ESCUELA POLITÉCNICA NACIONAL

FACULTAD DE INGENIERÍA MECÁNICA

"DESARROLLO DE UN ALGORITMO Y PROGRAMA EN MATLAB
PARA SISTEMATIZAR Y AUTOMATIZAR UN MODELO DIGITAL
HIDRODINÁMICO EN ESTADO ESTABLE DE UN OLEODUCTO
PARA TRANSPORTE DE CRUDO LIVIANO"

TESIS PREVIA A LA OBTENCIÓN DEL GRADO DE
MÁSTER EN SISTEMAS DE TRANSPORTE DE PETRÓLEO Y DERIVADOS

AUTOR: ING. PABLO ROSERO REYES

Mail: ceronte@hotmail.com

DIRECTOR: ÁLVARO AGUINAGA BARRAGÁN Ph.D.

Mail: alvaro.aguinaga@epn.edu.ec

QUITO, OCTUBRE 2012

I

DECLARACIÓN

Yo Pablo Augusto Rosero Reyes, declaro que el trabajo aquí descrito es de mi autoría; que no ha sido previamente presentado para ningún grado o calificación profesional; y, que he consultado las referencias bibliográficas que se incluyen en este documento.

La Escuela Politécnica Nacional, puede hacer uso de los derechos correspondientes a este trabajo, según lo establecido por la Ley de Propiedad Intelectual, por su Reglamento y por la normatividad institucional vigente.

Ing. Pablo Augusto Rosero Reyes

CERTIFICACIÓN

Certifico que el presente trabajo fue desarrollado por el ingeniero Pablo Augus	sto
Rosero Reyes bajo mi supervisión.	

Dr. Álvaro Aguinaga Barragán DIRECTOR DE PROYECTO

DEDICATORIA

A toda la familia, en especial a Pablito Saúl

CONTENIDO

CAPÍTULO 1

HIDRODINAMICA DE OLEODUCTOS

1.1	MAR	CO TEORICO, DESCRIPCION DE LOS SISTEMAS INVOLUCRADOS	1
1	.1.1	CARACTERÍSTICAS DE LA TUBERÍA	2
	1.1.1.1	Diámetro interno de la tubería (DI)	2
	1.1.1.2	Longitud de la tubería (L)	3
	1.1.1.3	Rugosidad relativa (ε/DI)	3
1.2	PRO	PIEDADES FISICAS DEL FLUIDO	4
1	.2.1	VISCOSIDAD	4
1	.2.2	DENSIDAD O GRAVEDAD ESPECÍFICA	5
1	.2.3	GRADO API	6
1	.2.4	PRESIÓN DE VAPOR	6
1	.2.5	PUNTO DE FLUIDEZ	7
1	.2.7	TEMPERATURA:	8
1.3	REL	ACIÓN ENTRE LA TUBERÍA Y EL FLUIDO:	8
1	.3.1	NÚMERO DE REYNOLDS (RE):	8
	1.4 D DISI	EFINICIÓN DE VARIABLES Y PARÁMETROS A CONSIDERARSE EN EL EÑO DE OLEODUCTOS	.10
1	.4.1	GENERALIDADES	10
1	.4.2	PRESIÓN DE ENTREGA	10
1	.4.3	PRESIÓN REQUERIDA O DE SALIDA EN LA ESTACIÓN "A"	11
1	.4.4	DETERMINACIÓN DE LA CAÍDA DE PRESIÓN EN OLEODUCTOS	11
1	.4.5	PÉRDIDA DE PRESIÓN POR FRICCIÓN	12
1	.4.6	DETERMINACIÓN DEL FACTOR DE FRICCIÓN	13
1		PÉRDIDA DE PRESIÓN POR FRICCIÓN USANDO LA ECUACIÓN DE DARCY	15
1	.4.8	MÁXIMA PRESIÓN DE OPERACIÓN ADMISIBLE (MAOP)	17
1	.4.9	GRADIENTE DE PRESIÓN HIDRÁULICO Y PERFIL DE PRESIONES	17
1	4 10	ROMBAS Y ESTACIONES DE ROMBEO	18

CAPÍTULO 2

DISEÑO DE OLEODUCTOS

2.1	PAI	RÁMETROS Y CRITERIOS DE DISEÑO DE UN OLEODUCTO	20
2.	2.1	PARÁMETROS DE DISEÑO	. 21
2.	2.2	ENFOQUES DE DISEÑO DE UN OLEODUCTO	. 23
2.	2.3	SISTEMA HIDRODINÁMICO DE UN OLEODUCTO	. 24
2.	2.4	ESTADO ESTABLE	. 25
2.	2.5	ECUACIONES PARA ESTADO ESTABLE	. 25
2.	2.6	PROCEDIMIENTO BÁSICO DE DISEÑO EN CONDICIONES ESTABLES .	. 28
2.	2.7	ESTADO TRANSITORIO	
2	2.8	ALGORITMO	. 30
		CAPÍTULO 3	
		DESARROLLO DEL ALGORITMO DE DISEÑO	
3.1	ОВ	JETIVO DEL PROYECTO	31
3.2	CR	UDO A SER TRANSPORTADO	32
3.3	СО	NDICIONES DE DISEÑO	33
3.4	RU	TA DEL OLEODUCTO	33
3.	4.1	PERFIL TOPOGRÁFICO DE LA RUTA	. 35
3.5	PAI	RÁMETROS DE DISEÑO	37
3.6	ALC	GORITMO DE DISEÑO	38
3.	6.1	SELECCIÓN DEL DIÁMETRO EXTERIOR (DE):	. 38
3.	6.2	CÁLCULO DEL DIÁMETRO INTERIOR	. 38
3.	6.4	CÁLCULO DE LA VELOCIDAD DE FLUJO	. 39
3.	6.5	CÁLCULO DEL NÚMERO DE REYNOLDS	. 40
3.	6.6	DETERMINACIÓN DEL FACTOR DE FRICCIÓN	. 40
3.	6.7	CÁLCULO DE PRESIÓN DE ENTRADA REQUERIDA EN EL SISTEMA	
		(PRESIÓN MÁXIMA NECESARIA EN LA SALIDA DE LA ESTACIÓN "A") (PA)	. 41
3.	6.8	CÁLCULO DE LA DIFERENCIA DE PRESIONES ENTRE MAOP Y PA	. 42
3.7	СО	NSIDERACIÓN DE ALTERNATIVAS	42
3.	7.1	PARÁMETROS VARIABLES	. 43
3.	7.2	PARÁMETROS CALCULADOS	. 43

3.7	7.3	PARÁMETROS CONSTANTES	43
3.8	PR	MERA ETAPA DE CÁLCULO	43
3.9	SE	CUENCIA DE CÁLCULO	45
3.10	SE	GUNDA ETAPA DE CÁLCULO	47
3.1	0.1	CÁLCULO DE PERFIL DE PRESIONES	47
3.11	SE	CUENCIA DE CÁLCULO	48
		CAPÍTULO 4	
PR	OGR	AMACIÓN DE ARCHIVO m EN MATLAB	56
		CAPÍTULO 5	
		EJEMPLO DE APLICACIÓN	
5.1	PLA	ANTEAMIENTO DEL PROBLEMA	76
5.2	DA	TOS INICIALES CONOCIDOS	76
5.1	1.1	CRUDO A SER TRANSPORTADO	76
5.1	.2	CONDICIONES DE DISEÑO	78
5.1	.3	RUTA DEL OLEODUCTO	78
5.1	.4	PERFIL TOPOGRÁFICO DE LA RUTA	78
5.1	.5	PARÁMETROS DE DISEÑO CONOCIDOS	80
5.3	DE:	SARROLLO DEL ALGORITMO	80
5.3	3.1	SELECCIÓN INICIAL DE TAMAÑO Y CLASE DE TUBERÍA	80
5.3	3.2	CÁLCULO DE LA PRESIÓN MÁXIMA ADMISIBLE DE OPERACIÓN (MAOP)	81
5.3	3.3	CÁLCULO DE LA VELOCIDAD DE FLUJO (Vel)	82
5.3	3.4	CÁLCULO DEL NÚMERO DE REYNOLDS (RE)	82
5.3	3.5	DETERMINACIÓN DEL FACTOR DE FRICCIÓN (f)	83
5.3	3.6	CÁLCULO DE LA PRESIÓN DE ENTRADA REQUERIDA (PA) O PRESI NECESARIA EN LA ESTACIÓN DE BOMBEO "A"	
5.3	3.7	CONSIDERACIÓN DE ALTERNATIVAS	85
į	5.3.7.	1 Evaluación de cambio de espesor de pared de la tubería	86
į	5.3.7.	2 Secuencia de cálculo	87
5.3	3.8	SELECCIÓN DE ALTERNATIVAS	89
5.3	3.9	SEGUNDA ETAPA DE CÁLCULO	90

5.3.10 SECUENCIA DE CÁLCULO	92
5.3.11 CONSIDERACIÓN DE ALTERNATIVAS	94
5.3.12 RESULTADO GRÁFICO	95
5.3.13 ANALISIS DE RESULTADOS	98
5.4 CONSIDERACION DE OTRA ESTACIÓN DE BOMBEO A LO LARGO DEL RECORRIDO10	00
5.4.1 DETERMINACIÓN DE LA UBICACIÓN DE UNA SEGUNDA ESTACIÓN DE BOMBEO	00
5.4.2 CÁLCULO DE PRESIONES10	ງ2
5.4.2.1 Consideraciones iniciales	ງ2
CAPÍTULO 6	ე5
CAPÍTULO 710	ე7
REFERENCIAS BIBLIOGRÁFICAS10	ე7
ANEXO 110	ე9
ANEXO 211	11

INDICE DE FIGURAS

Fig. 1. 1 Características de la tubería	2
Fig. 1. 2 Rugosidad relativa	3
Fig. 1. 3 Diagrama de Moody para determinar el número de Reynolds	9
Fig. 1. 4 Representación gráfica del tipo de flujos	. 13
Fig. 1. 5 Variables de la ecuación de Darcy	
Fig. 1. 6 Gradiente Hidráulico	
Fig. 1. 7 Disposición en paralelo y en serie de un sistema de bombeo	
Fig. 3. 1 Ruta del oleoducto de crudos pesados OCP	34
Fig. 3. 2 Ruta del OCP, entre la estación Amazonas (PS1) y la estación Sardinas (PS3	
Fig. 3. 3 Perfil topográfico de la ruta del OCP	
Fig. 3. 4 Láminas de secuencia de cálculo	
Fig. 3. 5 Láminas de secuencia de cálculo	
Fig. 3. 6 Diagrama de flujo del procedimiento de diseño	
Fig. 4. 1 Desultados en Matlab con tubaría de diámetra 16 pla	G E
Fig. 4. 1 Resultados en Matlab con tubería de diámetro 16 plg	
Fig. 4. 2 Resultados en Matlab con tubería de diámetro 18 plg	
Fig. 4. 3 Resultados en Matlab con tubería de diámetro 20 plg	
Fig. 4. 4 Resultados en Matlab con tubería de diámetro 22 plg	
Fig. 4. 5 Resultados en Matlab con tubería de diámetro 24 plg	
Fig. 4. 6 Resultados en Matlab con tubería de diámetro 14 plg	
Fig. 4. 7 Resultados en Matlab con tubería de diámetro 16 plg	
Fig. 4. 8 Resultados en Matlab con tubería de diámetro 18 plg	
Fig. 4. 9 Resultados en Matlab con tubería de diámetro 20 plg	
Fig. 4. 10 Resultados en Matlab con tubería de diámetro 22 plg	
Fig. 4. 11 Resultados en Matlab con tubería de diámetro 22 plg	. 75
Fig. 5. 1 Perfil topográfico de acuerdo a datos	. 79
Fig. 5. 2 Gráfico perfil de presiones vs. perfil topográfico de acuerdo a cálculos	
realizados (alternativa 1)	
Fig. 5. 3 Gráfico perfil de presiones vs. perfil topográfico alternativa 1	. 95
Fig. 5. 4 Gráfico perfil de presiones vs. perfil topográfico alternativa 2	. 95
Fig. 5. 5 Gráfico perfil de presiones vs. perfil topográfico alternativa 3	. 96
Fig. 5. 6 Gráfico perfil de presiones vs. perfil topográfico alternativa 4	. 96
Fig. 5. 7 Gráfico perfil de presiones vs. perfil topográfico alternativa 5	. 97
Fig. 5. 8 Gráfico perfil de presiones vs. perfil topográfico alternativa 6	
Fig. 5. 9 Gráfico perfil de presiones vs. perfil topográfico alternativa 7	
Fig. 5.10 Perfil de presiones requerido para el segundo tramo	104

INDICE DE TABLAS

Tabla 1. 1 Clasificación del petróleo según su grado API	6
Tabla 1. 2 Clasificación del flujo según su número de Reynolds	
Tabla 1. 3 Relación rugosidad relativa con respecto al diámetro interno	
Tabla 5. 1 Coordenadas altura y distancia de la ruta Amazonas - Sardinas	¡Error!
Marcador no definido.	
Tabla 5. 2 Parámetros de diseño conocidos	810
Tabla 5. 3 Datos técnicos de la tubería seleccionada	871
Tabla 5. 4 Datos iniciales de cálculo	
Tabla 5. 5 Cuadros de valores y secuencia de cálculo	
Tabla 5. 6 Datos alternativa 1	
Tabla 5. 7 Datos disponibles para la segunda etapa de cálculo ¡Error! Ma	
no definido.1	
Tabla 5. 8 Cuadro de valores y secuencia de cálculo9¡Error! Marca	ador no
definido.	
Tabla 5.9 Alternativas seleccionadas	95

RESUMEN

El presente proyecto tiene como objetivo el desarrollo de un algoritmo matemático para sistematizar y automatizar el diseño hidrodinámico de un oleoducto para transportar crudo medio. Para lograr este objetivo se considera el transporte de crudo desde un punto hasta otro punto cualquiera.

Para que este proyecto sea más cercano a la realidad se considera que el punto de recepción del crudo se encuentra a diferente altura con respecto al primer punto de inicio del bombeo.

Se ha considerado que el crudo utilizado para este análisis será el extraído en nuestro país dentro del bloque 18 operado por Petroamazonas.

Para la operación de transporte desde el primer punto hasta el siguiente punto se ha considerado utilizar la ruta que tiene el OCP desde la estación de almacenamiento y bombeo Amazonas, hasta la estación de bombeo Sardinas, se considera esta ruta ya que involucra diferencia de altura en la ubicación de las estaciones (aproximadamente 1800 metros de diferencia), para que el análisis no sea en terreno plano, sino como realmente es nuestra geografía.

La utilización de esta ruta conocida nos ayuda para tener los datos de coordenadas en distancia y altura de muchos puntos del trazado para poder graficar el perfil topográfico de esta ruta y de esta manera relacionarlo y comparar con el perfil de presiones calculadas y poder lograr el objetivo deseado.

Para este análisis se utilizan diferentes alternativas de tubería, con diferentes espesores y diferentes clases, trabajo que se lo realiza en Matlab que es un software ingenieril cuya versatilidad permite cumplir el objetivo.

El objetivo de automatizar este diseño hidrodinámico es poder simular con la mayor cantidad posible de alternativas, sin que tome mucho tiempo como toma el

cálculo manual y de esta manera seleccionar la alternativa más adecuada técnica y económica.

PRESENTACIÓN

Este documento presenta el desarrollo de un algoritmo matemático del diseño hidrodinámico de un oleoducto.

Se esquematiza de manera secuencial los cálculos, pasos y consideraciones que se deben realizar para diseñar hidrodinámicamente un oleoducto y automatizar todo este procedimiento mediante la utilización del matlab, que es un software que tiene la versatilidad de realizar esta función de manera adecuada.

El presente trabajo es el producto de la necesidad de implementar en el país métodos y herramientas de enseñanza dirigida hacia la Industria Petrolera, tomando en cuenta que nuestro país extrae, refina y exporta crudo y es la principal fuente de ingresos para el estado en la actualidad.

El aporte de desarrollar un algoritmo matemático del diseño hidrodinámico de oleoductos para ser automatizado mediante el software de nombre matlab, se puede reflejar utilizando este algoritmo como una herramienta de enseñanza, la cual puede ser complementada y mejorada.

Complementada desarrollando la automatización con diferentes alternativas, como por ejemplo considerar la inyección de crudo en algún punto del recorrido o en varios, de la misma manera, se puede considerar ramales de desviación en uno o varios puntos, también considerando la intervención de temperatura lo que significa que se estaría transportando crudo pesado, entre otras consideraciones posibles y de a poco ir aumentando la complejidad del diseño.

Y mejorarlo mediante la automatización utilizando software cada vez más avanzado conforme la tecnología avance.

CAPÍTULO 1

HIDRODINAMICA DE OLEODUCTOS

1.1 MARCO TEÓRICO, DESCRIPCIÓN DE LOS SISTEMAS INVOLUCRADOS; RB: 4,5,6,7,8,9,10,11,15,16

El conjunto de tuberías metálicas unidas en sus extremos mediante soldadura y utilizadas para el transporte de fluidos a grandes distancias mediante el impulso de un sistema de bombeo y demás instalaciones conexas se denomina ducto, para el caso específico de transporte de petróleo se denomina oleoducto.

El sistema de transporte de petróleo y sus derivados por medio de ductos constituye el principal método utilizado a nivel mundial.

Nuestro país no es la excepción y dentro del territorio ecuatoriano este sistema de transporte es utilizado para llevar el crudo desde los yacimientos o campos de explotación hacia diferentes estaciones de almacenamiento y bombeo mediante ductos secundarios, para luego dirigirlo por medio de ductos principales, según su destino, ya sea exportación o refinación, hacia diferentes centros de almacenamiento, por lo que para el caso de exportación el crudo es dirigido hacia terminales de almacenamiento y despacho hacia buques tanque en el caso de el Ecuador en donde se exporta crudo por vía marítima, o para el caso de refinación se lo dirige hacia centros de almacenamiento y refinación para obtener diferentes derivados que son procesados para luego ser almacenados y distribuidos hacia centros de acopio y distribución.

En la industria petrolera, la construcción de ductos está ligada a la explotación, transporte, almacenamiento, refinación y comercialización de petróleo y por consiguiente a la planificación de desarrollo de ellos; es decir, constituye un subproceso en el contexto integral de la explotación de hidrocarburos.

El diseño hidrodinámico de oleoductos involucra un número de pasos progresivos, utilizando cálculos hidráulicos para determinar el tamaño óptimo del ducto.

Para diseñar apropiadamente un oleoducto, es necesario entender las condiciones que afectan al fluido en el oleoducto.

1.1.1 CARACTERÍSTICAS DE LA TUBERÍA

Las características físicas de la tubería afectan la forma como un fluido se comportará en un oleoducto. Específicamente, hay tres parámetros que se deben considerar en el diseño:

- Diámetro interno de la tubería (Di)
- Longitud de la tubería (L) y
- Rugosidad relativa de la superficie interna de la pared de la tubería

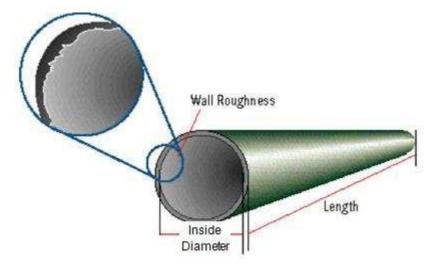


Fig. 1. 1 Características de la tubería

Fuente: Fundamentos para el diseño de oleoductos; IPL Technology & Consulting, Services Inc., 1995.

1.1.1.1 Diámetro interno de la tubería (Di)

En un oleoducto, la pérdida de presión debida a la fricción está relacionada con el diámetro interno de la tubería. Cuando el diámetro interno de la tubería disminuye, la pérdida de presión debida a la fricción se incrementa.

Esta es una importante consideración, no solo en el diseño sino también en el entendimiento de las características de operación de cualquier oleoducto.

1.1.1.2 Longitud de la tubería (L)

La longitud de un tramo de un oleoducto afecta la caída total de presión a lo largo de ese segmento. Entre mayor sea la longitud de un tramo en un oleoducto, mayor será la caída total de presión.

En consecuencia, la pérdida de presión por fricción para una tasa de flujo dada varía directamente con la distancia.

1.1.1.3 Rugosidad relativa (E/Di)

El factor de fricción es determinado mediante la co-relación del Número de Reynolds y la rugosidad relativa de la tubería con la fricción del fluido dentro de la tubería.

A medida que la rugosidad de la pared interna de la tubería se incrementa, el factor de fricción aumenta, para condiciones de flujo turbulento. Usualmente, los factores de fricción son seleccionados de gráficas llamadas Diagramas de Moody, los cuales relacionan el factor de fricción, f con los dos parámetros adimensionales, el número de Reynolds, Re, y la rugosidad relativa de la pared interna de la tubería, ɛ/Di.

La rugosidad relativa de la pared interna de la tubería es la relación de la rugosidad absoluta, **ɛ**, y el diámetro interno, Di, de la tubería.

Fig. 1. 2 Rugosidad relativa

Fuente: Fundamentos para el diseño de oleoductos; IPL Technology & Consulting, Services Inc., 1995.

Más específicamente La rugosidad relativa está definida como la relación de la rugosidad absoluta de la pared interna de la tubería (una medida de

la altura promedio de las "protuberancias o imperfecciones" en la superficie de la pared interna de la tubería) y el diámetro interno de la misma.

Rugosidad Relativa =
$$\varepsilon$$
 / Di

Ec.1

Donde,

ε = Rugosidad absoluta de la superficie de la pared de la tubería (plg)

Di = Diámetro interno de la tubería (plg)

1.2 PROPIEDADES FISICAS DEL FLUIDO

Junto con las características de la tubería, las propiedades físicas del fluido transportado a través de la tubería afectan el diseño del oleoducto. Hay seis propiedades del líquido que deben ser consideradas:

- Viscosidad
- · Densidad o gravedad específica
- Presión de vapor
- · Punto de fluidez
- Compresibilidad y
- Temperatura

1.2.1 VISCOSIDAD

La viscosidad se define como la tendencia de un líquido de resistirse a fluir. Este factor es importante cuando se diseña oleoductos, específicamente al calcular el tamaño de la línea y los requerimientos de potencia de bombeo. La viscosidad del líquido es el factor más importante en el cálculo de pérdida de presión por fricción.

$$v = \frac{\mu}{\rho}$$
 Ec.2

Donde:

v = Viscosidad cinemática

 μ = Viscosidad absoluta o dinámica

 ρ = densidad

1.2.2 DENSIDAD O GRAVEDAD ESPECÍFICA

La densidad (ρ) es la masa de una sustancia con respecto a su volumen.

$$\rho = \frac{m}{v}$$
 Ec.3

Donde:

 ρ = densidad

m = masa

V = volumen

Una bomba tiene que trabajar más para producir la presión de cabeza necesaria para transportar un líquido más denso que uno que de menor densidad.

Bombear un líquido de alta densidad requiere una bomba con mayor presión de descarga que bombear un líquido de baja densidad.

La gravedad específica (Ge) es la relación de la densidad de un fluido y la densidad del agua y se incrementa en la misma forma que la densidad.

El transporte de crudo se lo realiza en un sistema de tuberías cerrado, donde la gravedad no afecta al flujo de los fluidos, por tanto se considera que la densidad es igual al peso específico.

$$\gamma = \rho$$

1.2.3 GRADO API

Gravedad o Grado API Es una escala adoptada por la American Petroleum Institute (API) para determinar la densidad de un hidrocarburo. Entre más grados API se obtiene un hidrocarburo de más baja densidad.

$$API = \frac{^{141.5}}{^{6e} \cdot ^{0^{o}F}} - 131.5$$
 Ec.4

Donde:

Ge = Gravedad específica a 60 °F

Tabla 1. 1 Clasificación del petróleo según su grado API

CRUDO	°API
Condensados	>42 °API
Liviano	32 - 42 °API
Mediano	22 - 32 °API.
Pesado	10 - 22 °API.
Extra pesado	< 10 ° API

Fuente: Fundamentos para el diseño de oleoductos; IPL Technology & Consulting, Services Inc., 1995.

En este sentido un mayor valor de gravedad API en un producto de refinería representa que este tiene un mayor valor comercial. Esto básicamente debido a la facilidad (operacional y económica) de producir destilados valiosos como gasolina, jet fuel y gasóleo con alimentaciones de crudos livianos y a los altos rendimientos de los mismos.

El transporte de crudo es más fácil mientras más liviano es, y también mientras mayor es su grado API es más fácil de refinar.

1.2.4 PRESIÓN DE VAPOR

La presión de vapor es la presión por encima de la cual el líquido ya no se evapora, a una temperatura dada. La presión de vapor es un criterio especialmente importante cuando se manejan líquidos que contienen componentes volátiles. (los componentes volátiles son aquellos que se evaporan

rápidamente). La mínima presión en un oleoducto debe ser lo suficientemente alta para mantener los crudos livianos en su estado líquido.

1.2.5 PUNTO DE FLUIDEZ

El punto de fluidez se define como la temperatura más baja a la cual un fluido sigue siendo un líquido vertible, es decir se sigue comportando como un fluido. Aunque hay crudos que pueden ser bombeados a temperaturas por debajo de sus puntos de fluidez, se requiere más energía para hacer eso. Así, el punto de fluidez es un parámetro importante para considerar no sólo en el diseño sino también en la operación de un líquido en el oleoducto.

1.2.6 COMPRESIBILIDAD

La compresibilidad es el grado en el que cambia el volumen del fluido con un cambio de presión.

Un sistema de bombeo incrementa la presión en un oleoducto haciendo que el volumen del líquido disminuya o se comprima.

La cantidad de compresión está directamente relacionada con la presión y la composición molecular del líquido.

Cuando la presión disminuye a medida que el líquido corre hacia abajo en la tubería y se aleja de la bomba, el líquido vuelve a expandirse a su volumen original.

Un líquido más compresible como el GLP no responde a los cambios de presión tan rápido como uno menos compresible como el crudo.

Esta monografía estudia el transporte de un crudo mediano cuyos cambios en volumen debidos a efectos de compresión no afectan de manera considerable el diseño hidrodinámico, por lo cual la compresión es un parámetro que no se involucra en este diseño.

1.2.7 TEMPERATURA:

La temperatura afecta la capacidad del oleoducto tanto directa como indirectamente y puede alterar el estado de los líquidos. Los cambios en la temperatura influyen en la viscosidad y en la densidad de los líquidos en un oleoducto. Estos cambios afectan el desempeño de la línea como también el costo de operación. Por ejemplo, cuando se diseña un oleoducto para un crudo pesado, es necesario conocer exactamente las temperaturas de flujo para calcular la capacidad del oleoducto.

En este compendio se analizará un sistema en estado estable lo que significa que se considera temperatura estable o constante en todo momento.

1.3 RELACIÓN ENTRE LA TUBERÍA Y EL FLUIDO:

1.3.1 NÚMERO DE REYNOLDS (RE):

La interdependencia entre el diámetro interno de la tubería, la viscosidad del líquido y la velocidad del flujo está definida por una relación matemática llamada número de Reynolds (Re).

Este número adimensional es un parámetro fundamental, el cual juega un papel vital y frecuente en las ecuaciones de la hidráulica de transferencia de calor y en las del diseño de oleoductos. El número de Reynolds se usa para describir el tipo de fluido que muestra un líquido particular fluyendo a través de una tubería de una dimensión específica.

El número de Reynolds incrementa a medida que el diámetro y la velocidad se incrementan, y disminuye cuando la viscosidad aumenta.

Matemáticamente el número de Reynolds se expresa de la siguiente manera:

Re =
$$(Di * v) / \nu$$
 Ec.5

donde:

Re = número de Reynolds

Di = diámetro interno de la tubería

V = velocidad de flujo

υ = viscosidad cinemática del fluido

Existen otras ecuaciones para el cálculo del número de Reynolds, pero que no serán utilizadas en este proyecto y estas son:

$$Re = \frac{2213*Q}{D*v}$$
 Sistema Inglés Ec.5.1

Re =
$$\frac{13920*Q}{D*v}$$
 Sistema Métrico Ec.5.2

Donde:

Re = Número de Reynolds

Q = tasa de flujo o caudal

Di = diámetro interno de la tubería

 υ = viscosidad

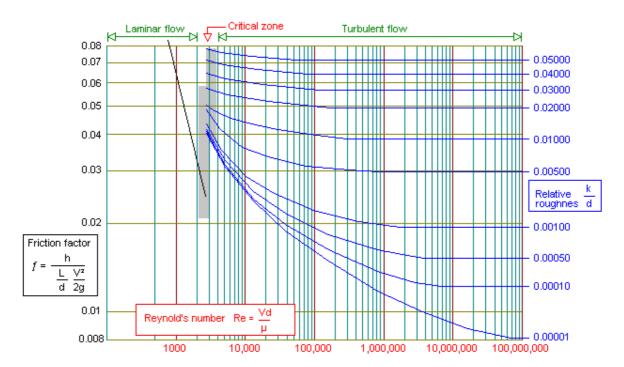


Fig. 1. 3 Diagrama de Moody para determinar el número de Reynolds

Fuente: Pipeline Engineering; Transient Flow; Mike Yoon Ph.D.

1.4 DEFINICIÓN DE VARIABLES Y PARÁMETROS A CONSIDERARSE EN EL DISEÑO DE OLEODUCTOS

1.4.1 GENERALIDADES

En el diseño de un oleoducto la principal responsabilidad de un Ingeniero es la Seguridad. Por lo cual las normas y estándares internacionales, se desarrollaron como ayuda para obtener la seguridad deseada en el diseño, construcción y operación, en este caso de un oleoducto.

Para el diseño de un oleoducto la norma principal a ser usada, es el código ASME B 31.4, cubre básicamente los siguientes tópicos:

- Sistemas de transporte por tubería de líquidos hidro-carburíferos y otros líquidos, en sistemas tanto costa adentro así como costa afuera, pero NO sistemas de transporte de GAS.
- Aceptación y limitaciones de materiales.
- * Requerimientos dimensionales para accesorios y componentes del ducto.
- Construcción, soldadura y ensamblaje de accesorios, equipos y facilidades.
- Inspección y pruebas, que incluye reparación de defectos y pruebas de presión.
- Procedimientos de operación y mantenimiento de un ducto, equipamiento y facilidades, derecho de vía, comunicaciones, etc.
- Control y monitoreo de corrosión interna y externa.

1.4.2 PRESIÓN DE ENTREGA

La presión de entrega o descarga es aquella que se requiere al ingreso en el punto 2, presión que depende de los requerimientos de uso en dicho punto, uso tal como: refinación, almacenamiento, despacho, etc.

La presión de entrega está determinada por los equipos y facilidades del punto 2 como tanques, intercambiadores de calor, bombas booster, etc., así como el perfil topográfico, aguas arriba del terminal (punto 2).

Un pico de elevación puede dictar la presión requerida, lo que puede resultar en una mayor presión de entrega en el terminal.

La presión de entrega debe especificarse en el contrato normalmente.

1.4.3 PRESIÓN REQUERIDA O DE SALIDA EN LA ESTACIÓN "A"

En un oleoducto que transporta crudo desde un punto 1 hasta un punto 2, se requiere el empleo de una presión suministrada por un sistema de bombeo, presión necesaria para impulsar el crudo desde el punto 1 hasta el punto 2.

La presión total requerida, se calcula sumando la presión de entrega más:

- i. Perdidas de presión por fricción debidas a caudal de fluido, propiedades del fluido y características de la tubería.
- ii. Presión estática, debida a cambios de elevación.
- iii. Pérdidas de presión por aceleración, debidas a cambios en la geometría de la tubería, causando pérdidas menores de presión.

Las pérdidas de presión por fricción dependen de:

- i. Caudal de flujo
- ii. Diámetro, rugosidad y longitud de tubería.
- iii. Densidad, viscosidad y temperatura de fluido.

Cambios de presión estática debida a cambios de elevación y densidad.

En terreno plano no hay cambios de presión estática.

1.4.4 DETERMINACIÓN DE LA CAÍDA DE PRESIÓN EN OLEODUCTOS

A lo largo del trayecto de transporte de crudo por un oleoducto de distancia considerada larga, se producen pérdidas de presión debido a varios factores.

Estas pérdidas pueden ser mayores o menores, dentro de las pérdidas mayores se tiene las provocadas por el cambio de elevación, también conocido como "cabeza estática" y las pérdidas debido a la fricción existente entre el fluido en movimiento y la pared interior del ducto.

Como pérdidas menores se tiene a las provocadas por el cambio de velocidad debido a un cambio en la geometría del ducto, así como por la presencia de accesorios como válvulas, codos, cambios bruscos de diámetro, reductores de diámetro, entradas y salidas a tanques de almacenamiento, etc.

Dentro del diseño de un oleoducto, las pérdidas menores son ignoradas o no tomadas en cuenta ya que son de valor tan pequeño que se puede realizar el diseño sin cometer un error significante.

1.4.5 PÉRDIDA DE PRESIÓN POR FRICCIÓN

Paso 1 : Calculo del número de Reynolds (Re)

Paso 2: Determinación del factor de fricción (f)

Paso 3: Cálculo de la pérdida de cabeza por fricción (hf)

El valor del número de Reynolds (Re) determina el tipo de flujo en una tubería, el cual puede ser laminar, crítico o turbulento de acuerdo con los siguientes criterios:

Tabla 1. 2 Clasificación del flujo según su número de Reynolds

Flujo	Re
Laminar	Menor que 2000
Critico o incierto	Entre 2000 y 4000
Turbulento	Mayor que 4000

Fuente: Pipeline Engineering; Transient Flow; Mike Yoon Ph.D.

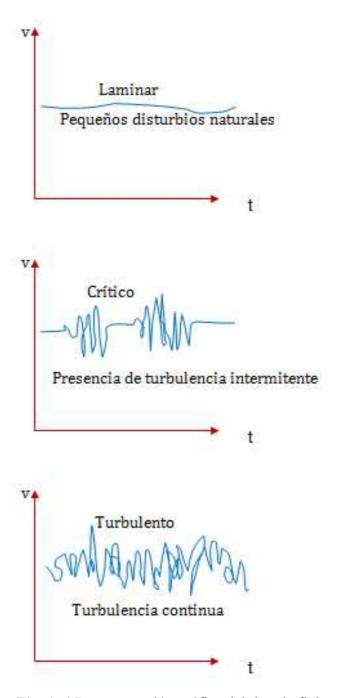


Fig. 1. 4 Representación gráfica del tipo de flujos

Fuente: Fundamentos para el diseño de oleoductos; IPL Technology & Consulting, Services Inc., 1995.

1.4.6 DETERMINACIÓN DEL FACTOR DE FRICCIÓN

El factor de fricción está en función de la rugosidad de la tubería y del Número de Reynolds:

$$f = \varphi(Re, \varepsilon)$$

Donde:

 ε : Rugosidad

Re: Número de Reynolds

De acuerdo a tablas la relación del diámetro de la tubería con respecto a la rugosidad relativa de la misma, se tiene:

Tabla 1. 3 Relación rugosidad relativa con respecto al diámetro interno

Diámetro interno de la tubería [plg]	Rugosidad Relativa de la tubería [ε]
3	0,00060
4	0,00042
6	0,00032
8	0,00022
10	0,00019
12	0,00016
16	0,00011
20	0,00009
24	0,00007
36	0,00006
48	0,000044

Fuente: Fundamentos para el diseño de oleoductos; IPL Technology & Consulting, Services Inc., 1995

Si el flujo es turbulento y con ayuda de la rugosidad relativa, el factor de fricción puede ser leído del diagrama de Moody.

Para flujo laminar hay una relación lineal entre el número de Reynolds y el factor de fricción.

$$f = \frac{64}{Re}$$
 Ec.6

En el flujo crítico, existe una alternación entre el flujo turbulento y el flujo laminar. A causa de la inestabilidad de las condiciones de flujo, el factor de fricción no puede ser determinado de una manera confiable.

1.4.7 PÉRDIDA DE PRESIÓN POR FRICCIÓN USANDO LA ECUACIÓN DE

DARCY

La ecuación de Darcy se usa para calcular la cabeza convertida a energía térmica a causa de la fricción cuando el líquido fluye en una tubería, esta cabeza se llama pérdida por fricción o pérdida de cabeza por fricción. Es importante notar que esta energía no está perdida en realidad; pero tampoco contribuye a transportar el petróleo por el oleoducto. Las cinco variables de la ecuación de Darcy se muestran en la figura siguiente:

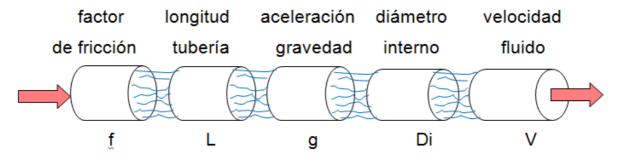


Fig. 1. 5 Variables de la ecuación de Darcy

Fuente: Fundamentos para el diseño de oleoductos; IPL Technology & Consulting, Services Inc., 1995

El gráfico ilustra las cinco condiciones que se deben tener antes de utilizar la ecuación de Darcy:

- Continuidad o estado estable la velocidad del fluido no cambia.
- Incompresibilidad el fluido no cambia de volumen con un cambio en la presión.
- Isotérmico el fluido está a una temperatura constante
- Tramo la longitud de la tubería es considerablemente más grande que el diámetro.
- Diámetro constante el diámetro del oleoducto no cambia.

La ecuación de Darcy es una manera de determinar la pérdida de cabeza debida a la fricción en un segmento de un oleoducto y está algebraicamente definida como:

En función de la velocidad:

$$hf = f * \frac{Lv^2}{D2g}$$
 Ec.7

En función del caudal:

Sistema Inglés de unidades

$$hf = \frac{80,51*f*L*Q^2}{D^5}$$
 Ec.7.1

Sistema Internacional de unidades:

$$hf = \frac{3185*f*L*Q^2}{D^5}$$
 Ec.7.2

Donde:

hf = pérdida de cabeza causada por la fricción

f = factor de fricción

L = Longitud de tubería

Vel = velocidad de flujo del fluido

Di = diámetro interno de la tubería

g = aceleración de la gravedad

Q = caudal de flujo

La pérdida en la cabeza del líquido debido a la fricción produce una disminución en la presión a largo de la tubería en la dirección del flujo. La pérdida de presión a lo largo del oleoducto se usa para calcular la distancia entre estaciones de bombeo.

1.4.8 MÁXIMA PRESIÓN DE OPERACIÓN ADMISIBLE (MAOP)

La presión máxima admisible de operación (MAOP), es la presión máxima que la tubería puede resistir antes de sufrir deformación plástica o rotura, dependiendo de las características y clase de la misma.

La presión de bombeo no debe ser mayor que el MAOP en ningún punto del recorrido, esto como requisito primordial.

La MAOP se calcula de la siguiente manera:

$$MAOP = (2*Sy*t/De)*F*J*T$$

Ec.8

Donde:

Sy = Esfuerzo mínimo de fluencia del material del ducto

t = Espesor de pared de tubería

De = Diámetro externo

F = Factor de diseño

J = Factor de junta

T = Factor de temperatura

1.4.9 GRADIENTE DE PRESIÓN HIDRÁULICO Y PERFIL DE PRESIONES.

El perfil de presiones es la curva que se obtiene al graficar la presión total existente (altura de columna del fluido) en cada punto del recorrido, la suma de la cabeza de altura y la cabeza estática en cualquier punto en el oleoducto, la presión se debe graficar en coordenadas distancia Vs. Altura, obteniendo el "Perfil de Presiones"

La pendiente del gradiente de presión hidráulico representa la tasa en la cual la cabeza del fluido se pierde debido a la fricción.

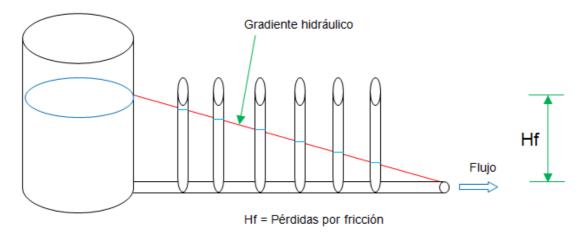
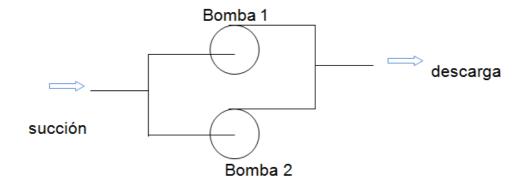


Fig. 1. 6 Gradiente Hidráulico

Fuente: Fundamentos para el diseño de oleoductos; IPL Technology & Consulting Services Inc., 1995


1.4.10 BOMBAS Y ESTACIONES DE BOMBEO

Generalmente, las bombas centrífugas se usan en la operación de oleoductos ya que son apropiadas para incrementar la presión requerida en el transporte de grandes volúmenes de líquido y en largas distancias.

Para seleccionar una bomba centrífuga apropiada se debe considerar:

- El rendimiento del sistema o del flujo volumétrico Q
- La viscosidad del líquido bombeado, ${m
 u}$
- La densidad del líquido bombeado, ρ y
- · Los requerimientos de cabeza, H

Para las necesidades reales de operación de un oleoducto es necesario usar un número de bombas dispuestas en serie o en paralelo o aún en combinación serie-paralelo.

Disposición en paralelo

Fig. 1. 7 Disposición en paralelo y en serie de un sistema de bombeo

Con oleoductos grandes, es común tener más de una estación de bombeo para transportar el líquido a través de una gran distancia y diferentes elevaciones. Las estaciones de bombeo están situadas generalmente a intervalos tan equidistantes como las variaciones del terreno lo permiten. La diferencia de elevaciones entre las estaciones determinarán más precisamente la localización real de las estaciones de bombeo en la medida que estas diferencias de altura tengan un mayor impacto en el desempeño de la bomba. La diferencia de elevación entre las estaciones puede ayudar o impedir ese desempeño.

CAPÍTULO 2

DISEÑO DE OLEODUCTOS

RB: 4, 5, 6, 7, 8, 9, 10, 16, 17, 18, 19, 20

El uso de oleoductos, como un sistema de transporte de crudos, se ha ido desarrollando y mejorando con el pasar del tiempo, al punto en que hoy en día el uso de este sistema de transporte es común en todo el mundo, el objetivo no es realizar una reseña histórica del desarrollo de este sistema de transporte, pero si dejar en claro que este método es el principal utilizado en todo el mundo y ha sido mejorado técnicamente con el pasar del tiempo.

Este sistema o método de transporte de petróleo, se ha generalizado en todas partes, debido principalmente a que los sitios de producción son localizados en sitios diverso, es decir tienen una amplia variedad geográfica; Las distancias entre los sitios de producción y los sitios de consumo son muy amplias por lo general; La tecnología de este método de transporte se ha incrementado sustancialmente, sobre todo en lo que se refiere al diseño, fabricación y material utilizado, así como la seguridad de operación; Los costos de transporte se han reducido significativamente debido al desarrollo tecnológico, El transporte de crudo es más seguro y confiable que otros métodos; Menos repercusión o daño al medio-ambiente; Más conveniente y versátil para transportar varios productos por el mismo ducto; El clima no afecta al transporte; Sistema altamente automatizado.

Actualmente el material de la tubería tiene una mayor resistencia a la fluencia, tuberías con grados como son: X80, X100 y X120, y actualmente con menores costos, lo que las vuelve más convenientes para su utilización.

2.1 PARÁMETROS Y CRITERIOS DE DISEÑO DE UN OLEODUCTO

Un parámetro es una propiedad física, cuyo valor afecta el comportamiento o característica de un sistema relacionado.

Un criterio es un conjunto de condiciones, reglas, guías ó políticas sobre las cuales una decisión o juicio puede ser tomado. Los códigos y estándares son considerados como criterios.

El diseño es un plan creado bajo un conjunto de criterios y parámetros dados.

2.2.1 PARÁMETROS DE DISEÑO

- Oferta y demanda
 - La oferta y la demanda cambian con el tiempo
 - > Incluye información sobre las reservas y capacidad de producción
- Ruta y topología del oleoducto
 - Derecho de vía del ducto
 - Perfil topográfico
 - Profundidad de enterrado (en caso necesario)}
 - Cruce de corrientes de agua, incluido ríos
 - Estabilidad geológica
- Factores medioambientales
 - Áreas protegidas
 - Vida salvaje y especies en peligro de extinción
 - Áreas de potencial valor arqueológico
- Presión y temperatura de operación
 - Máxima presión de operación (determinada por el material de la tubería)
 - Mínima presión de operación (determinada por la presión de vapor del fluido)
 - Cabeza estática de elevación
 - Presión de descarga
 - ➤ La temperatura afecta a la viscosidad, densidad y calor específico del fluido.
- Parámetros de la tubería
 - > Tamaño de tubería
 - > Espesor de pared de tubería
 - Grado de tubería

- Rugosidad de la pared interior de la tubería
- Recubrimiento de la tubería
- Peso de la tubería
- Propiedades del fluido
 - Densidad o gravedad específica
 - Compresibilidad
 - Viscosidad
 - Presión de vapor
 - > Punto de goteo
 - Calor específico
- Parámetros de bombeo
 - Capacidad de bombeo
 - Rangos de operación
 - > Requerimientos de potencia
 - > Equipos auxiliares requeridos
 - Curvas de rendimiento de las bombas.
- Transferencia de calor
 - > Temperatura a la que se recibe el fluido
 - > Temperatura del suelo
 - Conductividad térmica
 - Profundidad de enterrado
 - Aislamiento térmico
 - Temperatura ambiente
- Parámetros económicos
 - Costos de capital
 - > Rata de recuperación e impuestos
 - Interés en préstamos adquiridos
 - Costos de operación y mantenimiento
 - > Tarifa por servicios de transporte
 - Costos directos
 - Costos indirectos

2.2.2 ENFOQUES DE DISEÑO DE UN OLEODUCTO

Existen cuatro aspectos de diseño interrelacionados en el enfoque del sistema para lograr el diseño y que son:

- Diseño hidráulico o hidrodinámico
- Diseño mecánico
- Diseño geo-técnico
- Diseño de operación y mantenimiento

El diseño hidráulico es el proceso de evaluación de:

- Características físicas y cantidades del fluido a ser transportado
- El número y ubicación de estaciones de bombeo
- Ruta y topología del trazado del oleoducto
- Rango de presiones y temperaturas
- Condiciones medioambientales a lo largo del trazado

Varios diseños hidráulicos pueden proponerse para un diseño base y ruta dados, pero el mejor diseño debe satisfacer los requerimientos actuales y los planes de capacidad a futuro del sistema.

Para un diseño hidráulico, algunos diseños mecánicos pueden ser desarrollados, para cumplir los requerimientos base de diseño.

El diseño mecánico es gobernado por códigos y estándares, enfocados a la selección del material de la tubería y la especificación de las propiedades de la tubería como son, grado, tamaño, potencia de bombeo requerida.

El diámetro de la tubería es seleccionado basado en el caudal de diseño.

Sin embargo las presiones interna y externa permisibles y otras consideraciones afectan al diseño final del espesor de pared y consecuentemente para la selección del diámetro.

El *diseño geotécnico* puede afectar el costo y la seguridad del ducto de manera significativa si el trazado cruza por entornos difíciles y complicados.

La compañía dueña del oleoducto es la responsable de proteger el medio ambiente en las cercanías y alrededores al ducto así como el control de condiciones ambientales adversas.

El diseño operacional y de mantenimiento toma en consideración los retos y dificultades diarias de operación y mantenimiento de la integridad funcional del sistema.

Esto incluye la necesidad de un sistema de control para operar el sistema de manera segura y continua.

Este caso se enfocará en el diseño hidrodinámico, el cual involucra al Diseño Hidráulico y Diseño Mecánico de un Oleoducto y el desarrollo de esta tésis se enfocará en este tema como prioridad, no se tomará en cuenta el diseño del sistema de bombeo, ni diseño del sistema de almacenamiento, ni diseño económico, ni diseño de seguridad operacional y de mantenimiento, sistemas de detección de fugas, diseño geotécnico, tampoco se tomará en cuenta los costos involucrados.

2.2.3 SISTEMA HIDRODINÁMICO DE UN OLEODUCTO

El sistema hidrodinámico de un oleoducto depende de los siguientes parámetros:

- Características de la tubería tales como: tamaño, espesor de pared, grado de tubería y rugosidad.
- 2. Distancia o longitud de tubería.
- 3. Diferencial de elevación.
- **4.** Propiedades de fluido de los productos
- 5. Número de productos en bache (si se considera transporte en baches).
- **6.** Presión y temperatura de descarga.
- 7. Presión de entrega o de Succión.
- **8.** Temperatura y conductividad térmica del suelo (en caso que sea necesario para tubería enterrada y que requiera precalentamiento como es el caso de transporte de crudo pesado)
- 9. Potencia de bombeo requerida

El fluido a ser transportado por un ducto puede encontrarse en estado estable o en estado transitorio.

2.2.4 ESTADO ESTABLE

Es un sistema en el cual las condiciones iniciales se mantienen constantes con el transcurso del tiempo.

Las ecuaciones de estado estable proveen de buenas aproximaciones del comportamiento del fluido en el diseño de un ducto.

Las ecuaciones de estado estable son más simples y esto conlleva a obtener una solución más rápida para cada caso de diseño.

Probablemente no se disponga de datos completos dependientes del tiempo durante la fase de diseño por lo que las ecuaciones de transciente no son muy utilizadas.

Para el caso de este proyecto se define condiciones en estado estable para realizar el diseño hidrodinámico de un oleoducto.

Por lo que:

- La temperatura se considera estable
- El caudal se mantiene estable
- La densidad se mantiene estable
- Viscosidad estable
- Velocidad de flujo estable

2.2.5 ECUACIONES PARA ESTADO ESTABLE

Se parte del principio de conservación de la energía aplicada a la ecuación de energía de estado estable para determinar la ecuación de presión de flujo o presión máxima requerida o de salida en la estación "A".

Esta ecuación combina la ecuación de Bernoulli con los factores de pérdida por fricción, el trabajo realizado por el fluido y la energía agregada al fluido.

Ecuación de Bernoulli para dos puntos:

$$P_1/\rho + V_1^2/2 + g^*H_1 = P_2/\rho + V_2^2/2 + g^*H_2$$
 Ec.9

Ecuación de la Energía en Estado Estable:

$$(P_1/\rho + V_1^2/2 + g^*H_1) - (P_2/\rho + V_2^2/2 + g^*H_2) = g^*H_{PT}$$
 Ec.10

Donde:

Hpt = pérdidas totales

Hf = pérdidas por fricción (pérdidas mayores)

Hacc = pérdidas por accesorios (pérdidas menores)

El valor de las pérdidas menores es tan pequeño con respecto a las pérdidas mayores, que su influencia en el resultado no es significativa por lo que se consideran despreciables, por lo que:

:

$$HPT = Hf$$

Se multiplica todo por ρ , y se tiene:

$$(P_1 + \rho * V_1^2 / 2 + \rho * g * H_1)$$
 - $(P_2 + \rho * V_2^2 / 2 + \rho * g * H_2) = \rho * g * H_{PT}$

Despejando P2

$$P_2 = P_1 + \rho * \sqrt{1^2/2 + \rho * g * H_1 - \rho * \sqrt{2^2/2 - \rho * g * H_2} - \rho * g * H_{PT}}$$

* Como se trata de un sistema en estado estable la velocidad se mantiene constante por tanto V₁ = V₂.

Además: Hpt = Hf

$$P_2 = P_1 - \rho * g * (H_2 - H_1) - \rho * g * Hf$$
 Ec.12

Y como: Hf =
$$(f*L*V^2) / (2*g*Di)$$

Se tiene que:

$$P_2 = P_1 - \rho * g * (H_2 - H_1) - \rho * (f * L * V^2) / (2 * Di)$$
 Ec.12.1

Pero la distancia L entre los puntos 1 y 2 sería L2 menos L1

Reemplazando la distancia tenemos: $L = L_2 - L_1$

$$P_2 = P_1 - \rho * g * (H_2 - H_1) - f * \rho * V^2 (L_2 - L_1) / 2* Di$$

Por lo que despejando P₁ se tiene la Ecuación de Presión de Flujo:

P1 = P2 +
$$\rho * g * (H_2 - H_1)$$
 + $f * \rho * V^2 (L_2 - L_1) / 2* Di$ **Ec.12.2**

donde:

P₁ = Presión Máxima Requerida en 1

P₂ = Presión Máxima Requerida en 2

 ρ = Densidad

g = Aceleración de la gravedad

H₂ = Altura en la Estación "2"

H₁ = Altura en la Estación "1"

f = Factor de fricción

V = Velocidad de flujo

L₁ = Distancia del punto "1"

L₂ = Distancia del punto "2"

Di = Diámetro interior de tubería

Además:

$$\rho * g * (H_2 - H_1)$$
 = Gradiente de Presión Estática (GPe) **Ec.13**

$$f * \rho * V^2 (L_2 - L_1) / 2* Di$$
 = Gradiente de Presión por Fricción (GPf) **Ec.14**

Reemplazando se tiene:

$$P_1 = P_2 + GPe + GPf$$
; **Ec.12.3**

Nota: Asumiendo densidad y velocidad constantes por condiciones de estado estables.

2.2.6 PROCEDIMIENTO BÁSICO DE DISEÑO EN CONDICIONES ESTABLES

Para diferentes tamaños de tuberías, grados de tubería y espesores de pared, los siguientes valores son calculados en secuencia.

Paso 1: Determinar la presión de entrega o descarga requerida al final del recorrido.

Paso 2: Determinar la presión de salida de la estación "A" para la presión de entrega y caudal requeridos, considerando un tamaño tentativo inicial de tubería, calcular el MAOP (Presión de Operación Máxima Admisible) y compararlos.

Paso 3.- Determinar la presión de salida desde el punto de inicio, usando diferentes tamaños de tuberías, espesores y grado, mediante procedimiento de comprobación y comparación con el MAOP.

Paso 4.- De acuerdo a la comparación entre el MAOP y la presión requerida, de las tablas obtenidas producto de la variación de parámetros, se selecciona las alternativas más adecuadas, las cuales la diferencia entre el MAOP y la presión requerida en "A" sea la menor posible.

Paso 5.- Con las alternativas seleccionadas, se calcula el perfil de presiones a lo largo del recorrido o ruta establecida.

Paso 6.- Graficar el perfil topográfico del recorrido (distancia Vs. altura), graficar el perfil de presiones y comparar los dos gráficos.

Paso 7.- De acuerdo a la interpretación de los gráficos, determinar si es necesario o no la necesidad de requerimientos de bombeo adicional para incrementar la presión, es decir si es necesario o no la presencia de otra estación de bombeo dentro del recorrido pre-establecido.

Paso 8.- En caso de requerir otra estación de bombeo, se repite el procedimiento pero para el nuevo tramo establecido, es decir los pasos del 1 al 6.

Paso 9.- Una vez obtenido el perfil de presiones requerido con respecto al perfil topográfico que cubra los requerimientos de diseño establecidos, se puede decir que el diseño hidrodinámico está concluido.

Con los datos obtenidos tanto de presiones, así como de características de la tubería requerida, se puede determinar la potencia de bombeo requerida.

La determinación y diseño del sistema de bombeo requerido ya no es parte del diseño hidrodinámico.

El desarrollo de un análisis económico para comparar el diseño con diferentes tamaños de tubería, presión de operación y potencia de bombeo para seleccionar el sistema óptimo, es una parte importante y quizás la mandatoria por motivos de inversión inicial en el diseño de un oleoducto, pero no es parte del diseño hidrodinámico

2.2.7 ESTADO TRANSITORIO

Es una oscilación temporal que ocurre en un Sistema, debido a cambios en caudal y/o presión.

Una presión es aplicada al oleoducto por un extremo, presión que se genera a través de sistemas de bombeo, conforme el fluido recorre el ducto, la presión va decreciendo con la distancia recorrida.

A mayor presión aplicada corresponde un mayor caudal de fluido y a su vez la velocidad de movimiento del fluido que también aumenta.

La velocidad del fluido hará que se desarrolle una tensión (esfuerzo) cortante viscosa, en las paredes de la tubería, debido a la rugosidad de la superficie del tubo.

La resistencia al caudal desarrollada debido a los esfuerzos cortantes viscosos, provocan pérdida de presión a lo largo del ducto en la dirección de flujo.

Esta pérdida de presión debida a la fricción también se llama pérdidas por fricción.

Las pérdidas por fricción o pérdidas de presión para un ducto dado, dependen de las características de viscosidad del fluido, tamaño de la tubería, velocidad del fluido, rugosidad de la superficie interior del ducto y la longitud a desplazarse.

2.2.8 ALGORITMO

Es un conjunto pre-escrito de instrucciones o reglas bien definidas, ordenadas y finitas que permite realizar una actividad mediante pasos sucesivos que no generen dudas a quien deba realizar dicha actividad.

Dados un estado inicial y una entrada siguiendo los pasos sucesivos se llega a un estado final y se obtiene una solución.

Para representar gráficamente un algoritmo, se utilizan los diagramas de flujo.

CAPÍTULO 3

DESARROLLO DEL ALGORITMO DE DISEÑO

3.1 OBJETIVO DEL PROYECTO; RB: 4,5,6,7,8,9,10, 11, 12, 13, 14, 15, 17, 18, 19, 2°, 21

Desarrollo de un algoritmo matemático para el Diseño Hidrodinámico de un oleoducto en condiciones Estables de operación.

Se desea transportar crudo desde un punto "A", punto el cual se llamará Estación de Almacenamiento y Bombeo "A", hasta un Punto "B", el cual se llamará Estación de Almacenamiento y Refinación "B".

Para lo cual se requiere realizar el diseño hidrodinámico en condiciones estables de operación de este problema.

El ducto se llevará de manera aérea a lo largo de todo el trayecto entre los puntos "A" y "B".

Las ecuaciones en estado estable son buenas aproximaciones del comportamiento del fluido para diseño de ductos, además puede ser que no se disponga de datos suficientes del comportamiento del fluido con respecto al tiempo durante la fase de diseño.

Existen diferentes formas y métodos para diseñar hidrodinámicamente un oleoducto dependiendo de los datos y las condiciones disponibles, así como de los requerimientos primeros o iniciales.

Los problemas más comunes en el diseño hidráulico de un oleoducto son los siguientes:

- 1. Determinar la presión de ingreso al sistema o de salida de la estación "A" desconocida, conociendo la presión de entrega o descarga al final del recorrido.
- 2.- determinar la presión de entrega o descarga desconocida, conociendo la presión de ingreso al sistema.

32

3.- Determinar el caudal desconocido, conociendo la presión de entrada y presión

de salida del sistema

4.- Seleccione el diámetro de tubería conociendo el caudal y las presiones de

entrada y de salida del sistema.

5.- Determinar la separación entre estaciones de bombeo conociendo el caudal y

las presiones.

Para este análisis se utiliza la consideración # 1, es decir determinar la presión

de ingreso, conociendo la presión de entrega.

Es posible realizar esta consideración dependiendo de las condiciones iniciales

del problema planteado, para este caso se debe llevar crudo hacia un punto "B",

que puede ser una estación de bombeo, una estación reductora de presión, una

refinería, etc., lo que implica un requerimiento mínimo de presión de entrada o

entrega a la estación, para cada caso, esta presión se determina durante el

diseño de la estación y sus facilidades, por lo que se podría considerar como dato

conocido.

P_B = dato inicial

3.2 CRUDO A SER TRANSPORTADO

Primero se debe determinar qué clase de fluido (crudo) se va a transportar y qué

características físico químicas tiene, para que de esta manera determinando las

propiedades, las mismas servirán como datos iniciales, datos que por lo general

son:

De manera general antes de diseñar un ducto, se conoce qué clase de crudo y de

que características se dispone y es el motivo por el cual generalmente se desea

construir un oleoducto, por lo que también se considera como dato conocido.

Fluido a transportarse

° API

Viscosidad cinemática del crudo = V

Densidad a $15^{\circ}C = \rho$

Todos estos parámetros son datos iniciales conocidos para el desarrollo de este algoritmo.

3.3 CONDICIONES DE DISEÑO

Como condición primordial para este algoritmo, es considerar estado estable a lo largo del recorrido del ducto, lo que significa que:

Temperatura constante y estable

Densidad constante y estable

Viscosidad constante y estable

Caudal de flujo constante.

No existen más puntos de inyección o ingreso de crudo a lo largo del recorrido, es decir bombeo sin baches.

Ducto aéreo a lo largo del recorrido (no existen tramos enterrados)

3.4 RUTA DEL OLEODUCTO

Por lo general existen algunos datos conocidos, que son con los que se realiza las primeras consideraciones de diseño, normalmente se conoce el sitio desde donde (explotación y producción) y el sitio hasta donde se desea llevar el crudo (exportación, almacenamiento, refinación, etc.).

Pero la ruta para llevar desde el primer punto hasta el segundo punto, no es conocida ya que pueden existir muchas alternativas.

Para determinar la ruta, se deben realizar estudios de algunas clases como son:

- Estudios geográficos.
- Estudios topográficos.
- Estudios geológicos.
- Estudios de impacto ambiental.
- Estudios y análisis de riesgos de toda clase.
- Métodos y sistemas de montaje e instalación de ductos.
- Etc.

Estos estudios mencionados no forman parte del alcance de este proyecto, por su extensión y porque nos estamos enfocando en una parte de toda la globalidad que implica el diseño de un ducto, que solamente es una parte del diseño general. Se utilizará la ruta que sigue el oleoducto de crudos pesados desde la estación Amazonas (PS-1), hasta la estación Sardinas (PS3), por facilidad de elaboración y explicación del algoritmo.

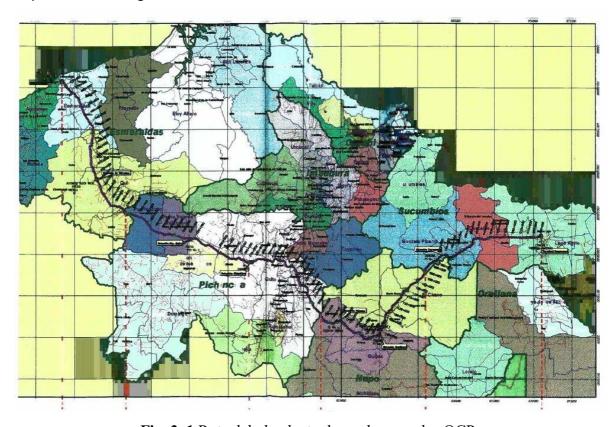
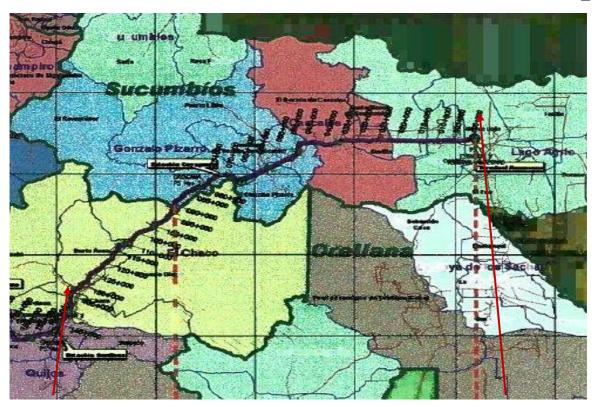



Fig. 3. 1 Ruta del oleoducto de crudos pesados OCP

Fuente: Oleoducto de Crudos Pesados; Relaciones comunitarias; Mapa Situacional por tramos, 2005

Estación Sardinas (PS3)

Estación Amazonas (PS1)

Fig. 3. 2 Ruta del OCP, entre la estación Amazonas (PS1) y la estación Sardinas (PS3)

Fuente: Oleoducto de Crudos Pesados; Relaciones comunitarias; Mapa Situacional por tramos, 2005

3.4.1 PERFIL TOPOGRÁFICO DE LA RUTA

Para poder desarrollar el algoritmo de diseño hidrodinámico de un oleoducto, es necesario conocer los datos de: progresiva (distancia) Vs. altura de la ruta seleccionada, ya que es necesario para el análisis integral de las presiones involucradas, por lo que para este problema se puede considerar como dato conocido.

Con los datos de la ruta seleccionada, datos de distancia y altura cada cierto tramo se elabora el perfil topográfico que se necesita

Para el desarrollo de este algoritmo del diseño hidrodinámico del oleoducto se utilizará el perfil topográfico que corresponde al OCP desde la estación Amazonas

(PS-1), hasta la estación Sardinas (PS-3), cuyos datos de altura Vs. progresiva o distancia se pueden apreciar en los anexos.

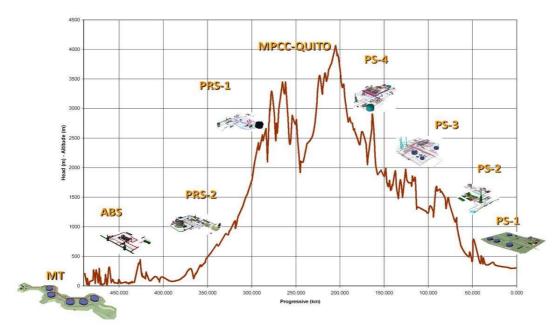


Fig. 3. 3 Perfil topográfico de la ruta del OCP

Fuente: Oleoducto de Crudos Pesados; Operación del Sistema del Oleoducto; OCP-OM-P-OO-19.M-00-01, 2005

De manera general los datos a ingresar se pueden definir como:

DATOS ALTURA Vs. DISTANCIA

Distancia (Km)	Altura (km)
Km	km
Lo	Но
L1	H1
L2	H2
L3	НЗ
•	•
•	•
•	•
Ln-1	Hn-1
Ln	Hn

Donde:

 $Ho = H_A$

Lo = LA

 $Hn = H_B$

 $Ln = L_B$

Graficando los datos se tendría un esquema en las coordenadas progresiva Vs altura, el mismo que es el perfil topográfico de la ruta.

3.5 PARÁMETROS DE DISEÑO

Existen varios datos que se conocen antes de realizar el diseño del ducto por lo general, estos parámetros son:

1. Distancia a ser transportado (LA-B) = (dato inicial)

2. Altura estación A (H_A) = (dato inicial)

3. Altura estación B (H_B) = (dato inicial)

4. Diferencial de elevación (ΔH) = (dato inicial)

5. Presión de descarga requerida en "B" (PB) = (dato inicial)

6. Presión mínima de operación (Pm) = (dato inicial)

7. Caudal a ser transportado (Q) = (dato conocido)

De estos datos se puede decir lo siguiente:

El ítem 1, Parámetro determinado durante la selección de la ruta

El ítem 2, Parámetro determinado durante la selección de la ruta o dato inicial

El ítem 3, Parámetro determinado durante la selección de la ruta o dato inicial

El ítem 4, Parámetro determinado durante la selección de la ruta o dato inicial

El ítem 5, Depende de las condiciones de los equipos, instalaciones y facilidades de la estación, así como de la elevación, normalmente es un dato que se lo especifica en el contrato.

El ítem 6, es la presión mínima necesaria para evitar la presión de vapor y cubrir requerimientos mínimos de succión de bombeo.

El ítem 7, Dato conocido, que depende de la producción diaria de un país o el volumen que se desea transportar de acuerdo a las necesidades y propósitos.

38

Ec.15

Todos estos datos se los considera como datos iniciales conocidos, ya que de

manera común se pueden determinar como producto de las condiciones iniciales

de diseño. Además la ruta seleccionada es un dato indispensable y necesario

para poder diseñar hidrodinámicamente un oleoducto.

Con estas consideraciones y datos iniciales se procede a desarrollar el algoritmo

de cálculo de probabilidades de clases de tuberías a ser utilizadas en el oleoducto

planteado como parte del diseño hidrodinámico.

3.6 ALGORITMO DE DISEÑO

Para el desarrollo del algoritmo, se procede a realizar cálculos de presiones, para

poder evaluar las presiones que intervienen en el transporte del crudo a través del

ducto y seleccionar las mejores alternativas posibles.

Se realizan los siguientes cálculos de manera secuencial:

3.6.1 SELECCIÓN DEL DIÁMETRO EXTERIOR (DE):

Se selecciona a voluntad un diámetro exterior de tubería, dependiendo de los

datos iniciales o conocidos y del criterio del diseñador.

3.6.2 CÁLCULO DEL DIÁMETRO INTERIOR

Con los diferentes valores de espesores existentes para el diámetro exterior

seleccionado se calculan los diámetros interiores.

Di = De - 2 * t

Donde:

Di = diámetro interior

De = diámetro exterior

t = espesor de pared de tubería

3.6.3 CÁLCULO DEL MAOP (PRESIÓN MÁXIMA ADMISIBLE DE OPERACIÓN)

Como cada diámetro exterior de tubería tiene diferentes clases y grados de fabricación.

Para cada grado de tubería corresponde un esfuerzo de fluencia mínimo.

Se utiliza cada valor de esfuerzo de fluencia mínimo como posibles alternativas dentro de los cálculos de presiones.

Por lo que para cada valor de esfuerzo de fluencia mínimo y manteniendo constante el diámetro exterior, se calcula la MAOP (Máxima Presión Admisible de Operación).

3.6.4 CÁLCULO DE LA VELOCIDAD DE FLUJO

Con el dato de Caudal (Q) que es constante y depende de las condiciones del problema, se procede a calcular la velocidad de flujo, que también depende del diámetro interior del ducto o tubería.

Normalmente el dato del caudal es un parámetro conocido ya que la necesidad de transportar cierta cantidad de crudo es lo que obliga a la construcción de un ducto.

De manera que se determina la necesidad de disponer de un ducto que pueda transportar la producción actual y a futuro la producción proyectada.

Por lo que con el dato de caudal a ser transportado se tiene que:

$$A = \pi * Di^2 / 4$$
 Ec.17

Obteniendo la velocidad de flujo:

Vel =
$$4Q / (\pi * Di^2)$$
 Ec.18

Donde:

Vel = velocidad

Q = caudal de flujo

Di = diámetro interior

3.6.5 CÁLCULO DEL NÚMERO DE REYNOLDS

Utilizando los datos de la tubería seleccionada, tanto en diámetro, espesor, clase, grado, velocidad de flujo y viscosidad cinemática, se determina qué clase de flujo se tiene para ser transportado:

Clase de Flujo:

- Flujo Laminar
- Turbulento

Se conoce por la **Ec.5** que:

Re = (Di * Vel) / vis

3.6.6 DETERMINACIÓN DEL FACTOR DE FRICCIÓN

Se calcula el número de Reynolds determinando si el flujo es laminar o turbulento, para luego determinar el factor de fricción.

Para flujos turbulentos usando el diagrama de Moody se determina el factor de fricción f.

Para flujos laminares el factor de fricción se determina utilizando la Ec. 6 :

f = 64 / Re

3.6.7 CÁLCULO DE PRESIÓN DE ENTRADA REQUERIDA EN EL SISTEMA (PRESIÓN MÁXIMA NECESARIA EN LA SALIDA DE LA ESTACIÓN "A") (PA)

Para el cálculo de la presión máxima requerida en el sistema o necesaria a la salida de la estación "A" se parte de la ecuación de Bernoulli para dos puntos, principio de conservación de la energía aplicada a la ecuación de energía de estado estable para determinar la ecuación de presión de flujo o presión máxima requerida.

Esta ecuación combina la ecuación de Bernoulli con los factores de pérdida por fricción, el trabajo realizado por el fluido y la energía agregada al fluido.

Se usa la ecuación de Presión de Flujo Ec 12.2 :

$$PA = PB + \rho * g * (HB - HA) + f * \rho * V^2 (LB - LA) / 2* Di$$

Donde:

P_A = Presión máxima requerida en A

P_B = Presión de entrada requerida en B

 ρ = Densidad

g = Aceleración de la gravedad

H_B = Altura en la Estación "B"

H_A = Altura en la Estación "A"

f = Factor de fricción

V = Velocidad de flujo

L = Distancia entre la Estación "A" y la Estación "B"

Di = Diámetro interior de tubería

Como ya se sabe de la Ec.13 y Ec.: Ec.14

 $\rho * g * (H_B - H_A)$ = GPe (Gradiente de Presión Estática)

$$f * \rho * V^2 (L_B - L_A) / 2* Di$$
 = GPf (Gradiente de Presión por Fricción)

Por lo que se tiene:

$$P_A = P_B + GPe + GPf$$

Que es la presión requerida o necesaria en la estación "A"

3.6.8 CÁLCULO DE LA DIFERENCIA DE PRESIONES ENTRE MAOP Y PA

Una vez calculada la presión requerida o necesaria en la estación "A", se verifica la diferencia que existe con relación al MAOP.

Como requisito básico e indispensable el MAOP debe ser mayor a PA.

El primer cálculo obtenido mediante la imposición de un diámetro y características definidas servirá como guía para seguir probando diferentes alternativas con mejor criterio.

3.7 CONSIDERACIÓN DE ALTERNATIVAS

Se plantean como alternativas, diferentes diámetros de tubería, los mismos que serán combinados con los correspondientes espesores de pared de tubería existentes para cada diámetro, grados y clase de tubería, de acuerdo a especificaciones técnicas de la API SPEC 5L Specification for Line Pipe, Tabla 6C.

Para todas las alternativas se identifican todos los valores que cumplan la premisa de que MAOP sea mayor a PA, ya que estos valores son soluciones potenciales de las cuales se debe seleccionar la mejor de acuerdo a los requerimientos planteados.

3.7.1 PARÁMETROS VARIABLES

- 1.- Espesor de pared de tubería (t)
- Grado de tubería que se relaciona directamente con el esfuerzo de fluencia mínimo (Sy)
- 3.- Diámetro interior de la tubería (Di) que depende del espesor de pared.

3.7.2 PARÁMETROS CALCULADOS

- 1.- Presión Máxima Admisible de Operación (MAOP)
- 2.- Presión Máxima Requerida en la Estación "A" (PA)
- 3.- Gradiente de Presión por Altura
- 4.- Gradiente de Presión por Fricción
- 5.- Número de Reynolds (Re)
- 6.- Velocidad de Flujo (Ve)
- 7.- Factor de Fricción (f)
- 8.- Diferencia de Presiones (MAOP PA) para cada caso

3.7.3 PARÁMETROS CONSTANTES

- 1.- Diámetro exterior de la tubería (De)
- 2.- Distancia entre los dos puntos en referencia (LA-B)
- 3.- Caudal a ser transportado por el ducto (Q)
- 4.- Densidad del producto (p)
- 5.- Factor de Diseño (F)
- 6.- Factor de Junta (J)
- 7.- Presión Requerida en la Estación "B" (PB)

3.8 PRIMERA ETAPA DE CÁLCULO

La primera etapa de cálculo tiene como objetivo determinar los parámetros previos para poder calcular el perfil de presiones.

Para efectos de automatización los pasos a seguir se resumen como:

1.- Se ingresa el valor del diámetro exterior (De) seleccionado

- 2.- Se ingresan los espesores existentes para el (De) seleccionado
- 3.- Se ingresa el valor del factor de diseño (F)
- 4.- Se ingresa valor de factor de junta (J)
- 5.- Se ingresa valor de factor de temperatura
- 6.- Se ingresa el valor de esfuerzo de fluencia mínimo de cada grado de tubería existente para el diámetro seleccionado.
- 7.- Con cada valor de esfuerzo de fluencia mínimo y para cada espesor de pared de tubería, se calcula el MAOP.
- 8.- Se calcula el diámetro interior para cada espesor de pared existente.
- 9.- Se ingresas el valor de la densidad del crudo.
- 10.- Se ingresa el valor de caudal
- 11.- Calcular el diferencial de alturas entre los puntos "A" y "B"
- 12.- Se ingresa el valor de la aceleración de la gravedad.
- 13.- Se ingresa el valor de viscosidad cinemática.
- 14.- Se ingresa el valor de rugosidad relativa
- 15.- Usando el valor de caudal y para cada valor de diámetro interior se calcula la velocidad de flujo
- 16.- Con los datos de cada diámetro interior, velocidad de flujo y viscosidad cinemática se calcula el número de Reynolds y se determina si es flujo Laminar o Turbulento.
- 17.- Se calcula el factor de fricción:
 - Si el flujo es turbulento se usa el diagrama de Moody para determinar el factor de fricción.
 - Si el flujo es Laminar el factor de fricción es igual a 64 / número de Reynolds
- 18.- Se ingresa el valor de la presión requerida para la Estación "B"
- 19.- Se ingresa el valor de la distancia entre la primera estación "A" y la estación de destino "B"
- 20.- Se calcula el gradiente de presión estática a lo largo de todo el recorrido.
- 21.- Se calcula el gradiente de presión por fricción de todo el recorrido
- 22.- Se calcula la presión total requerida por la estación inicial (P"A")
- 23.- Se calcula la diferencia de presión entre el MAOP y PA.

 Como existen diferentes grados de tubería, a cada grado le corresponde un

- esfuerzo de fluencia mínimo, por lo que el cálculo de la diferencia de presiones se lo hace para cada grado de tubería.
- 24.- En cada tabla correspondiente a los diferentes diámetros de tubería, se identifican todos los valores positivos de la diferencia entre MAOP y PA, los valores positivos corresponden a soluciones potenciales, de las cuales se debe seleccionar la que permita cumplir los requerimientos de presión y cuya diferencia entre MAOP y PA sea lo menor posible.
- *** Se deben identificar las soluciones potenciales de menor valor.

Esta primera etapa de cálculo del MAOP y la presión necesaria o requerida en la estación inicial del recorrido PA, debe complementarse por una segunda etapa de cálculo de presiones, etapa de cálculo, la misma que servirá para determinar el perfil de presiones en función de la distancia, Perfil que se graficará en un plano de coordenadas distancia Vs. altura.

Este perfil de presiones se graficará conjuntamente con el perfil topográfico de la ruta seleccionada.

3.9 SECUENCIA DE CÁLCULO

Los datos de diámetros y espesores de pared de tubería están basados en las especificaciones API SPEC 5L.

Datos según:

API SPEC 5L Specification for Line Pipe, Tabla 6C

Plain-end Line Pipe Dimensions, Weights per unit Length, and test pressures for Sizes, 65/8 through 80 (U.S. Customary Units)

No todos los diámetros de tubería tienen espesores de fabricación iguales, por eso uno debe guiarse en las especificaciones API SPEC 5L

En las siguientes láminas, de izquierda a derecha se presenta en un cuadro la secuencia de cálculo

CTE	VARIABLE	CTE	CTE	CTE	CTE	CALCULAR	CTE	CALCULAR
(De)	(t)	(F)	(1)	(T)	(Sy)	(MAOP)	(Sy)	(MAOP)
Diámetro exterior	Espesor de pared de tubería	Factor de diseño = 0,72	Factor de junta = 1	Factor de temperatura = 1	Esfuerzo mínimo de Fluencia X-70	Presión Admisible Máxima de Operación X-70	Esfuerzo mínimo de Fluencia X-65	Presión Admisible Máxima de Operación X-65
De1	t ₁	CTE	CTE	CTE	CTE	MAOP = (2Sv*t/De)*F*J*T	CTE	MAOP = (2Sy*t/De)*F*J*T
		OTE	OTE	OTE	OTE	` , ,	OTE	· · · ·
De ₁	t 2	CTE	CTE	CTE	CTE	MAOP =	CTE	MAOP =
						(2Sy*t/De)*F*J*T		(2Sy*t/De)*F*J*T

LAMINA 1

CTE	CALCULAR	CTE	CALCULAR	CTE	CALCULAR	CALCULA	CTE	CTE
						R		
(Sy)	(MAOP)	(Sy)	(MAOP)	(Sy)	(MAOP)	(Di)	(p)	(Q)
Esfuerz	Presión	Esfuerz	Presión	Esfuerz	Presión	Diámetro	Densida	Cauda
0	Admisible	0	Admisible	0	Admisible	interior	d [Kg /	1 [
mínimo	Máxima de	mínimo	Máxima de	mínimo	Máxima de	Di = De -	m³ l	m³ / h
de	Operación	de	Operación	de	Operación	(2 * t)	1	1
Fluencia	X-60	Fluencia	X-56	Fluencia	X-52	, ,		1
X-60		X-56		X-52				
CTE	MAOP =		MAOP =		MAOP =	Di = De -		
	(2Sy*t/De)*F*J*		(2Sy*t/De)*F*J*		(2Sy*t/De)*F*J*	2 * t		
	(23y (/De) 1 3	CTE	(23y (/De) 1 3	CTE	(23y (De) 1 3		CTE	CTE
	T		T		T			
1								

LAMINA 2

CALCULAD	CTE	OTE.	DEPENDE	CALCULAR	CALCULAR	CEL ECC!	CTE	CTE	CALCUI
CALCULAR	CTE	CTE	DEL	CALCULAR	CALCULAR	SELECCI	CTE	CTE	CALCUL AR
						ONAR			
			DIÁMETRO						
(AH)	(g)	(v)	Rug. Rel.	(V)	(Re)	(f)	(Рв)	(L)	(GPe)
Diferencia de alturas entre "A" y "B"	Acelerac ión de la graveda d	Viscosidad Cinemátic a	Rugosidad Relativa	Velocidad de Flujo	Número de Reynolds	Factor de fricción	Presión necesaria a la entrada de la estación "B"	Distancia entre estación "A" y "B"	Gradiente de Presión Estática
Δ H = HB - Ha	CTE	CTE	DEFINIR	Vel = 4Q/π * Di²	Re = (Di * Vel)/Vis	Diagrama de Moody (Flujo Turbulento)	CTE	L = L _B - L _A	GPE = ρ*g* (H _B - H _A)
						f = 64 / Re (Flujo Laminar)			

LAMINA 3

CALCULAR	CALCULAR	CALCULAR	CALCULAR	CALCULAR	CALCULAR	CALCULAR
(GPf)	(Pa)	(ΔP; X-70)	(ΔP; X-65)	(ΔP ; X-60')	(ΔP; X-56)	(ΔP; X-52)
Gradiente de Presión por fricción	Presión requerida en Estación "A"	Diferencia de presiones	Diferencia de presiones	Diferencia de presiones	Diferencia de presiones	Diferencia de presiones
GPf = [(f * ρ * V²) / 2 * Di]*LA-B	P _A = P _B + GP _E + GPf	MAOP (X-70) - PA	MAOP (X-65) - Pa	MAOP (X-60) - Pa	MAOP (X-56) - Pa	MAOP (X-52) - PA
LAMINA 4		L	ı			

Fig. 3. 4 Láminas de secuencia de cálculo

Los cálculos se realizan de manera secuencial de izquierda a derecha desde la primera lámina hasta la última lámina (1 - 4).

3.10 SEGUNDA ETAPA DE CÁLCULO

3.10.1 CÁLCULO DE PERFIL DE PRESIONES

En este segundo proceso de cálculo, el objetivo es obtener el Perfil de Presiones que se tiene a lo largo de la ruta seleccionada y poder graficar este Perfil transformando los valores de presión a valores equivalentes de altura considerando Presión estática, graficar en coordenadas distancia vs. Altura.

Para poder calcular el Perfil de Presiones en función de la distancia, es necesario primero calcular al Gradiente de Presión Estática (GPe) en función de la distancia, así como el Gradiente de Presión por Fricción (GPf) también en función de la distancia.

** Usando la Ecuación de Energía de Estado Estable **Ec. 12.2** entre los puntos "A" y "B" se tiene:

$$P_B = P_A - \rho * g* (H_B - H_A) - f* \rho * V^2 (X_B - X_A) / (2 * Di)$$

Por tanto se tiene que la Presión Máxima Requerida para un punto cualquiera "x" a lo largo del recorrido se puede determinar como:

$$Px = Po - \rho^*g^*(Hx - Ho) - f^*\rho^*V^2(Lx - Lo)/(2^*Di)$$
 Ec 13

*** Ecuación de presiones requeridas en función de la distancia (L) y la altura (H)

Donde:

Px = presión en cualquier punto "x" del recorrido "L"

Po = presión total necesaria para todo el recorrido = PA = Po

H_x = Altura en un punto "X"

Ho = Altura inicial en el punto "A"

L_x = Distancia a un punto "X" del recorrido

Lo = Distancia en el Punto inicial "A" o punto de inicio = 0

ρ*g* (Hx - Ho) = Pérdidas de presión estática o de altura para cualquier punto X del recorrido.

 $f^*\rho^*V^{2*}(Lx - Lo) / (2*Di) =$ Pérdidas de presión por fricción en cualquier punto X del recorrido:

3.11 SECUENCIA DE CÁLCULO

- 1.- Se ingresa el valor del diámetro exterior (De)
- 2.- Se ingresa el valor del espesor de pared de tubería (t)
- 3.- Se determina el diámetro interior de la tubería (Di = De (2 * t))
- 4.- Se ingresa el valor del esfuerzo mínimo de fluencia (Sy)
- 5.- Se ingresa el valor de factor de diseño (F)
- 6.- Se ingresa el valor de factor de junta (J)
- 7.- Se ingresa el valor del MAOP
- 8.- Se ingresa el valor del factor de fricción definido
- 9.- Se ingresan los valores conocidos de la distancia del recorrido seleccionado (coordenadas de distancia)
- Se ingresan valores conocidos de las alturas del recorrido (coordenadas de altura)

- 11.- Se ingresa el valor de velocidad de flujo calculado en la primera etapa
- 12.- Se ingresa el valor de la aceleración de la gravedad
- 13.- Se ingresa el valor de densidad del fluido a transportarse
- 14.- Se calcula la presión máxima requerida para todo el recorrido = PA
- 15.- Se calcula el gradiente de presión estática para cada punto de coordenadas distancia Vs altura
- 16.- Se calcula el gradiente de presión por fricción para cada punto de coordenadas distancia Vs altura
- 17.- Se calcula la presión máxima requerida en cada punto de coordenadas distancia Vs. altura del recorrido seleccionado
- 18.- Las presiones máximas calculadas, se las considera como presión estática y de esta manera poder expresarla en altura.
- 19.- Esta presión expresada en altura en todos los puntos coordenados del recorrido o ruta seleccionada, se grafica dando como resultado el perfil de presiones buscado
- 20.- Se grafica el perfil topográfico de la ruta seleccionada en el plano de coordenadas distancia Vs. altura
- 21.- Se grafica el perfil de presiones en el plano de coordenadas distancia Vs. altura, conjuntamente con el perfil topográfico.
- 22.- Se debe analizar el resultado de los gráficos e interpretar debidamente

Se podrá visualizar si la presión que se desarrolla con la alternativa seleccionada es suficiente para cubrir todo el recorrido o no.

Cada alternativa debe generar un gráfico en el que se visualice el perfil topográfico y el perfil de presiones simultáneamente.

En la siguiente tabla se grafica la secuencia de cálculo la misma que va de izquierda a derecha en todas las láminas, los mismos que son complementarios uno con otro de izquierda a derecha.

СТЕ	CTE	CTE	Grado de Tubería CTE	CTE	CTE
(De)	(t)	(Di)	(Sy)	(F)	(J)
Diámetro exterior	Espesor de pared de tubería	Diámetro interior (plg) TABLA 1	Esfuerzo mínimo de fluencia	Factor de Diseño	Factor de Junta
De	t	Di = De - (2 * t)	Sy	0,72	1,00

LÁMINA 1

CTE	СТЕ	CTE	DATO VARIABLE	DATO VARIABLE	CALCULADO	DATO CTE	DATO CTE
(T)	(MAOP)	(f)	(L)	(H)	(V)	(g)	(ρ)
Factor de Temperatura	Máxima Presión Admisible de Operación	Factor de Fricción, definido en TABLA1	Distancia (m)	Altura (m)	Velocidad de flujo	Aceleración de la Gravedad	Densidad
N/A	MAOP = (2Sy*t / De)*F*J*T	Diagrama de Moody (Flujo Turbulento)	Datos de ruta	Datos de ruta	calculado en TABLA 1	Ddato conocido	Dato conocido
		f = 64 / Re (Flujo Laminar)	LX - LA	Нх - На	Vel = 4Q/π * Di²	g	ρ

LÁMINA 2

CALCULADO	CALCULAR	CALCULAR	CALCULAR	CALCULAR
(PA)	(GPe)	(GPf)	(Px)	Px = ρ*g*Hx
Presión Máxima (Po) Requerida tramo "A" - "B"	Gradiente de presión estática, de cabeza o de altura en función de la posición	Gradiente de presión por fricción en función de la posición	Presión Máxima Requerida en función de la distancia y de la altura	Perfil de Presiónes a lo largo del tramo "A" - "B" expresado en cabeza de altura (presión estática) [m]
PA = PB + ρ*g*(HB - HA) + f * ρ * V² (LA - LB) / 2* D	GPe = ρ*g*Hx	GPf = (f * ρ * V² * Lx) / 2 * Di	Px = PA - ρ*g*Hx - (f*ρ*V² * Lx) / (2* Di)	Hx = Px / ρ*g
				PRESIÓN EXPRESADA EN ALTURA DE PRESIÓN ESTATICA

Fig. 3. 5 Láminas de secuencia de cálculo

Los cálculos se realizan de manera secuencial de izquierda a derecha desde la primera lámina hasta la última lámina (1 - 3).

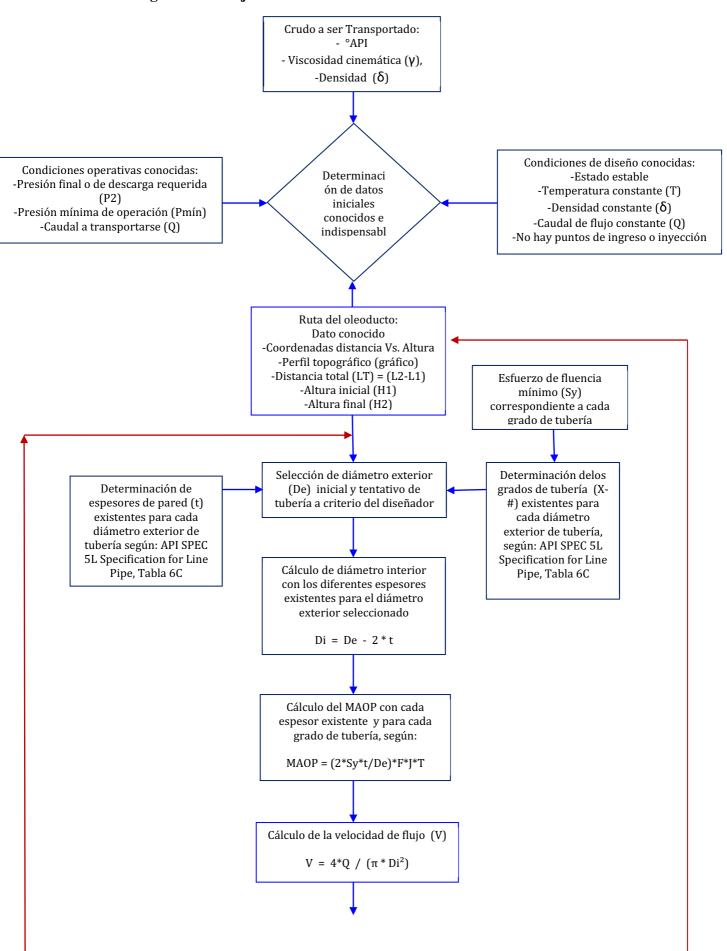
NOTAS:

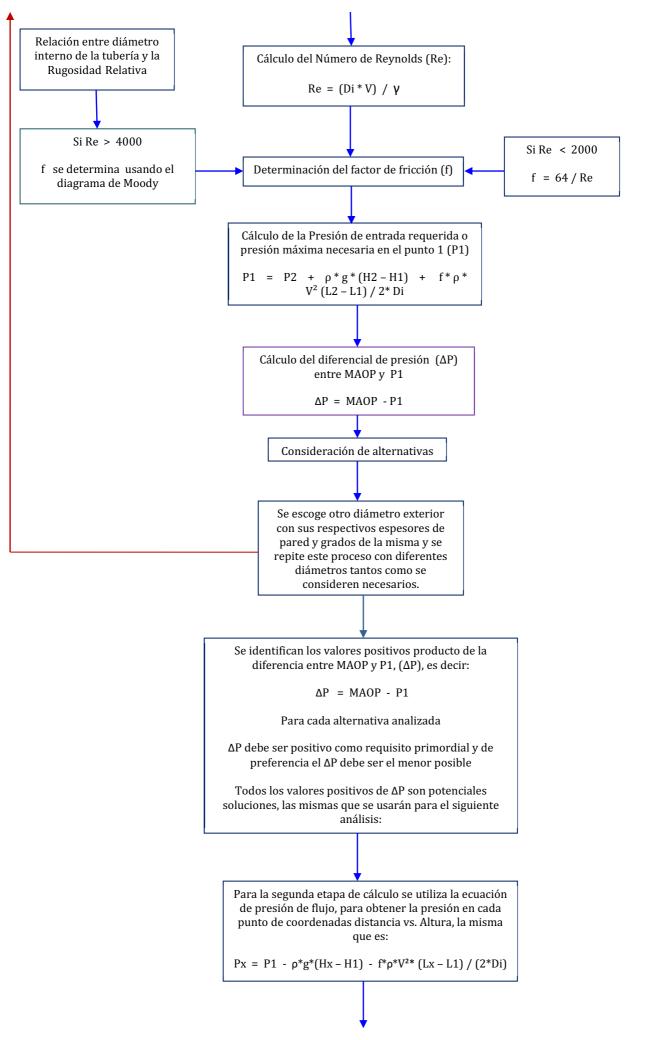
Se debe probar con tantas alternativas como sea necesario.

En cada alternativa se mantiene constante el diámetro, espesor de pared y grado de tubería, los parámetros variables son distancia y altura, por lo que se calcula las presiones en cada punto conocido del recorrido, presiones que definirán el Perfil de estas.

Las alternativas se escogen de los resultados positivos de la diferencia entra MAOP y PA que se calculó en la primera etapa.

El perfil de presiones siempre debe estar sobre el perfil topográfico, si se encuentra por debajo, significa que se requiere más presión o en su defecto requiere de una estación de bombeo adicional.


La presión alta debe considerarse tomando en cuenta la realidad del diseño de bombas existentes en el mercado y sus disposiciones de conexión, ya sea en serie o en paralelo, es decir no seleccionar una alternativa que desarrolle presiones muy altas, ya que se tendría problema en el diseño del "Sistema de Bombeo"


Tomando en consideración los cálculos de la primera etapa y complementados con los de la segunda etapa, se debe seleccionar adecuadamente la clase de tubería y sus características

Para finalmente analizar las posibilidades y alternativas de este segundo cuadro y definir que ducto es el que se utilizará completando el Diseño Hidrodinámico. Este Algoritmo se utilizará para automatizar el cálculo mediante el uso y ayuda del Matlab, software matemático que permitirá desarrollar el objetivo planteado.

Este procedimiento se puede visualizar en el siguiente diagrama de flujo:

3.12.- Diagrama de Flujo:

Se ingresan los valores de los puntos coordenados de la ruta seleccionada (Perfil Topográfico):

- datos de distancia
- datos de altura

Se ingresa el valor de la aceleración de la gravedad

Se calcula la presión estática en cada punto coordenado que se tiene como dato

$$Pe = \rho * g * Hx$$

Se calcula el gradiente de presión por fricción para cada punto de coordenadas distancia – altura

$$GPf = (f * \rho * V^2 * Lx) / 2 * Di$$

Gradiente de presión de entrada en función de la distancia y de la altura

$$\begin{array}{l} Px \; = \; P1 \; - \; \rho \; ^* \, g \; ^* \, (Hx - H1) \; - \; f \; ^* \, \rho \; ^* \, V^2 \\ \qquad \qquad ^* \, \left(Lx - L1 \right) \, / \, \left(2 \; ^* Di \right) \\ \end{array}$$

Los valores de gradiente de presión en función de la distancia, se los expresa en altura como presión estática mediante:

$$Hx = Px / \rho * g$$

Obteniendo el Perfil de Presiones expresado en altura

Se grafica la curva de Perfil de presiones en función de la distancia; en un plano coordenado distancia Vs. altura

Se grafica los valores distancia vs. Altura de la ruta seleccionada, es decir el Perfil Topográfico, en el mismo plano de coordenadas distancia vs. Altura en el que se graficó el Perfil de Presiones

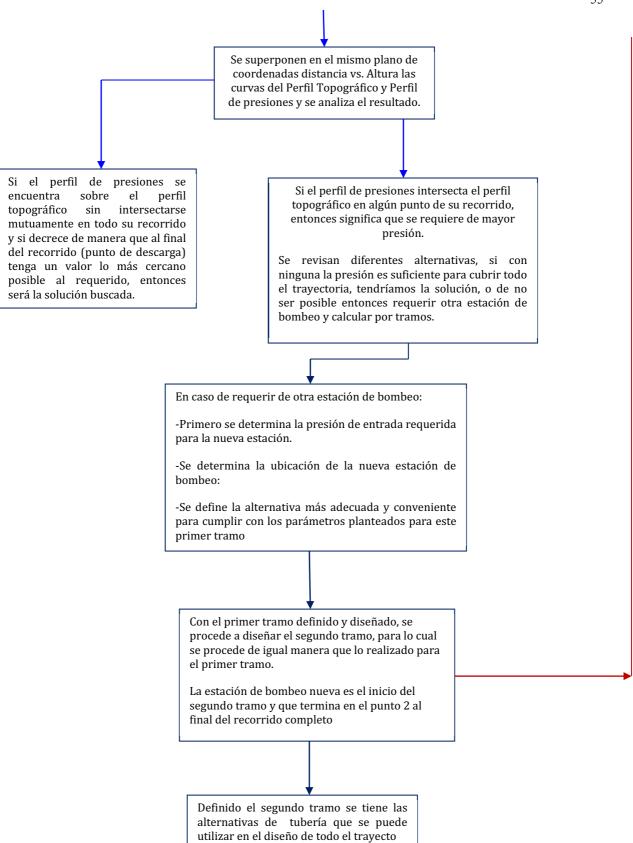


Fig. 3. 6 Diagrama de flujo del procedimiento de diseño

CAPÍTULO 4

PROGRAMACIÓN DE ARCHIVO M EN MATLAB; RB: 1, 2, 3, 21

La programación de la primera etapa de cálculo se indica a continuación:

```
clc
clear all
API=26.3;
v=0.000378; %pies^2/s
p=896.7; %kg/m<sup>3</sup>
T1=15;
La=0;
Lb=149.9; %km
PB=120; %psi
Pmo=50;
L=93.143;
HA=0;
       % m
HB=1800; % m
q=9.8;
       %m/s^2
Q=7.8;
display('Seleccione el tamaño de la tuberia')
display('1) Tamaño 14 pulgadas')
display('2) Tamaño 16 pulgadas')
display('3) Tamaño 18 pulgadas')
display('4) Tamaño 20 pulgadas')
display('5) Tamaño 22 pulgadas')
display('6) Tamaño 24 pulgadas')
x esp=input('');
%Espesor
espesor14=[0.188; 0.203; 0.21; 0.219; 0.25; 0.281; 0.312; 0.344; 0.375;
0.406; 0.438; 0.469; 0.500; 0.562; 0.625; 0.688; 0.750; 0.812; 0.875;
0.938; 1.000; 1.062; 1.125; 1.188; 1.250];
espesor16=[0.375; 0.406; 0.438; 0.469; 0.500; 0.562; 0.625; 0.688; 0.750;
0.812; 0.875; 0.938; 1.000; 1.062; 1.125; 1.188; 1.250];
espesor18=[0.188; 0.219; 0.25; 0.281; 0.312; 0.344; 0.375; 0.406; 0.438;
0.469; 0.500; 0.562; 0.625; 0.688; 0.750; 0.812; 0.875; 0.938; 1.000;
1.062; 1.125; 1.188; 1.250];
espesor20=[0.219; 0.25; 0.281; 0.312; 0.344; 0.375; 0.406; 0.438; 0.469;
0.500; 0.562; 0.625; 0.688; 0.750; 0.812; 0.875; 0.938; 1.000; 1.062;
1.125; 1.188; 1.250; 1.312; 1.375];
espesor22=[0.219; 0.25; 0.281; 0.312; 0.344; 0.375; 0.406; 0.438; 0.469;
0.500; 0.562; 0.625; 0.688; 0.750; 0.812; 0.875; 0.938; 1.000; 1.062;
1.125; 1.188; 1.250; 1.312; 1.375; 1.438; 1.500];
espesor24=[0.375; 0.406; 0.438; 0.469; 0.500; 0.562; 0.625; 0.688; 0.750;
0.812; 0.875; 0.938; 1.000; 1.062; 1.125; 1.188; 1.250; 1.312; 1.375;
1.438; 1.500; 1.562];
if x esp==1
    espesor=espesor14;
     De=14:
     rug=0.00013; % rugosidad
elseif x esp==2
    espesor=espesor16;
```

```
De=16;
     rug=0.00011; % rugosidad
elseif x esp==3
    espesor=espesor18;
    De=18;
    rug=0.00010; % rugosidad
elseif x esp==4
    espesor=espesor20;
    De=20;
    rug=0.00009; % rugosidad
elseif x = 5
    espesor=espesor22;
    De = 22;
    rug=0.00008; % rugosidad ojo no es dato
elseif x = 6
    espesor=espesor24;
    De = 24;
    rug=0.00007; % rugosidad
end
[fila esp, col espe] = size (espesor);
%calculo de MAOP
Sy=[70000;65000;60000;56000;52000];
t=0.375; %pulgadas
% De=14;
          %pulgadas
F=0.72; %adim
J=1;
         %adim
T=1;
         %admi
MAOP(i,1) = (2*Sy(i,1)*t/De)*F*J*T; %psi
for j=1:5
    for i=1:fila esp
        MAOP(i,j) = (2*Sy(j,1)*espesor(i,1)/De)*F*J*T;
    end
end
%Cálculo de la velocidad de flujo
format long
kpulg pies=0.0833333333333333;
for i=1:fila esp
Di(i,1) = (De-2*espesor(i,1))*kpulg pies; %pies
A(i,1)=pi()*Di(i,1)^2/4; %pies^2
Vel(i,1)=Q/A(i,1); %pies/s
%Cálculo del número de Reynolds
Re(i,1) = (Di(i,1) * Vel(i,1)) / v; %numero adimen
%factor de fricción
if Re(i,1) > 2000
    f(i,1)=0.25/(log10(rug/(3.7*Di(i,1))+5.74/Re(i,1)^0.9))^2;
else
    f(i,1) = 64/Re(i,1);
end
```

```
%Calculo de la presión necesaria en la estación de bombeo A
PB=120; %psi
kpa psi=1/6894.76;
                       %psi
kpies m=0.3048; %m
GPe=p*g*(HB-HA)*kpa psi; %psi
Lbm=Lb*1000;
                응m
Velms(i,1) = kpies m*Vel(i,1); %m/s
Dim(i,1)=Di(i,1)*kpies m; %m
GPf(i,1) = ((f(i,1)*p*Velms(i,1)^2*(Lbm-La))/(2*Dim(i,1)))*kpa psi; %psi
PA(i,1) = PB + GPe + GPf(i,1); %psi
end
for j=1:5
    for i=1:fila esp
        diferencia2(i,j) = MAOP(i,j) - PA(i,1);
        if diferencia2(i,j)>=0
        dif(i,j) = diferencia2(i,j);
        else
        dif(i,j)=inf;
        end
          res(i,j) = abs(PB-dif(i,j));
    end
end
if dif==inf
    display('No es posible seleccionar espesor')
else
   menor m=sort(dif);
   menor fila=sort(menor m(1, :));
   vector=find(diferencia2==menor fila(1,1));
 [fila,columna] = ind2sub([fila esp,5],vector);
 espesor seleccionado=espesor(fila,1)
 PA seleccionada=PA(fila,1)
 Velms seleccionada=Velms(fila,1) %m/s
 Dim seleccionada=Dim(fila,1)
 factor de friccion=f(fila,1)
 if columna==1
     display('Tuberia de grado X70')
 elseif columna==2
     display('Tuberia de grado X65')
 elseif columna==3
     display('Tuberia de grado X60')
 elseif columna == 4
     display('Tuberia de grado X56')
 elseif columna==5
     display('Tuberia de grado X52')
 end
end
Distancia km=[0.00; 6.58; 10.38; 18.35; 24.48; 26.95; 31.98; 31.98;
35.66; 37.91; 38.41; 40.36; 41.55; 48.89; 49.65; 49.65; 50.20; 50.32;
50.32; 50.76; 51.44; 53.34; 54.28; 58.90; 58.90; 59.41; 63.30; 63.30;
66.11; 66.11; 68.03; 68.03; 68.49; 69.20; 69.20; 70.14; 76.01; 76.01;
77.69; 79.66; 81.15; 85.22; 85.22; 86.53; 86.53; 86.65; 86.65; 87.02;
87.02; 87.04; 87.04; 90.20; 90.20; 90.31; 90.31; 90.39; 90.39; 90.75;
91.47; 91.47; 91.52; 91.52; 91.79; 91.79; 91.83; 91.83; 91.97; 91.97;
```

```
94.32; 94.71; 98.03; 100.21; 102.44; 102.64; 112.65; 113.29; 114.34;
114.34; 115.06; 116.65; 118.14; 118.28; 118.28; 118.30; 118.30; 118.35
118.35; 118.39; 118.39; 119.38; 119.38; 119.44; 119.44; 119.94;
119.94; 120.05; 120.05; 122.51; 122.51; 122.57; 122.57; 124.34; 124.34;
124.40; 124.40; 125.71; 125.71; 125.72; 125.73; 125.73; 127.07; 127.07;
129.28; 129.31; 129.31; 129.33; 129.33; 131.72; 133.89; 133.96; 135.74;
135.74; 135.77; 135.77; 135.88; 135.88; 136.26; 136.26; 136.32; 136.32;
136.87; 136.87; 137.18; 137.18; 137.27; 137.45; 137.45; 137.54;
137.54; 137.58; 140.49; 140.49; 140.58; 140.58; 140.62; 140.62; 140.72;
140.72; 141.25; 141.25; 141.59; 141.59; 142.70; 142.70; 142.72; 142.72;
142.75; 144.18; 144.18; 144.68; 145.04; 145.04; 145.41; 145.95; 145.95;
146.30; 146.30; 146.32; 146.32; 146.69; 146.69; 146.75; 146.75; 148.94;
148.94; 149.00; 149.00; 149.40; 149.40; 149.46; 149.46; 149.83; 149.83;
149.93; 149.93; 149.98; 150.07; 150.07];
Altura km=[0.000; 0.297; 0.313; 0.330; 0.353; 0.398; 0.357; 0.357; 0.366;
0.471; 0.371; 0.508; 0.386; 0.788; 0.533; 0.533; 0.428; 0.419; 0.419;
0.413; 0.469; 0.574; 0.492; 0.560; 0.560; 0.570; 0.678; 0.678; 0.876;
0.876; 1.033; 1.033; 1.027; 1.050; 1.050; 1.096; 1.344; 1.344; 1.497;
1.321; 1.479; 1.597; 1.597; 1.586; 1.586; 1.624; 1.624; 1.639; 1.639;
1.637; 1.637; 1.604; 1.604; 1.633; 1.648; 1.648; 1.684; 1.657;
1.657; 1.661; 1.661; 1.631; 1.631; 1.613; 1.613; 1.611; 1.611; 1.175;
1.265; 1.353; 1.233; 1.257; 1.261; 1.337; 1.301; 1.646; 1.646; 1.835;
1.772; 1.856; 1.811; 1.811; 1.809; 1.809; 1.797; 1.797; 1.790; 1.790;
1.687; 1.740; 1.740; 1.743; 1.743; 1.742; 1.742; 1.741; 1.741; 1.745;
1.745; 1.748; 1.748; 1.786; 1.786; 1.782; 1.782; 1.971; 1.971; 1.973;
1.971; 1.971; 1.793; 1.793; 1.498; 1.503; 1.503; 1.505; 1.505; 1.793;
1.492; 1.478; 1.622; 1.622; 1.622; 1.633; 1.633; 1.680; 1.680;
1.686; 1.686; 1.849; 1.849; 1.938; 1.938; 1.938; 1.938; 1.916; 1.916;
1.926; 1.926; 1.944; 1.715; 1.715; 1.693; 1.693; 1.699; 1.699; 1.688;
1.688; 1.707; 1.707; 1.643; 1.643; 1.614; 1.614; 1.616; 1.616; 1.617;
1.775; 1.775; 1.792; 1.713; 1.713; 1.679; 1.693; 1.693; 1.714; 1.714;
1.715; 1.715; 1.740; 1.740; 1.741; 1.741; 1.769; 1.769; 1.779; 1.779;
1.786; 1.786; 1.785; 1.785; 1.806; 1.806; 1.803; 1.803; 1.807; 1.800;
1.800];
 [fila Altura,col Altura]=size(Altura km);
for i=1:fila Altura
Gpe1(i,1)=p*g*Altura km(i,1)*1000*kpa psi; %psi
1000))/(2*Dim seleccionada))*kpa_psi; %psi
Px(i,1) = (PA\_seleccionada-Gpel(i,1)-GPfl(i,1))*6894.76;
                                                       %pa
Hx(i,1) = (Px(i,1)/(p*q))/1000; %km
end
plot(Distancia km, Altura km, Distancia km, Hx)
xlabel('Distancia Km')
ylabel('Altura Km')
title(' Gráfico Gradiente de Presión vs Perfil Topográfico')
grid
```

En la segunda etapa consiste en establecer la posición de una estación de bombeo C y la programación de la segunda etapa de cálculo se indica a continuación:

```
clear all
clc
distancia=70.14;
altura=1.23;
                  %km
diametro=20; %pulg
espesor=0.938; %pulg
densidad=896.7;
                 %kg/m^3
presion entrada=80;
kpa psi=1/6894.76;
%Calculo de presion estatica
P pa=densidad*9.8*altura*1000
P_psi=P_pa*kpa_psi
                               %psi
%Calculo de altura de cabeza
h=(presion entrada/kpa psi)/(densidad*9.8)
Distancia km=[0.00; 6.58; 10.38; 18.35; 24.48; 26.95; 31.98; 31.98;
35.66; 37.91; 38.41; 40.36; 41.55; 48.89; 49.65; 49.65; 50.20; 50.32;
50.32; 50.76; 51.44; 53.34; 54.28; 58.90; 58.90; 59.41; 63.30; 63.30;
66.11; 66.11; 68.03; 68.03; 68.49; 69.20; 69.20; 70.14; 76.01; 76.01;
77.69; 79.66; 81.15; 85.22; 85.22; 86.53; 86.53; 86.65; 86.65; 87.02;
87.02; 87.04; 87.04; 90.20; 90.20; 90.31; 90.31; 90.39; 90.39; 90.75;
91.47; 91.47; 91.52; 91.52; 91.79; 91.79; 91.83; 91.83; 91.97; 91.97;
94.32; 94.71; 98.03; 100.21; 102.44; 102.64; 112.65; 113.29; 114.34;
114.34; 115.06; 116.65; 118.14; 118.28; 118.28; 118.30; 118.30; 118.35
118.35; 118.39; 118.39; 118.99; 119.38; 119.38; 119.44; 119.44; 119.94;
119.94; 120.05; 120.05; 122.51; 122.51; 122.57; 122.57; 124.34; 124.34;
124.40; 124.40; 125.71; 125.71; 125.72; 125.73; 125.73; 127.07; 127.07;
129.28; 129.31; 129.31; 129.33; 129.33; 131.72; 133.89; 133.96; 135.74;
135.74; 135.77; 135.77; 135.88; 135.88; 136.26; 136.26; 136.32; 136.32;
136.87; 136.87; 137.18; 137.18; 137.27; 137.27; 137.45; 137.45; 137.54;
137.54; 137.58; 140.49; 140.49; 140.58; 140.58; 140.62; 140.62; 140.72;
140.72; 141.25; 141.25; 141.59; 141.59; 142.70; 142.70; 142.72; 142.72;
142.75; 144.18; 144.18; 144.68; 145.04; 145.04; 145.41; 145.95; 145.95;
146.30; 146.30; 146.32; 146.32; 146.69; 146.69; 146.75; 146.75; 148.94;
148.94; 149.00; 149.00; 149.40; 149.40; 149.46; 149.46; 149.83; 149.83;
149.93; 149.93; 149.98; 150.07; 150.07];
Altura km=[0.000; 0.297; 0.313; 0.330; 0.353; 0.398; 0.357; 0.357; 0.366;
0.471; 0.371; 0.508; 0.386; 0.788; 0.533; 0.533; 0.428; 0.419; 0.419;
0.413; 0.469; 0.574; 0.492; 0.560; 0.560; 0.570; 0.678; 0.678; 0.876;
0.876; 1.033; 1.033; 1.027; 1.050; 1.050; 1.096; 1.344; 1.344; 1.497;
1.321; 1.479; 1.597; 1.597; 1.586; 1.586; 1.624; 1.624; 1.639; 1.639;
1.637; 1.637; 1.604; 1.604; 1.633; 1.633; 1.648; 1.648; 1.684; 1.657;
1.657; 1.661; 1.661; 1.631; 1.631; 1.613; 1.613; 1.611; 1.611; 1.175;
1.265; 1.353; 1.233; 1.257; 1.261; 1.337; 1.301; 1.646; 1.646; 1.835;
1.772; 1.856; 1.811; 1.811; 1.809; 1.809; 1.797; 1.797; 1.790; 1.790;
1.687; 1.740; 1.740; 1.743; 1.743; 1.742; 1.742; 1.741; 1.741; 1.745;
```

```
1.745; 1.748; 1.748; 1.786; 1.786; 1.782; 1.782; 1.971; 1.971; 1.973;
1.971; 1.971; 1.793; 1.793; 1.498; 1.503; 1.503; 1.505; 1.505; 1.793;
1.492; 1.478; 1.622; 1.622; 1.622; 1.622; 1.633; 1.633; 1.680; 1.680;
1.686; 1.686; 1.849; 1.849; 1.938; 1.938; 1.938; 1.916; 1.916;
1.926; 1.926; 1.944; 1.715; 1.715; 1.693; 1.693; 1.699; 1.699; 1.688;
1.688; 1.707; 1.707; 1.643; 1.643; 1.614; 1.614; 1.616; 1.616; 1.617;
1.775; 1.775; 1.792; 1.713; 1.713; 1.679; 1.693; 1.693; 1.714; 1.714;
1.715; 1.715; 1.740; 1.740; 1.741; 1.741; 1.769; 1.769; 1.779; 1.779;
1.786; 1.786; 1.785; 1.785; 1.806; 1.806; 1.803; 1.803; 1.807; 1.800;
1.800];
[fila Altura, col Altura] = size (Altura km);
for i=1:fila Altura
distancia abs(i,1)=abs(distancia-Distancia km(i,1));
end
menor dista=sort(distancia abs);
vector=find(distancia_abs==menor_dista(1,1));
HC=Altura km(vector(1,1),1)*1000-h;
for i=1:fila Altura
altura abs(i,1)=abs((HC/1000)-Altura km(i,1));
end
menor altura=sort(altura_abs);
vector=find(altura abs==menor altura(1,1));
display('Coordenadas de ubicacion de la estacion de bombeo')
display('Y en km')
HC % en km
display('X en km')
Distancia estacion bombeo=Distancia km(vector(1,1),1) %en Km
Lc b=Lb-Distancia estacion bombeo % en km
j=1;
k=1;
for i=1:fila Altura
    if Distancia estacion bombeo<=Distancia km(i,1)</pre>
       distancia 1(k,1) = Distancia km(i,1);
       altura 1(k,1) = Altura km(i,1);
       k=k+1;
    else
        distancia 2(j,1)=Distancia km(i,1);
        altura 2(j,1) = Altura km(i,1);
        j=j+1;
    end
end
API = 26.3;
p=896.7;
          %kg/m^3
T1=15;
Lb=Lb-Distancia estacion bombeo; %km
```

```
PB=120; %psi
Pmo=50;
L=93.143;
HA=0;
      % m
HB=1800; % m
       %m/s^2
q=9.8;
Q=7.8;
display('Seleccione el tamaño de la tuberia')
display('1) Tamaño 14 pulgadas')
display('2) Tamaño 16 pulgadas')
display('3) Tamaño 18 pulgadas')
display('4) Tamaño 20 pulgadas')
display('5) Tamaño 22 pulgadas')
display('6) Tamaño 24 pulgadas')
x esp=input('');
%Espesor
espesor14=[0.188; 0.203; 0.21; 0.219; 0.25; 0.281; 0.312; 0.344; 0.375;
0.406; 0.438; 0.469; 0.500; 0.562; 0.625; 0.688; 0.750; 0.812; 0.875;
0.938; 1.000; 1.062; 1.125; 1.188; 1.250];
espesor16=[0.375; 0.406; 0.438; 0.469; 0.500; 0.562; 0.625; 0.688; 0.750;
0.812; 0.875; 0.938; 1.000; 1.062; 1.125; 1.188; 1.250];
espesor18=[0.188; 0.219; 0.25; 0.281; 0.312; 0.344; 0.375; 0.406; 0.438;
0.469; 0.500; 0.562; 0.625; 0.688; 0.750; 0.812; 0.875; 0.938; 1.000;
1.062; 1.125; 1.188; 1.250];
espesor20=[0.219; 0.25; 0.281; 0.312; 0.344; 0.375; 0.406; 0.438; 0.469;
0.500; 0.562; 0.625; 0.688; 0.750; 0.812; 0.875; 0.938; 1.000; 1.062;
1.125; 1.188; 1.250; 1.312; 1.375];
espesor22=[0.219; 0.25; 0.281; 0.312; 0.344; 0.375; 0.406; 0.438; 0.469;
0.500; 0.562; 0.625; 0.688; 0.750; 0.812; 0.875; 0.938; 1.000; 1.062;
1.125; 1.188; 1.250; 1.312; 1.375; 1.438; 1.500];
espesor24=[0.375; 0.406; 0.438; 0.469; 0.500; 0.562; 0.625; 0.688; 0.750;
0.812; 0.875; 0.938; 1.000; 1.062; 1.125; 1.188; 1.250; 1.312; 1.375;
1.438; 1.500; 1.562];
if x esp==1
    espesor=espesor14;
    De = 14:
    rug=0.00013; % rugosidad
elseif x esp==2
    espesor=espesor16;
     De=16;
     rug=0.00011; % rugosidad
elseif x esp==3
    espesor=espesor18;
    De=18;
    rug=0.00010; % rugosidad
elseif x = 4
    espesor=espesor20;
    De=20;
    rug=0.00009; % rugosidad
elseif x = 5
    espesor=espesor22;
    De = 22;
    rug=0.00008; % rugosidad
elseif x esp==6
    espesor=espesor24;
    De = 24:
    rug=0.00007; % rugosidad
```

```
end
[fila esp, col espe] = size(espesor);
%calculo de la presion maxima admisible de operacion
Sy=[70000;65000;60000;56000;52000];
t=0.375; %pulgadas
% De=14;
           %pulgadas
F=0.72; %adim
J=1;
         %adim
         %admi
T=1;
MAOP(i,1) = (2*Sy(i,1)*t/De)*F*J*T; %psi
for j=1:5
    for i=1:fila esp
        MAOP(i,j) = (2*Sy(j,1)*espesor(i,1)/De)*F*J*T;
    end
end
 %Cálculo de la velocidad de flujo
format long
kpulg pies=0.0833333333333333;
for i=1:fila esp
Di(i,1) = (De-2*espesor(i,1))*kpulg pies; %pies
A(i,1)=pi()*Di(i,1)^2/4; %pies^2
Vel(i,1)=Q/A(i,1); %pies/s
%Calculo del numero de Reynolds
Re(i,1) = (Di(i,1) *Vel(i,1))/v; %numero adimen
%factor de friccion
if Re(i,1) > 2000
    f(i,1)=0.25/(log10(rug/(3.7*Di(i,1))+5.74/Re(i,1)^0.9))^2;
else
    f(i,1) = 64/Re(i,1);
end
% f(i,1)=0.028;
%Calculo de la presion necesaria en la estacion de bombeo C
PB=120; %psi
kpa psi=1/6894.76;
                       %psi
kpies m=0.3048; %m
GPe=p*g*(HB-HA)*kpa_psi; %psi
Lbm=Lb*1000;
                응m
Velms(i,1)=kpies m*Vel(i,1); %m/s
Dim(i,1)=Di(i,1)*kpies m;
GPf(i,1) = ((f(i,1)*p*Velms(i,1)^2*(Lbm-La))/(2*Dim(i,1)))*kpa psi; %psi
PC(i,1) = PB + GPe + GPf(i,1); %psi
end
for j=1:5
    for i=1:fila esp
        diferencia2(i,j) = MAOP(i,j) - PC(i,1);
        if diferencia2(i,j)>=0
        dif(i,j) = diferencia2(i,j);
```

else

dif(i,j)=inf;

```
end
         res(i,j) = abs(PB-dif(i,j));
    end
end
if dif==inf
    display('No es posible seleccionar espesor')
  menor m=sort(dif);
  menor fila=sort(menor m(1, :));
   vector=find(diferencia2==menor fila(1,1));
 [fila,columna] = ind2sub([fila esp,5],vector);
 espesor seleccionado=espesor(fila,1) %pulg
 PA seleccionada=PA(fila,1)
 Velms seleccionada=Velms(fila,1) %m/s
 Dim seleccionada=Dim(fila,1)
 factor_de_friccion=f(fila,1)
 if columna==1
     display('Tuberia de grado X70')
 elseif columna==2
     display('Tuberia de grado X65')
 elseif columna==3
     display('Tuberia de grado X60')
 elseif columna==4
     display('Tuberia de grado X56')
 elseif columna==5
     display('Tuberia de grado X52')
 end
end
Distancia km=distancia 1;
Altura km=altura 1;
[fila Altura, col Altura] = size (Altura km);
for i=1:fila Altura
Gpe1(i,1)=p*g*(Altura km(i,1)*1000-HC)*kpa psi; %psi
GPf1(i,1)=((factor_de_friccion*p*Velms_seleccionada^2*(Distancia_km(i,1)*
1000-Distancia_estacion_bombeo*1000))/(2*Dim_seleccionada))*kpa psi; %psi
Px(i,1) = (PC\_seleccionada-Gpe1(i,1)-GPf1(i,1))*6894.76;
Hx(i,1) = (Px(i,1)/(p*g))/1000; %km
f(i,1) = (Distancia km(i,1)*1000-Distancia estacion bombeo*1000)/1000;
end
plot(Distancia_km, Altura_km, Distancia_km, Hx)
xlabel('Distancia Km')
ylabel('Altura Km')
title(' Gráfico Gradiente de presión VS Perfil Topográfico')
grid
```

Los resultados (primera etapa) de la programación son:

```
Command Window

Seleccione el tamaño de la tuberia

1) Tamaño 14 pulgadas

2) Tamaño 16 pulgadas

3) Tamaño 18 pulgadas

4) Tamaño 20 pulgadas

5) Tamaño 22 pulgadas

6) Tamaño 24 pulgadas

2

espesor_seleccionado =

1

factor_de_friccion =

0.025311717429714

Tuberia de grado X65

fx
>>>
```

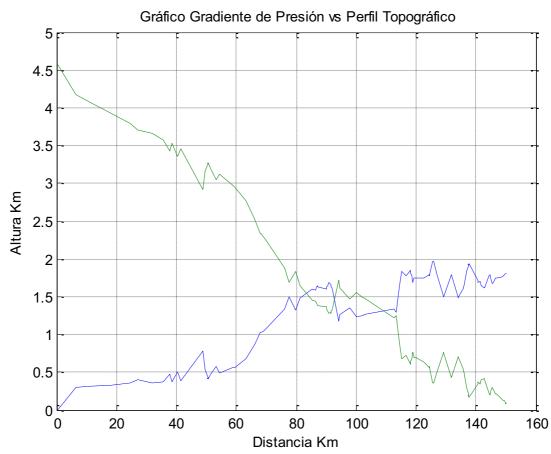


Fig. 4. 1 Resultados en Matlab con tubería de diámetro 16 plg

```
Command Window

Seleccione el tamaño de la tuberia

1) Tamaño 14 pulgadas

2) Tamaño 16 pulgadas

3) Tamaño 18 pulgadas

4) Tamaño 20 pulgadas

5) Tamaño 22 pulgadas

6) Tamaño 24 pulgadas

3

espesor_seleccionado =

0.93800000000000

factor_de_friccion =

0.026145166664809

Tuberia de grado X56
```

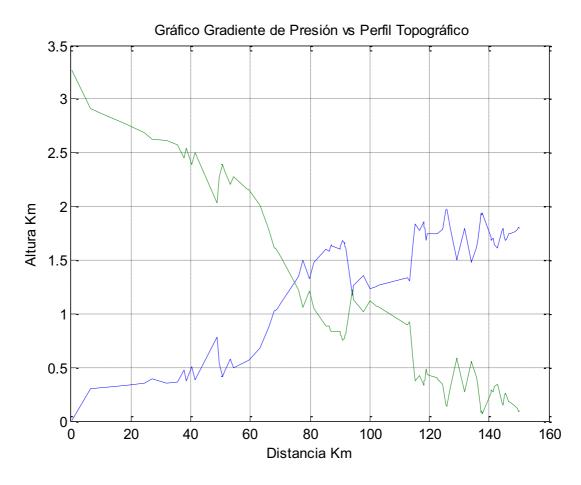


Fig. 4. 2 Resultados en Matlab con tubería de diámetro 18 plg

```
Command Window

Seleccione el tamaño de la tuberia

1) Tamaño 14 pulgadas

2) Tamaño 16 pulgadas

3) Tamaño 18 pulgadas

4) Tamaño 20 pulgadas

5) Tamaño 22 pulgadas

6) Tamaño 24 pulgadas

4

espesor_seleccionado =

0.93800000000000

factor_de_friccion =

0.026882032715498

Tuberia de grado X52
```

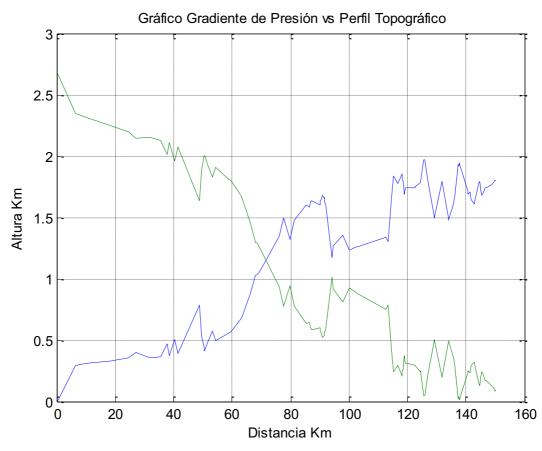


Fig. 4. 3 Resultados en Matlab con tubería de diámetro 20 plg

```
Command Window

Seleccione el tamaño de la tuberia

1) Tamaño 14 pulgadas

2) Tamaño 16 pulgadas

3) Tamaño 18 pulgadas

4) Tamaño 20 pulgadas

5) Tamaño 22 pulgadas

6) Tamaño 24 pulgadas

5

espesor_seleccionado =

0.93800000000000

factor_de_friccion =

0.027579009157909

Tuberia de grado X52
```

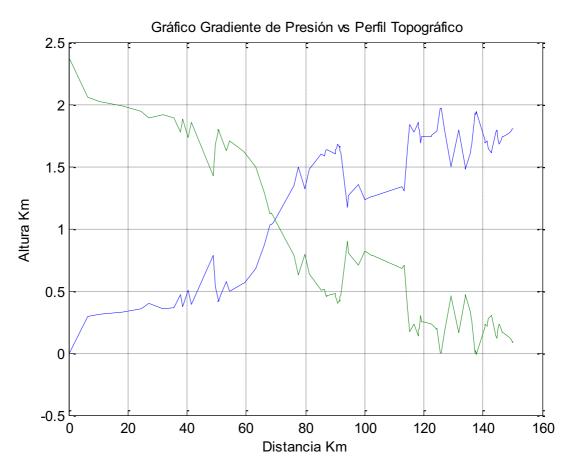


Fig. 4. 4 Resultados en Matlab con tubería de diámetro 22 plg

```
Command Window

Seleccione el tamaño de la tuberia
1) Tamaño 14 pulgadas
2) Tamaño 16 pulgadas
3) Tamaño 18 pulgadas
4) Tamaño 20 pulgadas
5) Tamaño 22 pulgadas
6) Tamaño 24 pulgadas
6

espesor_seleccionado =

0.938000000000000

factor_de_friccion =

0.028240805135122

Tuberia de grado X52
```


Fig. 4. 5 Resultados en Matlab con tubería de diámetro 24 plg

Los resultados (segunda etapa) de la programación son:

```
Command Window
  Coordenadas de ubicacion de la estacion de bombeo
  Y en km
  HC =
      1.033232346267379e+003
  X en km
  Distancia_estacion_bombeo =
    68.030000000000001
  Lc_b =
    81.870000000000005
  Seleccione el tamaño de la tuberia
  1) Tamaño 14 pulgadas
  2) Tamaño 16 pulgadas
  3) Tamaño 18 pulgadas
  4) Tamaño 20 pulgadas
  5) Tamaño 22 pulgadas
6) Tamaño 24 pulgadas
```

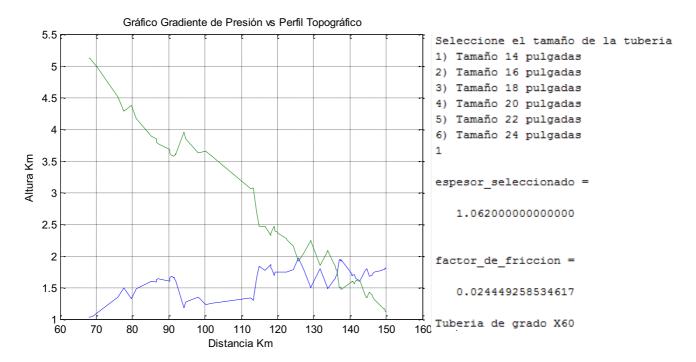
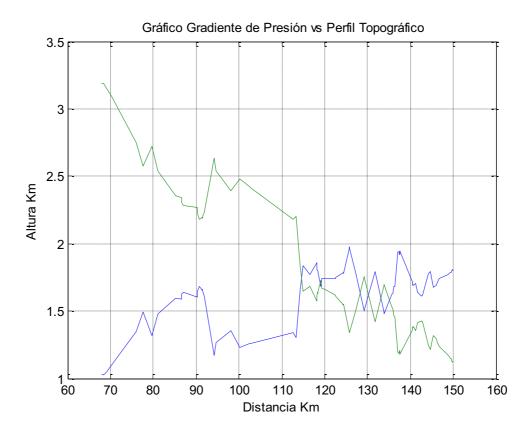



Fig. 4. 6 Resultados en Matlab con tubería de diámetro 14 plg


```
Seleccione el tamaño de la tuberia

1) Tamaño 14 pulgadas

2) Tamaño 16 pulgadas

3) Tamaño 18 pulgadas

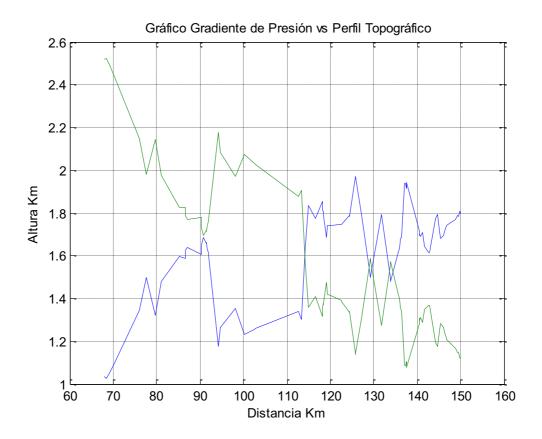
4) Tamaño 20 pulgadas

5) Tamaño 22 pulgadas

6) Tamaño 24 pulgadas

2

espesor_seleccionado =


0.812000000000000

factor_de_friccion =

0.025467121167549

Tuberia de grado X56
```

Fig. 4. 7 Resultados en Matlab con tubería de diámetro 16 plg


```
Seleccione el tamaño de la tuberia

1) Tamaño 14 pulgadas

2) Tamaño 16 pulgadas

3) Tamaño 18 pulgadas

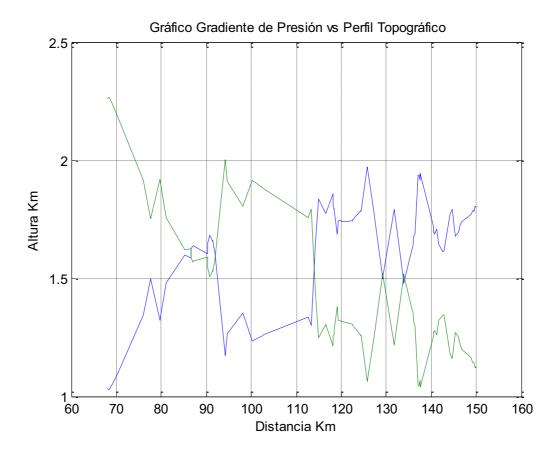
4) Tamaño 20 pulgadas

5) Tamaño 22 pulgadas

6) Tamaño 24 pulgadas

3

espesor_seleccionado =


0.625000000000000

factor_de_friccion =

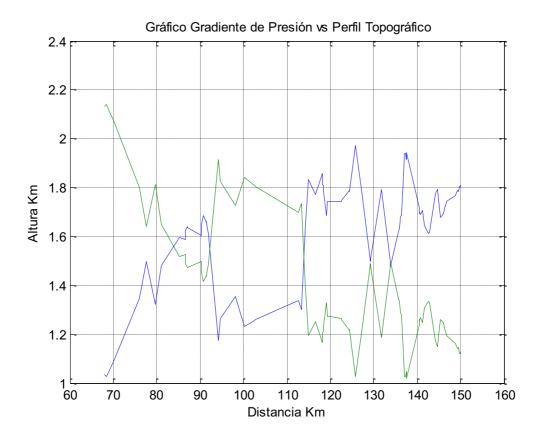
0.026385805793630

Tuberia de grado X65
```

Fig. 4. 8 Resultados en Matlab con tubería de diámetro 18 plg


```
Seleccione el tamaño de la tuberia
1) Tamaño 14 pulgadas
2) Tamaño 16 pulgadas
3) Tamaño 18 pulgadas
4) Tamaño 20 pulgadas
5) Tamaño 22 pulgadas
6) Tamaño 24 pulgadas
4

espesor_seleccionado =


0.625000000000000

factor_de_friccion =

0.027108811031028

Tuberia de grado X65
```

Fig. 4. 9 Resultados en Matlab con tubería de diámetro 20 plg


```
Seleccione el tamaño de la tuberia

1) Tamaño 14 pulgadas

2) Tamaño 16 pulgadas

3) Tamaño 18 pulgadas

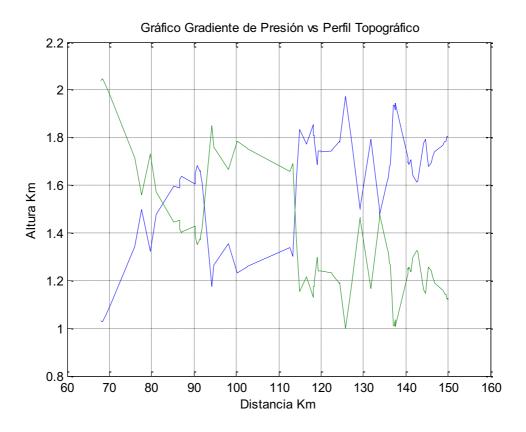
4) Tamaño 20 pulgadas

5) Tamaño 22 pulgadas

6) Tamaño 24 pulgadas

5

espesor_seleccionado =


0.750000000000000

factor_de_friccion =

0.027708384139676

Tuberia de grado X56
```

Fig. 4. 10 Resultados en Matlab con tubería de diámetro 22 plg


```
Seleccione el tamaño de la tuberia

1) Tamaño 14 pulgadas

2) Tamaño 16 pulgadas

3) Tamaño 18 pulgadas

4) Tamaño 20 pulgadas

5) Tamaño 22 pulgadas

6) Tamaño 24 pulgadas

6

espesor_seleccionado =

0.625000000000000

factor_de_friccion =

0.028444809257333

Tuberia de grado X70
```

Fig. 4. 11 Resultados en Matlab con tubería de diámetro 22 plg

CAPÍTULO 5

EJEMPLO DE APLICACIÓN; RB: 6, 8, 9, 12, 13, 18, 19, 20, 21

Para que se comprenda de mejor manera el procedimiento de diseño hidrodinámico o hidráulico de un oleoducto, se procede a desarrollar un ejemplo de aplicación.

5.1 PLANTEAMIENTO DEL PROBLEMA

Diseño hidráulico de un oleoducto que transporta crudo mediano desde un punto "A" hasta un punto "B" en condiciones de estado estable

Donde:

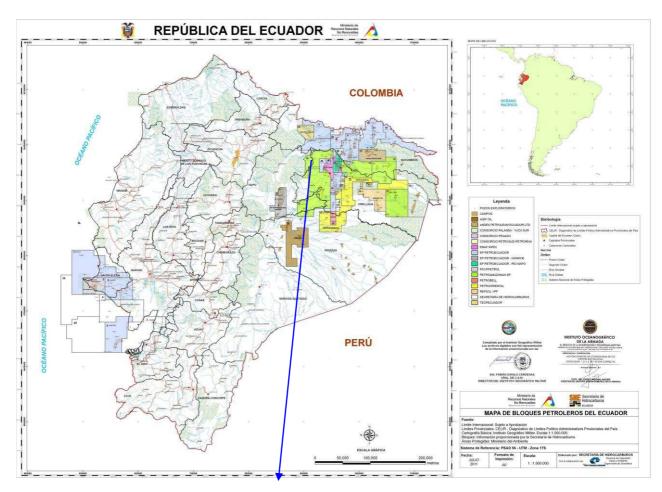
"A" = Estación de almacenamiento y bombeo "A"

"B" = Estación de almacenamiento y refinación "B"

El ducto se llevará de manera aérea a lo largo del recorrido y no existen puntos de inyección o ingreso de crudo al sistema de transporte, así como tampoco ramales de desviación.

5.2 DATOS INICIALES CONOCIDOS

5.1.1 CRUDO A SER TRANSPORTADO


Se considera para este ejemplo, crudo extraído de la estación Palo Azul, del bloque 18 y operado por Petroecuador, que tiene las siguientes características:

Fluido a transportarse: Crudo mediano

° API 26,3

Viscosidad cinemática del crudo (γ) 35,1 [cSt]

Densidad a 15° C (ρ) 896,7 [Kg/m³]

Ubicación de la estación Palo Azul

Ampliación de ubicación de estación Palo Azul; Bloque 18

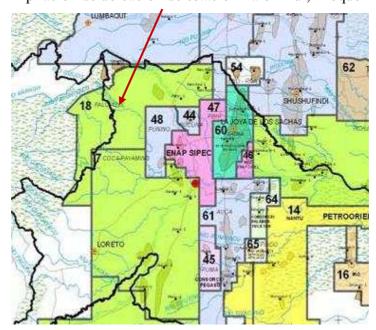


Fig 5. 1 Mapa de Bloques petroleros del Ecuador

Fuente: Secretaría de Hidrocarburos del Ecuador; Cartografía, Instituto Geográfico Militar

5.1.2 CONDICIONES DE DISEÑO

Como condición primordial para este algoritmo, es considerar estado estable a lo largo del recorrido del ducto, lo que significa que:

- 1) Temperatura constante y estable
- 2) Densidad constante y estable
- 3) Viscosidad constante y estable
- 4) Caudal de flujo constante.
- Nota 1: No existen más puntos de inyección o ingreso de crudo a lo largo del trazado, es decir bombeo sin baches.
- Nota 2: Ducto aéreo a lo largo del recorrido (no existen tramos enterrados)

5.1.3 RUTA DEL OLEODUCTO

Se utilizará la ruta que sigue el Oleoducto de Crudos Pesados desde la estación Amazonas (PS1), hasta la estación Sardinas (PS3), por facilidad de elaboración y explicación del algoritmo.

5.1.4 PERFIL TOPOGRÁFICO DE LA RUTA

Para el desarrollo de este algoritmo del diseño hidrodinámico del oleoducto se utilizará el perfil topográfico que corresponde al OCP desde la estación Amazonas, hasta la estación Sardinas, cuyos datos de Altura Vs. Progresiva o distancia se pueden apreciar a continuación y servirán para el desarrollo del objetivo.

DATOS ALTURA Vs. DISTANCIA DE LA RUTA PROPUESTA

Tabla 5. 1 Coordenadas altura y distancia de la ruta Amazonas - Sardinas

Distancia (m)	Distancia (Km)	Altura (m)	Altura (k	m)
m	Km	m	Km	Estación Amazonas (PS1)
0,00	0,00	0,00	0,000	
6580,00	6,58	297,00	0,297	

10375,00	10,38	313,00	0,313	
18350,00	18,35	330,00	0,330	
•	•	•	•	
•	-	•	•	
•	•	•		
144177,00	144,18	1775,00	1,775	
146754,00	146,75	1741,00	1,741	
148939,00	148,94	1769,00	1,769	
149900,00	149,90	1800,00	1,800	Estación Sardinas (PS3)

Fuente: Oleoducto de Crudos Pesados; OCP Project; Crude Pipeline; OCP_Fill_300B

Con estos datos se grafica el perfil topográfico entre las dos estaciones, que a continuación se puede ver:

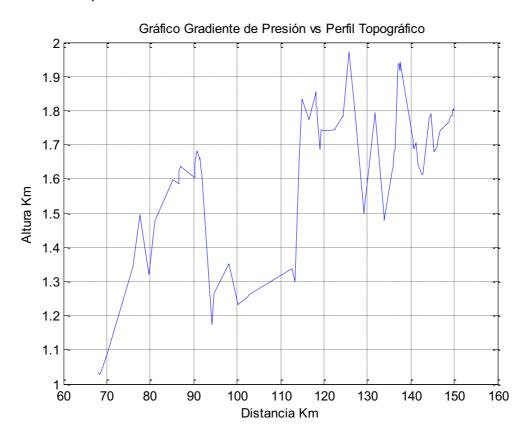


Fig. 5. 1 Perfil topográfico de acuerdo a datos

NOTA: Los datos completos de la ruta propuesta se encuentran en el Anexo 1

5.1.5 PARÁMETROS DE DISEÑO CONOCIDOS

1. Distancia a ser transportado (LA-B) = 149,9 [Km]

2. Altura estación A (H_A) = 0 [m]

3. Altura estación B (H_B) = 1800 [m]

4. Diferencial de elevación (ΔH) = 1800 [m]

5. Presión de descarga requerida en "B" (PB) = 120 [psi]

6. Presión mínima de operación (Pm) = 50 [psi]

7. Caudal a ser transportado (Q) = 120000 [bls / d]

Todos estos primeros datos y consideraciones se reflejan y se resumen en la siguiente tabla, en la cual se expresan en diferentes unidades

Tabla 5.2- Parámetros de diseño conocidos

Presión de entrega o descarga en "B" = PB	827371,2	[Pa]	120	[psi]		
Presión mínima de operación	344738	[Pa]	50	[psi]		
Fluido a transportarse	Crudo mediano	(Estación Palo	Azul - bloque 18)			
° API	26,3					
Caudal de diseño a ser transportado = Q	794,94	[m³/h]	120000	[Bls/día]	5000	[Bls/h]
Viscosidad cinemática del crudo = v	35,1	[cSt]	0,351	[stoke]	0,000378	[pie²/s]
Gravedad Específica = Sg	0,8967	-				
Densidad a 15°C = ρ	55,98	[lb/m³]	896,7	[Kg/m³]		
Temperatura ambiente promedio de diseño = T	26,7	[°C]	80	[°F]		
Longitud del ducto = L	149,9	[Km]	491797,92	[pies]	149900	[m]
Diferencial de Elevación = H	1,8	[Km]	5905,51	[pies]	1800	[m]
* Oleoducto aéreo a lo largo del trazado						

5.3 DESARROLLO DEL ALGORITMO

5.3.1 SELECCIÓN INICIAL DE TAMAÑO Y CLASE DE TUBERÍA.

Basados en estos datos conocidos iniciales, primero se selecciona por criterio del diseñador un tamaño de tubería con especificaciones y características tales como grado, clase, etc.

Por Imposición se usará tubería API 5L-X70 de 24 plg. de diámetro y un espesor de 0,375 plg (9,525 mm).

Por lo tanto:

Tabla 5.3- Datos técnicos de la tubería seleccionada

Diámetro de tubería (D)	24	[plg]	0,610	[m]	2,00	[pies]	
Espesor de tubería (t)	0,375	[plg]	0,010	[m]	0,031	[pies]	
Grado X-70 Esfuerzo mínimo de fluencia (S)	70000	[psi]	ASME 31.4 tabla 402.3.1(a), pg 12		482633,2	[Kpa]	
Factor de Diseño (F)	0,72						
Factor de Junta (J)	1						
Factor de Temperatura (T)	N/A	Estado Estable					

^{**} Este valor de diámetro y espesor se seleccionan en primera instancia para analizar los resultados.

Por lo que resumiendo el cuadro de datos se tiene:

Tabla 5.4- Datos iniciales de cálculo

ρ	55,979	[lb/pie³]	896,7	[Kg/m³]						
Q	5000	[Bls/h.]	794,94	[m ³ /h]	0,221	[m ³ /s]	120000	Bpd	7,80	[pie ³ /s]
De	24	[plg.]	0,610	[m]	2,000	[pies]				
t	0,375	[plg]	0,010	[m]	0,031	[pies]				
Di	23,25	[plg.]	0,591	[m]	1,937	[pies]				
Vis	35,1	[cs]	0,12636	[m²/h]	0,000378	[pie²/s]				
RugRel(ε/D)	0,00007									
L(estA-estB)	93,143	[Milla]	149,9	[Km]	149900	[m]	491797,92	pies		
altura Estación A	0,0	[pies]	0	[Km]	0	[m]				
altura Estación B	5905,5	[pies]	1,8	[Km]	1800	[m]				
Diferencial	5905,5	[pies]	1,8	[Km]	1800	[m]				
Gravedad (g)	32,152	[pies/s²]	9,8	$[m/s^2]$						

Usando los datos de la tabla 7 se realizan los siguientes cálculos:

5.3.2 CÁLCULO DE LA PRESIÓN MÁXIMA ADMISIBLE DE OPERACIÓN (MAOP)

Utilizando la **Ec.8**, se sabe que:

MAOP =
$$(2 * 70000 \text{ psi} * 0.375 \text{ plg} / 24 \text{ plg}) * 0.72* 1$$

Además como dato conocido:

Presión Mínima de Operación = 50 [psi]:

50 [psi] Presión necesaria para superar la presión de vapor = 344,74 [Kpa]

Esta presión por lo general no es calculada sino que se define dependiendo de requerimientos y condiciones iniciales, para este caso en condiciones de estado estable, no se debe llegar a la presión de vapor.

5.3.3 CÁLCULO DE LA VELOCIDAD DE FLUJO (VEL)

$$Q = Vel * A$$

$$A = \pi * Di^{2}/4$$

Utilizando la **Ec.18** se tiene que:

$$Vel = 4Q/\pi * Di^2$$

 $Vel_1 = 2902,20 \text{ m/h}$

 $Vel_2 = 0.806$ m/s

 $Vel_3 = 2,645$ pie/s

5.3.4 CÁLCULO DEL NÚMERO DE REYNOLDS (RE)

Por la **Ec.5**, se sabe que:

En el Sistema Ingles de unidades:

Re = $(1,937 \text{ pies} * 2,645 \text{ pies/seg}) / 0,000378 \text{ pie}^2/\text{seg} = 13563,569$

Re = 13563,569 — Flujo turbulento

En el Sistema Métrico de unidades:

Re = $(0.591 \text{ m} * 2902.2 \text{ m/h}) / 0.12636 \text{ m}^2/\text{h} = 13563.569$

Re = 13563,569 — Flujo turbulento

De acuerdo a leyes de nuestro país se debe utilizar de manera general y oficial, el Sistema Métrico de Unidades, pero en la práctica dentro de nuestro país se utiliza el Sistema Ingles de Unidades.

La Industria Hidrocarburífera nacional debe emigrar del Sistema Inglés, al Sistema métrico de Unidades, lo cual se encuentra en proceso.

Por este motivo en los primeros cálculos se han realizado en los dos sistemas ya que en cualquiera de los dos se llega al mismo objetivo.

5.3.5 DETERMINACIÓN DEL FACTOR DE FRICCIÓN (f)

Utilizando la tabla 3 de la relación del diámetro de la tubería con respecto a la rugosidad relativa se determina el factor de fricción para el diámetro seleccionado:

Para flujos turbulentos usando el diagrama de Moody se encuentra el factor de fricción f.

f = 0.028

5.3.6 CÁLCULO DE LA PRESIÓN DE ENTRADA REQUERIDA (PA) O PRESIÓN NECESARIA EN LA ESTACIÓN DE BOMBEO "A".

Como se sabe de acuerdo a las ecuaciones Ec.12.2 y Ec.12.3:

Ecuación de Presión de flujo

$$P_A = P_B + \rho^* g^* (H_B - H_A) + f^* \rho^* V^2 (L_A - L_B) / 2^* Di$$

$$P_A = P_B + GPe + GPf$$

donde:

❖ PB = Presión necesaria en la estación "B"

$$P_B = 120$$
 [psi] 827,3712 [KPa]

- PB = Presión mínima necesaria en la entrada estación "B" para llevar el crudo hacia los tanques de almacenamiento y llenarlos, considerando que la estación B es una estación de Almacenamiento y Refinación
 - Pérdidas o Gradiente de presión estática

GPe =
$$\rho^*g^*(H_B - H_A)$$

GPe = 896,7 Kg/m³ * 9,8 m/s² * 1800 m = 15817788 [Pa]
GPe = 15817788 [Pa] ; = 2294,180 [psi]

Pérdidas o Gradiente de presión por fricción

GPf =
$$(f * \rho * V^2 * (L_B - L_A)) / (2 * Di)$$

GPf = $(0.028 * 896.7 \text{ Kg/m}^3 * (0.806 \text{ m/seg})^2 * (149900 - 0)) / (2 * 0.591 \text{ m})$
GPf = $2071018.40 \text{ [Pa]} = 300.38 \text{ [psi]}$

Presión Máxima Requerida o presión necesaria en la estación de Bombeo "A"

$$P_A = P_B + \rho^* g^* (H_B - H_A) + f^* \rho^* V^2 (L_A - L_B) / 2^* D$$
 $P_A = P_B + GPe + GPf$
 $P_A = 120 [psi] + 2294,180 [psi] + 300,38 [psi]$
 $P_A = 2714,56 [psi]$
 $MAOP = 1575 [psi]$
 $MAOP - P_A = 1575 - 2714,56 = -1139,56$

En este caso MAOP es menor que PA, por lo que NO cumple la condición primordial que es que MAOP tiene que ser mayor a PA.

Como MAOP es más pequeño en comparación con la presión requerida para tubería de las características seleccionadas, se debe considerar algunas alternativas para lograr seleccionar un ducto de características distintas de manera que MAOP sea mayor que la presión total requerida

5.3.7 CONSIDERACIÓN DE ALTERNATIVAS

En este punto, los siguientes casos tienen que ser evaluados:

- * Espesor de pared de la tubería
- * Grado de la tubería
- * Diámetro de la tubería
- * Estación de Bombeo adicional
- * Presión de entrega diferente
- * Elevación o altura

Como alternativas en este punto primero evaluamos el cambio de espesor de pared de la tubería seleccionada y grados de la misma con el consecuente análisis de los diferentes espesores de pared que dispone este diámetro y de igual manera con los diferentes grados existentes para el diámetro propuesto.

A continuación se debe analizar diferentes diámetros de tubería con sus respectivos espesores y grados existentes en el mercado.

Si con todas estas alternativas no se consigue obtener un perfil de presiones de manera que en todo momento sea menor que el (MAOP) y que esté sobre el perfil topográfico, se debe considerar la necesidad de otra estación de bombeo en algún lugar del recorrido y realizar el análisis hidrodinámico en dos tramos.

Para poder compararlo con el perfil topográfico la presión se debe expresar en su equivalente en altura de presión estática y graficarlo en un plano de coordenadas distancia Vs. altura como el perfil topográfico

Por lo que con estas consideraciones se procede:

5.3.7.1 Evaluación de cambio de espesor de pared de la tubería

Para este análisis se tiene como variables los siguientes parámetros:

- 1.- espesor de pared de tubería (t)
- 2.- esfuerzo de fluencia (Sy) mínimo
- 3.- diámetro interior de la tubería (Di)

Manteniendo constante el diámetro seleccionado, se procede a variar el espesor de pared de la tubería así como el grado de la misma, con lo que se consigue variar el esfuerzo de fluencia mínimo del material, estos cálculos se resumen en el tabla 5.3

Para el diámetro de 24 plg., propuesto inicialmente, corresponden ciertos espesores de fabricación así como grados existentes, esto de acuerdo a las especificaciones API 5L, especificaciones que se anexan a esta monografía Datos Según: API SPEC 5L Specification for Line Pipe, Tabla 6C.

Plain-end Line Pipe Dimensions, Weights per unit Length, and test pressures for Sizes 65/8 through 80 (U.S. Customary Units)

5.3.7.2 Secuencia de cálculo

Tabla 5.5- Cuadros de valores y secuencia de cálculo

		1 abia 5.5-	C diddi 05	ac ras	ores y see	aciicia a	o carcaro		
De = DIAMETRO [plg]	t = ESPESOR PARED [plg]	t = ESPESOR PARED [mm]	X-70 Sy	F	MAOP para X-70	X-65 Sy	MAOP para X-65	X-60 Sy	MAOP para X-60
24	0,375	9,525	70000	0,72	1575,000	65.000	1462,500	60.000	1350,000
24	0,406	10,312	70000	0,72	1705,200	65.000	1583,400	60.000	1461,600
24	0,438	11,125	70000	0,72	1839,600	65.000	1708,200	60.000	1576,800
24	0,469	11,913	70000	0,72	1969,800	65.000	1829,100	60.000	1688,400
24	0,500	12,700	70000	0,72	2100,000	65.000	1950,000	60.000	1800,000
24	0,562	14,275	70000	0,72	2360,400	65.000	2191,800	60.000	2023,200
24	0,625	15,875	70000	0,72	2625,000	65.000	2437,500	60.000	2.250,000
24	0,688	17,475	70000	0,72	2889,600	65.000	2683,200	60.000	2476,800
24	0,750	19,050	70000	0,72	3150,000	65.000	2925,000	60.000	2700,000
24	0,812	20,625	70000	0,72	3410,400	65.000	3166,800	60.000	2923,200
24	0,875	22,225	70000	0,72	3675,000	65.000	3412,500	60.000	3150,000
24	0,938	23,825	70000	0,72	3939,600	65.000	3658,200	60.000	3376,800
24	1,000	25,400	70000	0,72	4200,000	65.000	3900,000	60.000	3600,000
24	1,062	26,975	70000	0,72	4460,400	65.000	4141,800	60.000	3823,200
24	1,125	28,575	70000	0,72	4725,000	65.000	4387,500	60.000	4050,000
24	1,188	30,175	70000	0,72	4989,600	65.000	4633,200	60.000	4276,800
24	1,250	31,750	70000	0,72	5250,000	65.000	4875,000	60.000	4500,000
24	1,312	33,325	70000	0,72	5510,400	65.000	5116,800	60.000	4723,200
24	1,375	34,925	70000	0,72	5775,000	65.000	5362,500	60.000	4950,000
24	1,438	36,525	70000	0,72	6039,600	65.000	5608,200	60.000	5176,800
24	1,500	38,100	70000	0,72	6300,000	65.000	5850,000	60.000	5400,000
24	1,562	39,6748	70000	0,72	6560,400	65000	6091,800	60000	5623,200

CUADRO 1

X-56 Sy	MAOP para X-56	X-52 Sy	MAOP para X-52	Di = DIAMETRO interior [plg]	Di = DIAMETRO interior [m]	Densidad [Kg/m³]	Velocidad [m/h]	Velocidad [m/s]	Número de Reynolds
56.000	1260,000	52.000	1170,000	23,250	0,591	896,70	2902,203	0,806	13563,590
56.000	1364,160	52.000	1266,720	23,188	0,589	896,70	2917,744	0,810	13599,857
56.000	1471,680	52.000	1366,560	23,124	0,587	896,70	2933,917	0,815	13637,497
56.000	1575,840	52.000	1463,280	23,062	0,586	896,70	2949,713	0,819	13674,160
56.000	1680,000	52.000	1560,000	23,000	0,584	896,70	2965,638	0,824	13711,021
56.000	1888,320	52.000	1753,440	22,876	0,581	896,70	2997,875	0,833	13785,342
56.000	2100,000	52.000	1950,000	22,750	0,578	896,70	3031,175	0,842	13861,691
56.000	2311,680	52.000	2146,560	22,624	0,575	896,70	3065,032	0,851	13938,891
56.000	2520,000	52.000	2340,000	22,500	0,571	896,70	3098,908	0,861	14015,710
56.000	2728,320	52.000	2533,440	22,376	0,568	896,70	3133,350	0,870	14093,380
56.000	2940,000	52.000	2730,000	22,250	0,565	896,70	3168,938	0,880	14173,190
56.000	3151,680	52.000	2926,560	22,124	0,562	896,70	3205,136	0,890	14253,909
56.000	3360,000	52.000	3120,000	22,000	0,559	896,70	3241,368	0,900	14334,249
56.000	3568,320	52.000	3313,440	21,876	0,556	896,70	3278,219	0,911	14415,500
56.000	3780,000	52.000	3510,000	21,750	0,552	896,70	3316,311	0,921	14499,010
56.000	3991,680	52.000	3706,560	21,624	0,549	896,70	3355,071	0,932	14583,494
56.000	4200,000	52.000	3900,000	21,500	0,546	896,70	3393,883	0,943	14667,604
56.000	4408,320	52.000	4093,440	21,376	0,543	896,70	3433,372	0,954	14752,689
56.000	4620,000	52.000	4290,000	21,250	0,540	896,70	3474,209	0,965	14840,164
56.000	4831,680	52.000	4486,560	21,124	0,537	896,70	3515,778	0,977	14928,682
56.000	5040,000	52.000	4680,000	21,000	0,533	896,70	3557,420	0,988	15016,832
56.000	5248,320	52.000	4873,440	20,876	0,530	896,70	3599,807	1,000	15106,030

CUADRO 2

Factor de Fricción f	PB (Presión en "B") [psi]	Gradiente de Presión estática = p * g (HB - HA) [psi]	Gradiente de Presión por fricción = [(f*p* V²)/2*Di]*L [psi]	Distancia L [Km]	Presión Total Requerida PA [PSI]	Diferencia entre MAOP y PA con grado X-70 [psi]	Diferencia entre MAOP y PA con grado X-65 [psi]	Diferencia entre MAOP y PA con grado X-60 [psi]	Diferencia entre MAOP y PA con grado X - 56 [psi]	Diferencia entre MAOP y PA con grado X-52 [psi]
0,028	120	2294,180	300,367	149,9	2714,548	-1139,548	-1252,048	-1364,548	-1454,548	-1544,548
0,028	120	2294,180	304,405	149,9	2718,585	-1013,385	-1135,185	-1256,985	-1354,425	-1451,865
0,028	120	2294,180	308,640	149,9	2722,821	-883,221	-1014,621	-1146,021	-1251,141	-1356,261
0,028	120	2294,180	312,812	149,9	2726,992	-757,192	-897,892	-1038,592	-1151,152	-1263,712
0,028	120	2294,180	317,051	149,9	2731,231	-631,231	-781,231	-931,231	-1051,231	-1171,231
0,028	120	2294,180	325,737	149,9	2739,917	-379,517	-548,117	-716,717	-851,597	-986,477
0,028	120	2294,180	334,858	149,9	2749,038	-124,038	-311,538	-499,038	-649,038	-799,038
0,028	120	2294,180	344,287	149,9	2758,467	131,133	-75,267	-281,667	-446,787	-611,907
0,028	120	2294,180	353,879	149,9	2768,060	381,940	156,940	-68,060	-248,060	-428,060
0,028	120	2294,180	363,794	149,9	2777,974	632,426	388,826	145,226	-49,654	-244,534
0,028	120	2294,180	374,212	149,9	2788,392	886,608	624,108	361,608	151,608	-58,392
0,028	120	2294,180	384,990	149,9	2799,170	1140,430	859,030	577,630	352,510	127,390
0,028	120	2294,180	395,963	149,9	2810,143	1389,857	1089,857	789,857	549,857	309,857
0,028	120	2294,180	407,313	149,9	2821,493	1638,907	1320,307	1001,707	746,827	491,947
0,028	120	2294,180	419,248	149,9	2833,429	1891,571	1554,071	1216,571	946,571	676,571
0,028	120	2294,180	431,606	149,9	2845,786	2143,814	1787,414	1431,014	1145,894	860,774
0,028	120	2294,180	444,197	149,9	2858,377	2391,623	2016,623	1641,623	1341,623	1041,623
0,028	120	2294,180	457,231	149,9	2871,411	2638,989	2245,389	1851,789	1536,909	1222,029
0,028	120	2294,180	470,948	149,9	2885,128	2889,872	2477,372	2064,872	1734,872	1404,872
0,028	120	2294,180	485,162	149,9	2899,342	3140,258	2708,858	2277,458	1932,338	1587,218
0,028	120	2294,180	499,656	149,9	2913,836	3386,164	2936,164	2486,164	2126,164	1766,164
0,028	120	2294,180	514,673	149,9	2928,853	3631,547	3162,947	2694,347	2319,467	1944,587

CUADRO 3

De los valore que se obtienen de la diferencia de presiones entre MAOP y PA, se debe identificar todos los positivos.

En color lila se puede apreciar los valores positivos producto de la diferencia entre MAOP y PA.

Se debe identificar también el menor valor de la diferencia entre MAOP Y P_A., ya que se requiere que la diferencia sea la menor posible por motivos de optimización energética y económica

Este grupo de valores positivos, son de los diferentes espesores existentes para diámetro de 24 plg.

De igual manera se procede con diferentes diámetros de tubería, los cuales se deben seleccionar dependiendo del análisis y criterio del diseñador.

Para este proyecto se analizarán con diámetros de: 26", 24", 22", 20", 18" 16", resultados que se pueden apreciar en los anexos.

De los resultados se seleccionan varias alternativas, de preferencia aquellas en las cuales el valor de la diferencia de presiones entre MAOP y PA sea la menor posible y utilizando en primera instancia las alternativas seleccionadas se analiza las gráficas del perfil de presiones conjuntamente con el perfil topográfico las mismas que se grafican simultáneamente en un plano de coordenadas distancia Vs. altura.

Después de realizado todo este procedimiento de cálculo se seleccionan las siguientes alternativas:

5.3.8 SELECCIÓN DE ALTERNATIVAS

ALTERNATIVA 1

De = DIAMETRO [plg]	t = ESPESOR PARED [plg]	t = ESPESOR PARED [mm]
16	1,125	28,575

Diferencia entre MAOP y PA con grado X - 65 [psi] = 15,1 psi

ALTERNATIVA 2

De = DIAMETRO [plg]	t = ESPESOR PARED [plg]
18	0,812

Diferencia entre MAOP y PA con grado X - 65 [psi] = 75,499 psi

ALTERNATIVA 3

De = DIAMETRO	t = ESPESOR	t = ESPESOR
[plg]	PARED [plg]	PARED [mm]
20	0,938	23,825

Diferencia entre MAOP y PA con grado X - 52 [psi] = 54,18 psi

ALTERNATIVA 4

De = DIAMETRO [plg]	t = ESPESOR PARED [plg]
24	0,938

Diferencia entre MAOP y PA con grado X - 52 [psi] = 127,39 psi

De las cuatro primeras alternativas la número uno es la que más se aproxima a una solución posible

analizando se puede observar que es necesario usar espesores mayores para logra que el perfil de presiones sea el adecuado

Por tanto se plantean otras alternativas y se analiza.

ALTERNATIVA 5

De = DIAMETRO [plg]	t = ESPESOR PARED [plg]	t = ESPESOR PARED [mm]	
18	1,125	28,575	

Diferencia entre MAOP y PA con grado X - 52 [psi] = 160,27 psi ALTERNATIVA 7

De = DIAMETRO [plg]	t = ESPESOR PARED [plg]	t = ESPESOR PARED [mm]	
16	1,250	31,750	

Diferencia entre MAOP y PA con grado X - 65 [psi] = 347,404 psi

ALTERNATIVA 6

De = DIAMETRO [plg]	t = ESPESOR PARED [plg]
16	1,188

Diferencia entre MAOP y PA con grado X - 65 [psi] = 188,07 psi

Con todas de estas alternativas o posibilidades se debe analizar en primera instancia la primera etapa de cálculo.

Se puede probar tantas opciones como el diseñador desee o proponga.

5.3.9 SEGUNDA ETAPA DE CÁLCULO

Utilizando las alternativas seleccionadas y los cálculos de la primera etapa de cálculo se determinan los datos disponibles.

Usando la alternativa 1 se tiene:

Tabla 5. 6 Datos alternativa 1

Diámetro de tubería (D)	16	[plg]		
Espesor de tubería (t)	1,125	[plg]		
PA = Po	6566,150	[psi]		
MAOP para grado X-65 =	6581,250	[psi]		
ΔP = MAOP - PA	15,100	[psi]		

Presión Requerida en "A"

Presión máxima admisible de operación

ALTERNATIVA 1 SELECCIONADA

 Tabla 5. 7 Datos disponibles para la segunda etapa de cálculo

Tabia 3. 7 Datos disponibles para la segunda etapa de calculo							
Datos disponibles para la segunda etapa de cálculo							
Diámetro exterior de tubería (D)	16	[plg]	0,406	[m]			
Espesor de tubería (t)	1,125	[plg]	0,029	[m]			
Esfuerzo mínimo de fluencia (S)	65000	[psi]					
Factor de Diseño (F)	0,72						
Factor de Junta (J)	1						
Factor de Temperatura (T)	N/A	N/A		Esta	do Estable		
Densidad (ρ)	896,7	[Kg/m³]	55,979	[lb/pie³]			
Caudal (Q)	5000	[Bls/h.]	794,935	[m³/h]	120000	[B/d]	
Diámetro exterior (D)	16	[plg.]	0,406	[m]	1,333	[pies]	
Espesor de pared del ducto (t)	1,125	[plg]	0,029	[m]	0,094	[pies]	
Diámetro interior de tubería (Di)	13,75	[plg.]	0,349	[m]	1,146	[pies]	
Viscosidad (v)	35,1	[cs]	0,126	[m²/h]	0,000378	[pie²/s]	
Rugosidad Relativa (ε/D)	0,00011						
Longitud o progresiva (estC-estA)	93,143	[Milla]	149,9	[Km]	149900	[m]	
altura Estación A	0	[pies]	0	[Km]	0	[m]	
altura Estación C	5905,512	[pies]	1,8	[Km]	1800	[m]	
Diferencial de altura (ΔHA-C)	5905,512	[pies]	1,8	[Km]	1800	[m]	
Gravedad (g)	9,8	[m/s ²]	32,152	[pies/s²]			
Presión mínima de operación (Pm)	50	[psi]	344738	[Pa]	[Pa] para cubrir la presión de vapo		n de vapor
Velocidad de flujo (Vel)	7,562	[pies/s]	2,305	m/s	8297,903	m/h	
Número de Reynolds (Re)	22934,762	Flujon Turbulento					
Factor de fricción (f)	0,028						
Presión requerida en estación "A"	6566,15	[psi]					
Presión Admisible Máxima de Operación (MAOP)	6581,25	[psi]					

Usando la ecuación de energía en estado estable **Ec 12.2** entre un punto fijo conocido y un punto cualquiera del recorrido de la ruta seleccionada.

Se tiene:

$$Px = Po - \rho^*g^*(Hx - Ho) - f^*\rho^*V^2^*(Lx - Lo)/2^*Di$$

Donde:

Px = presión en cualquier punto "x" del recorrido "L"

Po = presión total necesaria

Hx = Altura en un punto "X"

Ho = Altura inicial en el punto "A"

Lx = Distancia al punto "X"

Lo = Distancia en el Punto inicial "A" o punto de inicio = 0

$$\rho^*g^*$$
 (Hx - Ho) = Pérdidas de Presión por altura
f * ρ * V² * (Lx – Lo) / 2*Di = Pérdidas de presión por fricción:

Como: Ho = 0Lo = 0

$$Px = Po - \rho^*g^*Hx - f^*\rho^*V^2*Lx/2*Di$$

Se sabe que:

PA = Po = 6566,150 [psi] = presión requerida en la estación "A"

 $\rho * g * Hx = gradiente de presión por altura en función de la posición$

f * ρ * V² * Lx / 2* Di = gradiente de presión por fricción en función de la posición

Para este cálculo se requiere ingresar los datos distancia vs. altura de la ruta seleccionada, estos datos se encuentran en los anexos.

5.3.10 SECUENCIA DE CÁLCULO

Tabla 5. 8 Cuadros de valores y secuencia de cálculo

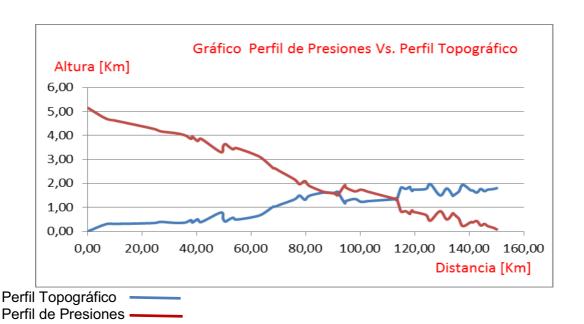

Distancia (m)	Distancia (Km)	Altura (m)	Altura (km)	Presión Total (Po) requerida [PSI] tramo "A" - "B"	Presión Total (Po) requerida [KPa] tramo "A" - "B"	Gradiente de presión estática, de cabeza o de altura [pa]	Gradiente de presión estática, de cabeza o de altura (psi)	Gradiente de presión por fricción (Kpa)	Gradiente de presión por fricción (psi)
Lx	Lx	ĮΗΧ	НХ	PA = PO	PA = PO	GPe	GPe	GPf	GPf
0,00	0,00	0,00	0,000	6566,150	45272,029	0,00	0,00	0,00	0,00
6580,00	6,58	297,00	0,297	6566,150	45272,029	2609935,02	378,54	1256,60	182,25
10375,00	10,38	313,00	0,313	6566,150	45272,029	2750537,58	398,93	1981,34	287,37
18350,00	18,35	330,00	0,330	6566,150	45272,029	2899927,80	420,60	3504,34	508,26
•	•	•	•			•			•
•		•		•		•			•
•		•							
149925,00	149,93	1803,00	1,803	6566,150	45272,029	15844150,98	2298,00	28631,53	4152,65
149984,00	149,98	1807,00	1,807	6566,150	45272,029	15879301,62	2303,10	28642,80	4154,29
150069,00	150,07	1800,00	1,800	6566,150	45272,029	15817788,00	2294,18	28659,03	4156,64
150069,10	150,07	1800,00	1,800	6566,150	45272,029	15817788,00	2294,18	28659,05	4156,64

GRAFICO 1

Gradiente total de presión con respecto a "X" a lo largo del recorrido [psi]	Gradiente total de presión con respecto a "X" a lo largo del recorrido [Pa]	Perfil de Presión [psi] a lo largo del tramo "A" - "B" expresado en cabeza de altura (presión estática)	Perfil de Presión [psi] a lo largo del tramo "A" - "B" expresado en cabeza de altura (presión estática) [Km]	
Px	Px	Px	Px	
6566,15	45272029,03	5151,77	5,15	ESTACION DE ALMACENAMIENTO Y BOMBEO "A"(ESTACIÓN AMAZONAS PS1)
6005,36	41405495,89	4711,78	4,71	
5879,85	40540153,23	4613,30	4,61	
5637,29	38867758,45	4422,99	4,42	
•	•		•	
•	•	•	•	
	•	•		
115,50	796347,19	90,62	0,09	
108,77	749929,18	85,34	0,09	
115,34	795210,15	90,49	0,09	, , ,
115,33 GRAFICO 2	795191,05	90,49	0,09	ESTACIÓN ALMACENAMIENTO Y REFINACIÓN "B" ESTACIÓN SARDINAS PS3

Graficando en un plano de coordenadas distancia (progresiva) Vs altura el perfil topográfico y el perfil de presiones se visualiza el comportamiento de la presión con respecto a la topografía del terreno.

Se analiza los resultados.

Fig. 5. 2 Gráfico perfil de presiones vs. perfil topográfico de acuerdo a cálculos realizados (alternativa 1)

En este gráfico se puede apreciar el perfil de presiones y el perfil topográfico.

El perfil de presiones siempre debe estar sobre el perfil topográfico en todo el recorrido para que sea una alternativa probable de seleccionar.

En este caso las dos curvas se intersectan por primera vez aproximadamente a los 90 Km de distancia y a los 1,7 Km de altura, lo que significa que a partir de este punto o un poco antes se debe incrementar la presión para lo cual se necesita de otra estación de bombeo en este punto.

Pero se debe tomar en cuenta que en este caso se requiere de unos 6000 psi de presión en la estación "A"

Por lo que primero se debe analizar diferentes alternativas para ver cuál es la más conveniente y tomar una correcta decisión.

5.3.11 CONSIDERACIÓN DE ALTERNATIVAS

Como alternativas se procede con algunas de las opciones en primera etapa de cálculo se utilizarán las opciones cuya diferencia entre MAOP y PA sean las menores posibles.

En la primera etapa de cálculos ya se seleccionaron 7 alternativas, las mismas que son las de menor valor en la diferencia entre MAOP y PA.

Las alternativas seleccionadas en primera instancia son:

Tabla 5. 9 Alternativas seleccionadas

ALTERNATIVA	De = DIAMETRO	t = ESPESOR		
ALILMATIVA	[plg]	PARED [plg]		
1	16	1,125		
2	18	0,812		
3	20	0,938		
4	24	0,938		
5	18	1,125		
6	16	1,188		
7	16	1,250		

Con todas las alternativas se realiza el mismo procedimiento de la segunda etapa de cálculo hasta obtener la relación de los gráficos perfil de presiones Vs. perfil topográfico.

5.3.12 RESULTADO GRÁFICO

Los resultados obtenidos de las siete (7) primeras alternativas son los siguientes: El gráfico correspondiente a cada alternativa se aprecia a continuación.

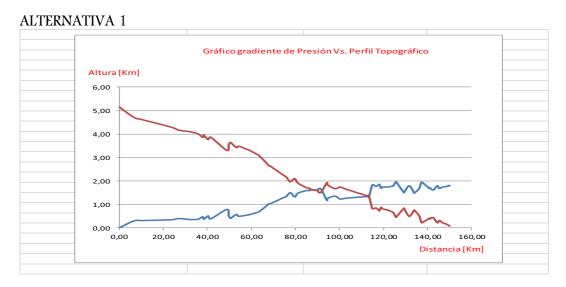


Fig. 5. 3 Gráfico perfil de presiones vs. perfil topográfico alternativa 1

Primer punto de intersección = (L = 90,2 Km ; H = 1,59 Km)

ALTERNATIVA 2

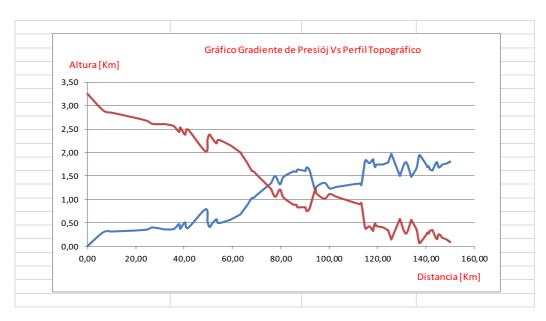


Fig. 5. 4 Gráfico perfil de presiones vs. perfil topográfico alternativa 2

Punto de Intersección (76,01 Km ; 1,22 Km)

Fig. 5. 5 Gráfico perfil de presiones vs. perfil topográfico alternativa 3

Punto de Intersección = (L=70.14 Km; H=1,23 Km])

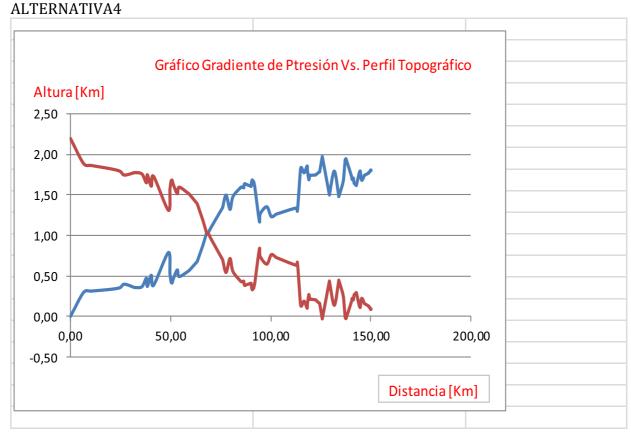
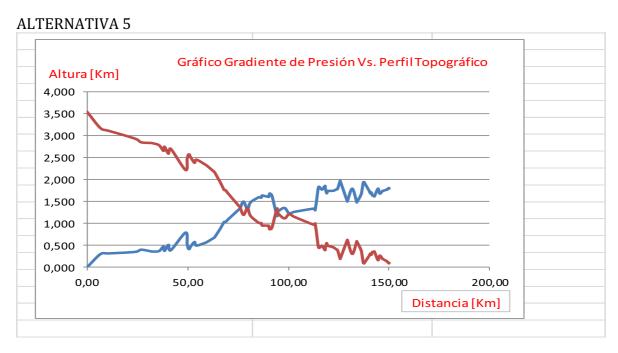



Fig. 5. 6 Gráfico perfil de presiones vs. perfil topográfico alternativa 4

Punto de Intersección (68,03 Km; 1,03 Km)

Fig. 5. 7 Gráfico perfil de presiones vs. perfil topográfico alternativa 5

Primer Punto de intersección = (76,01 Km ; 1,36 Km)

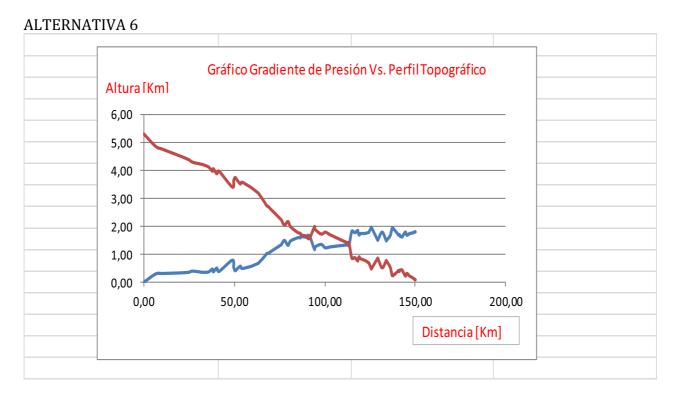


Fig. 5. 8 Gráfico perfil de presiones vs. perfil topográfico alternativa 6

Primer punto de Intersección = (85,22 Km ; 1,77 Km)

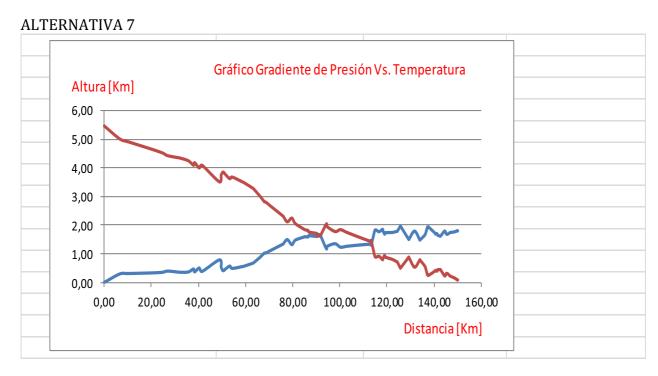


Fig. 5. 9 Gráfico perfil de presiones vs. perfil topográfico alternativa 7

Primer punto de Intersección = (90,20 Km ; 1,71 Km)

5.3.13 ANALISIS DE RESULTADOS

- 1.- De acuerdo a los resultados obtenidos se observa que no es posible el bombeo directo desde la estación de almacenamiento y bombeo "A" hasta la estación de almacenamiento y refinación "B", debido a la distancia y la altura que intervienen en el proceso de cálculo, lo que requiere demasiada presión.
- 2.- Se puede tratar de buscar una alternativa que cumpla el bombeo directo desde el punto "A" hasta el punto "B", pero la presión requerida va a ser demasiado alta, por lo que sería difícil conseguir equipos de bombeo de esa potencia, por tanto se debe considerar realizar el cálculo completo en dos tramos.
- 3.- Una vez automatizado el procedimiento de cálculo, se debe probar o analizar la mayor cantidad de posibilidades y afinar los cálculos lo mejor posible
- 4.- Para este caso es necesario que se considere la instalación de una segunda estación de bombeo a lo largo del recorrido.

5.- De acuerdo a los gráficos obtenidos con las alternativas seleccionadas, se analizan las presiones obtenidas y las necesarias para el objetivo planteado llegando a la conclusión que es necesario seleccionar las alternativas 3 o 4 para el primer tramo de diseño, es decir el tramo entre la estación "A" y la nueva estación requerida a la que se le llamará estación de bombeo "C".

Se seleccionan estas dos alternativas debido a sus presiones requeridas, relativamente bajas, como para bombear el crudo desde la estación de almacenamiento y bombeo "A", considerando la potencia de bombas existentes en el mercado.

- 6.- El punto de intersección de las curvas en las dos alternativas seleccionadas, corresponde aproximadamente a 70 Km de recorrido o distancia desde el punto de partida inicial por lo que se decide ubicar la segunda estación de bombeo cercano al punto de intersección.
- 7.- Para el primer tramo ("A" "C") = 70 Km, se puede utilizar ya sea la alternativa 3 o la alternativa 4.
- 8.- El segundo tramo comprenderá desde el km 70 hasta el Km 149,9, por lo que se requiere realizar el mismo cálculo anterior
- 9.- Para el segundo tramo ("C" "B"), con el uso de el mismo procedimiento se determina el tamaño y clase de tubería que se podría usar para el ducto, el cálculo se debe realizar desde el punto "C" hasta el punto "B"

Al punto "C" se denominará estación de bombeo "C" y se encuentra entre "A" y "B".

NOTA: Los cálculos se realizarán hasta obtener el gráfico perfil de presiones Vs perfil topográfico para cada alternativa planteada.

5.4 CONSIDERACION DE OTRA ESTACIÓN DE BOMBEO A LO LARGO DEL RECORRIDO

Al considerar otra estación de bombeo, significa que se debe diseñar en dos tramos.

Al definir la ubicación de la nueva estación de bombeo en base a las alternativas analizadas, se define el primer tramo.

El segundo tramo se calcula como si fuera un tramo independiente y se repite todo el cálculo desde el inicio.

De la misma manera que en el primer tramo en primera instancia y por criterio del diseñador se selecciona un diámetro de tubería así como las especificaciones técnicas de la misma.

El objetivo de automatizar este procedimiento es poder probar la mayor cantidad de opciones y seleccionar la mejor en todo sentido sin que lleve mucho tiempo dicha selección.

Para el desarrollo de este ejemplo utilizaremos un diámetro de 20 plg y espesor de pared 0,938 plg y de grado X-52

5.4.1 DETERMINACIÓN DE LA UBICACIÓN DE UNA SEGUNDA ESTACIÓN DE BOMBEO.

De acuerdo al análisis del gráfico el punto de intersección entre el gradiente de presión y perfil topográfico está a la distancia de 70.14 Km, y a 1,23 Km de altura de presión.

Considerando como cabeza de presión en altura a 1,23 Km.

Su equivalente de presión estática en [psi]

1,23 [Km] = 1230 [m]

$$P = \rho * g * h$$

$$P = 896.7 [Kg/m^3] * 9.8 [m/s^2] * 1230 [m]$$

 $P = 10808821.8 [Pa] = 1567.69 [psi]$

Lo que significa que 1,23 Km de altura son equivalentes a 1567,69 psi de presión estática.

Para la nueva estación de bombeo, se requiere una presión de entrada de 80 [psi], como requisito, el mismo que puede ser variable dependiendo de los requerimientos de diseño, para nuestro caso solo necesitamos requerimientos de bombeo para lo cual con 80 [psi] es suficiente para cubrir el requerimiento de succión de las bombas y evitar la presión de vapor

Por tanto relacionando 80 [psi] con altura de cabeza tenemos:

$$P = \rho * g * h$$
 por tanto:
 $h = P / \rho * g$
Sabemos que 80 [psi] = 551581,6 [Pa]
Entonces:
 $h = 551581,6$ [pa] / (896,7 [Kg/m³] * 9,8 [m/s²]
 $h = 62,768$ [m]

Por lo que la nueva estación de bombeo deberíamos ubicarla 62,77 metros más abajo en altura con respecto al punto de intersección

Sabemos que las coordenadas del el punto de intersección son:

En el punto de intersección a la distancia de 70,14 [Km], corresponde una altura de 1096 [m]

A la altura de 62,77 [m] más abajo tenemos

$$HC = 1096 [m] - 62,77 [m]$$

$$HC = 1033,23 \text{ m}$$

Para esta altura corresponde una distancia de 68 Km de acuerdo a los datos iniciales conocidos de la ruta seleccionada.

Las coordenadas de ubicación de la nueva estación de bombeo son:

```
Distancia = 68 [ Km ]

Altura = 1033.23 [ m ]
```

Punto desde donde se requiere el impulso de otro sistema de bombeo.

La nueva estación de bombeo ("C") debemos ubicarla a 68 [Km] de recorrido o distancia y desde la estación de bombeo "C" hasta la estación de almacenamiento y refinación "B" se tiene en longitud, la longitud total menos 68 km, que es la distancia a la cual se encuentra la estación "C" desde la estación "A

Distancia o longitud del segundo tramo ("C" - "B") del recorrido.

```
L_{C-B} = L_{A-B} - L_{A-C}

L_{C-B} = 149,9 [Km] - 68 [Km] = 81,9 [Km]
```

5.4.2 CÁLCULO DE PRESIONES

Calculo de presión máxima de operación admisible, presión máxima requerida en "A", gradiente de presiones por fricción y gradiente de presión por altura o cabeza.

5.4.2.1 *Consideraciones iniciales*

ENUNCIADO DEL NUEVO PROBLEMA (Segundo Tramo)

Diseño hidráulico de un oleoducto que transporta crudo medio desde un punto "C" (estación de bombeo "C") hasta un punto "B" (estación de almacenamiento y refinación "B") en condiciones de estado estable.

"C" = Estación de bombeo "C" nueva estación considerada

"B" = Estación de almacenamiento y refinación "B"

Las consideraciones iniciales de diseño se mantienen constantes:

El ducto se llevará de manera aérea a lo largo del recorrido

Como requerimiento mínimo de presión para que el sistema de bombeo de la estación de bombeo "C" tenemos:

El requerimiento de presión de entrada necesaria para la estación "C" es de 80 [psi].

El requerimiento de presión de entrada necesaria para la estación "B" es de 120 [psi]

Para el análisis de este tramo "C" - "B" se procede de la misma manera que el utilizado para el recorrido total es decir el tramo "A" - "B".

Y finalmente seleccionar una alternativa que complete el recorrido.

La solución gráfica debe ser aproximadamente como en el siguiente esquema.

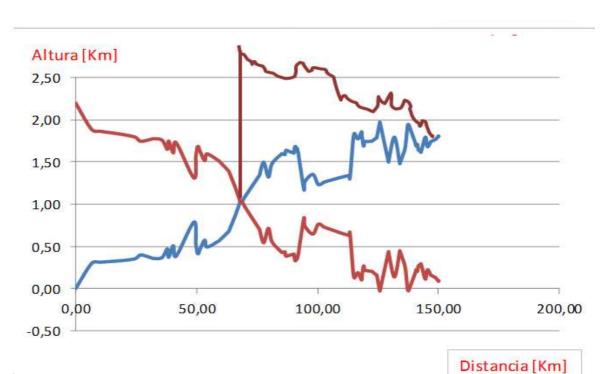


Fig. 5. 10 Gráfico perfil de presiones requerido para el segundo tramo

Con este procedimiento de cálculo se completa el algoritmo para realizar el diseño hidrodinámico de un oleoducto.

CAPÍTULO 6

CONCLUSIONES Y RECOMENDACIONES

- **6.1.-** Esta tesis desarrolla el algoritmo matemático que permite diseñar oleoductos hidrodinámicamente y automatiza el algoritmo mediante el uso del software de nombre Matlab.
- **6.2.-** Este estudio es la aplicación de una programación genérica para el diseño hidrodinámico de un oleoducto.
- **6.3.-** Este proyecto puede ser utilizado como herramienta de enseñanza para los programas de maestría relacionados con el tema (oleoductos), el mismo que debe complementarse con proyectos futuros.
- **6.4.-** Las ecuaciones en estado Estable son buenas aproximaciones del comportamiento del fluido para diseño de ductos, ya que normalmente no se dispone de datos suficientes del comportamiento del fluido con respecto al tiempo durante la fase de diseño y es un método relativamente rápido de cálculo para ser utilizado en etapa de presupuestación.
- **6.5.-** Existen diferentes formas y métodos para diseñar hidrodinámicamente un oleoducto dependiendo de los datos y las condiciones disponibles, así como de los requerimientos primeros o iniciales.
- **6.6.-** El diseño hidrodinámico o hidráulico de un oleoducto es una parte del diseño Integral de un ducto, ya que se debe tomar en cuenta muchos temas y aspectos como seguridad, economía, facilidad de instalación y montaje, operatividad, mantenimiento, etc. para diseñar completamente un oleoducto
- **6.7.-** Como temas complementarios se sugiere que se plantee como proyecto realizar la misma automatización del diseño hidrodinámico de un oleoducto pero

ya no en estado estable, sino considerando la intervención e influencia de la temperatura en el proceso de transporte.

- **6.8.-** Otro proyecto puede ser de igual manera realizar la automatización del diseño hidrodinámico de un oleoducto, ya sea en estado estable o nó, pero considerando ramales de inyección o entrada al oleoducto de igual o diferente °API, en el transcurso del recorrido y también ramales de desviación o descarga en cualquier punto del recorrido.
- **6.9.-** Cada uno de estos proyectos puede servir como herramientas de enseñanza dentro de los estudios direccionados a la Industria Hidrocarburífera.

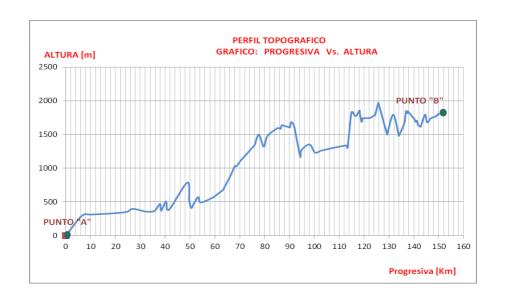
CAPÍTULO 7

REFERENCIAS BIBLIOGRÁFICAS

- SIMULACION DE SISTEMAS DE CONTROL CONTINUOS CON Matlab y Simulink; Universidad de Oviedo, Ingeniería de Sistemas y Automática, Gijón, 2006
- KATSUHIKO OGATA; Problemas de Ingeniería de Control utilizando Matlab, University of Minesota, Departamento de Informática y Automática, Prentice Hall Iberia, Madrid 1999.
- SOHICHIRO NAKAMURA; Análisis Numérico y Visualización Gráfica con Matlab, The Ohio State University, Prentice-Hall Hispanoamericana, S.A., México 1997
- **4.** INTRODUCCION A LAS OPERACIONES DE OLEODUCTOS;IPL Technology & Consulting Services Inc., Edmonton , Alberta Canada, 1995.
- JORGE PAZMIÑO URQUIZO; Diseño de Oleoductos, Unidad de Investigación y Desarrollo Tecnológico PETROECUADOR
- **6.** FUNDAMENTOS PARA EL DISEÑO DE OLEODUCTOS, Comportamiento avanzado de Fluidos (1995), IPL Technology & Consulting Services Inc, 7th floor IPL Tower, 10201 Jasper Avenue, Edmonton, Alberta Canada 15J 3N7.
- **7.** MOHINDER L. NAYYAR, P.E. PIPING HANDBOOK, Seventh Edition, Mc Graw Hill Handbooks.
- **8.** CÓDIGO ASME B31.4; Pipeline Transportation Systems for liquid hidrocarbons and other liquids, ASME code for pressure piping,B31 an American National Standard, The American Society of Mechanical Engineers, Three Park Avenue New York, NY 10016-5990, USA.
- **9.** PIPELINE RULES OF THUMB HANDBOOK, Quick and accurate solutions to your everyday pipeline problems, Gulrf Professional Publishing, E.W. McAllister, Editor, 2002.
- **10.** COMITÉ DE NORMALIZACIÓN DE PETROLEOS MEXICANOS Y ORGANISMOS SECUNDARIOS (PEMEX), Tubería de acero para recolección y transporte de hidrocarburos amargos, México, DF., 08 de agosto del 2000.
- **11.**CÓDIGO ASME B73.1; Specification for horizontal end suction Centrifugal Pumps for Chemical process, an American National Standard, The American Society of Mechanical Engineers, Three Park Avenue New York, NY 10016-5990, USA., copyright 2003.
- **12.** OPERACIÓN DE BOMBAS, Equipos para Oleoductos (1995), IPL Technology & Consulting Services Inc, 7th floor IPL Tower, 10201 Jasper Avenue, Edmonton, Alberta Canada 15J 3N7.
- 13. IGOR J. KARASSIK, Pump Handbook, Third Edition Mc Graw Hill, copyright 2001.
- **14.** SELECCIÓN DE LAS UNIDADES DE BOMBEO:, Técnicas básicas de Operación; IPL Technology & Consulting Services Inc, Edmonton, Alberta Canada, 1995.
- **15.** CAMBIOS HIDRAÚLICOS EN BOMBAS CENTRÍFUGAS DE PROCESO, Flowserve Pump Division, Engineered Services.

- **16.** ESTACIONES DE BOMBEO, Comportamiento básico de Fluidos, (1997) IPL Technology & Consulting Services Inc, 7th floor IPL Tower, 10201 Jasper Avenue, Edmonton, Alberta Canada 15J 3N7.
- **17.** ASPECTOS DE YACIMIENTOS DE CRUDOS PESADOS, Data and Consulting Services, Schlumberger.
- **18.** OPERACIÓN DEL SISTEMA DEL OLEODUCTO DE CRUDOS PESADOS, área de Operaciones y Mantenimiento, OCPE-OM-P-00-19.M-00-01, 01 de Agosto del 2008.
- **19.** PIPELINE SYSTEM DESIGN, Mike Yoon, Ph.D., Yoon Consulting, Catedrático de la Maestría en Sistemas de Transporte de Petroleo y Derivados, FIM, EPN.
- 20. OCP PROJECT, CRUDE PIPELINE, OCP_Fill_300B, 2001.
- **21.** API SPEC 5L Specification for Line Pipe, Tabla 6C Plain-end Line Pipe Dimensions, Weights per unit Length, and test pressures for sizes, 65/8 through 80 (U.S. Customary Units)

ANEXO 1


Coordenadas distancia y altura de la ruta utilizada para los cálculos.

Datos obtenidos del documento: OCP PROJECT, CRUDE PIPELINE , OCP_Fill_300B, 2001.

DATOS ALTURA Vs. DISTANCIA

Distancia (m)	Distancia (Km)	Altura (m)	Altura (km)
L	L	Н	Н
0,00	0,00	0,00	0,000
6580,00	6,58	297,00	0,297
10375,00	10,38	313,00	0,313
18350,00	18,35	330,00	0,330
24477,00	24,48	353,00	0,353
26948,00	26,95	398,00	0,398
31975,00	31,98	357,00	0,357
35656,00	35,66	366,00	0,366
37907,00	37,91	471,00	0,471
38409,00	38,41	371,00	0,371
40357,00	40,36	508,00	0,508
41553,00	41,55	386,00	0,386
48889,00	48,89	788,00	0,788
49647,00	49,65	533,00	0,533
50756,00	50,76	413,00	0,413
51441,00	51,44	469,00	0,469
53341,00	53,34	574,00	0,574
54280,00	54,28	492,00	0,492
58900,00	58,90	560,00	0,560
59412,00	59,41	570,00	0,570
63300,00	63,30	678,00	0,678
66111,00	66,11	876,00	0,876
68028,10	68,03	1033,00	1,033
70143,00	70,14	1096,00	1,096
76013,00	76,01	1344,00	1,344
77688,00	77,69	1497,00	1,497
79662,00	79,66	1321,00	1,321
81152,00	81,15	1479,00	1,479
85219,00	85,22	1597,00	1,597
86526,00	86,53	1586,00	1,586
87042,00	87,04	1637,00	1,637
90197,00	90,20	1604,00	1,604
91468,00	91,47	1657,00	1,657
91973,00	91,97	1611,00	1,611

94317,00	94,32	1175,00	1,175
98028,00	98,03	1353,00	1,353
102643,00	102,64	1261,00	1,261
112648,00	112,65	1337,00	1,337
113286,00	113,29	1301,00	1,301
114337,00	114,34	1646,00	1,646
115056,00	115,06	1835,00	1,835
116646,00	116,65	1772,00	1,772
118138,00	118,14	1856,00	1,856
119939,00	119,94	1742,00	1,742
120047,00	120,05	1741,00	1,741
122571,00	122,57	1748,00	1,748
124336,00	124,34	1786,00	1,786
125706,00	125,71	1971,00	1,971
129281,00	129,28	1498,00	1,498
131716,00	131,72	1793,00	1,793
133889,00	133,89	1492,00	1,492
135742,00	135,74	1622,00	1,622
137181,00	137,18	1938,00	1,938
140485,00	140,49	1715,00	1,715
141593,00	141,59	1643,00	1,643
142700,00	142,70	1614,00	1,614
144177,00	144,18	1775,00	1,775
146754,00	146,75	1741,00	1,741
148939,00	148,94	1769,00	1,769
150069,10	150,07	1800,00	1,800

ANEXO 2

Table 6C (Continued)—Plain-End Line Pipe Dimensions, Weights per Unit Length, and Test Pressures for Sizes $6^{5}/_{8}$ through 80 (U.S. Customary Units)

(1)	(2)	(3)	(4)	(5)		(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15
	Specified Outside Diameter	Specified Wall Thickness	Plain-End Weight per Unit Length	Calculated Inside Diameter ^a		40.1.00		М	inimum	Test Pre	essure (p	si) ^b			
Size	D (in.)	<i>t</i> (in.)	w _{pe} (lb/ft)	<i>d</i> (in.)		Grade A	Grade B	Grade X42	Grade X46	Grade X52	Grade X56	Grade X60	Grade X65	Grade X70	Grad X8
14	14.000	0.312	45.65	13.376	Std.	800	940	1590	1740	1970	2120	2270	2460	2650	300
					Alt.	1000	1170	1590	1740	1970	2120	2270	2460	2650	303
14	14.000	0.344	50.22	13.312	Std.	880	1030	1750	1920	2170	2340	2510	2720	2920	300
					Alt.	1110	1290	1750	1920	2170	2340	2510	2720	2920	33
14	14.000	0.375	54.62	13.250	Std.	960	1130	1910	2090	2370	2550	2730	2960	3000	30
					Alt.	1210	1410	1910	2090	2370	2550	2730	2960	3190	36
14	14.000	0.406	59.00	13.188	Std.	1040	1220	2070	2270	2560	2760	2960	3000	3000	30
	14.000	0.420	62.70		Alt.	1310	1520	2070	2270	2560	2760	2960	3200	3450	39
14	14.000	0.438	63.50	13.124	Std.	1130	1310	2230	2450	2770	2980	3000	3000	3000	30
14	14.000	0.460	(7.04	12.002	Alt.	1410	1640	2230	2450	2770	2980	3190	3460	3720	42
14	14.000	0.469	67.84	13.062	Std.	1210	1410	2390	2620	2960	3000	3000	3000	3000	30
14	14.000	0.500	72.16	12.000	Alt.	1510	1760	2390	2620	2960	3190	3420	3700	3990	45
177	17.000	0.000	72.16	13.000	Std. Alt.	1290 1610	1500 1880	2550 2550	2790 2790	3000	3000	3000	3000	3000	30
14	14.000	0.562	80.73	12.876	Std.	1450	1690	2870	3000	3160 3000	3400	3640	3950	4250	48
505	14.000	0.502	60.75	12.070	Alt.	1810	2110	2870	3140	3550	3000 3820	3000 4090	3000 4440	3000 4780	30
14	14.000	0.625	89.36	12.750	Std.	1610	1880	3000	3000	3000	3000	3000	3000	3000	54 30
		0.020	07.50	12.750	Alt.	2010	2340	3190	3490	3950	4250	4550	4930	5310	60
14	14.000	0.688	97.91	12.624	Std.	1770	2060	3000	3000	3000	3000	3000	3000	3000	30
				12.007	Alt.	2210	2580	3510	3840	4340	4680	5010	5430	5850	66
14	14.000	0.750	106.23	12.500	Std.	1930	2250	3000	3000	3000	3000	3000	3000	3000	30
					Alt.	2410	2800	3830	4190	4740	5100	5460	5920	6380	72
14	14.000	0.812	114.48	12.376	Std.	2090	2440	3000	3000	3000	3000	3000	3000	3000	30
					Alt.	2610	2800	4140	4540	5130	5520	5920	6410	6900	72
14	14.000	0.875	122.77	12.250	Std.	2250	2630	3000	3000	3000	3000	3000	3000	3000	30
					Alt.	2800	2800	4460	4890	5530	5950	6380	6910	7260	72
14	14.000	0.938	130.98	12.124	Std.	2410	2800	3000	3000	3000	3000	3000	3000	3000	30
					Alt.	2800	2800	4780	5240	5920	6380	6830	7260	7260	72
14	14.000	1.000	138.97	12.000	Std.	2570	2800	3000	3000	3000	3000	3000	3000	3000	30
		1-111-A-111-111-11			Alt.	2800	2800	5100	5590	6310	6800	7260	7260	7260	72
14	14.000	1.062	146.88	11.876	Std.	2730	2800	3000	3000	3000	3000	3000	3000	3000	30
					Alt.	2800	2800	5420	5930	6710	7220	7260	7260	7260	72
14	14.000	1.125	154.84	11.750	Std.	2800	2800	3000	3000	3000	3000	3000	3000	3000	30
1.4	14,000	1.250	170.27	11.500	Alt.	2800	2800	5740	6280	7100	7260	7260	7260	7260	72
14	14.000	1.250	170.37	11.500	Std.	2800	2800	3000	3000	3000	3000	3000	3000	3000	30
					Alt.	2800	2800	6380	6980	7260	7260	7260	7260	7260	72
16 ^c	16.000	0.188	31.78	15.624	C+A	420	400	940	020	1040	1120	1200	1200	1.400	• •
10	10.000	0.100	31.76	13.024	Std. Alt.	420 530	490 620	840 840	920 920	1040	1120	1200	1300	1400	16
16 ^c	16.000	0.203	34.28	15.594						1040	1120	1200		1400	16
••	10.000	0.200	34.20	13.334	Std. Alt.	460 570	530	910 910	990	1120	1210	1290		1510	17
16 ^c	16.000	0.219	36.95	15.562	Std.	490	670 570	980	990 1070	1120 1210	1210 1300	1290 1400		1510 1630	17 18
	. 3.000	J.E.17		15.002	Alt.	620	720	980	1070		1300	1400		1630	18
16 ^c	16.000	0.250	42.09	15.500	Std.	560	660	1120	1220	1380	1490	1590		1860	21
	~~				Alt.	700	820	1120	1220	1380	1490			1860	21
16 ^c	16.000	0.281	47.22	15.438	Std.	630	740	1250	1370		1670				23
			iodita aa ti		Alt.	790		1250	1370	1550	1670	1790			23
16	16.000	0.312	52.32	15.376	Std.	700	820	1390	1520	1720	1860	1990			26
				5145550NF33	Alt.	880	1020	1390	1520		1860	1990			
16	16.000	0.344	57.57	15.312	Std.	770	900	1540	1680	1900	2050	2190			
					Alt.	970					2050	2190			

Table 6C (Continued)—Plain-End Line Pipe Dimensions, Weights per Unit Length, and Test Pressures for Sizes $6^5/_8$ through 80 (U.S. Customary Units)

(1)	(2)	(3)	(4)	(5)		(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)
	Specified Outside Diameter	Specified Wall Thickness	Plain-End Weight per Unit Length	Calculated Inside Diameter ^a					linimum		••••				
Size	D (in.)	<i>t</i> (in.)	w _{pe} (lb/ft)	<i>d</i> (in.)		Grade A	Grade B	Grade X42	Grade X46	Grade X52	Grade X56	Grade X60	Grade X65	Grade X70	Grade X80
16	16.000	0.375	62.64	15.250	Std.		980	1670	1830	2070	2230	2390	2590	2790	3000
10	10.000	0.373	02.04	13.230	Alt.	1050	1230	1670	1830	2070	2230	2390	2590	2790	3190
16	16.000	0.406	67.68	15.188	Std.	910	1070	1810	1980	2240	2420	2590	2800	3000	3000
		*****	0.100	107100	Alt.	1140	1330	1810	1980	2240	2420	2590	2800	3020	3450
16	16.000	0.438	72.86	15.124	Std.	990	1150	1950	2140	2420	2610	2790	3000	3000	3000
					Alt.	1230	1440	1950	2140	2420	2610	2790	3020	3260	3630
16	16.000	0.469	77.87	15.062	Std.	1060	1230	2090	2290	2590	2790	2990	3000	3000	3000
					Alt.	1320	1540	2090	2290	2590	2790	2990	3240	3490	3630
16	16.000	0.500	82.85	15.000	Std.	1130	1310	2230	2440	2760	2980	3000	3000	3000	3000
					Alt.	1410	1640	2230	2440	2760	2980	3190	3450	3630	3630
16	16.000	0.562	92.75	14.876	Std.	1260	1480	2510	2750	3000	3000	3000	3000	3000	3000
16	16 000	0.635	102.72	14.750	Alt.	1580	1840	2510	2750	3110	3340	3580	3630	3630	3630
16	16.000	0.625	102.72	14.750	Std.	1410 1760	1640 2050	2790 2790	3000	3000	3000	3000	3000	3000	3000
16	16.000	0.688	112.62	14.624	Alt. Std.	1550	1810	3000	3050 3000	3450 3000	3630 3000	3630 3000	3630 3000	3630 3000	3630 3000
10	10.000	0.000	112.02	14.024	Alt.	1940	2260	3070	3360	3630	3630	3630	3630	3630	3630
16	16.000	0.750	122.27	14.500	Std.	1690	1970	3000	3000	3000	3000	3000	3000	3000	3000
					Alt.	2110	2460	3350	3630	3630	3630	3630	3630	3630	3630
16	16.000	0.812	131.84	14.376	Std.	1830	2130	3000	3000	3000	3000	3000	3000	3000	3000
					Alt.	2280	2660	3620	3630	3630	3630	3630	3630	3630	3630
16	16.000	0.875	141.48	14.250	Std.	1970	2300	3000	3000	3000	3000	3000	3000	3000	3000
					Alt.	2460	2800	3630	3630	3630	3630	3630	3630	3630	3630
16	16.000	0.938	151.03	14.124	Std.	2110	2460	3000	3000	3000	3000	3000	3000	3000	3000
					Alt.	2640	2800	3630	3630	3630	3630	3630	3630	3630	3630
16	16.000	1.000	160.35	14.000	Std.	2250	2630	3000	3000	3000	3000	3000	3000	3000	3000
16	17,000	1.062	160.50	12.000	Alt.	2800	2800	3630	3630	3630	3630	3630	3630	3630	3630
16	16.000	1.062	169.59	13.876	Std.	2390	2790	3000	3000	3000	3000	3000	3000	3000	3000
16	16.000	1.125	178.89	13.750	Alt.	2800	2800	3630	3630	3630	3630	3630	3630	3630	3630
10	10.000	1.125	170.07	13.730	Std. Alt.	2530 2800	2800 2800	3000 3630							
16	16.000	1.188	188.11	13.624	Std.	2670	2800	3000	3000	3000	3000	3000	3000	3000	3000
	10.000		100.11	10.021	Alt.	2800	2800	3630	3630	3630	3630	3630	3630	3630	3630
16	16.000	1.250	197.10	13.500	Std.	2800	2800	3000	3000	3000	3000	3000	3000	3000	3000
					Alt.	2800	2800	3630	3630	3630	3630	3630	3630	3630	3630
18 ^c	10 000	0.100	25.00	17.624	0.1	200	440	750	020	020	000	1070	1150	10.10	
10-	18.000	0.188	35.80	17.624	Std. Alt.	380 470	440 550	750 750	820 820	920 920	990 990	1070 1070	1150	1240	1420
18 ^c	18.000	0.219	41.63	17.562	Std.	440	510	870	950	1080	1160	1240	1150 1340	1240 1450	1420 1650
••	10.000	0.217	41.05	17.502	Alt.	550	640	870	950	1080	1160	1240	1340	1450	1650
18 ^c	18.000	0.250	47.44	17.500	Std.	500	580	990	1090	1230	1320	1420	1530	1650	1890
					Alt.	630	730	990	1090	1230	1320	1420	1530	1650	1890
18¢	18.000	0.281	53.23	17.438	Std.	560	660	1110	1220	1380	1490	1590	1730	1860	2120
					Alt.	700	820	1110	1220	1380	1490	1590	1730	1860	2120
18	18.000	0.312	58.99	17.376	Std.	620	730	1240	1360	1530	1650	1770	1920	2060	2360
					Alt.	780	910	1240	1360	1530	1650	1770	1920	2060	2360
18	18.000	0.344	64.93	17.312	Std.	690	800	1360	1490	1690	1820	1950	2110	2270	2600
10	10.000	0.255	50.55	17.000	Alt.	860	1000	1360	1490	1690	1820	1950	2110	2270	2600
18	18.000	0.375	70.65	17.250	Std.	750	880	1490	1630	1840	1980	2130	2300	2480	2830
18	18.000	0.406	76.36	17.188	Alt.	940	1090	1490	1630	1840	1980	2130	2300	2480	2830
10	10.000	0.400	70.30	17.100	Std.	810	950	1610	1760	1990	2150	2300	2490	2680	3000
					Alt.	1020	1180	1610	1760	1990	2150	2300	2490	2680	3070

Table 6C (Continued)—Plain-End Line Pipe Dimensions, Weights per Unit Length, and Test Pressures for Sizes 65/8 through 80 (U.S. Customary Units)

		500 50 1													
(1)	(2)	(3)	(4)	(5)		(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)
	Specified Outside Diameter D	Specified Wall Thickness	Plain-End Weight per Unit Length		*	-			inimum	530					
Size	(in.)	<i>t</i> (in.)	w _{pe} (lb/ft)	<i>d</i> (in.)		Grade A	Grade B	Grade X42	Grade X46	Grade X52	Grade X56	Grade X60	Grade X65	Grade X70	Grade X80
18	18.000	0.438	82.23	17.124	Std.	880	1020	1740	1900	2150	2320	2480	2690	2900	3000
					Alt.	1100	1280	1740	1900	2150	2320	2480	2690	2900	3310
18	18.000	0.469	87.89	17.062	Std.	940	1090	1860	2040	2300	2480	2660	2880	3000	3000
					Alt.	1170	1370	1860	2040	2300	2480	2660	2880	3100	3540
18	18.000	0.500	93.54	17.000	Std.	1000	1170	1980	2170	2460	2640	2830	3000	3000	3000
					Alt.	1250	1460	1980	2170	2460	2640	2830	3070	3310	3630
18	18.000	0.562	104.76	16.876	Std.	1120	1310	2230	2440	2760	2970	3000	3000	3000	300
10	10,000	0.625	116.00	16.750	Alt.	1410	1640	2230	2440	2760	2970	3180	3450	3630	363
18	18.000	0.625	116.09	16.750	Std.	1250	1460	2480	2720	3000	3000	3000	3000	3000	300
18	18.000	0.688	127.32	16.624	Alt. Std.	1560 1380	1820 1610	2480 2730	2720 2990	3070	3310	3540	3630	3630	363
10	10.000	0.000	127.32	10.024	Alt.	1720	2010	2730	2990	3000 3380	3000 3630	3000	3000	3000	300
18	18.000	0.750	138.30	16.500	Std.	1500	1750	2980	3000	3000	3000	3630 3000	3630 3000	3630 3000	363 300
10.77	10100	01750	150.50	10.500	Alt.	1880	2190	2980	3260	3630	3630	3630	3630	3630	363
18	18.000	0.812	149.20	16.376	Std.	1620	1890	3000	3000	3000	3000	3000	3000	3000	300
					Alt.	2030	2370	3220	3530	3630	3630	3630	3630	3630	363
18	18.000	0.875	160.18	16.250	Std.	1750	2040	3000	3000	3000	3000	3000	3000	3000	300
					Alt.	2190	2550	3470	3630	3630	3630	3630	3630	3630	363
18	18.000	0.938	171.08	16.124	Std.	1880	2190	3000	3000	3000	3000	3000	3000	3000	300
					Alt.	2350	2740	3630	3630	3630	3630	3630	3630	3630	363
18	18.000	1.000	181.73	16.000	Std.	2000	2330	3000	3000	3000	3000	3000	3000	3000	300
10	10.000	1.0/2	102.20	15.076	Alt.	2500	2800	3630	3630	3630	3630	3630	3630	3630	363
18	18.000	1.062	192.29	15.876	Std.	2120	2480	3000	3000	3000	3000	3000	3000	3000	300
18	18.000	1.125	202.94	15.750	Alt. Std.	2660 2250	2800 2630	3630 3000	3630	3630	3630	3630	3630	3630	363
10	10.000	1.123	202.94	13.730	Alt.	2800	2800	3630	3000 3630	3000 3630	3000 3630	3000 3630	3000 3630	3000 3630	300
18	18.000	1.188	213.51	15.624	Std.	2380	2770	3000	3000	3000	3000	3000	3000	3000	300
			•10.01	15.021	Alt.	2800	2800	3630	3630	3630	3630	3630	3630	3630	363
18	18.000	1.250	223.82	15.500	Std.	2500	2800	3000	3000	3000	3000	3000	3000	3000	300
					Alt.	2800	2800	3630	3630	3630	3630	3630		3630	363
20°	20.000	0.219	46.31	19.562	Std.	390	460	830	910	1020	1100	1180	1280	1380	158
					Alt.	490	570	830	910	1020	1100	1180	1280	1380	158
20°	20.000	0.250	52.78	19.500	Std.	450	530	950	1040	1170	1260	1350	1460	1580	180
					Alt.	560	660	950	1040	1170	1260		1460	1580	180
20°	20.000	0.281	59.23	19.438	Std.	510	590	1060	1160	1320	1420			1770	
20	20,000	0.212		10.0=4	Alt.	630	740	1060	1160	1320	1420			1770	202
20	20.000	0.312	65.66	19.376	Std.	560	660	1180	1290	1460	1570			1970	
20	20.000	0.344	72.28	19.312	Alt.	700	820		1290	1460	1570			1970	
20	20.000	0.344	12.20	19.312	Std. Alt.	620 770	720 900	1300 1300	1420	1610	1730			2170	
20	20.000	0.375	78.67	19.250	Std.	680	790	1420	1420 1550	1610 1760	1730 1890	1860 2030		2170 2360	
175	_3,000	war to	, 0.07	12,000	Alt.	840	980	1420	1550	1760	1890			2360	
20	20.000	0.406	85.04	19.188	Std.	730	850		1680	1900	2050			2560	
					Alt.	910	1070		1680	1900	2050			2560	
20	20.000	0.438	91.59	19.124	Std.	790	920		1810	2050	2210			2760	
					Alt.	990	1150	1660	1810	2050	2210			2760	
20	20.000	0.469	97.92	19.062	Std.	840	980							2950	300
20	80.000	0.500			Alt.	1060				2190					
20	20.000	0.500	104.23	19.000	Std.	900					2520			3000	
					Alt.	1130	1310	1890	2070	2340	2520	2700	2930	3150	360

Table 6C (Continued)—Plain-End Line Pipe Dimensions, Weights per Unit Length, and Test Pressures for Sizes $6^5/_8$ through 80 (U.S. Customary Units)

445			19.20			79-21	1-1	920		750.00	100,000	1,000		Approxime	
(1)	(2)	(3)	(4)	(5)	-	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)
	Specified Outside Diameter D	Specified Wall Thickness		Calculated Inside Diameter ^a d		Grada	Grada		linimum Grade			- · ·	Crada	Condo	Condo
Size	(in.)	<i>t</i> (in.)	w _{pe} (lb/ft)	(in.)		A	B	X42	X46	X52	X56	X60	X65	X70	Grade X80
20	20.000	0.562	116.78	18.876	Std.	1010	1180	2120	2330	2630	2830	3000	3000	3000	3000
					Alt.	1260	1480	2120	2330	2630	2830	3030	3290	3540	3630
20	20.000	0.625	129.45	18.750	Std.	1130	1310	2360	2590	2930	3000	3000	3000	3000	3000
					Alt.	1410	1640	2360	2590	2930	3150	3380	3630	3630	3630
20	20.000	0.688	142.03	18.624	Std.	1240	1440	2600	2850	3000	3000	3000	3000	3000	3000
20	20.000	0.750	15121	10.500	Alt.	1550	1810	2600	2850	3220	3630	3630	3630	3630	3630
20	20.000	0.750	154.34	18.500	Std.	1350	1580	2840	3000	3000	3000	3000	3000	3000	3000
20	20.000	0.812	166.56	18.376	Alt. Std.	1690 1460	1970 1710	2840 3000	3110 3000	3510 3000	3630 3000	3630 3000	3630 3000	3630	3630
20	20.000	0.012	100.50	10.370	Alt.	1830	2130	3070	3360	3630	3630	3630	3630	3000 3630	3000 3630
20	20.000	0.875	178.89	18.250	Std.	1580	1840	3000	3000	3000	3000	3000	3000	3000	3000
				10.20	Alt.	1970	2300	3310	3620	3630	3630	3630	3630	3630	3630
20	20.000	0.938	191.14	18.124	Std.	1690	1970	3000	3000	3000	3000	3000	3000	3000	3000
					Alt.	2110	2460	3550	3630	3630	3630	3630	3630	3630	3630
20	20.000	1.000	203.11	18.000	Std.	1800	2100	3000	3000	3000	3000	3000	3000	3000	3000
					Alt.	2250	2630	3630	3630	3630	3630	3630	3630	3630	3630
20	20.000	1.062	215.00	17.876	Std.	1910	2230	3000	3000	3000	3000	3000	3000	3000	3000
20	20.000		***		Alt.	2390	2790	3630	3630	3630	3630	3630	3630	3630	3630
20	20.000	1.125	227.00	17.750	Std.	2030	2360	3000	3000	3000	3000	3000	3000	3000	3000
20	20.000	1.188	238.91	17.624	Alt.	2530	2800 2490	3630	3630	3630	3630	3630	3630	3630	3630
20	20.000	1.100	230.91	17.024	Std. Alt.	2140 2670	2800	3000 3630	3000 3630	3000 3630	3000 3630	3000 3630	3000 3630	3000 3630	3000 3630
20	20.000	1.250	250.55	17.500	Std.	2250	2630	3000	3000	3000	3000	3000	3000	3000	3000
	20.000	1.250	250.55	17.500	Alt.	2800	2800	3630	3630	3630	3630	3630	3630	3630	3630
20	20.000	1.312	262.10	17.376	Std.	2360	2760	3000	3000	3000	3000	3000	3000	3000	3000
					Alt.	2800	2800	3630	3630	3630	3630	3630	3630	3630	3630
20	20.000	1.375	273.76	17.250	Std.	2480	2800	3000	3000	3000	3000	3000	3000	3000	3000
					Alt.	2800	2800	3630	3630	3630	3630	3630	3630	3630	3630
22 ^c	22.000	0.219	50.99	21.562	Std.	360	420	750	820	930	1000	1080	1160	1250	1430
	22.000	0.219	30.77	21.502	Alt.	450	520	750	820	930	1000	1080	1160	1250	1430
22 ^c	22.000	0.250	58.13	21.500	Std.	410	480	860	940	1060	1150	1230	1330	1430	1640
					Alt.	510	600	860	940	1060	1150	1230	1330	1430	1640
22 ^c	22.000	0.281	65.24	21.438	Std.	460	540	970	1060	1200	1290	1380	1490	1610	1840
					Alt.	570	670	970	1060	1200	1290	1380	1490	1610	1840
22	22.000	0.312	72.34	21.376	Std.	510	600	1070	1170	1330	1430	1530	1660	1790	2040
	** ***		-0.51		Alt.	640	740	1070	1170	1330	1430	1530	1660	1790	2040
22	22.000	0.344	79.64	21.312	Std.	560	660	1180	1290	1460	1580	1690	1830	1970	2250
22	22,000	0.275	96.60	21.250	Alt.	700	820	1180	1290	1460	1580	1690	1830	1970	2250
22	22.000	0.375	86.69	21.250	Std.	610	720	1290 1290	1410	1600	1720	1840	1990	2150	2450
22	22.000	0.406	93.72	21.188	Alt. Std.	770 660	890 780	1400	1410 1530	1600 1730	1720 1860	1840 1990	1990 2160	2150 2330	2450 2660
	22.000	0.400	73.12	21.100	Alt.	830	970	1400	1530	1730	1860	1990	2160	2330	2660
22	22.000	0.438	100.96	21.124	Std.	720	840	1510	1650	1860	2010	2150	2330	2510	2870
500000	0000000 BISTARI	100 G G G G G	(1965)))) 150 Tu /		Alt.	900	1050	1510	1650	1860	2010	2150	2330	2510	2870
22	22.000	0.469	107.95	21.062	Std.	770	900	1610	1770	2000	2150	2300	2490	2690	3000
					Alt.	960	1120	1610	1770	2000	2150	2300	2490	2690	3070
22	22.000	0.500	114.92	21.000	Std.	820	950	1720	1880	2130	2290	2450	2660	2860	3000
22	22		100	** 05.	Alt.	1020	1190	1720	1880	2130	2290	2450	2660	2860	3270
22	22.000	0.562	128.79	20.876	Std.	920	1070	1930	2120	2390	2570	2760	2990	3000	3000
			na		Alt.	1150	1340	1930	2120	2390	2570	2760	2990	3220	3630

Table 6C (Continued)—Plain-End Line Pipe Dimensions, Weights per Unit Length, and Test Pressures for Sizes $6^5/_8$ through 80 (U.S. Customary Units)

(1)	(2)	(3)	(4)	(5)		(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)
	Specified Outside Diameter D	Specified Wall Thickness	Plain-End Weight per Unit Length	Calculated Inside Diameter ^a		Grada	Crada		SCIONO INCIDENCE NO HIND	Test Pro			6.1	6.1	
Size	(in.)	(in.)	w _{pe} (lb/ft)	(in.)		A	B	X42	X46	X52	X56	Grade X60	X65	X70	X80
22	22.000	0.625	142.81	20.750	Std.	1020	1190	2150	2350	2660	2860	3000	3000	3000	3000
					Alt.	1280	1490	2150	2350	2660	2860	3070	3320	3580	3630
22	22.000	0.688	156.74	20.624	Std.	1130	1310	2360	2590	2930	3000	3000	3000	3000	3000
					Alt.	1410	1640	2360	2590	2930	3150	3380	3630	3630	3630
22	22.000	0.750	170.37	20.500	Std.	1230	1430	2580	2820	3000	3000	3000	3000	3000	3000
	2121724767				Alt.	1530	1790	2580	2820	3190	3630	3630	3630	3630	3630
22	22.000	0.812	183.92	20.376	Std.	1330	1550	2790	3000	3000	3000	3000	3000	3000	3000
22	22.000	0.075	107.60	20.250	Alt.	1660	1940	2790	3060	3450	3630	3630	3630	3630	3630
22	22.000	0.875	197.60	20.250	Std.	1430	1670	3000	3000	3000	3000	3000	3000	3000	300
22	22.000	0.020	211.10	20.124	Alt.	1790	2090	3010	3290	3630	3630	3630	3630	3630	363
22	22.000	0.938	211.19	20.124	Std.	1530	1790	3000	3000	3000	3000	3000	3000	3000	300
22	22.000	1.000	224.49	20.000	Alt. Std.	1920 1640	2240	3220	3530	3630	3630	3630	3630	3630	363
22	22.000	1.000	224.49	20.000	Alt.	2050	1910 2390	3000 3440	3000 3630	3000	3000	3000	3000	3000	300
22	22.000	1.062	237.70	19.876	Std.	1740	2030	3000	3000	3630 3000	3630 3000	3630 3000	3630 3000	3630	363
	22.000	1.002	231.10	17.070	Alt.	2170	2530	3630	3630	3630	3630	3630	3630	3000 3630	300
22	22.000	1.125	251.05	19.750	Std.	1840	2150	3000	3000	3000	3000	3000	3000	3000	363 300
		25	251105		Alt.	2300	2680	3630	3630	3630	3630	3630	3630	3630	363
22	22.000	1.188	264.31	19.624	Std.	1940	2270	3000	3000	3000	3000	3000	3000	3000	300
			20 110 1	171021	Alt.	2430	2800	3630	3630	3630	3630	3630	3630	3630	363
22	22.000	1.250	277.27	19.500	Std.	2050	2390	3000	3000	3000	3000	3000	3000	3000	300
					Alt.	2560	2800	3630	3630	3630	3630	3630	3630	3630	363
22	22.000	1.312	290.15	19.376	Std.	2150	2500	3000	3000	3000	3000	3000	3000	3000	300
					Alt.	2680	2800	3630	3630	3630	3630	3630	3630	3630	363
22	22.000	1.375	303.16	19.250	Std.	2250	2630	3000	3000	3000	3000	3000	3000	3000	300
					Alt.	2800	2800	3630	3630	3630	3630	3630	3630	3630	363
22	22.000	1.438	316.08	19.124	Std.	2350	2750	3000	3000	3000	3000	3000	3000	3000	300
					Alt.	2800	2800	3630	3630	3630	3630	3630	3630	3630	363
22	22.000	1.500	328.72	19.000	Std.	2450	2800	3000	3000	3000	3000	3000	3000	3000	300
					Alt.	2800	2800	3630	3630	3630	3630	3630	3630	3630	363
24 ^c	24.000	0.250	63.47	23.500	Std.	380	440	790	860	980	1050	1130	1220	1310	150
	2 11000	0.2.70	03.17	25.500	Alt.	470	550	790	860	980	1050			1310	
24°	24.000	0.281	71.25	23.438	Std.	420	490	890	970	1100	1180	1260	1370	1480	
		0.5000.500			Alt.	530	610	890	970	1100	1180	1260	1370	1480	
24	24.000	0.312	79.01	23.376	Std.	470	550	980	1080	1220	1310		1520	1640	
					Alt.	590	680	980	1080	1220	1310	1400	1520	1640	
24	24.000	0.344	86.99	23.312	Std.	520	600	1080	1190		1440			1810	
					Alt.	650	750		1190						
24	24.000	0.375	94.71	23.250	Std.	560	660	1180	1290	1460	1580		1830	1970	
					Alt.	700	820	1180	1290	1460	1580		1830	1970	
24	24.000	0.406	102.40	23.188	Std.	610	710	1280	1400	1580	1710		1980	2130	
					Alt.	760	890	1280	1400	1580	1710			2130	
24	24.000	0.438	110.32	23.124	Std.	660	770	1380	1510	1710	1840	1970	2140	2300	263
•	œ				Alt.	820	960	1380	1510		1840	1970		2300	263
24	24.000	0.469	117.98	23.062	Std.	700	820	1480	1620	1830	1970			2460	28
					Alt.	880	1030	1480	1620		1970			2460	28
24	24.000	0.500	125.61	23.000	Std.	750	880	1580	1730						
24	24.000	0.570	140.01	22.074	Alt.	940		1580	1730		2100			2630	
24	24.000	0.562	140.81	22.876	Std.	840		1770							
		olivs 18			Alt.	1050	1230	1770	1940	2190	2360	2530	2740	2950	337

Table 6C (Continued)—Plain-End Line Pipe Dimensions, Weights per Unit Length, and Test Pressures for Sizes $6^{5}/_{8}$ through 80 (U.S. Customary Units)

(1) Size	Specified Outside Diameter D	Specified Wall	(4) Plain-End Weight per	(5) Calculated	· : :	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)
Size	Outside Diameter D	Wall		Calculated											
Size		Thickness	Unit Length		**	Crodo	Cendo	21.00		Test Pre		20 -6			C1
		t (in.)	w _{pe} (lb/ft)	<i>d</i> (in.)		A	Grade B	X42	X46	X52	X56	X60	X65	Grade X70	Grade X80
24		0.625	156.17	22.750	Std.	940	1090	1970	2160	2440	2630	2810	3000	3000	3000
		***************************************	100117	221100	Alt.	1170	1370	1970	2160	2440	2630	2810	3050	3280	3630
24	24.000	0.688	171.45	22.624	Std.	1030	1200	2170	2370	2680	2890	3000	3000	3000	3000
					Alt.	1290	1510	2170	2370	2680	2890	3100	3350	3610	3630
24	24.000	0.750	186.41	22.500	Std.	1130	1310	2360	2590	2930	3000	3000	3000	3000	3000
					Alt.	1410	1640	2360	2590	2930	3150	3380	3630	3630	3630
24	24.000	0.812	201.28	22.376	Std.	1220	1420	2560	2800	3000	3000	3000	3000	3000	3000
	21000				Alt.	1520	1780	2560	2800	3170	3630	3630	3630	3630	3630
24	24.000	0.875	216.31	22.250	Std.	1310	1530	2760	3000	3000	3000	3000	3000	3000	3000
24	24,000	0.029	221.25	22 124	Alt.	1640	1910	2760	3020	3410	3630	3630	3630	3630	3630
24	24.000	0.938	231.25	22.124	Std.	1410	1640 2050	2950 2950	3000 3240	3000	3000	3000	3000	3000	3000
24	24.000	1.000	245.87	22.000	Alt. Std.	1760 1500	1750	3000	3000	3630 3000	3630 3000	3630 3000	3630 3000	3630 3000	3630 3000
24	24.000	1,000	243.07	22.000	Alt.	1880	2190	3150	3450	3630	3630	3630	3630	3630	3630
24	24.000	1.062	260.41	21.876	Std.	1590	1860	3000	3000	3000	3000	3000	3000	3000	3000
					Alt.	1990	2320	3350	3630	3630	3630	3630	3630	3630	3630
24	24.000	1.125	275.10	21.750	Std.	1690	1970	3000	3000	3000	3000	3000	3000	3000	3000
					Alt.	2110	2460	3540	3630	3630	3630	3630	3630	3630	3630
24	24.000	1.188	289.71	21.624	Std.	1780	2080	3000	3000	3000	3000	3000	3000	3000	3000
					Alt.	2230	2600	3630	3630	3630	3630	3630	3630	3630	3630
24	24.000	1.250	304.00	21.500	Std.	1880	2190	3000	3000	3000	3000	3000	3000	3000	3000
200	2000	100000000000	0.000000000	02/00/00/00	Alt.	2340	2730	3630	3630	3630	3630	3630	3630	3630	3630
24	24.000	1.312	318.21	21.376	Std.	1970	2300	3000	3000	3000	3000	3000	3000	3000	3000
24	24.000	1 275	222 56	21.250	Alt.	2460	2800	3630	3630	3630	3630	3630	3630	3630	3630
24	24.000	1.375	332.56	21.250	Std.	2060	2410	3000	3000	3000	3000	3000	3000	3000	3000
24	24.000	1.438	346.83	21.124	Alt. Std.	2580 2160	2800 2520	3630 3000							
~~	24.000	1.430	340.03	21.124	Alt.	2700	2800	3630	3630	3630	3630	3630	3630	3630	3630
24	24.000	1.500	360.79	21.000	Std.	2250	2630	3000	3000	3000	3000	3000	3000	3000	3000
					Alt.	2800	2800	3630	3630	3630	3630	3630	3630	3630	3630
24	24.000	1.562	374.66	20.876	Std.	2340	2730	3000	3000	3000	3000	3000	3000	3000	3000
					Alt.	2800	2800	3630	3630	3630	3630	3630	3630	3630	3630
26 ^c	26.000	0.250	68.82	25.500	Std.	350	400	730	800	900	970	1040	1130	1210	1380
	20.000	0.250	00.02	20.000	Alt.	430	500	730	800	900	970	1040	1130	1210	1380
26 ^c	26.000	0.281	77.26	25.438	Std.	390	450	820	890	1010	1090	1170	1260	1360	1560
					Alt.	490	570	820	890	1010	1090	1170	1260	1360	1560
26	26.000	0.312	85.68	25.376	Std.	430	500	910	990	1120	1210	1300	1400	1510	1730
					Alt.	540	630	910	990	1120	1210	1300	1400	1510	1730
26	26.000	0.344	94.35	25.312	Std.	480	560	1000	1100	1240	1330	1430	1550	1670	1910
					Alt.	600	690	1000	1100	1240	1330	1430	1550	1670	1910
26	26.000	0.375	102.72	25.250	Std.	520	610	1090	1190	1350	1450	1560	1690	1820	2080
والواا	rgnanauar	agree and the			Alt.	650	760	1090	1190	1350	1450	1560	1690	1820	2080
26	26.000	0.406	111.08	25.188	Std.	560	660	1180	1290	1460	1570	1690	1830	1970	2250
~	84.000	0.100	110.00	25.12.	Alt.	700	820	1180	1290	1460	1570	1690	1830	1970	2250
26	26.000	0.438	119.69	25.124	Std.	610	710	1270	1390	1580	1700	1820	1970	2120	2430
26	26,000	0.460	128.00	25.062	Alt.	760	880	1270	1390	1580	1700	1820	1970	2120	2430
26	26.000	0.469	128.00	25.062	Std.	650 810	760 950	1360	1490	1690	1820	1950	2110	2270	2600
26	26.000	0.500	136.30	25.000	Alt. Std.	810 690	950 810	1360 1450	1490	1690	1820 1940	1950	2110	2270	2600
20	20.000	0700	130,30	25.000	Alt.	870	1010	1450	1590 1590	1800 1800	1940	2080 2080	2250 2250	2420 2420	2770 2770

Table 6C (Continued)—Plain-End Line Pipe Dimensions, Weights per Unit Length, and Test Pressures for Sizes $6^5/_8$ through 80 (U.S. Customary Units)

(1)	(2)	(3)	(4)	(5)		(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)
	Specified Outside Diameter		Plain-End Weight per Unit Length		_				linimum						
Size	<i>D</i> (in.)	<i>t</i> (in.)	w _{pe} (lb/ft)	<i>d</i> (in.)		Grade A	Grade B	Grade X42	Grade X46	Grade X52	Grade X56	Grade X60	Grade X65	Grade X70	Grade X80
26	26.000	0.562	152.83	24.876	Std.	780	910	1630	1790	2020	2180	2330	2530	2720	3000
			102.00	2.1.070	Alt.	970	1130	1630	1790	2020	2180	2330	2530	2720	3110
26	26.000	0.625	169.54	24.750	Std.	870	1010	1820	1990	2250	2420	2600	2810	3000	3000
					Alt.	1080	1260	1820	1990	2250	2420	2600	2810	3030	3460
26	26.000	0.688	186.16	24.624	Std.	950	1110	2000	2190	2480	2670	2860	3000	3000	3000
					Alt.	1190	1390	2000	2190	2480	2670	2860	3100	3330	3630
26	26.000	0.750	202.44	24.500	Std.	1040	1210	2180	2390	2700	2910	3000	3000	3000	3000
					Alt.	1300	1510	2180	2390	2700	2910	3120	3380	3630	3630
26	26.000	0.812	218.64	24.376	Std.	1120	1310	2360	2590	2920	3000	3000	3000	3000	3000
26	26,000	0.075	222.01		Alt.	1410	1640	2360	2590	2920	3150	3370	3630	3630	3630
26	26.000	0.875	235.01	24.250	Std.	1210	1410	2540	2790	3000	3000	3000	3000	3000	3000
26	26,000	0.020	251.20	24.124	Alt.	1510	1770	2540	2790	3150	3630	3630	3630	3630	3630
20	26.000	0.938	251.30	24.124	Std.	1300	1520	2730	2990	3000	3000	3000	3000	3000	3000
26	26.000	1.000	267.25	24.000	Alt. Std.	1620 1380	1890 1620	2730 2910	2990 3000	3380 3000	3630	3630	3630	3630	3630
20	20.000	1.000	201.23	24.000	Alt.	1730	2020	2910	3180	3600	3000 3630	3000 3630	3000 3630	3000	3000
					Ait.	1730	2020	2910	3100	3000	3030	3030	3030	3630	3630
28c	28.000	0.250	74.16	27.500	Std.	320	380	680	740	840	900	960	1040	1130	1290
					Alt.	400	470	680	740	840	900	960	1040	1130	
28 ^c	28.000	0.281	83.26	27.438	Std.	360	420	760	830	940	1010	1080	1170	1260	1450
					Alt.	450	530	760	830	940	1010	1080	1170	1260	
28	28.000	0.312	92.35	27.376	Std.	400	470	840	920	1040	1120	1200	1300	1400	
					Alt.	500	590	840	920	1040	1120	1200	1300	1400	1600
28	28.000	0.344	101.70	27.312	Std.	440	520	930	1020	1150	1240	1330	1440	1550	1770
					Alt.	550	650	930	1020	1150	1240	1330	1440	1550	1770
28	28.000	0.375	110.74	27.250	Std.	480	560	1010	1110	1250	1350	1450	1570	1690	
20	20.000	0.406		27.100	Alt.	600	700	1010	1110	1250	1350	1450	1570	1690	
28	28.000	0.406	119.76	27.188	Std.	520	610	1100	1200	1360	1460	1570	1700	1830	
28	28.000	0.438	129.05	27.124	Alt. Std.		760	1100	1200	1360	1460	1570	1700	1830	
20	20.000	0.436	127.03	27.124	Alt.	560 700	660 820	1180 1180	1300 1300	1460 1460	1580 1580	1690 1690	1830 1830	1970 1970	
28	28.000	0.469	138.03	27.062	Std.	600	700	1270	1390	1570	1690		1960	2110	
	-0.000	0.107	150.05	27.002	Alt.		880	1270	1390	1570	1690		1960		
28	28.000	0.500	146.99	27.000	Std.		750	1350	1480	1670	1800	1930	2090		
					Alt.		940	1350	1480	1670	1800		2090		
28	28.000	0.562	164.84	26.876	Std.		840	1520	1660	1880	2020		2350		
					Alt.	900	1050	1520	1660	1880	2020				
28	28.000	0.625	182.90	26.750	Std.	800	940	1690	1850	2090	2250	2410	2610	2810	3000
					Alt.	1000	1170	1690	1850	2090	2250	2410	2610	2810	3210
28	28.000	0.688	200.87	26.624	Std.		1030	1860			2480		2870	3000	3000
					Alt.	1110	1290	1860			2480		2870	3100	3540
28	28.000	0.750	218.48	26.500	Std.		1130	2030			2700		3000		
20	20.000	0.015	001.00	0/	Alt.		1410						3130		
28	28.000	0.812	236.00	26.376	Std.		1220								
20	20 mm	0.075	252.72	26.250	Alt.		1520								
28	28.000	0.875	253.72	26.250	Std.		1310								
28	28.000	0.938	271.36	26.124	Alt. Std		1640 1410								
20	20.000	0.336	2/1.30	20,124	Alt.		1760								
28	28.000	1.000	288.63	26.000	Std										
	_0,000	.1000	230102	_0.000	Alt										
							. 500	00	2700	3340	2000	30.00	3030	2020	5050