Fecha actualización (dd/mm/aaaa)	31/03/2013
Indice de caida de presion (PSI/AÑO)	10

TABLA 2.15.PRESIÓN DE RESERVORIO CONONACO 23 – "HI"

REALIZADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

En la figura 2.15 se observa la tendencia lineal de la caída de presión que permite conocer la presión de reservorio de *4.505 psig* al mes de marzo del 2013.

FIGURA 2.15. CAÍDA DE PRESIÓN CONONACO 23 – "HI"

REALIZADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

2.1.4. YUCA 22

2.1.4.1. Napo "U" Inferior

La presión correspondiente a la arenisca Napo "U" Inferior del pozo Yuca 22 se la obtuvo considerando la información de las pruebas build up de los pozos; Para realizar la actualización de la presión de reservorio para la arenisca Napo "U" Inferior del pozo Yuca 22, se consideró los datos de build up de los Yuca 01, Yuca 02, Yuca 03, Yuca 04, Yuca 07, Yuca 09, Yuca 13, Yuca 14, Yuca 15, Yuca 19, Yuca 20 y Yuca 25 correspondientes a la arenisca. Como se observa en la figura 2.16 se realizó una sectorización de los datos de presión, y la predicción de la presión se realizó considerando los datos que se representan en color azul debido a que estos valores exhiben un comportamiento promedio, puesto que al ser un campo maduro sus presiones de reservorio se mantienen dentro de un rango de 1300 psi a 1900 psi.

A partir de aquello se estableció la siguiente ecuación: y=-0,15876x + 8000,99

Sobre la ecuación anterior se estima la presión de reservorio a octubre del 2013 y el índice de caída de presión, que se presentan en la tabla 2.16.

POZO YUCA 22, NAPO "U"INFERIOR	
Pr actulizada (psig)	1400
Fecha actualización (dd/mm/aaaa)	31/10/2013
Indice de caida de presion (PSI/AÑO)	58

TABLA 2.16.PRESIÓN DE RESERVORIO YUCA 22 - "UI"

REALIZADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

En la figura 2.16 se observa la tendencia lineal de la caída de presión que permite conocer la presión de reservorio de *1.400 psig* al mes de octubre del 2013.

REALIZADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

2.1.4.2. Napo "T" Inferior

La presión correspondiente a la arenisca Napo "T" Inferior del pozo Yuca 22 se la obtuvo considerando la información de las pruebas build up de los pozos Yuca 04, Yuca 16, Yuca 19 y Yuca 21; a partir de aquello se estableció la siguiente ecuación: y = -0,16x + 8418,24.

Sobre la ecuación anterior se estima la presión de reservorio a octubre del 2013 y el índice de caída de presión, que se presentan en la tabla 2.17.

POZO YUCA 22, NAPO	"T"INFERIOR
Pr actulizada (psig)	1800
Fecha actualización (dd/mm/aaaa)	31/10/2013
Indice de caida de presion (PSI/AÑO)	58

TABLA 2.17.ANÁLISIS DE PRESIÓN YUCA 22 - "TI"

REALIZADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

En la figura 2.17 se observa la tendencia lineal de la caída de presión que permite conocer la presión de reservorio de **1.800 psig** al mes de octubre del 2013.

FIGURA 2.17. CAÍDA DE PRESIÓN YUCA 22 - "TI"

FUENTE: PETROAMAZONAS EP REALIZADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

2.1.5. YULEBRA 03

2.1.5.1. Basal Tena

La presión correspondiente a la arenisca Basal Tena del pozo Yulebra 03 se la obtuvo considerando la data existente de las pruebas build up del mismo registradas durante los períodos de producción de la arenisca. La ecuación lineal definida es: y = $-0,2498 \times +11233$.

Sobre la ecuación anterior se estima la presión de reservorio a marzo del 2013 y el índice de caída de presión, que se presentan en la tabla 2.18.

TABLA 2.18.PRESIÓN DE RESERVORIO YULEBRA 03 - "BT"

POZO YULEBRA 03, BA	SAL TENA
Pr actulizada (psig)	902
Fecha actualización (dd/mm/aaaa)	31/03/2013
Indice de caida de presion (PSI/AÑO)	88

FUENTE: PETROAMAZONAS EP

REALIZADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

En la figura 2.18 se observa la tendencia lineal de la caída de que permite conocer la presión de reservorio de *902 psig* al mes de marzo del 2013.

FIGURA 2.18. CAÍDA DE PRESIÓN YULEBRA 03 – "BT"

FUENTE: PETROAMAZONAS EP REALIZADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

2.1.5.2. Napo "U" Inferior

La presión correspondiente a la arenisca Napo "U" Inferior del pozo Yulebra 03 se la de las pruebas build up del mismo pozo y el pozo Yulebra 04. La ecuación lineal definida es: y = -0,1497 x + 8092,6.

Sobre la ecuación anterior se estima la presión de reservorio a marzo del 2013.

TABLA 2.19.PRESIÓN DE RESERVORIO YULEBRA 03 - "UI"

POZO YULEBRA 03, NAPO	"U" INFERIOR
Pr actulizada (psig)	1900
Fecha actualización (dd/mm/aaaa)	31/03/2013
Indice de caida de presion (PSI/AÑO)	60

REALIZADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

En la figura 2.19 se observa la tendencia lineal de la caída de presión que permite conocer la presión de reservorio de **1.900 psig** al mes de marzo del 2013.

FIGURA 2.19. CAÍDA DE PRESIÓN YULEBRA 03 - "UI"

REALIZADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

2.1.6. CUYABENO 27

2.1.6.1. Napo "U" Superior

La presión correspondiente a la arenisca Napo "U" Superior del pozo Cuyabeno 27 se la obtuvo considerando la data existente de las pruebas build up de los pozos Cuyabeno 06, Cuyabeno 21 y Cuyabeno 27 registradas durante los períodos de producción de la arenisca. La ecuación lineal definida es:

$$y = -0,0643x + 5320,3.$$

Sobre la ecuación anterior se estima la presión de reservorio a marzo del 2013 y el índice de caída de presión, que se presentan en la tabla 2.20.

POZO CUYABENO 27, NAPO "U"SUPERIOR					
Pr actulizada (psig)	2661				
Fecha actualización (dd/mm/aaaa)	31/03/2013				
Indice de caida de presion	22				

(PSI/AÑO)

TABLA 2.20.PRESIÓN DE RESERVORIO CUYABENO 27 - "US"

REALIZADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

En la figura 2.20 se observa la tendencia lineal de la caída de presión que permite conocer la presión de reservorio de **2.661 psig** al mes de marzo del 2013.

REALIZADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

2.1.6.2. Napo "U" Inferior

La presión correspondiente a la arenisca Napo "U" Inferior del pozo Cuyabeno 27 se la obtuvo considerando la data existente de las pruebas build up de los pozos Cuyabeno 27 y Cuyabeno 51 registradas durante los períodos de producción de la arenisca. La ecuación lineal definida es: y = -0,0857 x + 6377,6.

Sobre la ecuación anterior se estima la presión de reservorio a marzo del 2013 y el índice de caída de presión, que se presentan en la tabla 2.21.

TABLA 2.21.PRESIÓN DE RESERVORIO CUYABENO 27 - "UI"

POZO CUYABENO 27, NAP	O "U"INFERIOR
Pr actulizada (psig)	2833
Fecha actualización (dd/mm/aaaa)	31/03/2013
Indice de caida de presion (PSI/AÑO)	25

REALIZADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

En la figura 2.21 se observa la tendencia lineal de la caída de presión (graficada en color rojo) que permite conocer la presión de reservorio de **2.833 psig** al mes de marzo del 2013.

REALIZADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

2.1.6.3. Napo "T" Superior

La presión de Napo "T" Superior se la obtuvo mediante las pruebas build up de los pozos Cuyabeno 19, Cuyabeno 22, Cuyabeno 23 y Cuyabeno 27. La ecuación lineal definida es: y = -0,1504x+8094.

En la tabla 2.22 se presenta la presión de reservorio a marzo del 2013.

TABLA 2.22.PRESIÓN DE RESERVORIO CUYABENO 27 - "TS"

POZO CUYABENO 27, NAPO	O "T"SUPERIOR
Pr actulizada (psig)	1873
Fecha actualización (dd/mm/aaaa)	31/03/2013
Indice de caida de presion (PSI/AÑO)	99

REALIZADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

En la figura 2.22 se observa la tendencia lineal de la caída de presión a marzo del 2013.

FIGURA 2.22. CAÍDA DE PRESIÓN CUYABENO 27 "TS"

REALIZADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

2.2. DETERMINACIÓN DE PARÁMETROS PETROFÍSICOS

2.2.1. REGISTROS ELÉCTRICOS CORRIDOS EN LOS POZOS

Las principales curvas de los registros corridos en los pozos se presentan a continuación:

REGISTRO	NOMENCLATURA	ESCALA	UNIDAD
Gamma Ray	GR	0150	API
Potencial Espontáneo	SP	-100100	MV
Caliper	CAL	616	IN
Micronormal	MNO	20 0	
Microinverso	MINV	200	
Resistividad Profunfa	RD		
Resistividad Media	RM		
Resistividad Somera	RS		
Microlaterolog	LLM		
Laterolog Somero	LLS	02000	OHM-M
Laterolog Profundo	LLD		
Inducción Esférico	SFL		
Inducción Medio	MIL		
Inducción Profundo	DIL		
Porosidad Density	RHOB	1.952.95	GR/CM ³
Porosidad Neutrónico	NPHI	0.450.15	DEC
Porosidad Sónico	DT	14040	US/FT

TABLA 2.23.REGISTROS CORRIDOS EN LOS POZOS

FUENTE: BAKER HUGHES INC.

MODIFICADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

En algunos de los pozos no se encontraron todos los registros eléctricos anteriormente detallados debido a la época en que fueron perforados. Sin embargo los rayos gamma, potencial espontáneo, Caliper, densidad (RHOB), resistividad profunda y somera son los registros más comunes observados en la mayoría de los pozos

A continuación se detallan las principales funciones de los registros corridos en los pozos.

REGISTROS GR, SP, CALIPER, MICROLOG

La curva SP registra el potencial eléctrico (voltaje) producido por la interacción del agua de formación innata, el fluido de perforación conductivo y ciertas rozas selectivas de iones (lutita).

El registro GR indica la radioactividad natural de las formaciones que depende de la concentración de potasio, torio y uranio.

El Microlog proporciona las mediciones de resistividad de un volumen muy pequeño de costra de lodo y formación adyacente al agujero. La comparación de las dos curvas sirve para identificar con facilidad la costra de lodo, lo que señala las formaciones invadidas, y por lo tanto permeables.

El Caliper indica claramente que el diámetro real del hueco difiere en gran medida del diámetro de la broca utilizada para la perforación del pozo, en formaciones permeables el diámetro del hueco es reducido por el espesor de la costra de lodo.

Todos estos registros son útiles para identificar zonas permeables.

REGISTROS RESISTIVOS

Generalmente son presentados en la segunda pista, son de utilidad para determinar las saturaciones de fluidos presentes en las rocas en conjunto con los registros de porosidad, además permiten identificar contactos agua-petróleo cuando existan, por lo general se utiliza una lectura somera y otra profunda.

REGISTRO NEUTRÓN, SÓNICO, DENSIDAD

Los perfiles neutrónicos nos dan lecturas directas de la porosidad de las formaciones, partiendo de la presencia de átomos de hidrogeno, es decir generando información de los fluidos que saturan los espacios porosos.

Los registros sónicos en cambio toman como referencia el tiempo de transito de la onda acústica al viajar dentro de las formaciones, determinando de igual forma porosidades.

Los registros de densidad determinan las porosidades de las diversas zonas, partiendo de las densidades registradas en el tránsito por las formaciones, tomando como referencia los electrones del material de la formación.

Al combinar de los perfiles de densidad y neutrón obtenemos óptimos resultados, ya que estos se ven influenciados por la presencia de gas, ya que las respuestas son compensadas al promediar los resultados de porosidad obtenidas por estos perfiles.

2.2.2. REEVALUACIÓN DE REGISTROS ELÉCTRICOS

Para la reevaluación de los registros eléctricos de los pozos en estudio, se utiliza el software *INTERACTIVE PETROPHYSICSTM v3.5*, el cual nos permite cuantificar los parámetros petrofísicos (porosidad, saturación de petróleo, espesor neto, volumen de arcilla y litología) de las principales zonas de interés.

Para esto se cargó en el programa la información en formato ASCII proporcionada por PETROAMAZONAS EP, a partir de lo cual se realizó el cálculo del volumen de arcilla, porosidad saturación de agua y determinación de las zonas de pago, que más adelante lo detallaremos de mejor manera.

2.2.2.1. Cálculo del Volumen de Arcilla (VCL)

Las formaciones de los campos del Oriente ecuatoriano no son completamente limpias, contienen arcilla, en elemento muy común que afecta a la porosidad, permeabilidad y causa muchos inconvenientes en la interpretación de los registros eléctricos.

La forma en que la arcillosidad afecta los parámetros obtenidos de los registros eléctricos depende de la proporción de arcilla presente, de sus propiedades y de la manera en que se encuentra distribuida en la formación.

El material arcilloso puede encontrarse distribuido en las formaciones de tres maneras:

• Arcilla Estructural:

Está presente, como granos en la matriz de la formación, es decir siendo parte de la arena. Afecta poco a la porosidad siempre y cuando sea por depositación, debido a que la partícula de arcilla ocupa el lugar de cuarzo, por tal dejando espacios libres.

Arcilla Laminar:

Se presentan lutitas o arcillas en formas de láminas depositadas entre capas de arenas. Este tipo de arcilla afecta la lectura de los registros, mientras que la porosidad y permeabilidad de la arena como tal no es afectada¹.

¹ ANDRADE, Fidel, "Actualización de reservas del comportamiento productivo de los campos Culebra-Yulebra".2009, pag. 21.

Arcilla Dispersa:

Dado que el material arcilloso se encuentra disperso sobre la arena ocupando parcialmente los espacios intergranulares, a manera que reduce la permeabilidad, así como la disponibilidad para acumular fluidos entre su matriz.

2.2.2.2. Efecto de la Arcillosidad en el Comportamiento de los Perfiles

Curva de Potencial Espontaneo

Se fundamente en la proporción de arcilla presente, entre mayor sea la concentración, mayor desviación o valor SP con respecto al valor que éste en una formación con suficiente espesor limpia.

➢ Gamma Ray

Son de mayor utilidad que la curva SP para la interpretación de arenas arcillosas, siempre y cuando no se presenten en las mismas minerales radiactivos.

Registros de Resistividad

La arcilla presenta menor resistividad que la de una arena, tendiendo a bajar la resistividad de la misma.

> Perfil de Densidad

Como el perfil de densidad, responde a la densidad electrónica del medio, la presencia de arcilla produce el aumento de la porosidad efectiva que puede

obtenerse del perfil, ya que por lo general la densidad de la lutita es del orden de 2,2 a 2,65 g/cm².

> Perfil Neutrónico

Su lectura se ve incrementada debido al efecto de las arcillas, porque responde a todo el hidrógeno presente en la formación, incluyendo el agua presente en las arcillas.

> Perfil Sónico

La presencia de arcillas tiende a aumentar la respuesta del registro.

2.2.2.3. Indicadores de Arcillosidad

La proporción del volumen de arcilla (V_{CL}) es determinada mediante el uso de registros o combinación de ellos, llamados indicadores de arcillosidad, que se presentan a continuación:

- Registro de Rayos Gamma (GR)
- Curva de Potencial Espontáneo (SP).
- Perfil de Resistividad.
- Perfil Neutrónico.
- CrossPlot Densidad de Formación Sónico.
- CrossPlot Densidad de Formación Neutrónico.
- CrossPlot Neutrónico Sónico.

² ANDRADE, Fidel, "Actualización de reservas del comportamiento productivo de los campos Culebra-Yulebra".2009, pag. 22.

Los indicadores de arcillosidad utilizados en este proyecto para las formaciones de los pozos en estudio son el registro de Rayos Gamma y el de Densidad de formación-Neutrónico.

2.2.2.4. Cálculo del Volumen de Arcilla

A continuación se describe de manera detallada las metodologías del registro de Rayos Gamma y la combinación de Densidad de formación- Neutrónico, y las ecuaciones matemáticas que le programa *Interactive PetrophysicsTM v3.5* considera para el cálculo de V_{CL}.

Registro de Rayos Gamma

Permite estimar la fracción de arcilla (V_{CL}) mediante la siguiente fórmula:

$$V_{\rm CL} = \frac{GR - GR \ limpia}{GR \ arcilla - GR \ limpia} \tag{2.1}$$

donde;

V_{CL} : volumen de arcilla, fracción

GR : lectura del perfil frente al nivel o arena de interés

GR_{limpia}: lectura del perfil frente a una formación considerada limpia

GRarcilla: lectura del perfil frente a una arcilla vecina

> Cross-Plot Densidad de Formación – Neutrónico

La combinación de estos registros nos sirve como indicador de arcilla, cuando de manera independiente de la distribución, los parámetros de la matriz de la formación

son conocidos y relativamente contantes. La utilización de este método nos permite obtener buenos resultados cuando la matriz es caliza.

Se consideran las siguientes ecuaciones:

$$\phi_D = \phi_s + V_{CL} + \phi_{DCL} \tag{2.2}$$

$$\phi_N = \phi_e + V_{CL} + \phi_{NCL} \tag{2.3}$$

Donde:

- $Ø_D$: Porosidad del perfil de densidad de formación.
- Ø_N : Porosidad del perfil neutrónico.
- Øe : Porosidad efectiva.
- V_{CL} : Volumen de arcilla.
- Ø_{DCL} : Porosidad del perfil de densidad de formación frente a una arcilla o lutita vecina.

 $Ø_{NCL}$: Porosidad del perfil neutrónico frente a una arcilla o lutita vecina.

Resolviendo el sistema de ecuaciones (2.2) y (2.3), obtendremos $\emptyset_{e \ y}$ V_{CL} sin considerar la distribución o tipo de arcilla.

Para tener una información más detallada se representaran los valores obtenidos de los perfiles de porosidad (ρ_b vs. \mathcal{Q}_N o \mathcal{Q}_D vs. \mathcal{Q}_N) sobre un Cross - Plot.

VCLAV (Promedio Rayos Gamma Densidad – Neutrónico)

Es obtenido mediante un promedio aritmético entre el volumen de arcilla calculado con la metodología del registro de Rayos Gamma y el calculado mediante el Cross - Plot Densidad de Formación – Neutrónico³.

³ GARCÍA, Julio, y RODRÍGUEZ, Paulo, "Actualización de reservas del Campo Cononaco".

2.2.2.5. Cálculo de la Porosidad Total y Efectiva

El proceso seguido para el cálculo de la porosidad efectiva se resume en el diagrama de flujo representado en la figura, en la cual se observa que inicialmente a partir de cualquiera de los perfiles de porosidad se obtiene la porosidad total y con el valor del volumen de arcilla (V_{CL}), se puede aplicar uno de los tres modelos (densidad, densidad vs. neutrónico o densidad vs. sónico), de manera que la porosidad efectiva calculada sea satisfactoria.

FIGURA 2.23. DIAGRAMA DE FLUJO, CÁLCULO DE LA POROSIDAD

FUENTE: BAKER HUGHES INC., EQUIPO DE OPTIMIZACIÓN MODIFICADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

Las ecuaciones utilizadas para el cálculo de la porosidad total y efectiva se describen a continuación:

Porosidad total

La porosidad que se obtiene de los perfiles de densidad y sónico, aplicando las ecuaciones (2.4) y (2.5) respectivamente, o de perfil neutrónico es la porosidad total, es decir que considera tanto los poros interconectados como aquellos que no lo están; mediante las siguientes ecuaciones:

> Perfil de Densidad

$$\phi_D = \frac{\rho_{ma} - \rho_b}{\rho_{ma} - \rho_f} \tag{2.4}$$

Donde:

- $Ø_D$: Porosidad del perfil de densidad de formación.
- ρ_{ma} : Densidad de la matriz, g/cm³.
- ρ_b : Densidad obtenida del perfil, g/cm³.
- ρ_f : Densidad del fluido, g/cm³.
- Perfil Sónico

$$\phi_{S} = \frac{t_{log} - t_{ma}}{t_{f} - t_{ma}}$$
(2.5)

Donde:

- Ø_S : Porosidad del perfil sónico.
- t_{log} : Tiempo de tránsito registrado por la herramienta, μs.
- t_{ma} : Tiempo de tránsito de la matriz, μs.
- t_f : Tiempo de tránsito del fluido, μs.

> Perfil Neutrónico

La lectura de la porosidad del registro neutrónico es directa, expresada en fracción.

Porosidad efectiva

Para obtener la porosidad efectiva, los valores de porosidad obtenidos a partir de los perfiles de porosidad deben ser corregidos por la presencia de arcilla, mediante las siguientes ecuaciones:

> Perfil de Densidad

$$\phi_e = \phi_D - \phi_{DCL} * V_{CL} \tag{2.6}$$

> Perfil Sónico

$$\phi_e = \phi_s - \phi_{SCL} * V_{CL} \qquad (2.7)$$

Donde:

- $Ø_D$: Porosidad del perfil de densidad de formación.
- Ø_N : Porosidad del perfil neutrónico.
- Øs : Porosidad del perfil neutrónico.
- Ø_{DCL} : Porosidad aparente del registro de densidad en formación arcillosa.
- Ø_{NCL} : Porosidad aparente del registro neutrónico en formación arcillosa.
- Ø_{SCL} : Porosidad aparente del registro sónico en formación arcillosa.

Øe : Porosidad efectiva.

V_{CL} : Volumen de arcilla.

Densidad de Formación-Neutrónico

La combinación de los perfiles de porosidad Densidad – Neutrónico muestran resultados más confiables y se realiza el cálculo de la porosidad efectiva a partir de las siguientes ecuaciones:

$$\phi_T = \sqrt{\frac{\phi_N^2 + \phi_D^2}{2}}$$
(2.9)

$$\phi_{e} = \phi_{T} * (1 - V_{CL}) \tag{2.10}$$

Donde

- Øe : Porosidad efectiva
- Ø_T : Porosidad total
- ØD : Porosidad del perfil de densidad de formación
- Ø_N : Porosidad del perfil neutrónico

2.2.2.6. Cálculo de la Saturación de Agua (Sw)

El proceso seguido para el cálculo de la saturación de agua (Sw) se resume en el diagrama de flujo representado en la figura 2.24.

FIGURA 2.24. DIAGRAMA DE FLUJO, CÁLCULO DE LA SATURACIÓN DE AGUA

FUENTE: BAKER HUGHES INC., EQUIPO DE OPTIMIZACIÓN MODIFICADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

Para realizar el cálculo de la saturación de agua se han desarrollado varios modelos, entre los más importantes tenemos: Archie para arenas consolidadas, Simandoux para la evaluación de calizas. Pero para nuestro proyecto hemos aplicado el modelo de Indonesia, pues es el que mejor se ajusta para las arenas de la Cuenca Oriente, pues se adapta a la naturaleza laminada de la distribución de arcilla, que afecta directamente a los valores de Rt y Sw.

A continuación se presenta la ecuación para el cálculo de la saturación de agua mediante el modelo de Indonesia:

> Modelo de Indonesia

$$S_{w} = \left[\frac{1}{\sqrt{R_{t}\left(\sqrt{\frac{\emptyset_{s}^{m}}{a * R_{w}}} + \frac{V_{CL}^{\left(1 - \frac{V_{CL}}{2}\right)}}{\sqrt{R_{CL}}}\right)}}\right]^{2/n}$$
(2.11)

Donde:

- Sw : Saturación de agua.
- Rw : Resistividad del agua.
- Rt : Resistividad de la zona virgen.
- R_{CL} : Resistividad de la arcilla.
- V_{CL} : Volumen de arcilla.
- Øe : Porosidad Efectiva.
- m : Exponente de cementación.
- a : Factor de cementación.
- n : Exponente de saturación.

2.2.2.7. Valores de Corte (Cut-Off)

Son valores definidos que se aplican a los parámetros del reservorio para discriminar a la formación en zonas de pago.

Los valores de corte establecidos por PETROAMAZONAS EP para la evaluación son los siguientes:

- Porosidad efectiva ≥ 0,08
- Saturación de Agua ≤ 0,50
- Volumen de Arcilla ≤ 0,50

2.2.3. EVALUACIÓN EN INTERACTIVE PETROPHYSICSTM

El procedimiento a seguir para realizar la evaluación de registros eléctricos en el programa *Interactive Petrophysics*TM v3.5, se describe a continuación:

Paso 1

Se carga la base de datos proporcionado por PETROAMAZONAS-EP en formato ASCII, para esto en la barra de herramientas hacemos clic en *Input/Output* seleccionamos la opción *Load Data* y finalmente hacemos clic en *ASCII Load*, como se muestra en la figura 2.25.

FIGURA 2.25. MENÚ INPUT/OUTPUT

FUENTE: INTERACTIVE PETROPHYSICS[™] REALIZADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

Paso 2

Posteriormente de la base de datos se selecciona el pozo a evaluar, y se da clic en abrir, como se muestra en la figura 2.26.

FIGURA 2.26. LOAD ASCII FILE

	-		-	-	los aches	-	-				
• D • P_CONON/	ACO - JOSE LUIS +	_								Buscar IP_CON	ION4CO - JOSE_ /
Organizar 🔹 Nueva carp	etə									-	9 · 🛛 🛛
Feventes Forumetos Forumetos	proyects proyects concol15.asc	cone001.ase cone001.ase cone019.ase cone019.ase	cone002.asc cone002.asc	cone003.ssc cone0022.ssc	cene604.asc	cene005.asc	cons006.asc cons025.asc	cone007.asc	conolite.sec	conc012.asc	concol1.sec
Nombre	f.									ASCE (* asc)	

FUENTE: INTERACTIVE PETROPHYSICS[™] REALIZADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

Paso 3

A continuación se abre un cuadro de diálogo, en el cual debemos llenar los siguientes datos: *Well name (nombre de pozo), Top depth (profundidad del tope), Bottom (profundidad de la base)*, el número de fila donde se encuentran ubicados los datos de *Read curve names from line, Read curve units from line y Data stars at line* y se da clic en las tres opciones donde se presenta *Apply*.

En la primera celda de la fila *Curve Name* se debe corregir el nombre de *"DEPT"* por *"DEPTH"*, y una celda más abajo "*F"* por *"FEET"*.

Finalmente se da clic en la opción *Load* y se cierra la ventana (ver figura 2.27).

FIGURA 2.27. LOAD ASCII, INGRESO DE PARÁMETROS DE POZO

FUENTE: INTERACTIVE PETROPHYSICS[™] REALIZADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

Paso 4

Luego se da clic en el ícono Plot, inmediatamente se abre la ventana que se muestra en la figura. Se selecciona la opción File, se da clic en Program Default Plots y finalmente se escoge la opción triple combo.

FIGURA 2.28. INGRESO DE LA PRESENTACIÓN DEL PERFIL

FUENTE: INTERACTIVE PETROPHYSICS[™] REALIZADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

Paso 5

En la pista 1 se cargan los registros Rayos Gamma, Caliper, SP, Micronormal y Microinverso si se tienen disponibles; en la pista 2 se cargan los registros de resistividad y en la pista 3 los registros de porosidad, (ver figura 2.29).

FIGURA 2.29. TRIPLE COMBO

FUENTE: INTERACTIVE PETROPHYSICS[™] REALIZADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

Paso 6

Se pueden realizar cambios a la visualización del registro, para posteriormente tener una mejor interpretación del registro, para lo cual hacemos doble clic en el encabezado de cada pista y seleccionamos la opción *Shading* y establecemos las condiciones para lograr visualizar las zonas permeables.

El Caliper registra la presencia de mud cake (costra de lodo) o washout (derrumbe de las paredes del pozo), para esto se ingresa el diámetro de la broca, (ver figura 2.30). Para identificar zonas permeables a través de microresistividades debe cumplir la condición que la Micronormal (MNOR) sea mayor que la microinversa (MINV), (ver figura 2.30).

Los registros de porosidad también permiten identificar zonas permeables mediante la condición que el registro de densidad sea mayor al neutrónico, (ver figura 2.31).

Cur	ves shading							
Trk	Left Side	of Shading Fixed Value	Right Side of Curve Name	Shading Fixed Value	Visible	Shading Type	Variable	Shading Description
2	CALI	and the second	di mana	9.875	-			mudcake
2	Savera .	9.875	CALI		1			washout
2	MNOR	1.114.1.4	MINV		1			permeable
2	142011							
2								
2								
2								
2								
2								
2								
2								
2								
2								

FIGURA 2.30. MODIFICACIÓN DEL FORMATO DEL TRIPLE COMBO

FUENTE: INTERACTIVE PETROPHYSICS[™] REALIZADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

Cur	ves Shading							
Trk 4	Left Side o Curve Name RHOB	f Shading Fixed Value	Right Side Curve Name NPHI	of Shading Fixed Value	Visible	Shading Type	Variable Shading	Shading Description permeable
4	Chord Berger							
4								
4				_				
1				_				
-				-	-			
4								
4								
4								
4				-				
4								
4								

FIGURA 2.31. MODIFICACIÓN DEL FORMATO DEL TRIPLE COMBO

FUENTE: INTERACTIVE PETROPHYSICS[™] REALIZADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

Paso 7

SM All Tracks

Posteriormente podemos ingresar los topes y bases de las formaciones, para lo cual realizamos el siguiente proceso: *Input/Output-Load Data-Load Zone Tops*.

OK Apply Close

Inmediatamente se abre una ventana, en la cual debemos dar clic en New Tops.

Al hacer esto, se abre otra ventana en la cual en la casilla *Zone Set Name* se debe escribir un nombre para ser identificado al momento de cargar los topes; posteriormente se da clic en el ícono junto a la casilla de *Zone Set Name* para importar los datos de topes y bases desde Excel y finalmente se da clic en *OK*, (ver figura 2.32).

Help

FIGURA 2.32. INGRESO DE TOPES Y BASES

FUENTE: INTERACTIVE PETROPHYSICS[™] REALIZADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

Paso 8

Para cargar los topes y bases al programa realizamos la siguiente secuencia: *Edit Format-Grid-Define* (en el track 1). Posteriormente aparece una ventana denominada *Set Tops*, en la cual , en la casilla *Set Name* seleccionamos el nombre que llamamos a los topes en el paso anterior, luego habilitamos la opción *Plot Names* y finalmente se da clic en la opción *All Subsequent*, (figura 2.33).

FIGURA 2.33. TOPES Y BASES CARGADOS

Set Name :	TOPES Y BASES	
Color:	Black	•
	Plot Names	
Font:	Arial	- 9 -

FUENTE: INTERACTIVE PETROPHYSICS[™] REALIZADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

Luego de ello, ya se puede visualizar el registro con los cambios efectuados y con los topes cargados, (figura 2.34).

FUENTE: INTERACTIVE PETROPHYSICS[™] REALIZADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

Paso 9

Luego se procede a calcular el gradiente de temperatura para el pozo, para lo cual nos dirigimos a la barra de herramientas, seleccionamos la opción *Calculation* y luego damos clic en *Temperature Gradient*.

En la primera fila escribimos la profundidad de superficie que es cero y su respectiva temperatura, en la segunda fila se escribe la profundidad total del pozo y la temperatura a esa profundidad figura 2.35, información que se la obtiene del encabezado del registro, y finalmente se da clic en *Run*.

J. User Er 1 1 Work area 1 Multi Line Form 0 CON I Temperature Grat Calculate Terrorent 2 Plot Range IM le Welli - B Tyn True Vertical Depti RHOB (MV Depth Temp. 81 m Zones / Pa Deg / 100 ft 108915 210 Start po Depth rel DEPTH Outrial Curve Tem • F • 0 Top Depth B OF T SM Run Save Load Close Help ETI 10500

FIGURA 2.35. GRADIENTE DE TEMPERATURA

FUENTE: INTERACTIVE PETROPHYSICS[™] REALIZADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

Paso 10

Para realizar el análisis de volumen de arcilla en la formación (V_{CL}), en la barra de herramientas damos clic en *Interpretation* y seleccionamos la opción *Clay Volume*, (figura 2.36).

FIGURA 2.36. VOLUMEN DE ARCILLA

FUENTE: INTERACTIVE PETROPHYSICS[™] REALIZADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES Se abre una ventana en la que se seleccionan los indicadores de arcillosidad a utilizar para evaluar el registro, para nuestro caso seleccionamos el *Gamma Ray* y *Density-Neutron* (figura 2.37), y al final se da clic en *Run*.

FIGURA 2.37. ANÁLISIS DE VOLUMEN DE ARCILLA

Use	Name			Inp	ut Curves			Output	Curves
Sin	gle Clay Indica	tors	3						Dutput Set
1	Gamma Ray			GR				VCLGR	-
	Neutron			NPHI		-		VCLN	
	Resistivity			LLD		-		VCLR	
	SP			SP		-		VCLSP	
						-			1.0
Dou	ble Clay Indica	ator							
	Density		RHOB	-	Neutron	NPHI	-	VCLND	
	Density		RHOB	-	Sonic		-	VCLSD	-
	Sonic			-	Neutron	NPHI		VCLNS	
1		1			Other 2		-		-
Bad	Hole Indicato	rs f	or Double Cla	y Indica	tors				
1	Name			-		linimum Cla	y Volume	VCL	
(m)	Name					Average Cla	y Volume	VCLAV	1.0
Par	ameter set na	me	ClayVol				Load	/ Save Paran	neter Sets
EM	1					-		annat] [Liele

FUENTE: INTERACTIVE PETROPHYSICS[™] REALIZADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

Inmediatamente se despliega un plot que posee GR en la tercera pista, NPHI y RHOB en la cuarta pista y en la quinta pista un análisis del volumen de arcilla tanto de GR como de Neutrón-Density, tal como se aprecia en la figura 2.38.

FIGURA 2.38. VOLUMEN DE ARCILLA DE GR Y NEUTRÓN-DENSITY

FUENTE: INTERACTIVE PETROPHYSICS[™] REALIZADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

Paso 11

Este punto es muy importante para la evaluación, debido a que se debe colocar la línea base lutitas tanto en una zona limpia y libre de arcilla (GR_{clean}) y en una zona que tenga el mayor porcentaje de arcilla (GR_{sh}), debido a que estas líneas inicialmente se encuentran ubicadas por default, y se observa como varía la curva de VLCGR en la pista 5, (figura 2.39).

FIGURA 2.39. PLOT VCLGR Y VCLND

Paso 12

A continuación vamos a ajustar la curva de VCLND, moviendo las dos líneas (roja y verde) de manera similar al paso anterior, sino que este caso lo realizamos sobrel Crossplot, para lo cual en la pista 4 damos clic derecho y seleccionamos la opción NPHI/RHOB Xplot, e inmediatamente apare una nueva ventana. Lo que se hace aquí es encerrar la mayor cantidad de puntos del gráfico, formando un paralelogramo imaginario entre las dos líneas rojas, (figura 2.40).

FUENTE: INTERACTIVE PETROPHYSICS[™] REALIZADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

FUENTE: INTERACTIVE PETROPHYSICS[™] REALIZADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

Se observa en la pista 5 que los valores de VCLND son diferentes, (figura 2.41).

FIGURA 2.41. VCLND MODIFICADO

FUENTE: INTERACTIVE PETROPHYSICS[™] REALIZADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

Paso 13

El siguiente paso es el cálculo de la porosidad y saturación de agua, para lo cual en la barra de herramientas vamos a la opción *Interpretation* y hacemos clic en *Porosity and Water Saturation*, se debe llenar las casillas de la siguiente forma:

FIGURA 2.42. PARÁMETROS PARA CÁLCULO DE SATURACIÓN DE AGUA Y POROSIDAD

Neutron (Limestone)	NPHI	Initial Porosity Model					
Density	RHOB	- Neutron Density -					
Sonic		- Multi-Mineral Analysis Defaults					
PEF	PEF						
RT	LLD	A Minerals Name Snd Lm Dol Clay Other					
RXO	MSFL	Sand I C C C					
EPT TPL							
Pass through Porosity	V						
Clay Volume	VCL	Clay C C C C					
Temperature	Temp						
Matrix Density		Default Saturation Equation					
Archie "m"		Indonesian 👻					
Archie "n"	1	- Temperature Units					
Waxman Smits Qv		Fahrenheit					
Bad Hole Discriminator	12						
Non Calculation Flag	W	Default Mud Type is OBM					
And the second second second							
arameter set name Pr	nSw	Load / Save Parameter S					
EM)		OK Cancel Help					

FUENTE: INTERACTIVE PETROPHYSICS™

REALIZADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

El modelo de porosidad seleccionado es el de Neutrón-Densidad y el modelo de saturación de agua es el de Indondesia y damos clic en OK .

Luego nos dirigimos a la opción *Interpretation, seleccionamos Porosity and Water Parameters* y hacemos clic en la ventana *Waters*, donde cargamos valores por default de Rmf y Rw de cada zona dentro del pozo, así como su temperatura. Por lo que se deben ingresar los valores reales de Rw y Rmf en especial de las zonas de interés.

Zone Depths Clay Waters Hy			Hydroca	rbon Matrix Phi Logic Sw Logic Limits			Limits / Bad	its / BadHole Den / Neu Coal / Salt / Kill					
🖘 Lin	ked set					100		1 Barris	1102 00	100			
Zone	Rw	R	W	Rmf	Rmf	Rw	Rwb	Rmf	Rmfb	R	ho	Salin	1
#		T	emp		Temp	bound	Temp	bound	Temp	S	xo zone	Sxo zone	
3	0.06	20	01.74	0.79	201.74	0.1	60.	0.1	60.				
4	0.1	60).	0.1	60.	0.1	60.	0.1	60.				
5	0.13	20	04.16	0.79	204.16	0.1	60.	0.1	60.				
6	0.13	20	04.9	0.7878	204.9	0.1	60.	0.1	60.				
7	0.1	60).	0.1	60.	0.1	60.	0.1	60.				
8	0.42	20	06.9	0.75	206.9	0.1	60.	0.1	60.				
9	1.1	20	08.3	0.69	208.3	0.1	60.	0.1	60.				
10	0.1	60).	0.1	60.	0.1	60.	0.1	60.				-
•												,	
N	ull all re	sult cu	rves befo	re runnin	g calculati	ons			Show Addit	tional	Zone Inf	0	
SM			Run		ew zone	Delete zone	Plo	t F	Print	Clo	se	Help	

FIGURA 2.43. VALORES REALES DE RW, RMF Y TEMPERATURA

FUENTE: INTERACTIVE PETROPHYSICS[™]

REALIZADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

Finalmente se clic en Run, y se genera el gráfico de PhiSw como se observa.

FIGURA 2.44. PHISW MODIFICADO LUEGO DE INGRESAR RW, RMF Y TEMPERATURA

1	2	Porosity_input	Resistivity	Sainty	Matrix	Logic	Saturation	Porosity	Lthology
PROPUEST	Por	PHIN (V/V)	RTDLL (OHMM) 2000	RWAPP (OHMM)	RHOMA (gm/cc)	BH logi	SWU (Dec)	PHIT (Dec)	VWCL (Dec)
PROBADO	Vaso	RHOB (GM/CC)	RXO (OHMM)	RMFAPP (OHMM)	RHOHY (gm/cc)	Hyd N	SXOU (Dec)	PHE (Dec)	PHIE (Dec)
DEPTH	ISV	PEF (B/E)	PAYFLAG ()	0.01 100.	RESFLAG ()	Por Ci	TEMP (F)	BVWSXO (Dec)	VSILT (Dec)
(FT) Propuesto		GR (GAPI)	PayFian		10. 0 ResFlag	Pore	100. 300.	0.5 U. BVW (Dec)	VCOAL (Dec)
Probados		0. 200	10,025		in the second se	Stoli		Cas	0. VSALT (Dec)
1000000		Nuc.				Sile D		000	0. VANHY (Dec)
			/			Den P		Movable Hyd	011.
						Sat NC		Water	Clay
	Π	52	8	1		1	22		
TOPE HOL	IOL	TOPE HOLLIN SUP	TOPE HOLLIN SUP	TOPE HOLLIN SUP	TOPE HOLLIN SUP	HOLLI	TOPE HOLLÍN SUP	TOPE HOLLIN SUP	TOPE HOLLÍN SUP
BASE HOL	OLI	BASE HOLLIN SUP	BASE HOLLIN SUP	BASE HOLLIN SUP-	BASE HOLLÍN SUP	HOLLÍ	BASE HOLLÍN SUP	BASE HOLLÍN SUP	BASE HOLLIN SUP
	Π	12 2	2	2.3				2,2	
		5 6	2 2 3	3			3	<u></u>	<u> </u>
		5	1 1 7					-	
			E.						
		8 7	34 83				= -3	é	<u></u>
		8 8	35	7.5					
		8	55				3 3.5	25	
10800		2							
			F1 .	252					
		5 ··· · · · · · · · · · · · · · · · · ·	57	1 1 1				37	
BASE HOL	HOL	BASE HOLLIN INF	BASE HOLLIN INF	BASE HOLLIN INF	BASE HOLLIN INF	HOLLI	BASE HOLLIN INF	BASE HOLLIN INF	BASE HOLLIN INF

FUENTE: INTERACTIVE PETROPHYSICS[™] REALIZADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES
Paso 14

Luego cargamos los cutoff, dirigiéndonos a *Interpretation* luego hacemos clic en *Cutoff and Summation*. Los cutoff que se utilizaron fueron de: 10 % para la porosidad, 50 % para la saturación de agua y 50 % para el volumen de arcilla; como se observa en la figura a continuación:

FIGURA 2.45. INGRESO DE CUTOFF

		Repo	ort 1	Rep	ort 2	Repo	rt 3	Repo	rt 4	Rep	ort 5	
	Report Title	Reservoir		Pay								
	Short Name	Res	Res	Pay	Pay							
	Use report	1		1								
	Cutoff	Default	Default									
	Name	Cut Value	Use									
1	Porosity	0.08	1	0.08	11	0.1	10	0.1	1	0.1	1	
	Vater Saturation	0.5		0.5	1	0.5		0.5		0.5		
1	lay Volume	0.5	1	0.5	1	0.5	1	0.5	1	0.5	1	
4		0.		0.		0.		0.		0.		
5		0.		0		0.		0.		0.		
6		0.		0.		0.		0.		0.		
1		0.		0.		0.		0.		0.		
		0.		0.		0.		0.		0.		
		0.		0.		0.		0		0		
0		0.		0.		0.		0.		0.		
Para	ameter set nan	ne Cutoff										Load / Save Parameter Sets
an												Run Apply Close Help

FUENTE: INTERACTIVE PETROPHYSICS[™] REALIZADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

Se da clic en *Run,* y se despliega un gráfico en el cual se observa en color verde las zonas consideradas reservorio, y color rojo las zonas de pago, para cada una de las arenas de interés, (figura 2.46).

FIGURA 2.46. ZONAS DE RESERVORIO Y ZONAS DE PAGO

FUENTE: INTERACTIVE PETROPHYSICS[™] REALIZADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

Paso 15

Finalmente para obtener los resultados de la zona de pago en extensión .txt, realizamos el siguiente: Interpretation, Cutoff and Summation Parameters, Print y File; y obtenemos los resultados de la manera como se presenta en la figura 2.47.

FIGURA 2.47. SUMARIO DE ZONAS DE RESERVORIO Y ZONAS DE F	٬AGO
--	------

C	utoff.txt: Bloc de notas			_		_		the second second	and the second division of	and the second second		
Arci	hivo Edición Formato Ver	Ayuda										
Res	ervoir Summary											
zn	Zone Name	тор	BOTTOM	Gross	Net	N/G	Av Phi	AV SW	AV VCI	Phi*н	Phiso*H	VC1*H
123456	BASAL TENA	9400.00 9483.00 9497.00 9612.00 9668.00	9483.00 9497.00 9612.00 9668.00 9823.00 9823.00	83.00 14.00 115.00 56.00 155.00	0.00 4.00 0.00 0.00 0.00	0.000 0.286 0.000 0.000 0.000	0.144	0.936	0.524	0.57	0.04	2.09
78910	U SUPERIOR U INFERIOR	9883.50 9930.00 10120.00 10177.00	9930.00 10120.00 10177.00 10212.00	46.50 190.00 57.00 35.00	0.00 0.00 2.50 16.00	0.000 0.004 0.044 0.457	0.096	0.786	0.524	0.24 2.01	0.05	1.31 8.83
12 13 14 15 16	T SUPERIOR T INFERIOR	10348.00 10361.00 10436.00 10487.00	10361.00 10436.00 10487.00 10528.00	13.00 75.00 51.00 41.00	0.00 13.00 17.00 0.00	0.000 0.173 0.333 0.000	0.126	0.716 0.703	0.532 0.527	1.64 1.71	0.46 0.51	6.91 8.96
17 18 19 20	H SUPERIOR H INFERIOR	10602.00 10615.00 10646.00 10859.50	10615.00 10646.00 10859.50 10891.50	13.00 31.00 213.50 32.00	0.00 6.00 146.75 \$\$0.00	0.000 0.194 0.687 0.000	0.139 0.184	0.364 0.568	0.513 0.526	0.84 26.95	0.53	3.08
	All Zones	9400.00	10891.50	1491.50	\$\$205.25	0.138	0.165	0.584	0.528	33.95	14.12	108.40
Pay	Summary											
zn	Zone Name	тор	Bottom	Gross	Net	N/G	Av Phi	AV SW	AV VCI	Phi*н	PhiSo*H	Vc1+H
1234567	BASAL TENA	9400.00 9483.00 9497.00 9612.00 9668.00 9823.00 9883.50	9483.00 9497.00 9612.00 9668.00 9883.50 9883.50 9930.00	83.00 14.00 115.00 56.00 155.00 60.50 46.50	0.00 2.00 0.00 0.00 0.00 0.00 0.00	0,000 0.143 0.000 0.000 0.000 0.000 0.000	0.167	0.900	0.509	0.33	0.03	1.02
8 9 10 11	U SUPERIOR U INFERIOR	9930.00 10120.00 10177.00 10212.00 10348.00	10120.00 10177.00 10212.00 10348.00 10361.00	190.00 57.00 35.00 136.00 13.00	0.00 0.00 10.00 0.00	0.000 0.286 0.000	0.126	0.400	0. 544	1.26	0.76	5.44
13 14 15 16 17	T SUPERIOR T INFERIOR	10361.00 10436.00 10487.00 10528.00	10436.00 10487.00 10528.00 10602.00	75.00 51.00 41.00 74.00	11.50 14.50 0.00 0.00	0.153 0.284 0.000 0.000	0.131 0.103	0.694 0.682	0.528	1.50	0.46 0.47	6.08
18 19 20	H SUPERIOR H INFERIOR	10615.00 10646.00 10859.50	10646.00 10859.50 10891.50	31.00 213.50 32.00	5.00 68.25 \$\$0.00	0.161 0.320 0.000	0.150 0.177	0.312 0.082	0.504 0.530	0.75	0,51 11.07	2.52 36.15

FUENTE: INTERACTIVE PETROPHYSICS[™] REALIZADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

2.2.3.1 Resultados

Luego de haber realizado la reevaluación de registros eléctricos de los pozos Cononaco 08, Cononaco 14 y Cononaco 23, Yulebra 03, Yuca 22 y Cuyabeno 27 se determinaron los valores para cada zona de porosidad ($Ø_e$), saturación de agua (S_w), volumen de arcilla y espesor neto saturado.

Pozo Cononaco 08

Sobre los resultados de la evaluación realizada se observa que la arenisca Napo "T" Superior (Figura 2.48) presenta un buen de espesor de arena neta petrolífera, y podría ser considerada como nueva arenisca prospectiva, lo cual se definirá más adelante en el desarrollo del proyecto.

FUENTE: BAKER HUGHES INC.

REALIZADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

En la tabla 2.24 se presentan los parámetros petrofísicos de las areniscas del pozo Cononaco 08 excepto de Basal Tena porque no hay registro eléctrico.

	Pozo Cononaco 08							
Arenisca	Intervalo (pies)	Espesor neto (pies)	PHI (fracción)	Sw (fracción)	V _{CL} (fracción)			
"U" Superior	9789-9836	8	0,145	0,205	0,112			
"U" Inferior	9836-9889	9,5	0,134	0,178	0,138			
"T" Superior	10009-10084	22,5	0,093	0,274	0,218			
"T" Inferior	10084-10155	12	0,108	0,119	0,247			
Hollín Superior	10282-10320	12,5	0,138	0,28	0,144			
Hollín Inferior	10320-10393	\$\$33,5	0,099	0,114	0,18			

TABLA 2.24.PARÁMETROS PETROFÍSICOS CONONACO 08

\$\$: Indica error en los datos por efectos de la corrida de las herramientas de registro.

FUENTE: BAKER HUGHES INC.

REALIZADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

Pozo Cononaco 14

Sobre los resultados de la evaluación realizada se observa que la arenisca Napo "U" Inferior en el intervalo (10.179' – 10.189') y (10.195' – 10.204') en MD, (figura 2.50), presenta buenas características petrofísicas y espesor neto petrolífero, y podría ser considerada como nueva arenisca prospectiva que se definirá más adelante en el desarrollo del proyecto.

FUENTE: BAKER HUGHES INC. REALIZADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

En la tabla 2.25 se presentan los parámetros petrofísicos de las areniscas del pozo Cononaco 14.

	Pozo Cononaco 14							
Arenisca	Intervalo (pies)	Espesor neto (pies)	PHI (fracción)	Sw (fracción)	V _{c∟} (fracción)			
Basal Tena	9460-9478	6	0,108	0,53	0,263			
"U" Superior	10121-10165	6	0,128	0,29	0,183			
"U" Inferior	10165-10225	19	0,110	0,30	0,206			
"T" Superior	10358-10428	23	0,120	0,358	0,133			
"T" Inferior	10428-10490	30,5	0,116	0,258	0,225			
Hollín Superior	10617-10648	5,5	0,13	0,424	0,119			
Hollín Inferior	10648-10891	110,5	0,142	0,207	0,24			

TABLA 2.25.PARÁMETROS PETROFÍSICOS CONONACO 14

FUENTE: BAKER HUGHES INC.

REALIZADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

> Cononaco 23

Sobre los resultados de la evaluación realizada, los reservorios Basal Tena, Napo "U" y Napo "T" Superior, no se consideran como prospectivos debido a las malas características petrofísicas que presentan.

En la tabla 2.26 se presentan los parámetros petrofísicos de las areniscas del pozo Cononaco 23.

Pozo Cononaco 23						
Arenisca	Intervalo (pies)	Espesor neto (pies)	PHI (fracción)	Sw (fracción)	V _{cL} (fracción)	
Basal Tena	9199-9210	5,5	0,123	0,084	0,207	
"U" Superior	9821-9864	5	0,120	0,240	0,119	
"U" Inferior	9864-9922	6,5	0,106	0,261	0,270	
"T" Superior	10057-10126	8	0,105	0,341	0,248	
"T" Inferior	10126-10204	41,5	0,113	0,187	0,233	
Hollín Superior	10316,7-10366,77	19,5	0,117	0,281	0,185	
Hollín Inferior	10366,77-10576	\$\$84	0,137	0,233	0,165	

TABLA 2.26.PARÁMETROS PETROFÍSICOS CONONACO 23

FUENTE: BAKER HUGHES INC.

REALIZADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

> Yuca 22

Sobre los resultados de la evaluación realizada se observa que la arenisca Napo "T" Principal en los intervalos (10.299' – 10.318') y (10.324' – 10.355') MD, (figura 2.50), presenta buenas características petrofísicas y podría ser considerada como nueva arenisca prospectiva, lo cual se definirá más adelante en el desarrollo del proyecto. La arenisca Napo "T" Superior no se recomienda debido a que está invadida por agua.

FIGURA 2.50. REGISTRO ELÉCTRICO, YUCA 22 - "TS"

FUENTE: BAKER HUGHES INC. REALIZADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

Pozo Yuca 22							
Arenisca	Intervalo (pies)	Espesor neto (pies)	PHI (fracción)	Sw (fracción)	V _{c∟} (fracción)		
"U" Superior	9967-10038	3,25	0,147	0,393	0,205		
"U" Inferior	10038-10100	40,75	0,138	0,134	0,064		
"T" Superior	10197-10297	19,49	0,121	0,362	0,199		
"T" Inferior	10297-10356	37,5	0,097	0,269	0,221		
Hollín Superior	10475-10497	4,75	0,104	0,384	0,249		
Hollín Inferior	10497-10606	\$\$52	0,178	0,164	0,119		

TABLA 2.27.PARÁMETROS PETROFÍSICOS YUCA 22

FUENTE: BAKER HUGHES INC.

REALIZADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

> Yulebra 03

Sobre los resultados de la evaluación realizada se observa que la arenisca Hollín "Superior" en el intervalo (10,985' – 10,998') en MD, (figura 2.52), presenta buenas características petrofísicas y podría ser considerada como nueva arenisca prospectiva, lo cual se definirá más adelante en el desarrollo del proyecto; con respecto a las areniscas "U" Superior y "T" Inferior, sus resistividades son bajas y están invadidas por agua.

FIGURA 2.51. REGISTRO ELÉCTRICO, YULEBRA 03 - "HS"

FUENTE: BAKER HUGHES INC. REALIZADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES En la tabla 2.28 se presentan los parámetros petrofísicos de las areniscas del pozo Yulebra 03.

PozoYulebra 03						
Arenisca	Intervalo (pies)	Espesor neto (pies)	PHI (fracción)	Sw (fracción)	V _{CL} (fracción)	
Basal Tena	8802-8822	3,5	0,124	0,297	0,44	
"U" Superior	9489-9538	4	0,164	0,35	0,349	
"U" Inferior	9538-9607	47	0,128	0,188	0,339	
"T" Superior	9711-9790	4	0,157	0,42	0,31	
"T" Inferior	9790-9845	5,5	0,142	0,329	0,33	
Hollín Superior	9963-10006	21	0,178	0,2	0,193	

		,	,	
TADIA	1 10 D		DETDALICICAC	00
	Z.ZO.P/		PEIRUEISIUUS	U.3
				~~

FUENTE: BAKER HUGHES INC.

REALIZADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

> Cuyabeno 27

Sobre los resultados de la evaluación realizada se observa que las areniscas Napo "U" Superior- Media en los intervalos (7.722' – 7.732') en MD y (7.768,5' – 7.776') en MD, (figura 2.52), y la arenisca Napo "T" Superior en el intervalo (7.940' – 7.950') en MD, (figura 2.53); presentan buenas características petrofísicas y podrían ser consideradas como nuevas areniscas prospectivas, lo cual se definirá más adelante en el desarrollo del proyecto.

FIGURA 2.52. REGISTRO ELÉCTRICO, CUYABENO 27 – "US&UM"

FUENTE: BAKER HUGHES INC. REALIZADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

FIGURA 2.53. REGISTRO ELÉCTRICO, CUYABENO 27 - "TS"

FUENTE: BAKER HUGHES INC.

REALIZADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

En la tabla 2.29 se presentan los parámetros petrofísicos de todas las areniscas del pozo Cuyabeno 27.

Pozo Cuyabeno 27							
Arenisca	Intervalo (pies)	Espesor neto (pies)	PHI (fracción)	Sw (fracción)	V _{c∟} (fracción)		
"U" Superior	7714-7747	15	0,173	0,2	0,208		
"U" Media	7747-7784	10	0,173	0,231	0,190		
"U" Inferior	7784-7878	42,5	0,203	0,178	0,112		
"T" Superior	7923-7951	9,5	0,135	0,358	0,275		
"T" Inferior	7993-8036	-	-	-	0,162		

TABLA 2.29.PARÁMETROS PETROFÍSICOS CUYABENO 27

FUENTE: BAKER HUGHES INC.

REALIZADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

CAPÍTULO 3

DETERMINACIÓN DE PARÁMETROS PVT Y CÁLCULO DE RESERVAS DE LOS POZOS

3.1. CORRELACIONES NUMÉRICAS P.V.T.

El análisis de PVT consiste en una serie de pruebas que se realizan en el laboratorio con el fin de obtener las propiedades y su variación con respecto a la presión de los fluidos presentes en el yacimiento, de esta manera podremos saber el comportamiento del mismo.

Tiene por objetivo simular el comportamiento durante la etapa de producción de fluido, desde el yacimiento hasta los separadores, así determinar los parámetros de yacimiento a condiciones de Marzo 2013, pudiendo predecir el comportamiento a futuro, además podremos estimar las nuevas reservas y rediseñar la completación de los pozos de acuerdo a las condiciones producción.

3.1.1. PROCEDIMIENTO PARA OBTENER LAS PRINCIPALES PROPIEDADES DE LOS FLUIDOS

Mediante la utilización de correlaciones matemáticas ya desarrolladas por diversos autores se procede a calcular las propiedades de los fluidos a condiciones de Marzo 2013, a continuación se cita la metodología que se siguió para obtenerlas.

Presión de Burbuja, Pb

Para el desarrollo del presente estudio se considerá la correlación *de Vázquez y Beggs* para obtener la *Presión de Burbuja* sugerida por Petroamazonas EP; cuando se conoce la razón de gas en solución-petróleo, la gravedad del crudo, la gravedad especifica del gas producido y la temperatura del yacimiento, además esta correlación posee un bajo error promedio – 0.545 % comparado con las experimentales, a continuación se presenta la ecuación expuesta por sus autores:

$$P_{b} = \left[\frac{R_{sb}}{C_{1}\gamma_{gc}\exp(\frac{C_{3}\gamma_{API}}{T+460})}\right]^{\frac{1}{C_{2}}}$$
(3.1)

Donde:

 P_b : Presión de burbujeo, psia.

 R_{sb} : Razón gas disuelto-petróleo a P ≥ Pb, PCN/BN.

T : Temperatura del yacimiento, °F.

YAPI : Gravedad del petróleo, API.

 γ_{gc} : Gravedad especifica del gas corregida a 100 psia, (aire = 1).

En la tabla 3.1 se presenta los valores de las constantes C₁, C₂ y C₃.

TABLA 3.1. CONSTANTES AGRUPADAS SEGÚN SU GRAVEDAD

VALORES DE LAS CONSTANTES C_1 , $C_2 Y C_3$								
API C ₁ C ₂ C ₃								
γAPI > 30	0,0178	1,187	23,931					
<i>γAPI</i> ≤ 30	<i>µAPI</i> ≤ 30 0,0362 1,0937 25,724							

FUENTE: CORRELACIONES NUMÉRICAS P.V.T., CARLOS BANZER MODIFICADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

Debido a que la gravedad del gas depende de las condiciones bajo las cuales el gas es separado, se utiliza una correlación para normalizarlos a una presión de 100 psi, para realizar la corrección de la gravedad se emplea la ecuación 3.2.

$$\gamma_{gc} = \gamma_g \left[1 + 5,912 \ x \ 10^{-5} * \ \gamma_{API} * \ T_{sp} * \log\left(\frac{Psep}{114,7}\right) \right]$$
(3.2)

Donde;

YAPI : Gravedad del petróleo, API.

- γ_{gc} : Gravedad especifica del gas corregida a 100 psia, (aire = 1).
- *P*_{sp} : Presión Separador, psi.
- *T_{sp}* : Temperatura Separador, °F

Se asume una presión de separador de 100 psi y una temperatura de 25 °F.

Razón Gas Disuelto – Petróleo, Rs

Para obtener la *Razón Gas Disuelto - Petróleo* se considerá la *Correlación de Vázquez y Beggs* sugerida por Petroamazonas EP; cuando se conoce la gravedad del crudo, la gravedad especifica del gas producido corregida a 100 psi, presión de interés y temperatura del yacimiento, además esta correlación posee un bajo error promedio – 0.7 % comparado con las experimentales, a continuación se presenta la ecuación expuesta por sus autores:

$$R_s = C_1 \gamma_{gc} P^{C_2} \exp\left(\frac{C_3 \gamma_{API}}{T + 460}\right) \tag{3.3}$$

Donde:

- R_{sb} : Razón gas disuelto-petróleo a P < Pb, PCN/BN.
- *P* : Presión de interés. Psia.
- *T* : Temperatura del yacimiento, °F.
- γ_{API} : Gravedad del petróleo, API.
- γ_{gc} : Gravedad especifica del gas corregida a 100 psia, (aire = 1).

Se procederá a utilizar las constantes C_1 , C_2 y C_3 expuestas en la tabla 3.1 que corresponde a la presión de burbuja donde se presentan los valores divididos por su gravedad.

Factor Volumétrico del Petróleo, βο

Para el desarrollo del presente estudio se considera la *Correlación de Vázquez y Beggs* para obtener el *Factor Volumétrico el Petróleo* sugerida por Petroamazonas EP; cuando se conoce la razón de gas en solución-petróleo, la gravedad del crudo, la gravedad especifica del gas producido y la temperatura del yacimiento, además esta correlación posee un bajo error promedio 4.7 % comparado con las experimentales, a continuación se presenta la ecuación expuesta por sus autores para yacimientos cuya presión está por debajo del punto de burbuja:

$$\beta_{ob} = 1,0 + C_1 R_{sb} + C_2 (T - 60) \left(\frac{\gamma_{API}}{\gamma_{gc}}\right) + C_3 R_{sb} (T - 60) \left(\frac{\gamma_{API}}{\gamma_{gc}}\right)$$
(3.4)

Donde:

- β_{ob} : Factor volumétrico del petróleo a Pb, PCN/BN.
- R_{sb} : Razón gas disuelto-petróleo a P ≥ Pb, PCN/BN.
- *T* : Temperatura del yacimiento, °F.
- *YAPI* : Gravedad del petróleo, API.
- γ_{gc} : Gravedad especifica del gas corregida a 100 psia, (aire = 1).

En la tabla 3.2 se presenta los valores de las constantes C₁, C₂ y C₃.

TABLA 3.2. CONSTANTES PARA EL CÁLCULO DEL FACTOR VOLUMÉTRICO

Valores de las Constantes C ₁ , C ₂ y C ₃						
API C ₁ C ₂ C ₃						
<i>Y</i> API≦ 30	4,68E-04	1,75E-05	-1,81E-08			
γ _{ΑΡΙ} > 30	4,67E-04	1,10E-05	1,34E-09			

FUENTE: CORRELACIONES NUMÉRICAS P.V.T., CARLOS BANZER MODIFICADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

Los valores del *Factor Volumétrico el Petróleo* por debajo del punto de burbujeo se ven afectados por la solubilidad y la compresibilidad, por tanto si se conoce la compresibilidad del petróleo se podrá llevar el *factor volumétrico el petróleo* calculado en la ecuación (3.5).

$$\beta o = \beta o b \exp[C_p * (P_b - P)]$$
(3.5)

Donde:

 β_o : Factor volumétrico del petróleo a P > Pb, PCN/BN.

 β_{ob} : Factor volumétrico del petróleo a Pb, PCN/BN.

 P_b : Presión de burbujeo, psia.

P : Presión de interés, psia.

*C*_o : Compresibilidad isotérmica del petróleo, psi⁻¹.

> Compresibilidad del Petróleo, Co

Para obtener de *Compresibilidad del Petróleo* se procede mediante la correlación de *Correlación de Vázquez y Beggs* sugerida por Petroamazonas EP; cuando se conoce la razón de gas en solución-petróleo, la gravedad del crudo, la gravedad especifica del gas producido y la temperatura del yacimiento, además esta correlación posee reporte de porcentaje de error, a continuación se presenta la ecuación expuesta por sus autores.

$$c_o = \frac{-1433 + 5R_s + 17,2 T - 1180 \gamma_{gc} + 12,61 \gamma_{API}}{P \times 10^5}$$
(3.6)

Donde;

- *C*_o : Compresibilidad isotérmica del petróleo, psi⁻¹.
- *R*_s : Razón gas disuelto-petróleo, PCN/BN.
- *P* : Presión de interés, psia.
- *T* : Temperatura del yacimiento, °F.
- γ_{gc} : Gravedad especifica del gas corregida a 100 psia, (aire = 1).
- γ_{API} : Gravedad del petróleo, API.

Viscosidad del Petróleo, μο

Para obtener la viscosidad del crudo sin gas en solución (muerto), μ_{od} , se considera la *Correlación de Beggs, H.D. y Robinson, J. R.* sugerida por Petroamazonas EP; cuando se conoce la gravedad del crudo y la temperatura del yacimiento, además esta correlación posee un bajo error promedio -0.64 % con una desviación estandar de 13.53 % comparado con las experimentales, a continuación se presenta la ecuación expuesta por sus autores.

$$\mu_{od} = 10^x - 1 \tag{3.7}$$

Donde:

$$x = yT^{-1,163} (3.8)$$

$$y = 10^z \tag{3.9}$$

$$z = 3,0324 - 0,02023\gamma_{API}$$
(3.10)

 μ_{od} : Viscosidad del petróleo libre de gas a 1atm. y T, cp.

 γ_{API} : Gravedad del petróleo, API.

T : Temperatura del yacimiento, °F.

Mientras que para obtener la viscosidad del crudo con gas en solución (vivo), μ_{ob} , se considera la *Correlación de Beggs, H.D. y Robinson, J. R.* sugerida por Petroamazonas EP; cuando se conoce la razón de gas en solución-petróleo, además esta correlación posee un error promedio de -1.83 % con una desviación estandar de 27.25 % comparado con las experimentales, a continuación se presenta la ecuación expuesta por sus autores.

$$\mu_{ob} = a(\mu_{od})^x - 1 \tag{3.11}$$

Donde;

$$a = 10,715(R_s + 100)^{-0,515}$$
(3.12)

$$b = 5,44(R_s + 150)^{-0,338}$$
(3.13)

- μ_{ob} : Viscosidad del petróleo hasta el punto de burbuja, cp.
- μ_{od} : Viscosidad del petróleo libre de gas a 1atm. y T, cp.
- *R*_s : Razón gas disuelto-petróleo, PCN/BN.

Las viscosidades de los crudos mayores que la presión de burbujeo (crudos subsaturado) se determina conociendo la viscosidad en el punto de burbujeo, μ_{ob} , sugerida por Petroamazonas EP, esta se obtuvo mediante la utilización de la *Correlación de Vázquez, M.E. y Beggs, H.D.*, además esta correlación posee un error

promedio de – 7,54 % comparado con las experimentales, a continuación se presenta la ecuación expuesta por sus autores.

$$\mu_o = \mu_{ob} \left(\frac{P}{P_b}\right)^m \tag{3.14}$$

Donde:

$$m = 2,6P^{1,187} \exp(-11,513 - 8,98 \times 10^{-5}P)$$
(3.15)

 μ_0 : Viscosidad del petróleo P > Pb, cp.

 μ_{ob} : Viscosidad del petróleo hasta el punto de burbuja, cp.

P : Presión de interés, psia.

> Densidad del Petróleo, ρο

La *Densidad del Petróleo* cuando se conoce la razón de gas en solución-petróleo, la gravedad especifica del petróleo, la gravedad especifica del gas producido factor volumétrico del petróleo, se calcula con la siguiente ecuación.

$$\rho_o = \frac{350\gamma_o + 0.0764\gamma_{gd}R_s}{5.615\beta_o}$$
(3.16)

Donde:

- ρ_o : Densidad del petróleo, lbs/pie³.
- β_o : Factor volumétrico del petróleo, BY/BN.
- *R*_s : Razón gas disuelto-petróleo, PCN/BN.
- γ_0 : Gravedad específica del petróleo, API.
- γ_{gc} : Gravedad especifica del gas corregida a 100 psia, (aire = 1).
- 350 : Densidad del agua a condiciones normales, lbs/bls.
- 0,0764: Densidad del aire a condiciones normales, lbs/pie³.
- 5,615 : Factor de conversión pie³ /bls.

Para realizar un ajuste en la *gravedad especifica del gas en solución*, γ_{gc} , se procede por medio de la ecuación.

$$\gamma_{gd} = \frac{12,5 + \gamma_{API}}{50} - 3,5715 \ x \ 10^{-6} \gamma_{API} R_s \tag{3.17}$$

Donde:

 γ_{gc} : gravedad especifica del gas en solución.

*R*_s : Razón gas disuelto-petróleo, PCN/BN.

YAPI : Gravedad del petróleo, API.

Considerando que las presiones son mayores a la de burbuja se determina mediante la siguiente ecuación.

$$\rho_o = \rho_{ob} \exp[c_o(P_b - P)] \tag{3.18}$$

Donde:

 ρ_{o} : Densidad del petróleo a P > Pb, pie³ /bls.

 ρ_{ob} : Densidad del petróleo, lbs/pie³.

 P_b : Presión de burbujeo, psia.

P : Presión de interés, psia.

Co : Compresibilidad isotérmica del petróleo, psi⁻¹

3.1.2. PRESENTACIÓN DE RESULTADOS PVT

Mediante el uso de las correlaciones anteriormente detalladas se procedió al cálculo a condiciones de Marzo 2013 de las principales propiedades PVT, los resultados se presentan en las tablas 3.19, 3.3, 3.4, 3.5, 3.6 y 3.7.

Cononaco 08

TABLA 3.3. PROPIEDADES PVT CALCULADAS POR CORRELACIONES CONONACO 08

Propiedades	Unidades	Napo "U" Inferior	Napo "T" Superior	Napo "T" Inferior	Hollín Superior	Hollín Inferior
Punto de Burbuja	(psi)	620	820	820	155	58
Temperatura Reser.	<i>(</i> ⁰F)	230	230	230	240	240
Presion Reservorio	(psia)	2586	2760	2187	3853	4124
SG Gas	(-)	0,945	0,9393	0,9393	0,911	2,4702
SG Agua	(-)	1,03	1,03	1,03	1,03	1,03
GOR	<i>(ft</i> ³/bl)	142	190	126	15	17
y API	(API)	19,6	18	19	32,5	33
ßo	(bVBF)	1, 10	1,11	1, 10	1,06	1,03
<u>μ</u> 0	(cp)	3, 18	2,98	3,09	4, 11	6,05
Со	(psi) ⁻¹	9,17E-06	9,41E-06	1,05E-05	5,49E-06	1,59E-06
Po	(Ibs/ft ³)	53,25	53,36	53,69	50,07	52,04

FUENTE: PETROAMAZONAS EP

REALIZADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

> Cononaco 14

TABLA 3.4. PROPIEDADES PVT CALCULADAS POR CORRELACIONES CONONACO 14

Propiedades	Unidades	Napo "U" Inferior	Napo "T" Superior	Napo "T" Inferior	Hollín Superior	Hollín Inferior
Punto de Burbuja	(psi)	620	820	820	155	58
Temperatura Reser.	<i>(</i> ⁰F)	230	230	230	240	240
Presion Reservorio	(psia)	2668	2486	2114	2876	4525
SG Gas	(-)	0,945	0,9393	0,9393	0,911	2,4702
SG Agua	(-)	1,03	1,03	1,03	1,03	1,03
GOR	(ft ³ /bl)	142	94	94	17	15
y API	(API)	19,6	21,2	21,2	30,4	33
\$ 0	(bVBF)	1,10	1,09	1,09	1,05	1,03
µ 0	(cp)	3,24	3,11	2,91	3,47	7,03
Со	(psi) ⁻¹	8,89E-06	8,69E-06	1,02E-05	7,26E-06	1,45E-06
Po	(Ibs/ft ³)	53,25	53,06	53,06	50,93	52,04

FUENTE: PETROAMAZONAS EP

REALIZADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

> Cononaco 23

TABLA 3.5. PROPIEDADES PVT CALCULADAS POR CORRELACIONES CONONACO 23

Propiedades	Unidades	Napo "U" Inferior	Napo "T" Superior	Napo "T" Inferior	Hollín Superior	Hollín Inferior
Punto de Burbuja	(psi)	620	820	820	155	58
Temperatura Reser.	(°F)	230	230	230	240	240
Presion Reservorio	(psia)	2586	2660	2187	4284	4533
SG Gas	(-)	0,945	0,9393	0,9393	0,911	2,4702
SG Agua	(-)	1,03	1,03	1,03	1,03	1,03
GOR	(ft³/bl)	142	126	117	15	17
<i>y</i> API	(API)	19	18,7	18,7	32	32,2
ßo	(bl/BF)	1,10	1,09	1,09	1,06	1,03
4 0	(<i>c</i> p)	3,34	3,46	3,24	4,87	7,45
Со	(psi) ⁻¹	9,14E-06	8,57E-06	1,06E-05	4,92E-06	1,41E-06
Po	(lbs/ft³)	53,52	53,83	53,94	50,27	52,32

FUENTE: PETROAMAZONAS EP

REALIZADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

> Yuca 22

TABLA 3.6. PROPIEDADES PVT CALCULADAS POR CORRELACIONES

YUCA 22

Propiedades	Unidades	Napo "U" Inferior	Napo "T" Inferior	
Punto de Burbuja	(psi)	820	819	
Temperatura Reser.	(° F)	220	225	
Presión Reservorio	(psia)	1400	1800	
SG Gas	(-)	0,854	0,897	
SG Agua	(-)	1,03	1,03	
GOR	(ft3/bl)	140	110	
γΑΡΙ	(API)	18,5	28	
βo	(bl/BF)	1,10	1,1173	
<u>µ</u> 0	(cp)	2,95	1,6345	
Со	(psi)-1	1,63E-05	1,27E-05	
ρο	(lbs/ft3)	53,65	49,93	

FUENTE: PETROAMAZONAS EP

REALIZADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

> Yulebra 03

TABLA 3.7. PROPIEDADES PVT CALCULADAS POR CORRELACIONES YULEBRA 03

Propiedades	Unidades	Basal Tena	Napo "U" Inferior	Hollín Inferior
Punto de Burbuja	(psi)	890	860	120
Temperatura Reser.	(°F)	212	230	237
Presion Reservorio	(psia)	902	1900	4145
SG Gas	(-)	0,95	0,951	0,996
SG Agua	(-)	1,03	1,03	1,03
GOR	(ft ³ /bl)	167	94	17
y API	(API)	18,2	21	28
βo	(bl/BF)	1,12	1,09	1,07
µ 0	(cp)	2,78	2,83	6,92
Со	(psi) ⁻¹	2,40E-05	1,28E-05	4,62E-06
Ро	(lbs/ft ³)	53,82	53,19	50,74

FUENTE: PETROAMAZONAS EP

REALIZADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

> Cuyabeno 27

TABLA 3.8. PROPIEDADES PVT CALCULADAS POR CORRELACIONES CUYABENO 27

Propiedades	Unidades	Napo "U" Superior	Napo "U" Media	Napo "U" Inferior	Napo "T" Superior
Punto de Burbuja	(psi)	840	840	690	940
Temperatura Reser.	(°F)	210	210	210	200
Presion Reservorio	(psia)	2661	2661	2833	1873
SG Gas	(-)	1,53	1,53	1,53	1,58
SG Agua	(-)	1,03	1,03	1,03	1,03
GOR	(ft³/bl)	260	260	319	349
rapi	(API)	22	22	27	28
ßo	(bl/BF)	1,13	1,13	1,16	1,18
<i>µ</i> 0	(cp)	2,11	2,11	1,47	1,11
Со	(psi) ⁻¹	7,38E-06	7,38E-06	8,20E-06	1,21E-05
Ро	(Ibs/ft ³)	52,06	52,06	49,94	49,52

FUENTE: PETROAMAZONAS EP REALIZADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

3.2. RESERVAS

"Las reservas son todo el volumen de petróleo que puede ser extraído del yacimiento bajo las condiciones técnicas y económicamente rentables a partir de una determinada fecha en adelante."

3.2.1. CLASIFICACIÓN DE LAS RESERVAS

Todos los cálculos de reservas incluyen cierto grado de incertidumbre, el grado relativo de incertidumbre puede expresarse clasificando las reservas en dos grupos: reservas probadas y no probadas.

Reservas Probadas

Las reservas probadas son aquellos volúmenes de petróleo que mediante el análisis de los datos geológicos y de ingeniería demuestren con certeza razonable como recuperables en años futuros a partir de yacimientos conocidos, bajo las condiciones técnicas y económicas existentes, es decir precios y costos a la fecha en que se realiza la estimación. Son las reservas que pueden ser recuperadas en las áreas en donde se ha desarrollado el campo.

Reservas No probadas

"Las reservas no probadas se basan en datos geológicos y/o de ingeniería similares a los datos usados para calcular reservas probadas, pero con incertidumbre en regulaciones, condiciones económicas, contractuales y técnicas, todo lo cual no permite clasificarlas como probadas".

Las reservas no probadas pueden eventualmente clasificarse como reservas probables y reservas posibles.

Reservas Probables

Las reservas probables se basan en datos geológicos, ingeniería de reservorios y económicos similares a los usados para estimar las reservas probadas; pero los grados de incertidumbre técnica, económica o de regulación evitan ser clasificadas como probadas.

Reservas Posibles

Las reservas posibles son aquellas reservas no probadas, las cuales se han determinado con menor grado de certeza mediante análisis geológico-sísmico y de ingeniería que las reservas probables, teniendo un alto grado de incertidumbre.

A partir de esto se estima que las reservas posibles tienen menos probabilidad de ser recuperables en comparación con las reservas probables.

Reservas Remanentes

Son los volúmenes de petróleo recuperables, cuantificadas a cualquier fecha posterior al inicio de la producción comercial que todavía permanece en el yacimiento.

3.2.2. MÉTODOS PARA EL CÁLCULO DE RESERVAS

Se han desarrollado varios métodos para el cálculo de reservas de un yacimiento petrolífero. Los resultados obtenidos no son exactos pero permiten visualizar el volumen de hidrocarburos contenido en el reservorio.

3.2.2.1 Los métodos existentes para este cálculo son:

3.2.2.2 Método Volumétrico

Es empleado para calcular el petróleo en el yacimiento. Se sustenta en la información obtenida de registros eléctricos y de análisis de núcleos donde se determina el volumen total, porosidad y saturación de fluidos; y del análisis del fluido de donde se determina el factor volumétrico del petróleo. Una vez obtenido el POES, al aplicarle el Factor de Recobro, se obtienen las Reservas de Petróleo Recuperables Originales, mediante la ecuación siguiente:

$$Reservas Originales = \frac{7758 * \pi * re^{2} * ho * \emptyset_{e} * (1 - Sw)}{\beta oi} x FR \qquad (3.19)$$

Donde:

- r_e :radio de drenaje, pies.
- ho : espesor neto, pies.
- Ø_e : porosidad efectiva, (fracción).
- Sw : Saturación de agua, (fracción).
- Boi : Factor volumétrico inicial, By/Bn.
- 7758 : Factor de conversión, Bls/Acre-pie.
- FR : Factor de recobro, (fracción).

3.2.2.3 Curvas de Declinación de Producción

Se conoce como curvas de declinación de producción a la representación gráfica de la historia de producción, que se obtiene al graficar la tasa de producción (qo) como variable dependiente usando el eje de las ordenadas, y como variables independientes el tiempo (t) y la producción acumulada (Np), graficadas utilizando el

eje de las abscisas, en cuyos casos se obtienen dos tipos de curvas de declinación de producción: Las curvas tasa - tiempo y tasa - producción acumulada.

El análisis de curvas de declinación se aplica por pozo, por regiones o a todo el yacimiento, cuando existe suficiente historia de producción como para establecer una tendencia de comportamiento y, entonces, la predicción de las reservas remanentes y/o del tiempo de producción se hace mediante la extrapolación de dicha tendencia. En general, se busca un tipo de gráfico donde la tendencia se presente de forma lineal para facilitar la extrapolación.

Existen tres tipos básicos de curvas de declinación: exponencial o constante, hiperbólica en la que se supone que la tasa de declinación es proporcional a la tasa de producción y armónica que es un caso especial de la declinación hiperbólica.

Declinación Exponencial

La declinación de producción de un pozo varía en forma constante con respecto al tiempo, de aquí podemos obtener la producción a lo largo de un periodo de tiempo y realizar el perfil de producción de un pozo.

$$q = q_o * e^{-Dt} \tag{3.20}$$

Donde:

- : Tasa de producción al tiempo t q
- : Tasa de producción al tiempo t=0 Qo
- D : Declinación exponencial
- t : Tiempo

$$q_{a} * e^{-Dt} \tag{3.20}$$

Declinación Hiperbólica

Esta declinación no es constante y varía en función de la tasa de producción. A mayor tasa de producción, debe haber una mayor tasa de declinación.

$$q = \frac{q_o}{(1 + b * D_i * t)^{1/b}}$$
(3.21)

Donde;

- q : Tasa de producción al tiempo t
- qo : Tasa de producción al tiempo t=0

D : Declinación

- t : Tiempo
- b : Exponente de declinación

Declinación Armónica

La declinación armónica es un caso particular de la declinación hiperbólica cuando b= 1.

La definición matemática de este tipo de declinación es la misma que la declinación hiperbólica.

$$q = \frac{q_o}{(1 + D_i * t)}$$
(3.22)

Donde:

- q : Tasa de producción al tiempo t
- qo : Tasa de producción al tiempo t=0
- D : Declinación
- t : Tiempo

> Ajuste por curva tipo de Fetcovich

Esta metodología permite analizar la declinación de producción mediante el empate o cotejo con una familia de curvas tipos desarrolladas para tal fin.

De manera que, la respuesta de flujo dominante en los límites generada por la ecuación empírica de declinación de ARPS, está caracterizada por el parámetro "b". La siguiente tabla muestra los tipos de curvas de la declinación de la producción de acuerdo al valor de "b".

TABLA 3.9. CLASIFICACIÓN DE LAS CURVAS DE DECLINACIÓN

Valor de "b"	Declinación
b=0	Exponencial
0 <b<1< td=""><td>Hiperbólica</td></b<1<>	Hiperbólica
b=1	Armónica

FUENTE: PETROAMAZONAS EP REALIZADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

Estas curvas tipos incluyen la acción transitoria y los períodos de flujo predominantes. Durante el período de transición, el parámetro de correlación definido como la relación entre el radio de drenaje externo y el radio del pozo es, re/rw, mientras que el régimen de flujo del estado pseudo estable (período de declinación) está caracterizado por la constante de J.J.ARPS, "b". La siguiente figura muestra la curva tipo (Tasa vs Tiempo), donde están representados los períodos de flujo:

FIGURA 3.1. CURVAS TIPO PARA ANÁLISIS DE DECLINACIÓN

FUENTE: PETROAMAZONAS EP

REALIZADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

3.2.2.4 Balance de materiales

Constituye la aplicación en conjunto de dos principios básicos: la Ley de la Conservación de la Masa y la Ley de la Conservación de la Energía. Este método permite obtener deducciones cuantitativas y predicciones, que son de gran ayuda para el análisis de yacimientos. En la forma más simple, la Ecuación de Balance de Materiales (EBM) para un yacimiento, puede describirse como lo expresa la Ecuación mostrada a continuación:

El éxito de la aplicación de este método requiere de la historia de presiones, datos de producción y análisis PVT de los fluidos del yacimiento, que permiten así mismo predecir el petróleo recuperable.

3.2.2.5 Simulación Numérica

Consiste en la utilización de modelos matemáticos que simulan los procesos que tienen lugar en el medio poroso durante la producción del yacimiento. Se realiza sobre la disgregación del yacimiento en un número de bloques, lo cual permite considerar sus heterogeneidades y predecir su comportamiento. La validez de este método requiere de una buena definición geológica del yacimiento y de las características de sus fluidos.

Para el presente proyecto para realizar el cálculo de reservas se utiliza el método de curvas de declinación, en vista que se tiene como data fuerte el historial de producción de los pozos lo que respalda la eficacia del método.

Mientras que para el cálculo de reservas de las nuevas arenas se ha seleccionado el método volumétrico, debido a que de los datos de porosidad, saturación de petróleo y espesor neto obtenidos a partir de la evaluación petrofísica realizada en el capítulo anterior, su aplicación resulta sencilla y precisa.

3.2.3. CÁLCULO DE RESERVAS ORIGINALES PROBADAS Y REMANENTES

Para el presente estudio el cálculo de reservas de los pozos Cononaco 08, Cononaco 14, Cononaco 23, Yuca 22, Yulebra 03 y Cuyabeno; se aplica los métodos de declinación de curvas de producción para las arenas que presentan una data confiable de producción. Donde el volumen de reservas originales se obtiene mediante el análisis de las curvas de declinación de producción, mientras que las reservas remanentes se encuentran por diferencia entre las reservas originales y la producción acumulada a marzo del 2013, se presenta en la tabla 3.10.

RESERVAS ORIGINALES PROBADAS Y REMANENTES							
POZO	MĖTODO	ARENA	Reservas Originales Probadas (BN)	Np (BN) al 31/03/2013	Reserv. Rem. (BN) al 31/03/2013		
CON-008	Deelineeién	H Superior	3.632.740	2.958.380	674.360		
000-000	Declinacion	H Inferior	6.102.400	5.756.610	345.790		
CON-014 Declinació		T Superior	205.002	118.726	86.276		
	Declinación	T Inferior	1.604.650	842.822	761.828		
		H Superior	681.998	148.183	533.815		
		H Inferior	3.491.590	2.381.540	1.110.050		
CON 023	Deelineeién	T Inferior	947.944	527.125	420.819		
CON-023	Declinacion	H Inferior	394.762	357.668	37.094		
VUC-022	Deelinasión	U Inferior	1.648.020	760.967	887.053		
100-022	Declinacion	H Inferior	542.718	264.926	277.792		
YUL-003	Declinación	U Inferior	6.653.170	5.625.080	1.028.090		
CUY-027	Declinación	U Inferior	2.139.420	1.129.750	1.009.670		

TABLA 3.10.RESERVAS ORIGINALES PROBADAS Y REMANENTES

FUENTE: PETROAMAZONAS EP

REALIZADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

En tanto que para las nuevas arenas se aplicara el método volumétrico, con las siguientes consideraciones:

Radio de drenaje

La distancia promedio entre los pozos es aproximadamente 500 m, se ha considerado como radio de drenaje a la mitad de esta distancia, es decir un valor de 250 m que equivale a 820 pies.

Factor de recobro

Se consideraron los factores de recobro del registro oficial de PETROAMAZONAS-EP al año 2010 para cada uno de los campos en estudio.

TABLA 3.11.FACTORES DE RECOBRO DE LOS RESERVORIOS DE LOS CAMPOS

CAMPO	RESERVORIO	FR(%)
	"U"	16,53
CONONACO	"T"	28,58
	Hollín Superior	51,95
	Hollín Inferior	43,90
	"U"	35,90
YUCA	"T"	27
	Hollín Superior	31,80
	Hollín Inferior	25,00
	BT	31,50
	"U"	28,20
YULEBRA	"T"	20
	Hollín Superior	20
	Hollín Inferior	30
	"U" Superior	39,63
	"U" Media	51,47
CUYABENO	"U" Inferior	28,40
	"T" Superior	37,77
	"T" Inferior	12,75

FUENTE: PETROAMAZONAS EP

REALIZADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

En la tabla 3.12 se presentan los resultados de las reservas originales probadas para las nuevas arenas de los pozos en estudio mediante el método volumétrico.

			RE	SERVAS O	RIGINALE	S PROBAD	AS			
POZO	MÉTODO	ARENA	ÁREA (acres)	ho(ft)	Ø (%)	Sw (%)	Boi (BY/BN)	POES (BN)	FR (%)	Reservas Originales Probadas (BN)
		U Superior	48,52	8,00	14,50	20,50	1,11	313.846	16,53	51.879
	Volumátrico	U Inferior	48,52	9,50	13,40	17,80	1,11	356.116	16,53	58.866
CON-000	volumetrico	T Superior	48,52	22,50	9,30	27,40	1,17	489.560	28,58	139.916
		T Inferior	48,52	12,00	10,80	11,90	1,17	367.946	28,58	105.159
	Volumátrico	U Superior	48,52	6,00	12,80	29,00	1,11	185.571	16,53	30.675
0011-014	Volumetrico	U Inferior	48,52	19,00	11,00	30,00	1,11	497.893	16,53	82.302
		U Superior	48,52	5,00	12,00	24,00	1,11	155.187	16,53	25.652
CON-023	Volumétrico	U Inferior	48,52	6,50	10,60	26,10	1,11	173.283	16,53	28.644
0011-025	volumetrico	T Superior	48,52	8,00	10,50	34,10	1,17	178.389	28,58	50.984
		H Inferior	48,52	57,00	13,70	23,30	1,15	1.968.937	43,90	864.363
		Basal Tena	48,52	3,50	12,40	29,70	1,11	103.833	31,50	32.707
		U Superior	48,52	4,00	16,40	35,50	1,11	143.997	28,20	40.607
YUL-003	Volumétrico	T Superior	48,52	4,00	15,70	42,40	1,17	116.570	20,00	23.314
		T Inferior	48,52	5,50	14,20	32,90	1,17	168.880	20,00	33.776
		H Superior	48,52	21,00	17,80	20,00	1,17	963.680	20,00	192.736
		U Superior	48,52	15,00	17,30	20,00	1,14	687.974	39,63	272.644
CUY-027	Volumétrico	U Media	48,52	10,00	17,30	23,10	1,14	440.877	51,47	226.919
		T Superior	48,52	9,50	13,50	35,80	1,25	248.447	37,77	93.838
YUC-022	Volumétrico	T Superior	48,52	19,49	12,10	36,20	1,10	513.062	27,00	138.527
100-022	Volumento	T Inferior	48,52	37,50	9,70	26,90	1,10	906.719	27,00	244.814

TABLA 3.12.RESERVAS ORIGINALES PROBADAS, NUEVAS ARENAS

FUENTE: PETROAMAZONAS EP

REALIZADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

3.2.4. PREDICCIÓN DE LA PRODUCCIÓN

En el presente estudio para la predicción se aplica el software OFM 2009, donde se generaron las aplicaciones necesarias, que son:

- Generación y actualización archivos de producción.
- Generación curvas de producción.
- Análisis de curvas de declinación de producción de petróleo.
- Cálculo de reservas de los pozos por el método DCA (Análisis de Curvas de Declinación).

Para el análisis se considera un período de declinación de producción que mostrara un comportamiento definido con tendencia a declinar durante un tiempo prudente (mínimo 8 meses), y que la declinación de la producción fuese el reflejo de la conducta del yacimiento y no de causas externas en las condiciones de producción. Para lo cual se revisara historiales de reacondicionamiento, historiales de producción y registros eléctricos; para así representar correctamente la tendencia de declinación del yacimiento y por último escoger el tipo de declinación a utilizar; esto se corrobora generando los gráficos de Fetkovich el cual a través de sus curvas señala el tipo de declinación que se ajusta.

3.2.4.1. Pozo Cononaco 08

> Arenisca Hollín Superior

Se utiliza el método de las curvas tipo de Fetkovich para cotejar la declinación de la producción del gráfico log-log de la tasa petróleo vs tiempo de historia, a partir de lo cual se determina una declinación exponencial con un valor de b= 0 (Ver figura 3.2).

FIGURA 3.2. AJUSTE PERÍODO DE DECLINACIÓN, CONONACO 08 – "HS"

FUENTE: PETROAMAZONAS EP REALIZADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

Para el análisis mediante las curvas de declinación se selecciona el período de producción desde junio del 2010 hasta marzo del 2013, y se determina una declinación anual efectiva del 9,5%, (ver figura 3.3).

En la siguiente tabla se presenta el resultado de las reservas remanentes de petróleo y la producción final estimada para el reservorio Hollín Superior, considerando un límite económico de 30 BPPD y 10 años de producción.

TABLA 3.13.PREDICCIÓN DE LA PRODUCCIÓN, CONONACO 08 - "HS"

PREDICCIÓN PRODUCCIÓN POZO CON-08 Hollín Superior						
DECLINACIÓN A.e. %	9,51					
RESERVAS ORIGINALES (Mbbl)	3632,74					
RESERVAS REMANENTES (Mbbl) al 31/03/2013	674,36					
PRODUCCIÓN ACUMULADA (Mbbl) al 31/03/2013	2958,38					
PERIODO DE PRODUCCION (AÑOS)	10					
PRODUCCIÓN INICIAL (BPPD) al 31/03/2013	292					
PRODUCCIÓN FINAL (BPPD) al 31/03/2023	108					

FUENTE: PETROAMAZONAS EP

REALIZADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

FIGURA 3.3. CURVA DE DECLINACIÓN, CONONACO 08 - "HS"

FUENTE: PETROAMAZONAS EP REALIZADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES
> Arenisca Hollín Inferior

Se utiliza el método de las curvas tipo de Fetkovich para cotejar la declinación de la producción del gráfico log-log de la tasa petróleo vs tiempo de historia, a partir de lo cual se determina una declinación hiperbólica con un valor de b= 0,96 (ver figura 3.4).

FIGURA 3.4. AJUSTE PERÍODO DE DECLINACIÓN, CONONACO 08 – "HI"

FUENTE: PETROAMAZONAS EP REALIZADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

Para el análisis mediante las curvas de declinación se selecciona el período de producción desde enero de 1988 hasta diciembre de 1993, y se determina una declinación anual efectiva del 8,1% (ver figura 3.5).

En la siguiente tabla se presenta el resultado de las reservas remanentes de petróleo y la producción final estimada para el reservorio Hollín Inferior, considerando un límite económico de 30 BPPD y 10 años de producción.

	,	,		
TADLADAA				66 1177
IABIA 3.14.		A PRUDUCCIUN.	CUNUNALU US -	· • • • • • • • •

PREDICCIÓN PRODUCCIÓN POZO CON-08 Hollín Inferior				
DECLINACIÓN A.e. %	8,17			
RESERVAS ORIGINALES (Mbbl)	6102,4			
RESERVAS REMANENTES (Mbbl) al 31/03/2013	345,79			
PRODUCCIÓN ACUMULADA (Mbbl) al 31/03/2013	5756,61			
PERIODO DE PRODUCCIÓN (AÑOS)	10			
PRODUCCIÓN INICIAL (BPPD) al 31/03/2013	140			
PRODUCCIÓN FINAL (BPPD) al 31/03/2023	59,67			

FUENTE: PETROAMAZONAS EP

REALIZADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

FIGURA 3.5. CURVA DE DECLINACIÓN, CONONACO 08 - "HI"

FUENTE: PETROAMAZONAS EP REALIZADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

3.2.4.2. Pozo Cononaco 14

Arenisca Napo "T" Superior

Se utiliza el método de las curvas tipo de Fetkovich para cotejar la declinación de la producción del gráfico log-log de la tasa petróleo vs tiempo de historia, a partir de lo cual se determina una declinación exponencial con un valor de b= 0 (ver figura 3.6).

FIGURA 3.6. AJUSTE PERÍODO DE DECLINACIÓN, CONONACO 14 - "TS"

FUENTE: PETROAMAZONAS EP REALIZADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

Para el análisis mediante las curvas de declinación se selecciona el período de producción junio 2011 hasta agosto 2012, y se determina una declinación anual efectiva del 5,9% (ver figura 3.7).

En la siguiente tabla se presenta el resultado de las reservas remanentes de petróleo y la producción final estimada para el reservorio Napo "T" Superior, considerando un límite económico de 30 BPPD, el mismo que lo alcanza a los 6 años de producción iniciado el período.

PREDICCIÓN PRODUCCIÓN POZO CON-14 "T" Superior		
DECLINACIÓN A.e. %	5,99	
RESERVAS ORIGINALES (Mbbl)	164,61	
RESERVAS REMANENTES (Mbbl)	86,28	

TABLA 3.15.PREDICCIÓN DE LA PRODUCCIÓN, CONONACO 14 - "TS"

118,73

6

44,57

30,78

FUENTE: PETROAMAZONAS EP

al 31/03/2013 PRODUCCIÓN ACUMULADA (Mbbl)

al 31/03/2013 PERÍODO DE PRODUCCIÓN (AÑOS)

PRODUCCIÓN INICIAL (BPPD)

al 31/03/2013 PRODUCCIÓN FINAL (BPPD)

al 31/03/2019

REALIZADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

FIGURA 3.7. CURVA DE DECLINACIÓN, CONONACO 14 - "TS"

FUENTE: PETROAMAZONAS EP REALIZADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

Arenisca Napo "T" Inferior

Se utiliza el método de las curvas tipo de Fetkovich para cotejar la declinación de la producción del gráfico log-log de la tasa petróleo vs tiempo de historia, a partir de lo cual se determina una declinación exponencial con un valor de b= 0 (ver figura 3.8).

FIGURA 3.8. AJUSTE PERÍODO DECLINACIÓN, CONONACO 14 - "TI"

FUENTE: PETROAMAZONAS EP REALIZADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

Para el análisis mediante las curvas de declinación se selecciona el período de producción desde junio 2011 hasta agosto 2012, y se determina una declinación anual efectiva del 7,3% (ver figura 3.9).

En la siguiente tabla se presenta el resultado de las reservas remanentes de petróleo y la producción final estimada para el reservorio Napo "T" Inferior, considerando un límite económico de 30 BPPD y 10 años de producción.

PREDICCIÓN PRODUCCIÓN POZO CON-14 "T" Inferior			
DECLINACIÓN A.e. %	5,40		
RESERVAS ORIGINALES (Mbbl)	1558,50		
RESERVAS REMANENTES (Mbbl)			
al 31/03/2013	761,83		
PRODUCCIÓN ACUMULADA (Mbbl)			
al 31/03/2013	842,82		
PERÍODO DE PRODUCCIÓN (AÑOS)	10		
PRODUCCIÓN INICIAL (BPPD)			
al 31/03/2013	298,92		
PRODUCCIÓN FINAL (BPPD)			
al 31/03/2023	171,64		

TABLA 3.16.PREDICCIÓN DE LA PRODUCCIÓN, CONONACO 14 - "TI"

FUENTE: PETROAMAZONAS EP

REALIZADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

FIGURA 3.9. CURVA DE DECLINACIÓN, CONONACO 14 - "TI"

FUENTE: PETROAMAZONAS EP REALIZADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

> Arenisca Hollín Superior

Se utiliza el método de las curvas tipo de Fetkovich para cotejar la declinación de la producción del gráfico log-log de la tasa petróleo vs tiempo de historia, a partir de lo cual se determina una declinación hiperbólica aproximándose a armónica con un valor de b= 0,98 (ver figura 3.10).

FIGURA 3.10. AJUSTE PERÍODO DE DECLINACIÓN, CONONACO 14 - "HS"

FUENTE: PETROAMAZONAS EP REALIZADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

Para el análisis mediante las curvas de declinación se selecciona el período de producción desde junio 1998 hasta diciembre 2000, y se determina una declinación anual efectiva del 7,3% (ver figura 3.11).

En la siguiente tabla se presenta el resultado de las reservas remanentes de petróleo y la producción final estimada para el reservorio Hollín Superior, considerando un límite económico de 30 BPPD y 10 años de producción.

TABLA 3.17.PREDICCIÓN DE LA PRODUCCIÓN, CONONACO 14 - "HS"

PREDICCIÓN PRODUCCIÓN POZO CON-14 Hollín Superior				
DECLINACIÓN A.e. %	7,37			
RESERVAS ORIGINALES (Mbbl)	682,00			
RESERVAS REMANENTES (Mbbl) al 31/03/2013	533,82			
PRODUCCIÓN ACUMULADA (Mbbl) al 31/03/2013	148,18			
PERÍODO DE PRODUCCIÓN (AÑOS)	10			
PRODUCCIÓN INICIAL (BPPD) al 31/03/2013	201,72			
PRODUCCIÓN FINAL (BPPD) al 31/03/2023	106,99			

FUENTE: PETROAMAZONAS EP

REALIZADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

CURVA DE DECLINACIÓN, CONONACO 14 - "HS" **FIGURA 3.11**.

FUENTE: PETROAMAZONAS EP REALIZADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

Arenisca Hollín Inferior

Se utiliza el método de las curvas tipo de Fetkovich para cotejar la declinación de la producción del gráfico log-log de la tasa petróleo vs tiempo de historia, a partir de lo cual se determina una declinación hiperbólica con un valor de b= 0 (ver figura 3.12).

FIGURA 3.12. AJUSTE PERÍODO DECLINACIÓN, CONONACO 14 - "HI"

FUENTE: PETROAMAZONAS EP REALIZADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

Para el análisis mediante las curvas de declinación se selecciona el período de producción diciembre 1997 hasta diciembre 2000, y se determina una declinación anual efectiva del 5,78% (ver figura 3.13).

En la siguiente tabla se presenta el resultado de las reservas remanentes de petróleo y la producción final estimada para el reservorio Hollín Inferior, considerando un límite económico de 30 BPPD y 10 años de producción.

TABLA 3.18.PREDICCIÓN DE LA PRODUCCIÓN, CONONACO 14 - "HI"

PREDICCIÓN PRODUCCIÓN POZO CON-14 Hollín Inferior			
DECLINACIÓN A.e. %	4,79		
RESERVAS ORIGINALES (Mbbl)	3491,59		
RESERVAS REMANENTES (Mbbl) al 31/03/2013	1110,05		
PRODUCCIÓN ACUMULADA (Mbbl) al 31/03/2013	2381,54		
PERIODO DE PRODUCCIÓN (AÑOS)	10		
PRODUCCIÓN INICIAL (BPPD) al 31/03/2013	376,75		
PRODUCCIÓN FINAL (BPPD) al 31/03/2023	247,45		

FUENTE: PETROAMAZONAS EP

REALIZADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

FIGURA 3.13. CURVA DE DECLINACIÓN, CONONACO 14 - "HI"

FUENTE: PETROAMAZONAS EP REALIZADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

3.2.4.3. Pozo Cononaco 23

Arenisca Napo "T" Inferior

Se utiliza el método de las curvas tipo de Fetkovich para cotejar la declinación de la producción del gráfico log-log de la tasa petróleo vs tiempo de historia, a partir de lo cual se determina una declinación exponencial con un valor de b= 0 (ver figura 3.14).

FIGURA 3.14. AJUSTE PERÍODO DE DECLINACIÓN, CONONACO 23 - "TI"

FUENTE: PETROAMAZONAS EP REALIZADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

Para el análisis mediante las curvas de declinación se selecciona el período de producción desde junio del 2008 hasta febrero 2013, y se determina una declinación anual efectiva del 3,16% (ver figura 3.15).

En la siguiente tabla se presenta el resultado de las reservas remanentes de petróleo y la producción final estimada para el reservorio Napo "T" Inferior, considerando un límite económico de 30 BPPD y 10 años de producción.

TABLA	3.19.PF	REDICCIÓN	DE LA	PRODUCC	CIÓN, CO	NONACO	23 -	"TI "

PREDICCIÓN PRODUCCIÓN POZO CON-23 "T" Inferior			
DECLINACIÓN A.e. %	3,17		
RESERVAS ORIGINALES (Mbbl)	947,94		
RESERVAS REMANENTES (Mbbl) al 31/03/2013	420,82		
PRODUCCIÓN ACUMULADA (Mbbl) al 31/03/2013	527,13		
PERÍODO DE PRODUCCIÓN (AÑOS)	10		
PRODUCCIÓN INICIAL (BPPD) al 31/03/2013	134,75		
PRODUCCIÓN FINAL (BPPD) al 31/03/2023	97,69		

FUENTE: PETROAMAZONAS EP

REALIZADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

FUENTE: PETROAMAZONAS EP REALIZADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

Arenisca Hollín Inferior

Se utiliza el método de las curvas tipo de Fetkovich para cotejar la declinación de la producción del gráfico log-log de la tasa petróleo vs tiempo de historia, a partir de lo cual se determina una declinación exponencial con un valor de b= 0 (ver figura 3.16)

DECLINACIÓN CON023A:HI Prate laser Descritorio de la contractión Presentation Pres

FIGURA 3.16. AJUSTE PERÍODO DE DECLINACIÓN, CONONACO 23 - "HI"

FUENTE: PETROAMAZONAS EP REALIZADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

Para el análisis mediante las curvas de declinación se selecciona el período de producción diciembre de 1998 hasta agosto del 2000, y se determina una declinación anual efectiva del 9,95% (ver figura 3.17).

En la siguiente tabla se presenta el resultado de las reservas remanentes de petróleo y la producción final estimada para el reservorio Hollín Inferior, considerando un límite económico de 30 BPPD, el mismo que lo alcanza a los 2 años de producción iniciado el período.

TABLA 3.20.PREDICCIÓN DE LA PRODUCCIÓN, CONONACO 23 - "HI"

PREDICCIÓN PRODUCCIÓN POZO CON-23 Hollín Inferior			
DECLINACIÓN A.e. %	11,45		
RESERVAS ORIGINALES (Mbbl)	394,76		
RESERVAS REMANENTES (Mbbl) al 31/03/2013	37,09		
PRODUCCIÓN ACUMULADA (Mbbl) al 31/03/2013	357,67		
PERIODO DE PRODUCCIÓN (AÑOS)	2		
PRODUCCIÓN INICIAL (BPPD) al 31/03/2013	42,33		
PRODUCCIÓN FINAL (BPPD) al 31/03/2015	33,19		

FUENTE: PETROAMAZONAS EP

REALIZADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

CURVA DE DECLINACIÓN CON-23, HOLLÍN INFERIOR **FIGURA 3.17.**

FUENTE: PETROAMAZONAS EP REALIZADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

3.2.4.4. Pozo Yuca 22

Arenisca Napo "U" Inferior

Se utiliza el método de las curvas tipo de Fetkovich para cotejar la declinación de la producción del gráfico log-log de la tasa petróleo vs tiempo de historia, a partir de lo cual se determina una declinación exponencial con un valor de b= 0 (ver figura 3.18).

FIGURA 3.18. AJUSTE PERÍODO DE DECLINACIÓN, YUCA 22 - "UI"

FUENTE: PETROAMAZONAS EP REALIZADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

Para el análisis mediante las curvas de declinación se selecciona el período de producción desde enero del 2011 hasta marzo del 2013, y se determina una declinación anual efectiva del 20,22% (ver figura 3.19).

En la siguiente tabla se presenta el resultado de las reservas remanentes de petróleo y la producción final estimada para el reservorio Napo "U" Inferior, considerando un límite económico de 30 BPPD y 10 años de producción.

PREDICCIÓN PRODUCCIÓN POZO YUC-22 "U" Inferior			
DECLINACIÓN A.e. %	20,22		
RESERVAS ORIGINALES (Mbbl)	1648,02		
RESERVAS REMANENTES (Mbbl) al 31/03/2013	791,84		
PRODUCCIÓN ACUMULADA (Mbbl) al 31/03/2013	856,18		
PERIODO DE PRODUCCIÓN (AÑOS)	10		
PRODUCCIÓN INICIAL (BPPD) al 31/03/2013	636,75		
PRODUCCIÓN FINAL (BPPD) al 31/03/2023	<mark>66,4</mark> 9		

TABLA 3.21.PREDICCIÓN DE LA PRODUCCIÓN, YUCA 22 "UI"

FUENTE: PETROAMAZONAS EP

REALIZADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

CURVA DE DECLINACIÓN, YUCA 22 - "UI" DECLINACIÓN YUC022D:UI **FIGURA 3.19.**

FUENTE: PETROAMAZONAS EP REALIZADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

> Arenisca Hollín Inferior

Se utiliza el método de las curvas tipo de Fetkovich para cotejar la declinación de la producción del gráfico log-log de la tasa petróleo vs tiempo de historia, de lo cual se determina una declinación exponencial con un valor de b=0 (ver figura 3.20).

FIGURA 3.20. AJUSTE PERÍODO DECLINACIÓN, YUCA 22 – "HI"

FUENTE: PETROAMAZONAS EP REALIZADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

Para el análisis mediante las curvas de declinación se selecciona el período de producción desde junio del 2008 hasta enero del 2010, y se determina una declinación anual efectiva del 7,23% (ver figura 3.21).

En la siguiente tabla se presenta el resultado de las reservas remanentes de petróleo y la producción final estimada para el reservorio Hollín Inferior, considerando un límite económico de 30 BPPD y 10 años de producción.

,	,		
DDEDIGGIGNI	CION	VIICA OO (6
		$Y = (1, \Delta) / (2) = $	' HU''
	,		

PREDICCIÓN PRODUCCIÓN POZO YUC-22 "Hollín" Inferior			
DECLINACIÓN A.e. %	7,24		
RESERVAS ORIGINALES (Mbbl)	542,72		
RESERVAS REMANENTES (Mbbl) al 31/03/2013	277,79		
PRODUCCIÓN ACUMULADA (Mbbl) al 31/03/2013	264,93		
PERÍODO DE PRODUCCIÓN (AÑOS)	10		
PRODUCCIÓN INICIAL (BPPD) al 31/03/2013	104,57		
PRODUCCIÓN FINAL (BPPD) al 31/03/2023	49,33		

FUENTE: PETROAMAZONAS EP

REALIZADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

CURVA DE DECLINACIÓN, YUCA 22 – "HI" DECLINACIÓN YUC022D:HI **FIGURA 3.21**.

FUENTE: PETROAMAZONAS EP REALIZADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

3.2.4.5. Pozo Yulebra 03

Arenisca Napo "U" Inferior

Se utiliza el método de las curvas tipo de Fetkovich para cotejar la declinación de la producción del gráfico log-log de la tasa petróleo vs tiempo de historia, de lo cual se determina una declinación exponencial con un valor de b= 0 (ver figura 3.22).

FIGURA 3.22. AJUSTE PERÍODO DE DECLINACIÓN, YULEBRA03 - "UI"

FUENTE: PETROAMAZONAS EP REALIZADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

Para el análisis mediante las curvas de declinación se selecciona el período de producción diciembre de 1998 hasta agosto del 2000, y se determina una declinación anual efectiva del 5,84% (ver figura 3.23).

En la siguiente tabla se presenta el resultado de las reservas remanentes de petróleo y la producción final estimada para el reservorio Napo "U" Inferior, considerando un límite económico de 30 BPPD y 10 años de producción.

TABLA 3.23.PREDICCIÓN DE LA PRODUCCIÓN, YULEBRA 03 - "UI"

PREDICCIÓN PRODUCCIÓN POZO YUL-03 "U" Inferior		
DECLINACIÓN A.e. %	5,84	
RESERVAS ORIGINALES (Mbbl)	6653,17	
RESERVAS REMANENTES (Mbbl) al 31/03/2013	1028,09	
PRODUCCIÓN ACUMULADA (Mbbl) al 31/03/2013	5625,08	
PERÍODO DE PRODUCCIÓN (AÑOS)	10	
PRODUCCIÓN INICIAL (BPPD) al 31/03/2013	374,71	
PRODUCCIÓN FINAL (BPPD) al 31/03/2023	205,21	

FUENTE: PETROAMAZONAS EP

REALIZADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

FIGURA 3.23. CURVA DE DECLINACIÓN, YULEBRA 03 - "UI"

FUENTE: PETROAMAZONAS EP REALIZADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

3.2.4.6. Pozo Cuyabeno 27

Arenisca Napo "U" Inferior

Se utiliza el método de las curvas tipo de Fetkovich para cotejar la declinación de la producción del gráfico log-log de la tasa petróleo vs tiempo de historia, de lo cual se determina una declinación exponencial con un valor de b= 0 (ver figura 3.24).

FIGURA 3.24. AJUSTE PERÍODO DE DECLINACIÓN, CUYABENO 27 - "UI"

FUENTE: PETROAMAZONAS EP REALIZADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

El período de declinación de producción seleccionado es desde diciembre del 2008 hasta septiembre 2011, y se estimó una declinación anual efectiva aproximadamente del 7,38 %.

Las reservas remanentes de petróleo calculadas para el reservorio Napo "U" Inferior son de 1009.68 Mbbl; considerando un límite económico de 30 BPPD y 10 años de producción.

PREDICCIÓN PRODUCCIÓN POZO CUY-27 "U" Inferior		
DECLINACIÓN A.e. %	7,39	
RESERVAS ORIGINALES (Mbbl)	2139,42	
RESERVAS REMANENTES (Mbbl) al 31/03/2013	1009,67	
PRODUCCIÓN ACUMULADA (Mbbl) al 31/03/2013	1129,75	
PERÍODO DE PRODUCCIÓN (AÑOS)	10	
PRODUCCIÓN INICIAL (BPPD) al 31/03/2013	396,00	
PRODUCCIÓN FINAL (BPPD) al 31/03/2023	183,80	

FUENTE: PETROAMAZONAS EP

REALIZADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

FIGURA 3.25. CURVA DE DECLINACIÓN, CUYABENO 27 - "UI"

FUENTE: PETROAMAZONAS EP REALIZADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

CAPÍTULO 4

DESCRIPCIÓN DEL SISTEMA DE COMPLETACIÓN INTELIGENTE (INTELLIGENT WELL SYSTEMS – IWS)

4.1. INTRODUCCIÓN

La tecnología de Sistemas de Completación Inteligente, busca el control y monitoreo de la producción de fluidos del pozo en tiempo real mediante la implementación de las diversas gamas disponibles de sensores de fondo, camisas deslizables y válvulas de seguridad sub-superficiales, que se pueden ajustar dependiendo la necesidad del operador, además permite producir e inyectar conjuntamente en dos o varias arenas.

La referencia de pozo inteligente actualmente es común en las plataformas petroleras (offshore), donde se necesita de un mayor control de las operaciones e información en tiempo real, es decir lograr obtener modelos que sean constantemente mejorados y permitan fijar retos para el control automatizado del pozo, evitando futuras intervenciones y a su vez permitan tener mayor información para minimizar la incertidumbre al caracterizar el reservorio.

La tecnología de los sistemas de completación Inteligente fundamenta dos principios básicos, estos son:

- Monitoreo en tiempo real, realizando mediciones de las condiciones de flujo y de reservorio, generados mediante la utilización de los sistemas electrónicos o fibras ópticas. Permite obtener parámetros de pozo como presión, rata de flujo, densidad o el corte de agua, a través de sensores bajados dentro del pozo.
- Control en tiempo real, capacidad de controlar de forma remota las zonas de interés y ajustar mediante choques a la producción e inyección independiente de cada una de ellas, permitiendo cambiar las características de flujo en superficie,

evitando las intervenciones en el pozo. Los rangos de flujo son controlados por medio de un regulador de flujo de control remoto eléctrico, hidráulico, o eléctricohidráulico, operados mediante la utilización de válvulas de apertura o cierre.

4.2. DESCRIPCIÓN DE LAS PRINCIPALES HERRAMIENTAS DEL SISTEMA DE COMPLETACION INTELIGENTE

Dentro de los principales componentes en una completación inteligente tenemos:

- Informer y Sistema de control de superficie
- Paquete de líneas de control.
- Empacaduras de producción.
- Camisas deslizables o reguladores de flujo.
- Sensores Permanentes de Fondo.

FIGURA 4.1. COMPONENTES DE UN SISTEMA DE COMPLETACIÓN INTELIGENTE

FUENTE: BAKER HUGHES INC.

4.2.1. SISTEMA DE CONTROL DE SUPERFICIE

Tiene una pantalla donde señala las diferentes posiciones de choque de las camisas, y permite ajustar los choques de las camisas desde superficie. Está

provisto de cuatro líneas de control y su rango máximo de operación es de 10,000 psi.

4.2.2. INFORMER

Permite leer la información enviada por los sensores de fondo: Datos de presión, temperatura, caudal y corte de agua.

4.2.3. PAQUETE DE LÍNEAS DE CONTROL

Corresponde a las líneas de control (fig. 4.1) que están encargadas de garantizar de la provisión eléctrica hacia el motor, en su diseño deben ser correctamente consideradas las condiciones de voltaje, temperatura y los fluidos que se usaran en el pozo.

Permiten la comunicación entre el sistema de control de superficie y las camisas hidráulicas (ON-OFF o ajustables). El encapsulamiento nos brinda resistencia a la fricción de las líneas, evita abrasión y permite la operación a altas temperaturas, adicionalmente posee una línea para la inyección de químico.

FIGURA 4.2. LÍNEAS DE CONTROL

FUENTE: BAKER HUGHES INC.

4.2.4. EMPACADURAS DE PRODUCCIÓN

Las empacaduras o packer son herramientas de fondo que permiten realizar sello entre la tubería de revestimiento y producción de tal forma que eliminan el movimiento vertical de fluidos previniendo la comunicación en el espacio anular de dos zonas para de esta forma poder producir e inyectar independientemente.

Entre los varios usos que se da a las empacaduras está el aislar las diversas zonas de producción en las completaciones múltiples; además permite proteger a la tubería de revestimiento de fluidos corrosivos; así también permite proteger a la tubería de revestimiento cuando se tiene condiciones de alta presión de inyección y producción.

Se los puede clasificar agrupando en clases principales, de acuerdo al método de asentamiento, por número de orificios a través de la empacadura y finalmente por la presión de operación, de esta forma se tiene: Recuperables, Permanentes, Recuperables-Permanentes.

> Packer FEED-THROUGH

- Nos garantiza el aislamiento de las zonas
- Permite el paso de las líneas de control, evitando la comunicación de las zonas.
- El sistema de control hidráulico permite el manejo desde superficie.
- Hasta 7 puertos para líneas de control.

FIGURA 4.3. PACKER FEED-THROUGH

FUENTE: BAKER HUGHES INC.

4.2.5. CAMISAS DESLIZABLES O REGULADORES DE FLUJO

Existe una serie de dispositivos de control de flujo que permiten la comunicación entre la tubería de producción y la de revestimiento, por tal razón podremos ajustar y controlar el flujo sin tener la necesidad de realizar una intervención.

4.2.5.1. Tipos de camisas deslizables disponibles para los sistemas de completaciones inteligentes

Originalmente la camisa HCM era un regulador controlado en superficie hidráulicamente mediante dos líneas de control, la cual permite un control abriendo o cerrando la camisa deslizable selectivamente para la arena productora, evitando las intervenciones en pozo. Por medio de los avances tecnológicos se han mejorado partiendo de la camisa anteriormente descrita, a continuación se presentan los varios diseños disponibles en el mercado pertenecientes a Baker Hughes.

Dentro de las ventajas que este tipo de camisas deslizables nos ofrece tenemos:

- Diseño simple.
- Alta confiabilidad y exactitud en el control de flujo.
- Reducción de costos operaciones.
- Mejor actuación de los sistemas en ambas direcciones (ON/OFF).
- Control independiente de cada una de las zonas.
- Cierre automático del flujo si las condiciones operativas están fuera de rangos de operación.
- No utilización de las herramientas habituales para cambiar la posición de la camisa.

► HCM-ATM

Es una versión que posee un choque ajustable, de iguales características a la HCM, su ajuste se lo realiza de manera mecánica, de esta forma se puede regular dependiendo el requerimiento. Maneja presiones hasta un máximo de 7500 psi, con un rango de temperatura de 32 - 325 °F y con un tiempo operativo de 10 años.

FIGURA 4.4. CAMISA HIDRÁULICA HCM-A[™]

FUENTE: BAKER HUGHES INC.

En la figura 4.5 se presenta los diagramas del área de flujo que esta herramienta presenta sus 8 posiciones, al ajustar los choques de acuerdo a la necesidad de flujo.

FIGURA 4.5. AJUSTE DE CHOQUES DE LA CAMISA HIDRÁULICA HCM-A™

	Area de Flujo	Espacio Ranurado
100 % Area = 6.274 sq. in.		
Closed Area = 0.000 sq. in.		
21 % Area = 1.304 sq. in.	~~	
16 % Area = 0.994 sq. in.	→	
13 % Area = 0.808 sq. in		
10 % Area = 0.617 sq. in.	<u> </u>	
7 % Area = 0.431 sq. in.		
4 % Area = 0.245 sq. in.	_	

FUENTE: BAKER HUGHES INC.

► HCM-STM

Comparte los mismos principios de la camisa HCM-A[™], es decir son válvulas que regulan el flujo realizando cambio de posición de los choques, la válvula HCM-S[™] lo realiza mediante la actuación hidráulica, por medio de una válvula que es controlada desde superficie.

Permite el control de las ratas de flujo tanto de producción como de inyección según sea el caso, entre los intervalos seleccionados, sin tener la necesidad de realizar una intervención.

➢ HCM-Plus[™]

Tiene los mismos beneficios de la camisa HCM, presenta un sistema de accionamiento mediante un pistón actuador, además con la incorporación de nuevas ventajas, como mayor rango de aplicación de presión (max 10.000psi), además posee dos paquetes planos para bypass y perfiles de cambio mecánico y puertos cerrados comunes integrados.

➢ SHROUDED HCM[™]

Posee similares condiciones a la HCM, tiene una capsula que cierra la parte inferior de la junta perforada y la parte superior de los puertos de la camisa.

Tiene un tapón preinstalado en el niple de asiento antes de ser bajada en el hueco para desviar los fluidos a través de la válvula. Esto crea un espacio anular entre el diámetro interno de la cápsula y la junta perforada, el niple y una pequeña porción de la camisa.

FIGURA 4.6. CAMISA SHROUDED HCM[™]

FUENTE: BAKER HUGHES INC.

4.2.6. SENSORES DE FONDO

4.2.4.1. Sensores de presión y temperatura

Los sensores de fondo permite registrar valores de presión, temperatura en tiempo real. Con la recopilación de los parámetros de presión y temperatura se puede determinar las condiciones actuales como: Índice de productividad (J), daño de formación (s) y además permite controlar parámetros del equipo Electrosumergible.

Además permite modelar de una mejor manera el reservorio, verificar la conectividad del reservorio, optimizar la producción, el factor de recobro del reservorio y minimizar los costos de intervención.

FIGURA 4.7. ESQUEMA DE COMPONENTES DE UN SENSOR

FUENTE: BAKER HUGHES INC.

Las características de diseño del sensor permanente de fondo se presentan a continuación:

- Rangos de presión: 0- 30000 psi
- Rango de Temperatura: 77 347 oF
- Diámetro exterior: 3/4"
- Vida útil mínima: 5 años
- Resolución presión / Temperatura: 0.00001 psi / 0.9 oF
- Exactitud presión / Temperatura: 0.015% / 0.018 oF
- Vibración / choque: > 10G / > 500G
- G: 9.8 m/s² constante de gravedad

4.2.4.2. Medidor de Flujo

Es un sensor que nos permite la cuantificación del caudal de las zonas productoras, el medidor que actualmente posee esta tecnología es SureFlo[™], el cual fue construido bajo el principio de Venturi.

SureFlo-298, el cual es descrito como:

- 2 : corresponde 2 fases aceite y agua o gas solamente.
- 98 : relacionado con una precisión del 98%.

Está diseñado para operar a una diferencia de presión máxima de 110 psi. Las dimensiones de configuración interna (IDs), están diseñadas bajo las condiciones de flujo y las propiedades de los fluidos.

FIGURA 4.8. MEDIDOR DE FLUJO SUREFLO-298

FUENTE: BAKER HUGHES INC.

4.3. VENTAJAS DE LA IMPLEMENTACIÓN DE LOS SISTEMAS DE COMPLETACIÓN INTELIGENTE (IWS)

Este sistema de completaciones busca integrar de una manera multidisciplinaria el control del pozo de forma remota, permitiendo un monitoreo de los fluidos de cada una de las zonas con la ayuda de las diferentes tecnologías que actualmente se dispone; de esta forma se podrá incrementar producción de petróleo, bajar costos operativos innecesarios, recuperar independientemente el equipo electrosumergible, mejorar la tasa de retorno de la inversión y tomar decisiones inmediatas de acuerdo a las condiciones cambiantes del pozo.

Aceleración de Flujo de Caja

Por medio de la producción simultanea de dos o más arenas, también llamadas multi-zonas, podemos bajar costos operativos considerando que anteriormente solo completábamos en una sola arena, debido a que las herramientas utilizadas no permitían la cuantificación de los fluidos de diferentes zonas.

Reducción de CAPEX (CAPITAL EXPENDITURES)

El CAPEX o inversiones en bienes de capital disminuyen al manejar menos pozos, debido a la producción en conjunto que se logra con una Completación Inteligente. Además a partir de la información de los sensores bajados en el pozo se ajustan los choques en las camisas, de esta manera se reduce la producción de agua y por consiguiente los sistemas en supericie para su tratamiento.

Reducción de OPEX (OPERATING EXPENSE)

Se evitan gastos innecesarios de intervenciones en el pozo, debido al accionamiento remoto de los sistemas de choque por medio de los instrumentos de control que posee el operador en superficie. Además la generación de la data de monitoreo en tiempo real, permite modificar el flujo de fluidos del reservorio de una manera más ágil y precisa.

> Incremento en la recuperación de crudo

Con la información en tiempo real obtenida por esta tecnología, se podrá comprender de una mejor forma el flujo de los fluidos del reservorio, de esta manera se podrá incrementar la producción de petróleo y disminuir la producción de agua de una manera selectiva, evitando o disminuyendo su avance.

Con el análisis de producción generado por los diversos sensores, podremos estimar el daño que presenta el yacimiento y de poder tomar decisiones para mejorar la producción.

FIGURA 4.9. VENTAJAS DE LOS SISTEMAS DE COMPLETACION INTELIGENTE (IWS)

FUENTE: BAKER HUGHES INC.
CAPÍTULO 5

DISEÑO DEL SISTEMA DE COMPLETACIÓN INTELIGENTE (INTELLIGENT WELL SYSTEMS – IWS) EN EL O LOS POZOS SELECCIONADOS

5.1. SELECCIÓN DEL POZO CANDIDATO

5.1.1. CLASIFICACIÓN DE LOS POZOS CANDIDATOS

Un pozo para ser considerado como candidato para instalar el Sistema Completación Inteligente (IWS), debe confirmar la existencia de por lo menos dos zonas con potencial hidrocarburífero; para lo cual se deben evaluar parámetros como:

Características petrofísicas Cantidad de reservas de petróleo Producción actual de fluidos Datos de pruebas de restauración de presión Características del potencial del yacimiento Diagramas de completación Sistema de producción instalado

En todos los casos, los pozos candidatos se encuentran produciendo de una zona y la completación inteligente fue deseada para permitir acceso a una segunda zona, para producir de manera conjunta. La segunda zona debe ser una arenisca sin punzonar, debido a que las anteriores areniscas ya disparadas presentaban algún inconveniente razón por la cual dejaron de producir.

Para decidir en qué pozo sería factible un Sistema de Completación Inteligente (IWS), se realizó una preselección basándonos en la situación actual del pozo y en el cálculo de reservas realizado en el tercer capítulo (Tabla 5.1).

POZO	ZONA ACTUAL						ZONA NUEVA
		Hollín Inferior					
CON-23	Reserv. Rem. al 31/03/2013		Reserv. Rem. al 31/03/2013				
	BN	Levantamiento	Fecha	BFPD	BPPD	BSW (%)	BN
	420.819	OFF	08-ago-13	264	34,32	87	864.363
	U Inferior						T Inferior
YUC-22	Reserv. Rem. al 31/03/2013			Reserv. Rem. al 31/03/2013			
	BN	Levantamiento	Fecha	BFPD	BPPD	BSW (%)	BN
	1.009.670	PPS	01-mar-13	866	547	36	272.644
		U	Inferior				U Superior
CUY-27	Reserv. Rem. al Producción						Reserv. Rem. al 31/03/2013
	BN	Levantamiento	Fecha	BFPD	BPPD	BSW (%)	BN
	864.363	PPS	01-mar-13	2401	396	83	244.814

TABLA 5.1 PRODUCCIÓN Y RESERVAS REMANENTES DE LOS POZOSPRESELECCIONADOS

FUENTE: PETROAMAZONAS EP REALIZADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

De acuerdo con lo anterior se seleccionan los pozos Yuca 22 y Cuyabeno 27 debido a la cantidad de reservas remanentes y las óptimas condiciones que presentan; no se considera el pozo Cononaco 23 debido a las malas características de producción de la arenisca T Inferior.

Estableciendo como zona principal la que está produciendo actualmente y como segunda zona la que aporta con mayores reservas, proponiendo de tal manera el pozo Yuca 22 con los reservorios Napo "U" Inferior y "T" Inferior, y el pozo Cuyabeno 27 con los reservorios Napo "U" Superior y "U" Inferior.

A continuación se revisa la información expuesta en capítulos anteriores de diagramas de completación, producciones de agua y petróleo, propiedades del fluido, parámetros petrofísicos, presiones de yacimiento y fondo fluyente a condiciones de marzo 2013 para los dos pozos; de tal manera que presenten las características necesarias para plantear una Completación Inteligente.

Con la información anterior se estima una tasa de flujo inicial para las nuevas arenas, aplicando la ley de Darcy para flujo radial representado mediante la siguiente ecuación:

$$q = \frac{0.00708 * ko * h * (Pr - Pwf)}{\mu o * \beta o * \left[\ln \frac{re}{rw} - 0.75 \right]}$$
(5.1)

Donde:

q= Tasa de flujo (BFPD)

ko= Permeabilidad efectiva al petróleo (md)

h= Intervalo abierto al flujo (pies)

µ₀=Viscosidad del petróleo (cp)

β_o= Factor volumétrico del petróleo (Bls/BF)

Pr= Presión de reservorio (psig)

P_{wf}= Presión de fondo fluyente (psig)

re= Radio del pozo (0,29 ft)

r_w=Radio de drenaje (820 ft)

> Predicción de producción inicial arenisca Napo "T" Inferior pozo Yuca 22

Mediante la ecuación presentada anteriormente se procederá a calcular un valor aproximado de la producción inicial de la arenisca Napo "T" Inferior del pozo.

$$q = \frac{0.00708 * 143 * 40 * (1800 - 1260)}{3,03 * 1,11 * \left[\ln \frac{820}{0.29} - 0,75 \right]}$$

$$q = 903 BFPD$$

Entonces la producción inicial de petróleo sería:

$$qo = 903 BFPD * (1 - BSW)$$

 $qo = 903 BFPD * (1 - 0,20)$
 $qo = 722,4 BPPD$

El valor de permeabilidad efectiva al petróleo ko=143 md, se toma como referencia el valor del pozo vecino Yuca 24D que se obtiene de su último build up en noviembre del 2011 y se comparó que tenga concordancia con los valores de permeabilidad de los registros eléctricos propios del pozo.

Los datos de viscosidad y factor volumétrico del petróleo se calcularon previamente en la actualización de los parámetros PVT, presentados en el capítulo 3.

Igualmente para estimar un valor de presión de fondo fluyente a marzo del 2013 se revisaron las pruebas de producción a febrero del 2013 tomadas en los pozos Yuca 12 y Yuca 21 para obtener las presiones intake, y se las corrige a la mitad de las perforaciones obteniendo valores de Pwf de 1593 psig y 1109 psig respectivamente; por lo cual se considera para los cálculos un valor de Pwf=1260 psig.

Para el valor del BSW inicial para este reservorio se revisaron los historiales de producción de los pozos Yuca 09, Yuca 21 y Yuca 24; considerándose un valor conservador de BSW de 20%.

> Predicción producción inicial arenisca Napo "U" Superior pozo Cuyabeno 27

Mediante la ecuación presentada anteriormente se procede a calcular un valor aproximado de la producción inicial de fluido de la arenisca Napo "U" Superior del pozo, entonces:

$$q = \frac{0.00708 * 105 * 15 * (2661 - 2025)}{2,11 * 1,13 * \left[\ln \frac{820}{0,29} - 0,75 \right]}$$

q = 413 BFPD

Entonces la producción inicial de petróleo sería:

$$qo = 413BFPD * (1 - BSW)$$

 $qo = 413 BFPD * (1 - 0,30)$
 $qo = 289,8 BPPD$

El valor de permeabilidad efectiva al petróleo ko=105 md se toma como referencia registros propios del pozo.

Los datos de viscosidad y factor volumétrico del petróleo se calcularon previamente en la actualización de los parámetros PVT, presentados en el capítulo 3.

Igualmente para estimar un valor de presión de fondo fluyente a marzo del 2013 se revisaron las pruebas de producción realizadas en pozos aledaños, obteniendo valores de Pwf mayores a 2000 psig; por lo cual se considera para este caso con un valor de Pwf=2025 psig.

El valor del BSW inicial para este reservorio se obtiene analizando los historiales de producción de los pozos Cuyabeno 06, Cuyabeno10 y Cuyabeno 17; considerando que los pozos pertenecientes a este campo presentan un alto BWS, se estima un valor de BSW de 30%.

Posteriormente a la revisión realizada, en la tabla 5.2 se resumen las principales características de los dos pozos:

TABLA 5.2 ESTUDIO COMPARATIVO DE LOS POZOS CUYABENO 27 Y YUCA22.

POZO	ZONA EN PRODUCCI	ÓN	ZONA NUE	VA	CONJUNTO		
	U Inferior		U Superio	or	Ui+Us	ASPECTOS	ASPECTOS
CUY-27	Producción actual de petróleo (BPPD)	BSW (%)	Producción estimada de petróleo (BPPD)	BSW (%)	Producción conjunta de petróleo (BPPD)	POSITIVOS	NEGATIVOS
	350	80	289,8	30	639,8	 Presiones de reservorio y fondo fluyente mayores a 2000 psig 	• Rápido incremento de BSW • Liner de 7" a 5141' (MD)
	U Inferior		T Inferio	r	Ui+Ti		
YUC-22	Producción actual de petróleo (BPPD)	BSW (%)	Producción estimada de petróleo (BPPD)	BSW (%)	Producción conjunta de petróleo (BPPD)	ASPECTOS POSITIVOS	ASPECTOS NEGATIVOS
	406	50	722,4	20	1128,4	 Producción en conjunto superior a 1000 BPPD BSW menor al 50% 	 Presiones de reservorio y fondo fluyente menores a 2000 psig Liner de 7" a 8985' (MD)

FUENTE: PETROAMAZONAS EP REALIZADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

En razón de lo expuesto anteriormentemente se elige el pozo Yuca 22 para proponer un diseño de Sistema de Completación Inteligente debido al menor aporte de agua que presenta y a su buena producción estimada en conjunto de 1128 BPPD; al contrario que el pozo Cuyabeno 27 presenta un alto BSW y los pozos pertenecientes a este campo presentan un rápido incremento de agua, además su producción en conjunto de 639,8 BPPD es relativamente inferior que la del pozo Yuca 22.

Por otro lado aunque los dos pozos presentan una completación con Liner de 7", lo que anteriormente era una limitación mecánica para la Completación Inteligente, porque una de las herramientas es una camisa encapsulada de OD=7,25", esto no sería un problema ya que se dispone de otra herramienta como alternativa.

5.2. ANÁLISIS NODAL DEL POZO SELECCIONADO

5.2.1 DESCRIPCIÓN DEL PROGRAMA WELL EVALUATION MODEL, "WEM"

El análisis nodal del pozo Yuca 22D se hace mediante el software WEM (Well Evaluation Model), este programa propiedad de Baker Hughes, permite realizar un análisis nodal general del flujo de fluidos desde el yacimiento hacia el pozo y desde el pozo a superficie a través de una tubería de producción (Figura 5.1), logrando prever el comportamiento del pozo.

FIGURA 5.1 FLUJO DE FLUIDOS

FUENTE: BAKER HUGHES INCORPORATED

El principal objetivo del programa es hallar las condiciones operativas del sistema para que exista una producción conjunta de ambas zonas de interés, esto se lo realiza simulando la producción de los dos reservorios y modificando la apertura de las camisas hasta que las dos formaciones lleguen a un punto común de encuentro con una presión similar.

Para el análisis nodal el software utiliza el concepto de índice de productividad, el camino de flujo y sistema de nodos; en este caso se considera cuatro nodos que están ubicados en las camisas y en frente de las areniscas productoras. De esta forma se calculan las caídas de presión en cada componente, el caudal de los fluidos

producidos y determinar las curvas inflow y outflow del conjunto, donde el punto de intersección de estas dos curvas es el punto óptimo de operación del sistema.

5.2.2 INFORMACIÓN REQUERIDA

La información requerida por el programa (Tabla 5.3) para realizar el análisis nodal es la siguiente:

							Date:	Octubre	del 2013	
Client:	PETROAMAZO	ONAS EP					Country:			
Client Contact:					Contact Email:					
Project:						Con	tact Phone:			
Well Name(s):	YUCA-22D				Proposal No:					
District Contact Point:					Dis	strict Con	tact Phone:			
			GEN	IERAL WEI	L DATA					
Target Ins	tallation Date:					Nu	mber of Wel	s:	1	
	Well Type:		Oil Pr	oducer 🖂	Water I	Injector [Gas Inje	ector
Well	Configuration:		N	/ertical 🗌	Devi	ated (Hor	rizontal) 🛛		Multi-La	teral 🗌
w	ellhead / Tree:		Platform Subsea		a 🗌		L	and 🛛		
V	Wellhead Type: Horizon			izontal 🗌		Co	onventional	3		
Number of Penetrat	ions Available:	Hydrauli	c:				Electric:			
Con	trol Line Fluid:	Oil Bas	ed	Со	ntrol Line	Fluid (Co	omm. Spec):			
Production	Casing Details:	Size: 9 5,	/8	Wt: 47	Grade	:: K-55	TD:	Threads	:	
Production	n Liner Details:	Size: 7	1	Wt: 26	Grade	: C-95	TD:	Threads	:	
Upper	Fubing Details:	Size: 2 7,	/8	Wt: 6,5	Grade	:: N-80	TD:	Threads	:	
Lower	Tubing Details:	Size: 3 1,	/2	Wt: 9,3	Grade	: N-80	TD:	Threads	:	
Reservoir Com	pletions Type:	Case	d & Perf	orated	Gravel Packed, m		acked, mir	n. ID:		
		🛛 Ceme	ented &	Perforate	d Liner, si	ze:	OH Expa	ndable, m	in. ID:	
		Slotte	ed Liner	, size:	Cased Hole Ex		ole Expand	lable, min. ID:		
		Stand	d Alone	Screen in (OH, size:		Other			
	TRSCSSV:	Style:		Size:		OD:	ID	:	Depth:	
Cher	nical Injection:	Yes 🗌	No 🗌	Size:		OD:	ID	:	Depth:	
	Artificial Lift:	No	one 🗌		ESP 🛛	3	ES-PC	> []	Gas Lift	<u></u>
	Number of	f Artificia	l Lift De	vices:			<u> </u>			
	Α	rtificial Li	ft Devic	e OD:		in.	<u> </u>	in.	i	n.
	Artifi	cial Lift S	etting D	epth: MD		feet	MD	feet	f	[:] eet MD

TABLA 5.3 HOJA DE DATOS NECESARIOS PARA EL DISEÑO DE LA
COMPLETACIÓN INTELIGENTE

CONTINUACIÓN TABLA 5.3

	RESERVO	IR DATA for NODA			
	Production Zone Name:	U Inferior	T Inferior		
	Oil Gravity (°API):	18,5	28		
BS	Recombined GOR (scf/bbl):	140	110		
IL	Gas Specific Gravity:	0,897	0,854		
Ë	N ₂ Partial Pres. (psi, mole %, ppm):	0	0		
Ö	H ₂ S Partial Pres. (psi, mole %, ppm):	0	0		
PR	CO ₂ Partial Pres. (psi, mole %, ppm):	0	0		
9	Producing Water Cut (%):	50	20		
Ľ.	Water Salinity (ppm, mg/l):	16913	27782		
	water Specific Gravity:	1,03	1,03	\\/ellhee	
	Depth Reference:	Kelly Bush		vveiinea	
	Wellhead Elevation (ft), relative to sea		071,5		
	level:		835,8		
	Water Depth (ft):		N.R.		
	Top of Zone (ft), MD:	10037	10297		
S	Base of Zone (ft), MD:	10100	10356		
Ë	Top of Zone (ft), TVD:	9505,3	9765,3		
LU LU	Base of Zone (ft), TVD:	9568,3	9824,3	10001	
P	Top of Perfs (ft), MD:	10048	10299	10324	_
N N N	Base of Perfs (π), MD:	10084	10318	10355	
1	Base of Ports (ft), TVD:	9510,3	9707,3	9/92,3	-
Ē	Net Reservoir/Gross Reservoir (%):	0.652	0.638	5025,5	
5	Horizontal Permeability (md):	150	100		
ATI	Porosity (%):	13,8	9,7		
Q	Horizontal/Vertical Permeability:	N.R	N.R		
N	Drainage Radius (ft):	820	820		
CA	Borehole Diameter (in):	7	7		
	Datum Depth (ft), TVD:	N.R	N.R.		
	Reservoir Pressure at Datum, (psig):	1400	1800		
	Static Wellboad Temperature (°E):	220	225 N D		
	Water Surface Temperature (°F):		N R		
	Sea Floor Temperature (°F):		N.R		
	Flowing Wellhead Pressure, Pwh	450	ND		
	(psig):	150	N.R		
	ESP Operating Frequency (Hz):	56	N.R		
ΤA	G.L. Inj. Rate (Mscfd) or GLR (scf/stb):				
DA	Flowing Bottom Hole Pressure, Pwt	1000	1260		
ST	Well Test Production Rate (bfpd):	812	900		
Ë	Well Test Producing GOR (scf/bbl):	140	110		
1	Well Test Water Cut (%):	50	20		
NE	Flowing Wellhead Temperature, Twh	NR	NR		
_	(°F):	4.45	ND		
	SKIN, 5: Productivity Index PI (bbl/day/psi):	1,45	N.R. 1.67		
	Flowing Wellhead Pressure Pwh	2,03	1,07		
	(psia):		200		
Q	Production Rate (bfpd):	800	900		
ATIP	Producing GOR (scf/bbl):				
PER.	Producing Water Cut (%):				
TOF	Minimum (Maximum) Pwf (psig):	900	900		
SGE CO	ESP Operating Frequency (Hz):		60		
TAR	G.L. Inj. Rate (Mscfd) or GLR				
	(SCI/StD).				

CONTINUACIÓN TABLA 5.3

	ARTIFICIAL LIFT DATA						
	Manufacturer / Series:			Injection Depth (ft), MD:			
	Number of Pumps:	2	E.	Inj. Rate (<u>Mscfd</u>) or GLR (scf/stb):			
ESP	Pump Model:	P12X	S LIF	Operating Valve Differential (psi):			
	Number of Stages / Pump:	330	GA	Injection Temperature (°F):			
	Depth at Pump Discharge (ff), MD:			Injection Gas Specific Gravity:			

FUENTE: BAKER HUGHES INC.

REALIZADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

La construcción de la curva IPR de los reservorios Napo "U" Inferior y "T" Inferior del pozo Yuca 22D se presenta en el Anexo 3.

5.2.3 ANÁLISIS DE LOS RESULTADOS

Debido a la no disponibilidad de la licencia del programa en el país y a políticas internas de confidencialidad de información de la empresa, la simulación se realizó en Baker Hughes Colombia mediante el software WEM. Se ejecutan diversas corridas en el software, principalmente modificando la apertura de las camisas, y finalmente se consideran tres escenarios que se muestran a continuación con sus respectivas consideraciones y resultados:

Escenario 1: Bomba electrosumergible @ 9606 pies, HCMA 100% abierta con choque en fondo

En la tabla 5.4 se observa los resultados obtenidos para el primer caso, sobre a lo cual se tienen las siguientes observaciones:

- La caída de presión (P*-Pwf) para ambas areniscas se encuentra dentro del valor máximo establecido
- La producción conjunta de petróleo es 100 BPPD menor a la estimada

 La presión de entrada a la bomba es menor que la presión de burbuja para la arena T Inferior

CASO 1							
PARÁMETROS		ARENISCA U INFERIOR	ARENISCA T INFERIOR	TOTAL DE POZO			
OBJETIVO DE PRODUCCIÓN DE FLUIDO	BFPD	800	900	1700			
OBJETIVO DE PRODUCCIÓN DE PETRÓLEO	BOPD	400	720	1120			
CORTE DE AGUA	%	50	20				
ÍNDICE DE PRODUCTIVIDAD	BFPD/Psi	2,03	1,67				
DRAWDOWN MÁXIMO	Psi	500	900				
PRESIÓN DE BURBUJA	Psi	750	830				
		ARENISCALL					
RESULTADOS		INFERIOR	TINFERIOR	POZO			
RESULTADOS BOMBA BES	TIPO	INFERIOR 2 PUMPS	T INFERIOR P12X (226+104	POZO STAGES)			
RESULTADOS BOMBA BES FRECUENCIA	TIPO Hz	INFERIOR 2 PUMPS	T INFERIOR P12X (226+104 60	POZO STAGES)			
RESULTADOS BOMBA BES FRECUENCIA POSICIÓN HCMA	TIPO Hz % Abierto	INFERIOR 2 PUMPS 100	T INFERIOR P12X (226+104 60 CHOKE 0,25"	POZO STAGES)			
RESULTADOS BOMBA BES FRECUENCIA POSICIÓN HCMA CAUDAL TOTAL	TIPO Hz % Abierto BFPD	INFERIOR 2 PUMPS 100 773,94	T INFERIOR P12X (226+104 60 CHOKE 0,25" 782,8	POZO STAGES) 1556,74			
RESULTADOS BOMBA BES FRECUENCIA POSICIÓN HCMA CAUDAL TOTAL CAUDAL DE PETRÓLEO	TIPO Hz % Abierto BFPD BOPD	INFERIOR 2 PUMPS 100 773,94 386,97	T INFERIOR P12X (226+104 60 CHOKE 0,25" 782,8 626,24	POZO STAGES) 1556,74 1013,21			
RESULTADOS BOMBA BES FRECUENCIA POSICIÓN HCMA CAUDAL TOTAL CAUDAL DE PETRÓLEO CAUDAL DE AGUA	TIPO Hz % Abierto BFPD BOPD BAPD	INFERIOR 2 PUMPS 100 773,94 386,97 386,97	T INFERIOR P12X (226+104 60 CHOKE 0,25" 782,8 626,24 156,56	POZO STAGES) 1556,74 1013,21 543,53			
RESULTADOS BOMBA BES FRECUENCIA POSICIÓN HCMA CAUDAL TOTAL CAUDAL DE PETRÓLEO CAUDAL DE AGUA PRESIÓN DE FONDO FLUYENTE	TIPO Hz % Abierto BFPD BOPD BAPD Psi	INFERIOR 2 PUMPS 100 773,94 386,97 386,97 1018,75	T INFERIOR P12X (226+104 60 CHOKE 0,25" 782,8 626,24 156,56 1331,25	POZO STAGES) 1556,74 1013,21 543,53 993,95			
RESULTADOS BOMBA BES FRECUENCIA POSICIÓN HCMA CAUDAL TOTAL CAUDAL DE PETRÓLEO CAUDAL DE AGUA PRESIÓN DE FONDO FLUYENTE CAÍDA DE PRESIÓN (P*-Pwf)	TIPO Hz % Abierto BFPD BOPD BAPD Psi Psi	INFERIOR 2 PUMPS 100 773,94 386,97 386,97 1018,75 381,25	T INFERIOR P12X (226+104 60 CHOKE 0,25" 782,8 626,24 156,56 1331,25 468,75	POZO STAGES) 1556,74 1013,21 543,53 993,95			

TABLA 5.4 ANÁLISIS NODAL POZO YUCA 22D, ESCENARIO 1

FUENTE: BAKER HUGHES INC.

Escenario 2: Bomba electrosumergible @ 9606 pies, HCMA 100 % abierta sin choque en fondo

En la tabla 5.5 se observa los resultados obtenidos para el segundo caso, sobre lo cual se tienen las siguientes observaciones:

- La caída de presión (P*-Pwf) para ambas areniscas se encuentra dentro del valor máximo establecido.
- La producción conjunta de petróleo se aproxima al objetivo determinado
- La presión de entrada a la bomba es mayor que la presión de burbuja para los dos reservorios.

CASO 2							
PARÁMETROS		ARENISCA U INFERIOR	ARENISCA T INFERIOR	TOTAL DE POZO			
OBJETIVO DE PRODUCCIÓN DE FLUIDO	BFPD	800	900	1700			
OBJETIVO DE PRODUCCIÓN DE PETRÓLEO	BOPD	400	720	1120			
CORTE DE AGUA	%	50	20				
ÍNDICE DE PRODUCTIVIDAD	BFPD/Psi	2,03	1,67				
DRAWDOWN MÁXIMO	Psi	500	900				
PRESIÓN DE BURBUJA	Psi	750	830				
			ARENISCA				
RESULTADOS		INFERIOR	T INFERIOR	POZO			
RESULTADOS	TIPO	INFERIOR 2 PUMPS	T INFERIOR P12X (226+104	POZO STAGES)			
RESULTADOS BOMBA BES FRECUENCIA	TIPO Hz	INFERIOR 2 PUMPS	T INFERIOR P12X (226+104 60	POZO STAGES)			
RESULTADOS BOMBA BES FRECUENCIA POSICIÓN HCMA	TIPO Hz % Abierto	INFERIOR 2 PUMPS 100	T INFERIOR P12X (226+104 60 SIN CHOCKE	POZO STAGES)			
RESULTADOS BOMBA BES FRECUENCIA POSICIÓN HCMA CAUDAL TOTAL	TIPO Hz % Abierto BFPD	INFERIOR 2 PUMPS 100 587,4	T INFERIOR P12X (226+104 60 SIN CHOCKE 1006,04	STAGES)			
RESULTADOS BOMBA BES FRECUENCIA POSICIÓN HCMA CAUDAL TOTAL CAUDAL DE PETRÓLEO	TIPO Hz % Abierto BFPD BOPD	INFERIOR 2 PUMPS 100 587,4 293,7	T INFERIOR P12X (226+104 60 SIN CHOCKE 1006,04 804,83	POZO STAGES) 1593,44 1098,53			
RESULTADOS BOMBA BES FRECUENCIA POSICIÓN HCMA CAUDAL TOTAL CAUDAL DE PETRÓLEO CAUDAL DE AGUA	TIPO Hz % Abierto BFPD BOPD BAPD	INFERIOR 2 PUMPS 100 587,4 293,7 293,7	T INFERIOR P12X (226+104 60 SIN CHOCKE 1006,04 804,83 201,21	POZO STAGES) 1593,44 1098,53 494,91			
RESULTADOS BOMBA BES FRECUENCIA POSICIÓN HCMA CAUDAL TOTAL CAUDAL DE PETRÓLEO CAUDAL DE AGUA PRESIÓN DE FONDO FLUYENTE	TIPO Hz % Abierto BFPD BOPD BAPD Psi	INFERIOR 2 PUMPS 100 587,4 293,7 293,7 1100,64	T INFERIOR P12X (226+104 60 SIN CHOCKE 1006,04 804,83 201,21 1197,58	POZO STAGES) 1593,44 1098,53 494,91 933,95			
RESULTADOS BOMBA BES FRECUENCIA POSICIÓN HCMA CAUDAL TOTAL CAUDAL DE PETRÓLEO CAUDAL DE AGUA PRESIÓN DE FONDO FLUYENTE CAÍDA DE PRESIÓN (P*-Pwf)	TIPO Hz % Abierto BFPD BOPD BAPD Psi Psi	INFERIOR 2 PUMPS 100 587,4 293,7 293,7 1100,64 200,36	T INFERIOR P12X (226+104 60 SIN CHOCKE 1006,04 804,83 201,21 1197,58 602,42	POZO STAGES) 1593,44 1098,53 494,91 933,95			

TABLA 5.5 ANÁLISIS NODAL POZO YUCA 22D, ESCENARIO 2

FUENTE: BAKER HUGHES INC.

Escenario 3: Bomba electrosumergible @ 9606 pies, HCMA 6 % abierta sin choque en fondo

En la tabla 5.6 se observa los resultados obtenidos para el tercer caso, sobre lo cual se tienen las siguientes observaciones:

- La caída de presión (P*-Pwf) para ambas areniscas se encuentra dentro del valor máximo establecido.
- La producción conjunta de petróleo se aproxima al objetivo determinado
- La presión de entrada a la bomba es representativamente mayor que la presión de burbuja para los dos reservorios.

CASO 3							
PARÁMETROS		ARENISCA U INFERIOR	ARENISCA T INFERIOR	TOTAL DE POZO			
OBJETIVO DE PRODUCCIÓN DE FLUIDO	BFPD	800	900	1700			
OBJETIVO DE PRODUCCIÓN DE PETRÓLEO	BOPD	400	720	1120			
CORTE DE AGUA	%	50	20				
ÍNDICE DE PRODUCTIVIDAD	BFPD/Psi	2,03	1,67				
DRAWDOWN MÁXIMO	Psi	500	900				
PRESIÓN DE BURBUJA	Psi	750	830				
RESULTADOS		ARENISCA U INFERIOR	ARENISCA T INFERIOR	TOTAL DE POZO			
RESULTADOS BOMBA BES	TIPO	ARENISCA U INFERIOR 2 PUMPS	ARENISCA T INFERIOR P12X (226+104	TOTAL DE POZO STAGES)			
RESULTADOS BOMBA BES FRECUENCIA	TIPO Hz	ARENISCA U INFERIOR 2 PUMPS	ARENISCA T INFERIOR P12X (226+104 60	TOTAL DE POZO STAGES)			
RESULTADOS BOMBA BES FRECUENCIA POSICIÓN HCMA	TIPO Hz % Abierto	ARENISCA U INFERIOR 2 PUMPS 6	ARENISCA T INFERIOR P12X (226+104 60 SIN CHOKE	TOTAL DE POZO STAGES)			
RESULTADOS BOMBA BES FRECUENCIA POSICIÓN HCMA CAUDAL TOTAL	TIPO Hz % Abierto BFPD	ARENISCA U INFERIOR 2 PUMPS 6 585,14	ARENISCA T INFERIOR P12X (226+104 60 SIN CHOKE 1007,8	TOTAL DE POZO STAGES) 1592,94			
RESULTADOS BOMBA BES FRECUENCIA POSICIÓN HCMA CAUDAL TOTAL CAUDAL DE PETRÓLEO	TIPO Hz % Abierto BFPD BOPD	ARENISCA U INFERIOR 2 PUMPS 6 585,14 292,57	ARENISCA T INFERIOR P12X (226+104 60 SIN CHOKE 1007,8 806,24	TOTAL DE POZO • STAGES) 1592,94 1098,81			
RESULTADOS BOMBA BES FRECUENCIA POSICIÓN HCMA CAUDAL TOTAL CAUDAL DE PETRÓLEO CAUDAL DE AGUA	TIPO Hz % Abierto BFPD BOPD BAPD	ARENISCA U INFERIOR 2 PUMPS 6 585,14 292,57 292,57	ARENISCA T INFERIOR P12X (226+104 60 SIN CHOKE 1007,8 806,24 201,56	TOTAL DE POZO STAGES) 1592,94 1098,81 494,13			
RESULTADOS BOMBA BES FRECUENCIA POSICIÓN HCMA CAUDAL TOTAL CAUDAL DE PETRÓLEO CAUDAL DE AGUA PRESIÓN DE FONDO FLUYENTE	TIPO Hz % Abierto BFPD BOPD BAPD Psi	ARENISCA U INFERIOR 2 PUMPS 6 585,14 292,57 292,57 1111,74	ARENISCA T INFERIOR P12X (226+104 60 SIN CHOKE 1007,8 806,24 201,56 1196.53	TOTAL DE POZO STAGES) 1592,94 1098,81 494,13 1024,78			
RESULTADOS BOMBA BES FRECUENCIA POSICIÓN HCMA CAUDAL TOTAL CAUDAL DE PETRÓLEO CAUDAL DE AGUA PRESIÓN DE FONDO FLUYENTE CAÍDA DE PRESIÓN (P*-Pwf)	TIPO Hz % Abierto BFPD BOPD BAPD Psi Psi	ARENISCA U INFERIOR 2 PUMPS 6 585,14 292,57 292,57 1111,74 288,26	ARENISCA T INFERIOR P12X (226+104 60 SIN CHOKE 1007,8 806,24 201,56 1196.53 603,47	TOTAL DE POZO • STAGES) 1592,94 1098,81 494,13 1024,78			

TABLA 5.6 ANÁLISIS NODAL POZO YUCA 22D, ESCENARIO 3

FUENTE: BAKER HUGHES INC.

De acuerdo a lo expuesto anteriormente, se concluye que el tercer escenario presenta mejores resultados, puesto que cumple con los objetivos de producción diaria de petróleo en conjunto, y conserva la presión de fondo fluyente y presión de entrada a la bomba sobre la presión de burbujeo para ambas zonas de interés. Sobre esta información se realiza el diseño del equipo electrosumergible.

5.3. DISEÑO DEL EQUIPO ELECTROSUMERGIBLE

De acuerdo a los resultados del análisis nodal se construye la curva IPR para el conjunto y se realiza el diseño del equipo electrosumergible en el software AUTOGRAPH (Anexo 4), para lo cual definimos el caudal de fluido que se desea producir y establecemos el rango dentro del cual va a trabajar nuestro equipo. Este

rango varía desde la máxima producción que se tendrá cuando las dos camisas estén totalmente abiertas, mientras que la producción mínima se tendrá cuando la camisa HCM-A de la arenisca U Inferior la cual presenta un menor aporte esté totalmente abierta, y la camisa perteneciente a T Inferior se encuentre cerrada en su totalidad.

5.3.1. IPR CONJUNTO

Previamente al diseño del equipo electrosumergible se debe estimar el índice de productividad del conjunto, para lo cual se emplea la siguiente fórmula (Fuente: Baker Oil Tools).

$$J_{Conjunto} = \frac{(Q_t)^2}{\left(\left(Pr_{Ui} - Pwf_{Conjunto}\right) * Q_{Ui}\right) + \left(\left(Pr_{Ti} - Pwf_{Conjunto}\right) * Q_{Ti}\right)}$$
(5.2)

Donde:

- J conjunto = Índice de productividad del conjunto (BFPD/psi)
- Pr Ui= Presión de reservorio de U Inferior (Psig)
- Pr Ti= Presión de reservorio de T Inferior (Psig)
- Pwf Conjunto= Presión de fondo fluyente del conjunto (Psig)
- Qt= Caudal total de fluido del conjunto (BFPD)
- Qui= Caudal de fluido de U Inferior (BFPD)
- Q_{Ti}= Caudal de fluido de T Inferior (BFPD)

Considerando los resultados obtenidos del análisis nodal realizado en el tercer caso, reemplazamos sus valores en la ecuación anterior.

$$J_{Conjunto} = \frac{(1592,94)^2}{((1400 - 1024,78) * 585,14) + ((1800 - 1024,78) * 1007,8)}$$

 $J_{Conjunto} = 2,54 BFPD/psi$

Posteriormente se realiza construcción de la curva IPR conjunta con los datos y cálculos presentados en la tabla:

Datos por arena			_
Presión reservorio (Ui)	Pr1	1400	Psig
Caudal liquido (Ui)	Q1	585,14	BFPD
Presión reservorio (Ti)	Pr2	1800	Psig
Caudal de líquido (Ti)	Q2	1007,8	BFPD
Datos conjunto Ui+Ti			
Presión de reservorio	Pr	1653	Psig
Presión dinámica	Pwf	1025	Psig
Caudal total de fluido	Qt	1593	BFPD
Presión de burbuja	Pb	820	Psig
Cálculos conjunto Ui+Ti			
Índice de productividad (Conjunto)	J	2,54	BFPD/psi
Caudal a Pb	qb	2112	BFPD
Caudal Máximo	amax	3267	BFPD

TABLA 5.7 DATOS PARA LA CONSTRUCCIÓN CURVA IPR CONJUNTO

REALIZADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

En la figura 5.2 se presenta la curva IPR del conjunto en color azul, mientras que en color verde se representa la formación U Inferior y en color rojo se representa la arenisca T Inferior.

FIGURA 5.2 CURVA IPR CONJUNTO

REALIZADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

5.3.2. CÁLCULOS DE DISEÑO DEL EQUIPO ELECTROSUMERGIBLE

La información necesaria para el diseño se la presenta en la siguiente tabla:

TABLA 5.8 DATOS PARA EL DISEÑO DEL EQUIPO BES

DATOS CONJUNTO "U Inferior + T Inferior"	
DATOS DE PRODUCCIÓN	
Presión del reservorio [psig]=	1653
Pwf de prueba [psig]=	1025
Presión de burbuja [psig]=	820
Caudal de prueba [BFPD]=	1593
Îndice de productividad=	2,54
Presión de cabeza [psi]=	200
Producción deseada [BFPD]=	1700
Pwf @ producción deseada [psig]=	983
CARACTERISTICAS DE LOS FLUIDOS	
API del petróleo producido=	25
Gravedad específica del agua=	1
Gravedad específica del gas=	0,897
BWS [fracción]=	0,31
GOR esperado [Scf/Stb]=	114
Viscosidad del petróleo [cp]=	1,89
DATOS DEL POZO	
Prof. del pozo [pies] MD=	10650
Prof. del pozo [pies] TVD=	10118
Prof. de asentamiento de la bomba [pies] MD=	9604
Prof. de asentamiento de la bomba [pies] TVD=	9072
Prof. de asentamiento camisa HCM-A [pies] MD=	9860
Prof. de asentamiento camisa HCM-A [pies] TVD=	9328,4
Temperatura de superficie [°F]=	74
BHT [°F]=	229
Gradiente geotérmico [ºF/ft]=	0,0153
OD del tubing [pulg]=	3,5
ID del tubing [pulg]=	2,992
Peso [lb/pie=	9,3
Recubierto OD [pulg]=	5,5
Recubierto ID [pulg]=	4,892
Peso [lb/pie]=	17
Frequencia da discña [Hz]	60

FUENTE: BAKER HUGHES INC. REALIZADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

> Cálculo de la gravedad específica del fluido

En este paso determinamos el gradiente del fluido del pozo mediante la siguiente ecuación:

$$\gamma_{fluido} = \gamma_{oil} * (1 - BSW) + \gamma_{agua} * (BSW)$$
(5.3)

Donde:

γfluido= Gravedad específica del fluido

γoil= Gravedad específica del petróleo

γagua= Gravedad específica del agua

BSW= Corte de agua, fracción

Se requiere obtener el valor de gravedad específica correspondiente a la mezcla de la producción de petróleo de los reservorios Napo "U" Inferior y "T" Inferior, entonces consideramos lo siguiente:

$$\gamma_{mezcla} = \gamma_{oil\,Ui} * f_{Ui} + \gamma_{oil\,Ti} * f_{Ti} \tag{5.4}$$

$$f_{Ui} = \frac{Q_{o\,Ui}}{Q_{o\,Ui} + Q_{o\,Ti}}$$
(5.5)

$$f_{Ti} = \frac{Q_{o Ti}}{Q_{o Ui} + Q_{o Ti}}$$
(5.6)

Donde:

γ_{mezcla}= Gravedad específica de la mezcla

γ_{oil Ui}= Gravedad específica del petróleo de U inferior

γ oil Ti= Gravedad específica del petróleo de T inferior

f _{Ui}= Fracción de producción de petróleo de U inferior

f Ti= Fracción de producción de petróleo de T inferior

Qo ui= Caudal de petróleo de U Inferior

Qo Ti= Caudal de petróleo de T Inferior

$$\gamma_{oilUi} = \frac{141,5}{131,5+18,5} = 0,9433$$

$$\gamma_{oilTi} = \frac{141,5}{131,5+28} = 0,8871$$

Entonces

$$\gamma_{mezcla} = 0,9433 * 0,26 + 0,8871 * 0,74$$

 $\gamma_{mezcla} = 0,9017$

Finalmente reemplazamos los valores en la ecuación

$$\gamma_{fluido} = 0,9017 * (1 - 0,31) + 1,03 * (0,31)$$

 $\gamma_{fluido} = 0,9414$

Cálculo del nivel dinámico

El nivel dinámico que se obtiene con la Pwf para el caudal de fluido deseado se lo obtiene mediante la ecuación.

$$N. D. = \frac{Pwf * 2,31}{\gamma_{fluido}}$$
(5.7)
Donde:

N.D.= Altura del nivel dinámico del fluido, pies

Pwf = Presión de fondo fluyente al caudal deseado, psig

yfluido= Gravedad específica del fluido

$$N.D. = \frac{983 * 2,31}{0,9414} = 2411, 18 \, pies$$

Cálculo del levantamiento neto

Se determina el levantamiento neto, que es la distancia vertical que el fluido debe recorrer para llegar a superficie, con la siguiente ecuación

$$L.N. = Prof.HCMA - N.D$$
(5.8)

Donde:

L.N.= Levantamiento neto, pies

Prof. HCMA= Profundidad de la camisa ajustable HCMA, pies, TVD

N.D.= Altura del nivel dinámico del fluido, pies

$$L.N. = 9328,4 - 2411,18$$

$$L.N. = 6917,22 \ pies$$

Cálculo de la presión de entrada a la bomba

Calculamos la presión de entrada a la bomba con la ecuación que se presenta, esta presión debe ser mayor a la de burbuja para evitar cavitación en la bomba.

$$PIP = Pwf - \left[\frac{(Prof. HCMA - P.A.B) * 2,31}{\gamma_{fluido}}\right]$$
(5.9)

Donde:

PIP= Presión de entrada a la bomba, psi

Pwf = Presión de fondo fluyente al caudal deseado, psig

Prof. HCMA= Profundidad de la camisa ajustable HCMA, pies, MD

P.A.B= Profundidad de asentamiento de la bomba, pies, MD

$$PIP = 983 - \left[\frac{(9860 - 9604) * 0,9414}{2,31}\right]$$
$$PIP = 878,67 \ psi$$

Como observamos la presión de entrada a la bomba es mayor que la de burbujeo de 820 psi, por lo que a la entrada de la bomba no habrá gas libre.

> Cálculo de pérdidas por fricción

Para calcular las pérdidas por fricción en el tubing lo determinamos mediante la ecuación de HAZEN-WILLIAMS.

$$Ft = \frac{F}{1000} * L$$
 (5.10)

Donde:

F= Pérdidas por fricción por cada 1000 pies de tubería, pies

C= Constante, 120 (tubería nueva), 140 (tubería de más de 10 años)

Q= Caudal fluido, gpm

ID= Diámetro interno del tubing, pulgadas

 $\frac{F}{1000 ft} = 2,083 * \left(\frac{100}{120}\right)^{1,85} * \frac{49,58^{1,85}}{2,441^{4,8655}} = 26,48$

$$Ft = \frac{9,84 * 9604}{1000} = 254,28 \, pies$$

Presión en el cabezal del pozo

Determinamos la distancia en pies que debe proporcionar la bomba para una presión de cabeza respectiva.

$$Pies \, presión \, cabeza = \frac{Presión \, de \, cabeza * 2,31}{\gamma_{fluido}} \tag{5.11}$$

 $Pies \ presión \ cabeza = \frac{200 * 2,31}{0,9414}$

Pies presión cabeza = 490,75 pies

Cálculo de la altura dinámica total (TDH)

El valor de TDH que representa la distancia en pies que la bomba debe proporcionar al fluido para que llegue a la estación, se lo determina mediante la ecuación.

TDH = L.N. + Pérdidas por fricción + Presión cabeza (5.12)

TDH = 6917,22 + 254,28 + 490,75

$TDH = 7622, 25 \, pies$

Donde:

TDH= Altura dinámica total, pies

Fricción= Pérdidas por fricción en la tubería, pies

Presión cabeza= Presión en el cabezal del pozo, pies

Selección de la bomba

Se escoge la bomba más apropiada del catálogo de Centrilift, de acuerdo al rango del caudal de fluido que deseamos producir de (500 – 1700) BFPD y al diámetro del

casing de 5 ¹/₂"dentro del cual va encapsulada. Por lo tanto consideramos una bomba serie 400, modelo P18SSD cuyo rango óptimo va desde (500-2500) BFPD.

En la tabla 5.9 se presenta los resultados a partir de las curvas de rendimiento a 60 Hz de la bomba, considerando nuestra tasa de flujo deseada de 1700 BFPD.

TABLA 5.9 RESULTADOS BES MODELO P18SSD

FUENTE: BAKER HUGHES INC.

BOMBA BES MODELO P18SSD CENTURION					
	1700				
Cuadal de fluido deseado (BFPD)	1700				
Pies/Etapa	20				
BHP/etapa	0,39				
# Etapas requerido	383,11				
BHP requerido (HP)	140,65				
Eficiencia (%)	0,64				

REALIZADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

Las características de la bomba electrosumergible seleccionada se presentan en la siguiente tabla:

TABLA 5.10 CARACTERÍSTICAS BES SELECCIONADA

Descripción Bomba Electrosumergible								
Fabricante	Rango óptimo (BFPD)	Serie	Modelo	Etapas	Frecuencia (Hz)			
CENTRILIFT	500-2500	400	P18SSD Centurion	402 (134+134+134)	60			

REALIZADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

Selección del motor y sección sellante

Generalmente la serie de la sección sellante es la misma que la de la bomba, por lo que el sello seleccionado es serie 400, modelo FST3 DB.

Para elegir el tamaño del motor adecuado para un tamaño de bomba determinado, primeramente se determinan los caballos de potencia al freno requerido por la bomba.

La potencia al freno requerida para manejar una bomba dada se calcula con la siguiente ecuación:

$$BHP = \frac{BHP}{etapa} * No \ de \ etapas * \gamma_{fluido}$$
(5.13)

Este sería el tamaño mínimo de motor requerido, pero se debe considerar que su eficiencia no es del 100%.

Para escoger el voltaje del motor debemos tener en cuenta lo siguiente:

- Motores de alto voltaje (en consecuencia baja corriente) causan bajas pérdidas en el cable y requieren cables conductores de menor tamaño.
- Mientras mayor sea el voltaje del motor, más costoso será el controlador.
- De la disponibilidad de equipos en superficie (VSD y transformador)

Sobre lo expuesto anteriormente seleccionamos un motor con las siguientes características:

Descripción del Motor								
Fabricante	Serie	Modelo	Potencia	Voltaje	Amperaje	Frecuencia (Hz)		
CENTRILIFT	450	MSP1-250F	216 HP	1540	90	60		

TABLA 5.11 CARACTERÍSTICAS MOTOR SELECCIONADO

REALIZADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

> Selección del cable

El tamaño del cable de potencia depende de factores combinados como son la caída de voltaje, el flujo de corriente que pasa por el conductor y el espacio disponible entre los acoples de tubería de producción y el casing.

En función del amperaje del motor seleccionado y la temperatura de fondo del pozo, se recomienda en la selección del cable que la caída de voltaje sea menor a 30 voltios por cada 1000 pies.

La caída de tensión por cada 1000 pies en función del amperaje, se determina para varios tamaños de cable a partir de la figura.

FIGURA 5.4 CAÍDA DE VOLTAJE POR CADA 1000 PIES EN EL CONDUCTOR

FUENTE: Bombeo electrosumergible (BES), Universidad de América

Para el caso presente de acuerdo al amperaje de 90 del motor, hemos seleccionado el cable # 1 que tiene una caída de voltaje de 21,59 voltios/1000 pies.

Igualmente hay que tomar en cuenta el factor de corrección por temperatura; la temperatura operacional del cable se la determina a partir de la siguiente figura.

FIGURA 5.5 CÁLCULO DE LA TEMPERATURA DEL CONDUCTOR

FUENTE: Chancay J. y L. Rumipamba, (2007), Incremento de la producción de petróleo en el campo Libertador mediante la implementación de completaciones inteligentes, Quito

En función de la corriente del motor de 90 amperios y de la temperatura máxima del pozo de 229 °F, en la gráfica anterior se determina una temperatura operacional del cable de 330 °F. Sobre la temperatura resultante del conductor de 330 °F, a partir de la tabla se determina que el factor de corrección es de 1,48.

FACTORES DE CORRECCIÓN POR TEMPERATURA								
Temperatura	Multiplicador	Temperatura	Multiplicador					
131 ºF (55ºC)	1,12	221 ºF (105ºC)	1,31					
149 ºF (65ºC)	1,15	239 °F (115°C)	1,35					
167ºF (75ºC)	1,19	257°F 125°C)	1,39					
185°F (85°C)	1,23	275°F (135°C)	1,42					
203 ºF (95ºC)	1,27	302 ºF (150ºC)	1,48					

TABLA 5.12 FACTORES DE CORRECCIÓN POR TEMPERATURA

FUENTE: Guevara C., (2002), Dimensionamiento y selección de bombas electrosumergibles (BES) para la puesta en producción del campo Mina Negra, Quito

Considerando lo expuesto anteriormente, las pérdidas de voltaje en el cable se calculan mediante la siguiente ecuación:

$$P\acute{e}rdidas \,de \,voltaje = \left(\frac{Ca\acute{i}da \,de \,voltaje}{1000 \,pies}\right) * \,(Longitud \,del \,cable) * \,Multiplicador \tag{5.14}$$

Donde:

Pérdidas voltaje= Pérdidas de tensión en el cable, Voltios

Longitud del cable= Profundidad de asentamiento de la bomba + 200 pies para conexiones en superficie, pies

Multiplicador= Factor de corrección debido a la temperatura, adimensional

Entonces reemplazando los valores correspondientes en la ecuación, tenemos:

$$P\acute{e}rdidas \ de \ voltaje = \left(\frac{21,59}{1000}\right) * (9604 + 200) * 1,35$$

Pérdidas de voltaje = 313,27 voltios

Selección del variador y transformador

La selección del variador que se necesita se lo hace sobre los KVA requeridos, calculados a partir del voltaje requerido en superficie, mediante la siguiente ecuación:

 $Voltaje \ de \ superficie = Voltaje \ nom. \ del \ motor + p\'erdidas \ de \ voltaje \ en \ el \ cable$ (5.15)

Voltaje de superficie = 1540 + 313,27 = 1853,27 voltios

Los KVA requeridos se los calcula con la siguiente ecuación:

$$KVA \ requerido = \frac{(Voltaje \ de \ superficie * \ amperaje \ motor * \sqrt{3})}{1000}$$
(5.16)

$$KVA \ requerido = \frac{(1853,27 * 90 * \sqrt{3})}{1000} = 288,90 \ KVA$$

Debido a que el máximo voltaje que el variador puede entregar es de 460 V a 480 V, necesitamos utilizar un transformador elevador entre el variador y el motor. Se debe considerar que los transformadores no son 100% eficientes, por lo que se debe aumentar el KVA requerido estimando la eficiencia del transformador. Generalmente se asume una eficiencia de un 85%, entonces el variador deberá proporcionar aproximadamente unos 332 KVA al transformador.

En la tabla a continuación se presentan los detalles del VSD y transformador seleccionados:

TABLA	5.13 CARACTERÍSTICAS DEL	_ VARIADOR Y TRANSFORMAI	DOR
	SELECCIONADOS		

Descripción Variador y Transformador							
Variador	Marca	Modelo	KVA	Amperaje			
Variación	CENTRILIFT	4350-VT	390	469			
Transformador	Pr	imario	Secun	dario			
Transformation	De 13,	8 KV-480V	480V-1853,27V				

REALIZADO POR: ALEXANDER TORRES / JOSÉ LUIS TORRES

5.4. DIAGRAMA DE COMPLETACIÓN INTELIGENTE PARA EL POZO YUCA-22D

A continuación en la figura 5.6 se presenta el diagrama de la Completación Inteligente (IWS) propuesta para el pozo Yuca 22D, donde se pueden observar las principales herramientas que la constituyen y el resto de componentes de la completación. En los Anexos 5 y 6 se presentan el diagrama con el tally en formato A3, y el procedimiento de corrida respectivamente de la Completación Inteligente propuesta.

FIGURA 5.6 DIAGRAMA COMPLETACIÓN INTELIGENTE PROPUESTO YUCA-22D

FUENTE: BAKER HUGHES INCORPORATED MODIFICADO POR: ALEX TORRES / JOSÉ LUIS TORRES

CAPITULO 6

ANÁLISIS ECONÓMICO

6.1. INTRODUCCIÓN

La evaluación económica tiene como finalidad determinar la factibilidad del presente proyecto, y cuál es el rédito económico que producirá la implementación de una completación inteligente en el pozo candidato.

Los factores a considerar son la inversión inicial, ingresos y egresos a un tiempo determinado de 12 meses de producción; y se establecerá la rentabilidad alcanzada mediante los indicadores económicos de valor actual neto (VAN) y tasa interna de retorno (TIR) obtenidos del análisis realizado.

Finalmente se analizarán los resultados conseguidos.

6.2. PRECIO DEL BARRIL DEL PETRÓLEO

Sobre la tendencia de los costos que mantuvo el barril de petróleo en septiembre y octubre del año 2013, se considera para nuestro proyecto un precio conservador de 86,4 dólares por cada barril de crudo, el cual es el estimado por el Estado para su presupuesto general del año 2014.

En la siguiente figura se observa el precio del crudo para los meses de septiembre y octubre 2013:

FIGURA 6.1 PRECIO BARRIL DE PETRÓLEO SEPTIEMBRE-OCTUBRE 2013

6.3. PRODUCCIÓN DURANTE LA EVALUACIÓN ECONÓMICA

Para determinar la producción futura de agua y petróleo, se toma en cuenta el historial productivo propio del pozo para la arenisca "U" Inferior, mientras que para "T" Inferior se considera su comportamiento en los pozos vecinos Yuca 09 y Yuca 24. Se estima para ambos reservorios una declinación anual efectiva del 20,22% en la producción de petróleo, mientras que para el agua se tiene un incremento anual efectiva del 9,44%.

La predicción de la producción se calcula aplicando la ecuación de declinación exponencial:

$$q = q_o * e^{-Dt} \tag{6.1}$$

FUENTE: BANCO CENTRAL DEL ECUADOR REALIZADO POR: ALEX TORRES / JOSÉ LUIS TORRES

Donde:

q = Tasa de producción al tiempo t

 q_0 = Tasa de producción inicial D= Índice declinación (meses^{.1})

t= tiempo (meses)

En la tabla se presenta la producción de agua y petróleo del conjunto, durante el período establecido de 12 meses del análisis económico.

TABLA 6.1 PRODUCCIÓN DURANTE EL PERÍODO DE EVALUACIÓN ECONÓMICA

PRODUCCIÓN POZO YUCA 22D												
Declinación anual producción petróleo (%):					20,22							
Incremento anual producción de agua (%):					9,44							
"U" Inferior					"T" In	ferior		Conjunto				
Mes	BFPD	BPPD	BAPD	BSW (%)	BFPD	BPPD	BAPD	BSW (%)	BFPD	BPPD	BAPD	BSW (%)
1	586	293	293	50	1008	807	201	20	1594	1100	494	31
2	583	288	295	51	994	792	203	20	1577	1079	498	32
3	580	282	297	51	981	777	204	21	1561	1059	501	32
4	577	277	300	52	968	763	206	21	1545	1040	505	33
5	574	272	302	53	956	748	207	22	1529	1020	509	33
6	571	267	304	53	943	734	209	22	1514	1001	513	34
7	568	262	307	54	931	721	210	23	1499	983	517	34
8	566	257	309	55	919	707	212	23	1485	964	521	35
9	563	252	311	55	908	694	213	24	1471	946	525	36
10	561	247	314	56	896	681	215	24	1457	929	529	36
11	559	243	316	57	885	669	217	24	1444	911	533	37
12	556	238	318	57	874	656	218	25	1431	894	537	38

REALIZADO POR: ALEX TORRES / JOSÉ LUIS TORRES

6.4. COSTO DE INVERSIÓN INICIAL, INGRESOS Y EGRESOS

La inversión inicial es el costo de la completación inteligente (incluido el equipo BES) propuesta, es aproximadamente \$1'350.000 (Fuente Baker Oil Tools).

Los ingresos se los determina multiplicando el número de barriles de petróleo producidos cada mes por el precio del barril de petróleo considerado de \$86,4.

Para el cálculo de los egresos se establece un costo de operativo de \$7,06 por cada barril de petróleo; de igual manera se aplica un valor de \$0,20 para el tratamiento de cada barril de agua producido (Departamento de Ingeniería Económica de Petroamazonas EP).

En la tabla se presenta el detalle de ingresos y egresos para el conjunto durante el período analizado.

INGRESOS Y EGRESOS POZO YUCA 22D									
CONJUNTO (U Inferior + T Inferior)									
	Ingresos	Egresos							
Mes	Ingreso mensual USD (\$)	Costo operativo bbl de petróleo USD (\$)	Costo tratamiento bbl de agua USD (\$)	Egresos total por mes USD (\$)					
1	2.851.200	232.980	2.964	235.944					
2	2.798.022	228.635	2.986	231.621					
3	2.745.836	224.370	3.009	227.379					
4	2.694.623	220.186	3.032	223.217					
5	2.644.366	216.079	3.054	219.133					
6	2.595.046	212.049	3.078	215.126					
7	2.546.645	208.094	3.101	211.195					
8	2.499.148	204.213	3.124	207.337					
9	2.452.536	200.404	3.148	203.552					
10	2.406.793	196.666	3.172	199.838					
11	2.361.904	192.998	3.195	196.194					
12 2.317.852		189.399	3.220 192.6						
TOTAL INGRESOS	\$ 30.913.971		TOTAL EGRESOS	\$ 2.563.154					

TABLA 6.2 INGRESOS Y EGRESOS DURANTE LA EVALUACIÓN ECONÓMICA

REALIZADO POR: ALEX TORRES / JOSÉ LUIS TORRES
6.5. EVALUACIÓN DEL PROYECTO

6.5.1 VALOR ACTUAL NETO (VAN)

Es el valor presente (a hoy) de los flujos de efectivo de un proyecto descontados a una tasa de interés dada. La tasa de actualización que se contempla es 12%, la misma que es utilizada por Petroamazonas EP para sus proyectos. Se define mediante la siguiente ecuación:

$$VAN = \sum_{k=0}^{n} \frac{Fnck}{(1+i)^k} \quad (6.2)$$

Donde

n es el número de períodos a los que se calcula la inversión

Fnck es el flujo neto de caja

i es la tasa de actualización

Los criterios para la toma de decisión son:

• Si el VAN >0, la rentabilidad de la inversión es mayor que la tasa actualizada. En consecuencia, el proyecto se acepta.

• Si el VAN=0, entonces la rentabilidad es igual a la tasa de actualización, por lo que el proyecto puede considerarse.

• Si el VAN<0, la rentabilidad se encuentra por debajo de la tasa de actualización y en consecuencia, el proyecto debe descartarse.

6.5.2 TASA INTERNA DE RETORNO (TIR)

Es uno de los indicadores financieros que permiten evaluar la rentabilidad de un proyecto, se define como la tasa de actualización con la que el valor actual neto o valor presente neto (VAN) es igual a cero. Se calcula mediante la fórmula siguiente:

$$VAN = 0 = \sum_{k=0}^{n} \frac{Fnck}{(1+TIR)^{k}}$$
(6.3)

Los criterios para la toma de decisión son:

- Si el TIR>tasa de actualización, el proyecto es factible.
- Si el TIR<tasa de actualización, el proyecto no es factible.

6.5.3 RELACIÓN BENEFICIO COSTO (B/C)

También conocida como índice neto de rentabilidad, es un cociente que se obtiene al dividir el Valor Actual de los Ingresos totales (VAI) entre el Valor Actual de los costos totales (VAC) de un proyecto.

El proyecto será rentable cuando la relación beneficio- costo es mayor que la unidad.

$$\frac{B}{C} = \frac{VAI}{VAC} \tag{6.4}$$

Donde:

B/C=Relación beneficio costo

VAI=Valor actual de los ingresos totales

VAC=Valor actual de los costos totales

6.5.4 PERÍODO DE RECUPERACIÓN DE LA INVERSIÓN

Determina en cuanto tiempo se recuperará el total de la inversión inicial a valor presente. Mide la rentabilidad en términos de tiempo.

6.5.5 RESULTADOS

Sobre los resultados de la evaluación económica realizada para un período de 12 meses (Tabla), se determina que el proyecto actual es rentable, según los siguientes criterios:

- Al finalizar el período de 1 año se logra una ganancia (VAN) de \$25.300.318
- La tasa interna de retorno (TIR) del proyecto es del 192% mensual, la cual es mucho mayor que la tasa de actualización contemplada del 12% anual.
- La relación beneficio costo es 7,73, lo que quiere decir que por cada dólar invertido se obtendrá \$6,73 de ganancia.
- El tiempo de recuperación de la inversión es aproximadamente 15 días (Figura 6.2)

En la siguiente tabla se presentan los resultados obtenidos del análisis económico, una vez realizados los cálculos respectivos.

		EVALUACIÓN	POZO YUCA 22D							
	Tasa de actualizaci	ón (%):		1	2					
Mos	Ingrosos	Earosos	Eluio do caia	Ingresos	Egresos	Flujo de caja				
INIES	liigiesos	Lylesus	riujo de caja	Actualizados	Actualizados	actualizado				
0		1.350.000	-1.350.000		1.350.000	-1.350.000				
1	2.851.200	235.944	2.615.256	2.822.970	233.608	2.589.362				
2	2.798.022	231.621	2.566.401	2.742.890	227.057	2.515.833				
3	2.745.836	227.379	2.518.457	2.665.081	220.692	2.444.389				
4	2.694.623	223.217	2.471.406	2.589.480	214.507	2.374.973				
5	2.644.366	219.133	2.425.232	2.516.023	208.498	2.307.525				
6	2.595.046	215.126	2.379.919	2.444.650	202.659	2.241.991				
7	2.546.645	211.195	2.335.450	2.375.302	196.985	2.178.317				
8	2.499.148	207.337	2.291.811	2.307.921	191.472	2.116.449				
9	2.452.536	203.552	2.248.984	2.242.451	186.115	2.056.336				
10	2.406.793	199.838	2.206.956	2.178.839	180.910	1.997.928				
11	2.361.904	196.194	2.165.711	2.117.031	175.853	1.941.178				
12	2.317.852	192.618	2.125.234	2.056.976	170.939	1.886.037				
VALOR	ACTUAL NETO=			\$ 25.300.318						
TASAI	NTERNA DE RETOI	RNO=		192%						
RELAC	IÓN BENEFICIO/CO	DSTO=		7,73						
PERÍO	DO DE RECUPERA	CIÓN DE LA IN	15,64 Días							

TABLA 6.3 RESULTADOS DE LA EVALUACIÓN ECONÓMICA

REALIZADO POR: ALEX TORRES / JOSÉ LUIS TORRES

En la figura se observa el tiempo de recuperación de la inversión inicial, el mismo que es 15, 64 días.

FIGURA 6.2 PERÍODO DE RECUPERACIÓN DE LA INVERSIÓN

REALIZADO POR: ALEX TORRES / JOSÉ LUIS TORRES CAPITULO 7

CONCLUSIONES Y RECOMENDACIONES

7.1 CONCLUSIONES

- Se propone la completación Inteligente (IWS) para el pozo Yuca 22D, debido a que presenta las características necesarias de reservorio, de producción y mecánicas para implementarse esta tecnología. No se decidió por el pozo Cuyabeno 27, puesto que su producción de petróleo en conjunto es aproximadamente 400 BPPD menor que la del pozo propuesto, y además el reservorio "U" Inferior presenta un alto BSW de 80%; por lo que la rentabilidad en el caso de haber seleccionado el pozo Cuyabeno 27 sería menor.
- La implementación de la completación inteligente en el pozo Yuca 22 para los yacimientos U Inferior y T Inferior, es factible tanto técnica como económicamente.
- Con la completación inteligente en el pozo Yuca 22D se estima un incremento en la producción de petróleo, aproximadamente 700 BPPD más, respecto a la producción actual del pozo con completación convencional; asimismo se mejora la calidad del crudo producido.
- Con la producción conjunta de los reservorios U Inferior y T Inferior del pozo Yuca 22D se reduce el corte de agua producido desde el 50% a un 31%, y con ello también disminuyen los costos para su tratamiento en superficie.

- Se evita el flujo cruzado entre formaciones, puesto que con la configuración que se realiza en el análisis nodal de los choques de la camisa HCM-A, se logra las condiciones apropiadas que permita el flujo de ambas areniscas, cumpliendo con el objetivo de producción de 1120 BPPD.
- Aunque las presiones de reservorio del pozo Yuca 22D son bajas, esto no es un inconveniente puesto que con la instalación de la Completación Inteligente se controla el drawdown de cada zona de producción, con el fin de tardar la llegada del agua al pozo, incrementar la recuperación total de petróleo y evitar una rápida depletación del reservorio.
- Se consigue una reducción en los costos operativos y en el tiempo de paralización de la producción por concepto de intervenciones en el pozo; debido a la operación remota que se dispone en la IWS.
- Se requiere solamente de un equipo electrosumergible para la producción conjunta de ambas areniscas, por lo que a diferencia de una completación dual, los costos y gastos por concepto de la unidad de levantamiento artificial es menor
- La bomba BES puede ser recuperada de manera independiente, sin necesidad de sacar toda la sarta de completación, evitando daño de formación.
- Se obtiene en tiempo real datos de presión, temperatura y producción de cada zona a través de los sensores de fondo; por lo que al ocurrir cambios en las condiciones de los reservorios se puede intervenir rápidamente.

- Con la producción de petróleo esperada de ambas formaciones a la vez, la inversión inicial se recupera rápidamente en un período de 15 días y los indicadores económicos calculados justifican la rentabilidad del proyecto.
- El total de ingresos a obtener mediante la completación inteligente aumenta, por motivo de que el factor de recobro de petróleo se incrementa.

7.2 RECOMENDACIONES

- Para la completación inteligente del pozo Yuca 22, se propone aplicar packers feed through en lugar de una camisa encapsulada, porque se logran dos puntos importantes: El primero es que se puede ubicar la bomba electrosumergible a 9604' MD por debajo de la profundidad del colgador liner, de manera que la presión de entrada a la bomba sea mayor a la de burbuja; y el segundo punto es que es posible realizar pruebas de restauración de presión para ambas areniscas.
- Se sugiere la implementación de la completación inteligente propuesta en el pozo Yuca 22D, ya que se estima un incremento en la producción de petróleo de 700 BPPD, y la inversión inicial se recupera de manera inmediata.
- Se debe controlar el drawdown de la arenisca "U" Inferior debido al corte de agua de 50% que presenta, con esto se evita un rápido avance del agua hacia el pozo y la recuperación total de petróleo es mayor. Igualmente permite mantener la presión de fondo fluyente por encima de la de burbujeo, de esta manera no se afectará la eficiencia de la bomba electrosumergible debido a la presencia de gas.

- Debido a que las presiones de yacimiento son bajas, se sugiere producir a tasas de flujo moderadas, para evitar una depletación rápida de los reservorios.
- Es recomendable que los datos proporcionados como resultado del estudio de los reservorios sean confiables y seguros, ya que sobre ellos se determinan los parámetros para el correcto diseño de la IWS.
- Para proyectos de perforación de nuevos pozos es conveniente que sean completados con casing de 9 5/8" hasta la profundidad total, porque se va a tener más alternativas de diseño, ya que es posible el uso de la camisa encapsulada dentro de la completación inteligente.
- Se aconseja al momento de estar bajando el equipo BES desplazar a 3 paradas por hora luego de pasar la profundidad del liner (8985' MD), megando cada 500 pies; de tal forma se garantizará el correcto asentamiento del equipo y se previene que el cable de poder sufra averías y caiga a tierra.
- En el momento de realizar las conexiones es importante identificar los colores de las líneas hidráulicas y de inyección de químicos con el fin de evitar confusiones durante la instalación.
- Una vez que la completación inteligente esté instalada en subsuelo es necesario comprobar que los sensores de fondo estén funcionando correctamente, y que las camisas HCM-A se encuentren en la posición de diseño prevista, para que posteriormente empiece a producir el pozo.

REFERENCIAS BIBLIOGRÁFICAS

Aldaz E. y M. Orozco, (2005), *Estudio Técnico-Económico para incrementar la producción de petróleo en el Campo Lago Agrio*, Quito.

Baker Oil Tools, (2009), Intelligent Well Systems, Quito.

Baker Oil Tools, (2012), *Intelligent Production Systems & Reservoir Information*, Quito.

Baker Oil Tools, (2012), *Intelligent Production Systems & Reservoir Information: Flow Measurement*, Quito.

Baker Oil Tools, (2013), *Intelligent Production Systems: Actualización Tecnológica Operación Remota y en Tiempo Real*, Quito.

Benavides E. y P. Trejo, (2012), <u>Aplicación de completaciones tipo commingled</u> <u>sensadas para incremento de la producción de petróleo en el campo VHR</u>, Quito.

Caraguay N., (2005), <u>Actualización de las Reservas y Predicción del</u> <u>Comportamiento Productivo del Campo Yuca</u>, Quito.

Castillo D., (2005), <u>Análisis General para la Aplicación de la Completación Inteligente</u> <u>en un Pozo del Oriente Ecuatoriano</u>, Guayaquil. Chancay J. y L. Rumipamba, (2007), *Incremento de la Producción de petróleo en el Campo Libertador mediante la implementación de completaciones inteligentes*, Quito.

Ebrahimi M., (2010), <u>Enhanced Estimation of Reservoir Parameters Using Decline</u> <u>Curve Analysis</u>, SPE 133432, Trinidad y Tobago, Society of Petroleum Engineers.

Enríquez J. y M. Feijóo, (2008), <u>Actualización de las Reservas sobre los nuevos</u> <u>factores de recobro del Campo Shushufindi</u>, Quito.

Farinango H., (2007), <u>Evaluación y análisis comparativo de la instalación y</u> rendimiento de completaciones inteligentes y duales concéntricas en los pozos productivos operados por la unidad de administración y operación temporal del bloque 15 en la región amazónica del Ecuador, Quito.

García V. y P. Rodríguez, (2010), *<u>Actualización de Reservas del Campo Cononaco</u>, Quito.*

Mejía M. y H. Ormaza, (2012), *Estudio para Incrementar la producción del Campo* <u>*Cononaco mediante Análisis Nodal*</u>, Quito.

Muñoz N., (2006), <u>Planificación de una completación inteligente para incrementar la</u> producción del pozo SSFD-111-d operado por Petroproducción, Quito

Schlumberger, (2006), *Intelligent Completion Systems vs dual completion*, Quito.

ANEXOS

ANEXO No 1 HISTORIALES DE WORK OVER DE LOS POZOS CANDIDATOS

	OBSERVACIÓN	Satisfactorio	El pozo ya no produce por flujo natural y se baja una bomba electrosumergible y se logra un incremento de 339 BPPD.	Cambian de zona productora de Hi a Hs debido a un gran incremento del BSW	(aproximadamente 70%).	Se realiza un rediseño de la bomba electrosumergible y se logra incrementar la producción a 995 BPPD.	El resultado es exitoso, se cambió la bomba de 117 etapas por una de 121 etapas y se logró un incremento en la producción a 1070 BPPD.	El resultado del trabajo es exitoso.	Punzonan un nuevo inter. 10293'– 10309' (16') misma arena Hs, se rediseña la BES y el resultado es incrementa a 851 BPPD.	El trabajo realizado es exitoso, la producción del pozo ha decaído y se cambia de BES y la producción se incrementa de 286 a 564 BPPD.	Debido a inconvenientes con la BES anterior, deciden cambiar de bomba, y el resultado es satisfactorio, se incrementa la producción de 463 a 513 BPPD.
CO 08	MËTODO	PPF	PPS	i i	PPS	Sdd	Sdd	PPS	Sdd	PPS	Sdd
NON	ZONA	Ξ	Ξ	:	Hs	Hs	Hs	Hs	Hs	Hs	Чs
0 CO	BSW	0	0,5		0,04	0,25	0,02	0,1	0,24	0,3	0,3
POZO	BPPD desp.	5323	615		1068	395	1070	720	851	564	513
W.O.	BPPD ant.	0	276	BES-	OFF	662	BES- OFF	BES- OFF	BES- OFF	286	463
HISTORIAL DE	OPERACION	Completación y Pruebas Iniciales.	Baja BES DN-1000 (191 etapas).	Punzona Hs, evalúa con B'UP y rediseño	BES FC-1200 (192 etapas).	Evalúa Hs con B'UP y rediseña BES: 2 bombas FC-1200 (174+117 etapas).	Reparan BES, bajan BES Centrilift FC- 1200 (121+174) etapas.	Reparan BES, existe arena en el interior de la bomba y del motor. Bajan BES Centrilift FC-1200 (121+174) etapas.	Cambian de completación por comunicación tbg-csg, repunzona Hs, evalúan y rediseñan BES: bajan 2 bombas centrilífit FC-1200.	Cambian completación por comunicación tbg-csg. y cambian BES a 3 bombas P8X.	Reparar equipo BES, y bajan BES (2 bombas) DN-1100.
	FECHA	04-jul-84	24-nov-94		14-mar-00	28-may-01	19-mar-03	23-jun-04	19-may-06	05-feb-08	05-dic-08
	W.O.	C&PI	.		2	3	4	5	9	7	œ

HISTORIAL DE W.O. POZO CONONACO 08

4
ACO
NON
CO
POZO
W.O. I
L DE
DRIAI
HIST

				sfactorio, mentar la e en 500	r por flujo ión decae n nuevos BES; el a que la unos 700	oroduce de	debido a del pozo.	a producir	crementar	^D D, por lo alo, y con mentar la	
		OBSERVACIÓN	Flujo natural, prueba inicial	El resultado logrado es sati debido a que se logra incre producción aproximadament BPPD.	El pozo ya no puede produci natural por lo que la producc de gran manera, se dispara intervalos, y se baja una resultado es exitoso debido producción incrementa en BPPD.	Trabajo satisfactorio, solo se p Hollín superior.	El resultado es satisfactorio que se recupera la producción	Resultado exitoso, se cambia de la arena Ti+Ts.	Resultado exitoso, se logra in la producción.	La producción decae a 73 BPI que se Punzona nuevo interv la nueva BES se logra incre producción.	Resultado exitoso.
CO 14		MĖTODO	РРF	PPF	Sdd	PPS	Sdd	PPS	PPS	Sdd	PPS
IONA		ZONA	Ξ	Hi+Hs	Hi+Hs	Hs	Hs	Т	μ	Ti+Ts	Ti+Ts
CON	BSW	%	0,1	20	75	16	30	10	3	20	
POZO		BPPD desp.	3956	644	739	761	437	274	426	249	
W.O.		BPPD ant.	0	145	51	BES-	BES- OFF	BES- OFF	BES- OFF	BES- OFF	BES- OFF
HISTORIAL DE		OPERACIÓN	Completación y pruebas iniciales.	Cementación forzada arena H, repunzonan Hi, disparan Hs y evalúan.	Redisparan Hs y Hi, evalúan, diseñan y bajan BES GC-3000.	Repunzonan Hs, evalúan con B'UP y rediseñan BES: TD-1200.	Reparan y rediseñan BES, bajan 2 bombas FC-650.	Evalúan, rediseñan y bajan BES FC-470.	Repunzonan Ti, disparan Ts, evaluar, toman B'UP, rediseñan y bajan BES FC-650 (305 etapas).	Repunzonan Ts y bajan BES rediseñada 2 bombas FC-450.	Cambian de bomba BES-OFF.
		FECHA	25-mar-91	11-feb-96	27-sep-96	27-may-03	09-oct-03	28-feb-04	11-nov-04	07-dic-06	12-ago-09
		W.O.	C&PI	.	7	en en	4	5	9	7	œ

								7.03
					Ď.		NONACI	0.60
W.O.	FECHA	OPERACIÓN	BPPD ant.	BPPD desp.	BSW %	ZONA	METODO	OBSERVACIÓN
			0	1008	40	Hs	Hdd	Exitoso
C&PI	02-may- 95	Completación y pruebas iniciales.	0	533	40	Hs	Hdd	Exitoso
			0	768	50	Hs	Hdd	Exitoso
-	21-sep-96	Repunzonan Hollín con TCP, evalúan, rediseñan y bajan BES 2 bombas DN-800 (153+153 etapas).	BES- OFF	454	35	T	Sdd	Cambian a producir arena Ti con equipo BES y recuperan la producción del pozo.
2	23-ene- 98	Cementación forzada Hs, repunzonan Hs, evalúan, repunzonan T, evalúan, rediseñan y bajan BES: 2 bombas FC-925 de (142+88) etapas.	37	312	40	Hs	Sdd	La producción decreció, repunzonan en Hs y bajan BES rediseñada para lograr incrementar la producción, resultado exitoso.
3	12-abr-98	Reparan BES, evalúan arena Hs, rediseñan y bajan BES Centrilift FC-650 de (163+81) etapas.	242	391	38	Hs	PPS	Se atasca bomba BES anterior, por lo que se la rediseña y se baja; se logra incremento en la producción.
4	28-jun-04	Punzonan arena U, evalúan y rediseñan BES.	Cerrado	Cerrado				El pozo se cierra debido al bajo aporte de las arenas T, U y BT.
5	09-oct-06	Fracturan arena T, evalúan y completan para PPS.	Cerrado	411	4	T	Sdd	Para recuperar la producción del pozo se realiza un fracturamiento en la arena Ti y el resultado es exitoso; se logra incrementar la producción con equipo BES.
9	11-may- 07	Evalúan arena T, rediseñan y bajan equipo BES Reda 2 bombas D- 725-N de (197+157) etapas.	BES- OFF	350	20	T	Sdd	El trabajo resulta sin éxito, por bajo aislamiento del cable, por lo que el pozo tiene que esperar al siguiente W.O.
7	27-may- 07	Reparan BES y bajan BES ferritico: 2 bombas P6X.	BES- OFF	385	4	Τ	PPS	Resultado exitoso, cambian BES y logran recuperar la producción del pozo.
8	14-dic-07	Evalúan arena T, rediseñan y bajan BES ferrítico 2 bombas FC-450 (173+173) etapas.	BES- OFF	300	6	T	Sdd	Se presenta problema de motor con bajo aislamiento, entonces se rediseña y se baja BES y se logra recuperar la producción del pozo.

HISTORIAL DE W.O. POZO CONONACO 23

	OBSERVACIÓN	Exitoso	El resultado logrado es satisfactorio, incrementan la producción aproximadamente en 700 BPPD	El resultado es exitoso debido a que la producción incrementa en unos 879 BPPD.	Trabajo satisfactorio, solo se recupera producción de aproximadamente 680 BPPD.	El resultado es satisfactorio debido a que se recupera la producción del pozo de 759 BPPD.	El resultado es exitoso debido a que la producción incrementa en unos 600 BPPD	Resultado exitoso, se logra incrementar la producción a 690 BPPD.	Resultado exitoso, se logra incrementar la producción a 690 BPPD.	Resultado exitoso	Resultado exitoso, cambio de arena productora y cambio de sistema de levantamiento
A 03	MÉTODO	Hdd	Sdd	PPS	PPS	PPS	PPS	PPS	PPS	PPS	РРМ
LEBR	ZONA	Ui	IJ	IJ	IJ	ï	Э	IJ	IJ	Ui	ВТ
O YU	BSW %	12	2,4	-	10	0,4	0,4	0,3	0,4	2	8
. POZ	BPPD desp.	1148	720	879	686	759	909	692	692	401	287
E W.O	BPPD ant.	0	BES- OFF	BES- OFF	BES- OFF	BES- OFF	BES- OFF	BES- OFF	BES- OFF	BES- OFF	0
HISTORIAL D	OPERACIÓN	Completación y pruebas iniciales	Reparan equipo BES, tratamiento antiincrustaciones a Arena "U"	Reparan equipo BES	Reparan equipo BES	Reparan equipo BES	Reparan equipo BES	Reparan equipo BES	Reparan equipo BES	Reparan y diseñan equipo BES	Estimulan Arena U, evalúan con Pwf y rediseñan BES
	FECHA	28-feb-88	17-oct-90	20-mar-95	02-nov-95	26-jul-97	28-jun-01	12-abr-02	02-sep-03	04-oct-08	19-sep-12
	W.О.	C&PI	-	2	m	4	5	9	7	8	6

HISTORIAL DE W.O. POZO YULEBRA 03

HISTORIAL DE W.O. POZO YUCA 22

		HISTORIA	L DE V	V.O. P	OZO (YUCA	22	
W .O.	FECHA	OPERACIÓN	BPPD ant.	BPPD desp.	BSW %	ZONA	METODO	OBSERVACIÓN
C&PI	28-mar-08	Completación y pruebas iniciales.	0	1117	3	Hi	PPF	Flujo natural
1	12-ago-08		395	383	74	Hi	PPS	Bajan BES. 1 bomba TE-1500, 98
		Cambio de completación de PPF a PPS						etapas
2	24-ago-08	Reparan BES, por bajo aislamiento	369	319	80	Hi	PPS	Exitoso
3	09-may-09	Reparan BES	295	304	80	Hi	PPS	Bajan BES. GC 1700, 123 etapas
4	29-04-10	Aíslan Hi con CIBP. Punzonan Ui 10048'- 10084' (36 pies), bajan BES	113	1068	3	Ui	PPS	Exitoso, se incrementa producción 950 BPPD
5	10-sep-10	Reparan BES	BES OFF	1085	10	Т	PPS	Exitoso, se recupera producción 1085 BPPD

HISTORIAL DE W.O. POZO CUYABENO 27

		HISTORIAL D	E W.O	. Pozo) CU	YABEI	NO 27	
W .0.	FECHA	OPERACIÓN	BPPD ant.	BPPD desp.	BSW %	ZONA	METODO	OBSERVACIÓN
C&PI	28-abr-06	Completación y pruebas iniciales	0	1194	0,5	Ui	PPH	Exitoso
1	03-dic-06	Cambio de Sistema de Levantamiento de Hidráulico a Electrosumergible	569	683	56	Ui	PPS	Mediante la utilización de equipo BES en arena Ui, recuperan producción
2	17-sep-11	Cambio de Completación posible comunicación de Tubing- Casing	178	244	88	Ui	PPS	Bajan Tubing 3 1/2" tubería EUE clase "B", se recupera producción

ANEXO No 2 REGISTROS DE CEMENTACIÓN

REGISTRO DE CEMENTACIÓN POZO CONONACO 08

				1
PETRO	ECUAD	OR - T	EXACO	
DEPAR	TAMENTO DI	EEXPLO	RACION	
DEPAR	ICTRO C	OMPUE	STO	
REG	ESCALA	1.500		
D. CONONACO	- B OPE	RADORA.	PETROAMAZONAS	
CONONACI	D TIPO	TALADRO:	MIDCO U- 712 A NE 29	
THE NAPO	FECH	HA CE INICK	- MAYO 14, 1984	
01900 11,208 2/9.8	89 061,03 N FECH	HA COMPLET	ACION JULIO 5, 1964	
16 10 19530,40 YW 204	993,625 E PRO	FUNDIDAD TO	OTAL 10372	
FUNDIDADES MEDIDAS D	ESDE LA MESA ROT	ATORIA BZ4	PES SOUR & MILL	
44	JUNIO 7.	1984	TEVACO	
TOA NO	UNOIDLL	PE	ADECUADUR - IE	ejerato-t
PERFORADOR	10.370	- 4	OPIA ENTREGADE	
FREGISTRADA	10 372	PA	LA USO EXCLUSIVO	
AERA LECTURA	10 370	- Det	AUCA CENTRAL	. crackano-1
MA LECTURA	2.518	DE	AVOIT TO THE T	4 14
NORROBER PERFORMON	10 44. 9 5 525	U III		1.Cm
TUBERIA HEGISTRO	2518			
ATTRO BROCA	97/1			
D DE LODO	NON DISP	en os		MAPA INDICE
ISIDAD VISCOCIDAD	1026579	2.0cm2		CHART PROPERTY
PERDIDAS	TANOL			REGISTROS CORRIDOS DEL ORIEINEAU
NTE MUESTRA LODO	9		0	OLL MSFL -GR, MICRO-SPL-CH, FDC-GH,
@ Temp	1364 8	78**	8	TEMPERATURA, CYRERIOND, CR. VOL OF CL.
1 9 Temp	7 625 9	750 7	0	1111001.0.5
e 18 Tamp	PRENSA	PRENSA		NUC TO NUC TO
ENTE MAT PAR	2 0960	2 . 2 . 1	8	RECUPERADO
Stang Foods	0.522 0	212* #		NO RECUPERADO
O Tone Tanda	1 357 6	5 2 2 * F		EMPACADORA
CORCULACION	10:00	1/1		STREET TAPON
AFFISTRO FONDO	21/115	***		
W MAXINA MEDIDA	212			PIE DE LA TUBERIA
SHIPO BASE	2677	LGA	the second secon	O LIGERAS MUESTRAS DE PETROLEO
IGISTRADO POR	D. WATKINS			O BLENAS MUESTRAS DE PETROAD
CSTIGO	M ESCUDER	0		O O MUY BEENAS HESTRAS DE PETROLEO
The second second			1	O.O.O. MURSTNAS SATURADAS DE PETROLES
BSERVACIONES!	EL TALADRO COM	NCLUYE EN	10110 4, 1984	
The state of the s				PERTES MUESTRAS DE GAS
T				TO INTAMIENTO
E State y Law				
ROLLING CONTRACTOR				¥ 10 %
DOMPS ADO POR	J. ALZAMONA	1010-000	ALL COUNTRY S	
			LLS COMMENT	200
and the second second		1.		
GR	APL)		50.	000
0.0	150.00			CLLD(MMHQ)
SP (M	¥ >	E E	59.	008 1000.0
-100.0	8.8		0.0	

Continuación

REGISTRO DE CEMENTACIÓN POZO CONONACO 14

Continuación

REGISTRO DE CEMENTACIÓN POZO CONONACO 23

Continuación

			_		_	_							Ŀ	T					_	-	Ŀ	Ŀ		. 1					_	-		-					-				_
	RECISTRADO POR	NO, DE EQUIPO BASE	FECHA DE REFERENCIA	REGISTING DE REFERENC	TENPERATURA DE FOND	VELOCIDAD NOMINAL			PRESION EN CABEZA	TOPE DE CEMENTO	NIVEL DE FLUIDO	Salinidad de fluido	densidna de fluido	IPO DE INTELCIÓN				HUBY COMENICO	VEILICENT VIULICE	PRIMERA LECTURA (FON	PROFUNDIDAD PERFIL	PROFUNDIDAD PERFORM			CDA RIDA	FECHA	Perfor Med Desde	Perfil Ned Deside	Base de Ned		901. 3.07 SONIA 1:200			A1 NO.		ARCHIVO NO.		Baker Atla		BA	
																				8		Ŭ.	i				ħ	7	4		COORDENAL Latitud: Longitud:7		PERFORADO	YAC.	POZO	COMPANIA		S			Ì
	A. FARINANCO	L-6487 00CA	07-14AR-2006	HDIL/ZL/GR/CCL	5	NR /4 DC		n nec	IS4 009	1	8 F	6	8.3 LB/G	New		CO142	24.30	19.JN	5985 FT	3027 FT	3035 FT	DUXE FT			-	29-MR-2006		22	ALTURA		MA3: 00 00' 40.33"N 8 16' 18.39'W		RA GEOPETSA 1	CUYABENO	CUYABENO 27	PETROPRODUCC	$\left \right $			S S	
																										_		Dere la Base	878 FT							ION			TING COLLA	GANENTED L	
																											- NT 875 FT		- KB 505 FT	111010	VSP VSP		VA'IS ECUNDOR						R LOCATOR	BOND TOOL " NSITY LOG LY LOG	
		HI SI RRI ALI	AC U RE C OU RP																					STI S ON		S TE RO	EMPL EPRE TIP SER DUE	EA TA 0, EW	NO NO DS L CURR		RINDAN AL CI S SON OPINIO DEMOS Y NO RALMENTE RES EL CLIENTE	LII ON SPI B	ENT ES ARA DNS ASA	E BA		BE MAS MO S P M A	NEI SI OR	FIC I LO JNA	10		
_	DV	Ű.E	. 11	ю		Ê		D	ES	DE	<u>r</u>	22	_		HA	51/	1				E		TA	HIA.	NC)	Τ		PE50		GRADO		BA		211	ESU	E			HASTA	
_	1	2.2	5 I N			E		5	0 F 118	T I F					-33 11		I				E		94	7 7				2		F	K-55 R-95				5	0 F 141	FT			5318 FT 8038 FT	
																							0	85	E	ĮV.		NE	5												
UBSERVACIONES CRA. 1 BUDA. 1: • CORRELACIONADO CON HDIL/ZDL/CN/GR/CAL (BA) 7-MAR-2006 • POZO CONSIDERADO VERTICAL • CERO TUMADO EN EL FONDO DE LA HERRAMIENTA • PROCESSING PARAMETROS APLICADOS CASING JD.: 6.278" CASING JD																																									

REGISTRO DE CEMENTACIÓN POZO CUYABENO 27

Continuación

ANEXO No 3 CURVA IPR POZO YUCA 22 ARENISCAS "U" INFERIOR Y "T" INFERIOR

CURVA IPR ARENISCA "U" INFERIOR

Datos			
Presión promedio Reservorio	Pr	1400	Psig
Presión dinámica	Pwf	1000	Psig
Presión de burbuja	Pb	820	Psig
Caudal de líquido	q	812	BFPD
Agua y sedimentos	BSW	50	%
Cálculos			
Indice de productividad	J actual	2,03	BFPD/psi
Índice de productividad ideal	J ideal	2,43	BFPD/psi
Eficiencia de flujo	EF	0,84	
Daño de formación	s	1,45	
Caudal a Pb	qb	1177	BFPD
Caudal Máximo	qmax	2102	BFPD

CURVA IPR ARENISCA "T" INFERIOR

Datos			
Presión promedio Reservorio	Pr	1800	Psig
Presión dinámica	Pwf	1260	Psig
Presión de burbuja	Pb	819	Psig
Caudal de líquido	q	900	BFPD
Agua y sedimentos	BSW	20	%
Cálculos			
Indice de productividad	J	1,67	BFPD/psi
Caudal a Pb	dþ	1635	BFPD
Caudal Máximo	qmax	2393	BFPD

ANEXO No 4

RESULTADOS OBTENIDOS EN EL PROGRAMA AUTOGRAPHPC TM PARA EL POZO YUCA 22

	and the second sec	ernes	remperature	10del	Target	Compute	
	Oil grav 2 %H2O 3 SG H2O 1 SG gas 0 ProdGOR 1 Pb 7 M M Inflow Per DatumVD 9 PerfsVD 9 Pressure Fluid Leve String Des	4.5 0API 1.0 % 0.3 rel-H2(0 8.5 rel-Air 14.0 scf/STF 99.3 psia ax Pb Gas N2% 0 formance - 328 ft 328 ft 828 ft 1 Test 1 Test cription	Fluid Surf T Earth Surf T BHT D Interpolate B Calculate H2S% H2S% Test Data Static Press Test Press PI@ zero flow V Gas free fluid	2.2 oF 9.0 oF 9.0 oF ESP TR CO2% [653 ps 593 BP 025 ps BP 1 level	Poling Vocepair 9072 ft Flowrate max 1675 BPD Minimum Pip 1686 / psi 1685 Sep 5 0 % 198 Method ○ Constant PI ○ VOGEL ⓒ Composite ○ Cust	Inflow Performance Pperfs 1653 psi (static) P1 2.537 BPD/Ppis MaxQ 3590 BPD Pperfs 992.8 psi (flowing) *Emulsion at perfs and above Intake Conditions FlowReg LQUID_FLOW PIP 888.6 psi QIP 852 BPD GIPbs 152 BPD GIPb 152 BPD GIP 1852 BPD GIP 985.469 Bu 1.132 Bg 3.469 Bw 1.048 SGmin 0.87 rel-H2O ViscLig 2.796 cp	
	Well Profile	ALL ST			Select Csg pthe 200.0 psi	Discharge Conditions	
	TVD ft	MD ft C	sgID in TbgID in	^	Pipe Posg 80.0 psi	FlowReg LIQUID_FLOW	
4	814.0	814.0 8.	681 2.992		Roughness 0.00114in Csg Fluid over pmp	Qdp 1855 BPD	
	2066	2129 6.	276 2.992		Coll only	TRise 14.89 °F	
	3068	3263 6,	276 2.992		new rough Liquid mixture	Bg 0.903	
	9035	4393 D. 6600 4	276 2.992			Bw 1.045	
	5005		276 2.002		Abrasives 0, 10 (cone)	SGmix 0.869 rel-H20	
	6060	637.5	1 1 P				
	6060 7085	6573 6. 7614 6.	276 2.992	1	MRI 0. 10 (none)	%H2O 31.0 %	

INGRESO DE DATOS DEL POZO Y DEL FLUIDO

SELECCIÓN DE LA BOMBA

SELECCIÓN DEL MOTOR

500xu190	50	yaca 12,1 Completion _ Design EPH apox
Wel Pump Motor Seal Cable Controller M&A Re Input Data OPfreq 60.0 H2 H2 Added HP 0 ShaftHP 144.6 HP Added HP 0 BPD BPD ShroudID 4.892 in Mshp60=144.5 ADR BHT 228.3 9F VSD % wc 31.0 % SCALE Oil API 24.5 degAPI MONEL GIPbs % ViscIn 2.794 viscIn 2.794 cp Vimbal 4.121 %	pot Selection (60Hz rating) Manufacturer Series & Model CENTRILIFT 450,MSP1-250F V Oil type HP V/A #rotors CL6 V 216 1540 / 90 24 V Compute AutoSelect CENTRILIFT Frame size:24 450 MSP1-250F 216HP 1540V /90A (60Hz rating) OP Conditions @ 60.0 Hz: Motor load 66.92 %	
	Term Volts 1403 V Motor Amps 66.94 A Internal Temp 296.3 °F Fluid Speed 5.419 ft/s Efficiency 84.79 % Power Factor 78.9 % Shaft speed 3472 rpm Shaft load 24.29 %	

SELECCIÓN DEL PROTECTOR

 ╼∎∂0 ≵ ∎ <u>१</u> १३		yace 22,/Completion ,Design EPN apo
Well Pump Motor Seal Cable Controller M&A Application - related data Pump: 400 / P18 / CENTURION Floater Sand present in pump Oil Type CL6	A Report Seal Selection Brand Options CENTRILIFT V H6 HL 400 V H6 HL PB Models PST3 DB V	
Angle 0 Deg (from vertical) Brg Oil Temp 327.9 % Thrust brg load 37.83 % HP losses 0.575 HP Chamber capacity used (top to bottom): 42% 41% 38% 28% 26% 23% Shaft load 32.34 %	CENTRILIFT Seal 400 FST3 DB 6 CHAMBER TANDEM, BAG/LAB/LAB/LAB/BAG/LAB/LAB Oil type: CL6 High Temp Seal options: H6: HIGH STRENGTH SHAFT HL: HIGH LOAD THRUST BEARING	

SELECCIÓN DEL SENSOR

SELECCIÓN DEL CABLE

		pace 22.1 Completion _Design EPN apro
Weil Pump Motor Seal Cable Controller M&A Input Data Surface 50.0 ft motor V 1403 V TSurf 202.2 °F motor A 66.94 A MLE 30.0 ft BHT 243.2 °F Power 0.05 \$/kW Water 31.0 % Tbg Len 9574 ft Cable Selection About Brand CENTRILIFT O Round #1 CELF SkV • •	Report Cable Sizing Output Surface CasingID-drift 6.151 in Main Tbg collar OD 4.5 in Extension Cable thickness 0.657 in clearance 0.823 in	tempute
Max Temp Rating 290.5 or Max Temp Rating 450.0 or Pothead: Zpiece Monel v Packer none installed Bypass Bypass Tube OD=1.6in	Selection Surface: 50.0ft CENTRILIFT #2 CELF 5kV Main: 9574ft CENTRILIFT #1 CELF 5kV Extension: 30.0ft CENTRILIFT #4 MLE-KHT 5kV Results Vdrop 208.4 V (21.59 V/kft or 15 % motorV) SurfV 1611 V SurfKVA 186.8 KVA Freq 60.01 Hz PwrLoss 23.5 KW PwrCost 846.1 \$/mo	4

SELECCIÓN DEL CONTROLADOR

ANEXO No 5

PROCEDIMIENTO OPERACIONAL DE CORRIDA DE LA COMPLETACIÓN INTELIGENTE EN EL POZO YUCA 22

PROCEDIMIENTO OPERACIONAL DE CORRIDA DE LA COMPLETACIÓN INTELIGENTE EN EL POZO YUCA 22

COMPLETACIÓN INTERMEDIA

Armar completación IWS según el diseño propuesto:

- 1. Armar la unidad de Spooler, subir polea y colgarla en la torre
- Verificar que se ha removido suficiente longitud de encapsulado del Flat-Pack para tener un fácil manejo al momento de hacer las conexiones durante la corrida del completamiento
- Corra el Flat-Pack TEC a través de la polea en tierra en preparación para el izaje.
 Deje suficiente longitud libre para hacer las conexiones en tierra.
- 4. Determine qué color de líneas hidráulicas del Flat-Pack irán en los puertos de la camisa. Los colores disponibles son verde, azul y rojo.
- Conecte el Manifold Hidráulico en las unidades de Spool a ser usadas para conectar las líneas hidráulicas a la bomba portátil y mantenga presión en las camisas durante la corrida (alrededor de 4,000 psi).
- Ensamblar Bull Plug, baje 3-1/2" (1) EUE Pup Joint Blank Pipe, 3-1/2" (1) EUE Tubing Joint Blank Pipe y pruebe el ensamble con 2500 psi por directa, por 10 minutos. Libere la presión.
- 7. Levante el ensamble con la válvula de choques modelo HCM-A y conecte a la sarta de 3-1/2" EUE. Corra en el pozo hasta la profundidad de los puertos de prueba jam nut en el tope de la camisa HCM-A. Remueva el Jam Nut y tapón de
despacho del puerto de la apertura de la camisa HCM-A. Mida la distancia para cortar la línea de control predeterminada como "apertura" de la camisa HCM-A.

NOTA: La medición puede ser hecha insertando una pieza corta de prueba de línea de control dentro del puerto del jam nut y marcando la línea en donde se encuentre con el tope del puerto. La línea de control a ser cortada debe ser ubicada cerca del puerto del Jam Nut marcando una línea donde se encuentre el tope del puerto del jam nut. La pieza de prueba debe ser mantenida en paralelo con la línea de control con las marcas alineadas.

Otra marca debe ser hecha en la línea de control en referencia al final de la pieza de prueba. La línea de control debe ser cortada en esta segunda marca.

- 8. Ubique el Jam Nut de prueba y los Ferrúles en la línea hidráulica de apertura usando la herramienta de asentamiento de Jam Nut en la mesa rotaria. (Los Ferrúles no deben ser asentados en este punto).
- Conecte la línea hidráulica de "apertura" al puerto de apertura en la camisa y la línea hidráulica de "cierre" al puerto de cierre en la camisa HCM-A. Asegúrese que los Ferrúles estén completamente asentados.

NOTA: Usando la herramienta de asentamiento de Jam Nut se evita el riesgo de caída de Ferrúles dentro de los puertos de la camisa HCM-A antes de ser asentados. El asentamiento completo de los Ferrúles puede ser dentro de los puertos de la camisa de ser necesario.

Para asegurar el asentamiento propio de los Ferrúles use una llave de torque fijada a 45 lbft. Aplique torque hasta escuchar el clic.

Prepare una prueba de funcionamiento de la camisa HCM-A iniciando en posición TOTALMENTE CERRADA.

- 10. Debido a que la camisa HCM-A esta inicialmente en posición cerrada, realice una prueba interna de presión probando la línea de cerrado a 7,000 psi por 5 minutos usando el manifold y la bomba portátil.
- 11. Libere presión de la línea de cerrado (Roja).
- 12. Usando el Manifold y la Bomba portátil, cambia la posición de la camisa HCM-A a totalmente abierta. Mida y anote el retorno de fluido.
- 13. Realice una prueba interna de presión de la línea de apertura a 7,000 psi por 5 minutos. Libere la presión de la línea de control de apertura.
- 14. Continúe con la prueba de funcionamiento de la camisa HCM-A hasta la posición completamente abierta. Mida y anote los retornos de fluido.

NOTA: Deje la camisa en la posición totalmente abierta mientras se corre en el hueco.

- 15. Levante y conecte 3-1/2" (1) EUE Pup Joint Blank Pipe, 3-1/2" (1) EUE Tubing Joint Blank Pipe. Instale Clamps protector en las juntas de tubería.
- 16. Levante el ensamble (Gage Carrier) y coloque el Sensor de Flujo Suresens 125 el cual será el medidor de flujo. Pruebe el ensamble con 2,500 psi y registre parámetros a través del Sensor Flujo.

NOTA: Para ello deben haber sido colocadas las medias lunas, spoolers, y demás accesorios. Evite que las líneas de control se entrelacen entre sí. Prepare los elevadores, cuñas y accesorios de corrida de tubería de tal manera que se evite algún daño en el Flat Packs durante la corrida del completamiento.

17. Arme y baje 3-1/2" (1) EUE Pup Joint Blank Pipe, 3-1/2" (1) EUE Tubing Joint Blank Pipe y pruebe el ensamble con 2,500 psi por directa, por 10 minutos. Libere la presión.

NOTA: Proceda a colocar los Clamps o súper bandas al bajar el cable TEC en cada Coupling de la Sarta de Intermedia de 3-1/2".

- 18. Conecte 7" x 3-1/2" Feedthrou Packer EUE y realice las conexiones o empalmes de las líneas de control de la camisa inferior; pruebe las mismas interior (7000 psi) y exteriormente (5,000 psi).
- 19. Arme y baje 3-1/2" (1) EUE Pup Joint Blank Pipe, 3-1/2" (1) EUE Tubing Joint Blank Pipe, 3-1/2" (4) Blast Joint, 3-1/2" (5) EUE Tubing Joint Blank Pipe y pruebe el ensamble con 2,500 psi por directa, por 10 minutos. Libere la presión.
- 20.Levante el ensamble (Gage Carrier) y coloque el Sensor de Presión Suresens 125. Pruebe el ensamble con 2,500 psi y registre valores a través del Sensor de Presión.

NOTA: Para ello deben haber sido colocadas las medias lunas, spoolers, y demás accesorios. Evite que las líneas de control se entrelacen entre sí. Prepare los elevadores, cuñas y accesorios de corrida de tubería de tal manera que se evite algún daño en el flat packs durante la corrida del completamiento.

21. Arme y baje 3-1/2" (1) EUE Pup Joint Blank Pipe, 3-1/2" (1) EUE Tubing Joint Blank Pipe y pruebe el ensamble con 2500 psi por directa, por 10 minutos. Libere la presión.

NOTA: Proceda a colocar los Clamps o súper bandas al bajar el cable TEC en cada Coupling de la Sarta Intermedia de 3-1/2".

22. Levante el ensamble con la válvula de choques modelo HCM-A y conecte a la sarta de 3-1/2" EUE. Corra en el pozo hasta la profundidad de los puertos de prueba Jam Nut en el tope de la camisa HCM-A. Remueva el Jam Nut y tapón de despacho del puerto de la apertura de la camisa HCM-A. Mida la distancia para cortar la línea de control predeterminada como "apertura" de la camisa HCM-A.

NOTA: La medición puede ser hecha insertando una pieza corta de prueba de línea de control dentro del puerto del Jam Nut y marcando la línea en donde se encuentre con el tope del puerto. La línea de control a ser cortada debe ser ubicada cerca del puerto del Jam Nut marcando una línea donde se encuentre el tope del puerto del Jam Nut. La pieza de prueba debe ser mantenida en paralelo con la línea de control con las marcas alineadas.

Otra marca debe ser hecha en la línea de control en referencia al final de la pieza de prueba. La línea de control debe ser cortada en esta segunda marca.

- 23. Ubique el Jam Nut de prueba y los Ferrúles en la línea hidráulica de apertura usando la herramienta de asentamiento de jam nut en la mesa rotaria. *(Los Ferrúles no deben ser asentados en este punto).*
- 24. Conecte la línea hidráulica de "apertura" al puerto de apertura en la camisa y la línea hidráulica de "cierre" al puerto de cierre en la camisa HCM-A. Asegúrese que los Ferrúles estén completamente asentados.

NOTA: Usando la herramienta de asentamiento de Jam Nut se evita el riesgo de caída de Ferrúles dentro de los puertos de la camisa HCM-A antes de ser asentados. El asentamiento completo de los Ferrúles puede ser dentro de los puertos de la camisa de ser necesario.

Para asegurar el asentamiento propio de los Ferrúles use una llave de torque fijada a 45 lbft. Aplique torque hasta escuchar el clic.

Prepare una prueba de funcionamiento de la camisa HCM-A iniciando en posición TOTALMENTE CERRADA.

- 25. Debido a que la camisa HCM-A esta inicialmente en posición cerrada, realice una prueba interna de presión probando la línea de cerrado a 10,000 psi por 5 minutos usando el Manifold y la Bomba portátil.
- 26. Libere presión de la línea de cerrado (Roja).
- 27. Usando el Manifold y la Bomba portátil, cambia la posición de la camisa HCM-A a totalmente abierta. Mida y anote el retorno de fluido.
- 28. Realice una prueba interna de presión de la línea de apertura a 10,000 psi por 5 minutos. Libere la presión de la línea de control de apertura.
- 29. Continúe con la prueba de funcionamiento de la camisa HCM-A hasta la posición completamente abierta. Mida y anote los retornos de fluido.

NOTA: Deje la camisa en la posición totalmente abierta mientras se corre en el hueco.

- 30. Levante y conecte 3-1/2" (1) EUE Pup Joint Blank Pipe, 3-1/2" (1) EUE Tubing Joint Blank Pipe. Instale clamps protector en las juntas de tubería.
- 31. Conecte 7" x 3-1/2" EUE Feedthrou Packer y realice las conexiones o empalmes de las líneas de control de la camisa inferior; pruebe las mismas interior (7,000 psi) y exteriormente (5,000 psi).
- 32. Arme y baje 3-1/2" (1) EUE Pup Joint Blank Pipe y pruebe el ensamble con 2500 psi por directa, por 10 minutos. Libere la presión.
- 33. Verificar posición de marca radiactiva, para la correlacion del asentamiento de los packer.

- 34. Ensamblar 3-1/2" NO-GO, instalar 2.75" check valve; bajar probando la tubería con 3,000 psi cada 10 paradas.
- 35. Armar y bajar 3-1/2" (1) EUE Pup Joint, 5-1/2" BOX x 3-1/2" EUE PIN Cross Over,
 5-1/2" (1) BTC Casing hasta superficie bajar probando la tubería con 3000 psi cada 10 paradas.
- 36. Una vez en profundidad verificar que las profundidades de asentamiento de los packers no coincida con un cuello de casing; verificar esto en un registro CCL.
- 37. Armar slick line y recuperar check valve 2.75" RB 2.
- 38. Correlacionar profundidad de marca radiactiva con un registro GR-CCL para el asentamiento de los Packers Feedthrou; espaciar de tal manera que al asentar el casing 5-1/2" sobre Tubing Hanger quede al menos 15,000 de peso sobre Packer superior.
- 39. Aplicar 4,000PSI en superficie (@ 9764' 10153'), y probar asentamiento de Packer superior presurizando anular con 800 psi.
- 40. Armar Slick Line y asentar @ 10202 Venturi del Sensor de Flujo.

COMPLETACIÓN PRODUCCIÓN

- 41. Armar Completación de Producción
- 42. Armar y bajar equipo BES P18 Serie 400 en 2-7/8" (1) EUE Pup Joint Blank Pipe.
- 43. Ensamblar 2-7/8" NO-GO, instalar 2.25" check valve; bajar probando la tubería con 3000 psi.

44. Bajar 2-7/8" (1) EUE Pup Joint Blank Pipe y ensamblar 2-7/8" Camisa.

45. Armar 2 7/8" (306) EUE Tubing Joint Blank Pipe bajar probando la tubería con 3000 psi cada 10 paradas.

ANEXO Nº 6 DIAGRAMA Y TALLY DE LA COMPLETACIÓN INTELIGENTE PROPUESTA PARA EL POZO YUCA 22

Casing 20" @ 500' Casing 13 3/8" @ 6165'			DIAGRAMA PROPUESTO COMPLETACIÓN IPS COMPLETION - PETROAMAZONAS YUCA 22D						BAKER HUGHES			
	ÍTEN	Qty	DESCRIPCION	RESPONSABLE	LONG	DEPTH	TOPE	BASE	OD	ID		
Tope de liner 20" @ 8985'			COMPLETAC	IÓN DE PRODU		(FT)	(FT)	(FT)	(IN)	(IN)		
Casing 9 5/8" @ 9218'	n/a		ALTURA DE LA MESA DE PERFORACIÓN	PETROAMAZONAS	n/a	35,00	0,00	35,00	n/a	n/a		
	1	306	TUBING JOINTS BLANK PIPE 2-7/8" , 6.4 LB/FT	PETROAMAZONAS	9.486,00	9.521,00	35,00	9.521,00	2,875	2,441		
		1	2-7/8" CAMISA	PETROAMAZONAS	2,50	9.523,50	9.521,00	9.523,50	2,875	2,310		
		1	PUP JOINT BLANK PIPE 2-7/8" EUE	PETROAMAZONAS	6,00	9.529,50	9.523,50	9.529,50	2,875	2,441		
		1	2-7/8" NO-GO	PETROAMAZONAS	1,00	9.530,50	9.529,50	9.530,50	2,875	2.25		
t l		1	PUP JOINT BLANK PIPE 2-7/8"EUE	PETROAMAZONAS	6,00	9.536,50	9.530,50	9.536,50	2,875	2,441		
	3	1	ELECTROSUMERGIBLE PUMP P18 SERIE 400	BAKER ALS	120,00	9.656,50	9.536,50	9.656,50				
Ť		COMPLETACIÓN DE INTERMEDIA										
	n/a	1	ALTURA DE LA MESA DE PERFORACIÓN	PETROAMAZONAS	n/a	35,00	0,00	35,00	n/a	n/a		
	2	237	CASING 5-1/2" BTC, 17LB/FT	PETROAMAZONAS	9717,00	9717	35,00	9.717,00	6,050	4,892		
	4	1	5-1/2" BOX X 3-1/2" EUE PIN - CROSS OVER	PETROAMAZONAS	2,50	9.719,50	9.717,00	9.719,50	5,50	2,992		
		1	TUBING JOINTS BLANK PIPE 3 1/2, 9.3 LB/FT	PETROAMAZONAS	30,00	9.749,50	9.719,50	9.749,50	3,50	2,992		
		1	3-1/2" NO-GO	PETROAMAZONAS	1,00	9.750,50	9.749,50	9.750,50	3,50	2,750		
		1	MARCA RADIACTIVA (PILDORA)	BAKER ATLAS								
		1	PUP JOINT BLANK PIPE 3 1/2 EUE	PETROAMAZONAS	13,00	9.763,50	9.750,50	9.763,50	3,50	2,992		
	5	1	7" X 3-1/2" EUE - FEED THROU PACKER WITH 4 OFF LINE 1/4" CL 3 OFF LINES FOR HCM-A & 1 OFF FOR TEC	BAKER OIL TOOLS	10,86	9.774,36	9.763,50	9.774,36	5,98	2,700		
		1	TUBING JOINTS BLANK PIPE 3 1/2, 9.3 LB/FT	PETROAMAZONAS	30,00	9.804,36	9.774,36	9.804,36	3,50	2,992		
↑↑		1	PUP JOINT BLANK PIPE 3 1/2 EUE	PETROAMAZONAS	16,00	9.820,36	9.804,36	9.820,36	3,50	2,992		
	6	1	3-1/2" HCM A HYDRAULIC SLIDING SLEEVE	BAKER OIL TOOLS	14,25	9.834,61	9.820,36	9.834,61	5,33	2,810		
		1	TUBING JOINTS BLANK PIPE 3 1/2, 9.3 LB/FT	PETROAMAZONAS	30,00	9.864,61	9.834,61	9.864,61	3,50	2,992		
		1	PUP JOINT BLANK PIPE 3 1/2 EUE	PETROAMAZONAS	4,00	9.868,61	9.864,61	9.868,61	3,50	2,992		
	7	1	SURESENS 125 DUAL CABLE HEAD	BAKER OIL TOOLS	6,60	9.875,21	9.868,61	9.875,21	5,40	2,920		
		5	TUBING JOINTS BLANK PIPE 3 1/2, 9.3 LB/FT	PETROAMAZONAS	150,00	10.025,21	9.875,21	10.025,21	3,50	2,992		
ZONA "U" Pr=1400 psi	8	4	3-1/2" EUE BLAST JOINT	PETROAMAZONAS	80,00	10025 10105	10.025,21	10.105,21	4,50	2,992		
10035-10097 MD		1	TUBING JOINTS BLANK PIPE 3 1/2, 9.3 LB/FT	PETROAMAZONAS	30,00	10.135,21	10.105,21	10.135,21	3,50	2,992		
		1	PUP JOINT BLANK PIPE 3 1/2 EUE	PETROAMAZONAS	18,00	10.153,21	10.135,21	10.153,21	3,50	2,992		
	9	1	7" X 3-1/2" EUE - FEEDTHROU PACKER WITH 3 OFF LINE 1/4" CL 2 OFF LINES FOR HCMA AND 1 OFF LINE FOR TE	BAKER OIL TOOLS	10,86	10.164,07	10.153,21	10.164,07	5,98	2,700		
		1	TUBING JOINTS BLANK PIPE 3 1/2, 9.3 LB/FT	PETROAMAZONAS	30,00	10.194,07	10.164,07	10.194,07	3,50	2,992		
		1	PUP JOINT BLANK PIPE 3 1/2 EUE	PETROAMAZONAS	8,00	10.202,07	10.194,07	10.202,07	3,50	2,992		
	10	1	3-1/2" GAUGE CARRIER FOR FLOW METER, SURESENS SINGLE CABLE HEAD, INSERT VENTURI	BAKER OIL TOOLS	7,00	10.209,07	10.202,07	10.209,07	5,40	2,250		
		1	TUBING JOINTS BLANK PIPE 3 1/2, 9.3 LB/FT	PETROAMAZONAS	30,00	10.239,07	10.209,07	10.239,07	3,50	2,992		
		1	PUP JOINT BLANK PIPE 3 1/2" EUE	PETROAMAZONAS	19,00	10.258,07	10.239,07	10.258,07	3,50	2,992		
	11	1	3-1/2" HCM PLUS HYDRAULIC SLIDING SLEEVE	BAKER OIL TOOLS	14,25	10.272,32	10.258,07	10.272,32	5,33	2,810		
		1	PUP JOINT BLANK PIPE 3 1/2 EUE	PETROAMAZONAS	22,00	10.294,32	10.272,32	10.294,32	3,50	2,992		
	12	1	3-1/2" EUE BULL PLUG	PETROAMAZONAS	2,00	10.296,32	10.294,32	10.296,32	4,50	N/A		
	_	-										
		1										
ZONA "T"												
10297'-10356'MD	Ca	mpo:	Pozo:	Area:			Preparado para:					
► IP=1,67				AUCA Revisado por			EPN - PETROAMAZONAS					
	YUC		100A22	Revisado por:			Aprobado por:					
				Bailer								