ESCUELA POLITECNICA NACIONAL

FACULTAD DE INGENIERIA ELECTRICA

POTENCIA REACTIVA EN CIRCUITOS CON ONDAS SINUSOIDALES CONTROLADAS

GERMAN ENRIQUE CASTRO MACANCELA

TESIS PREVIA A LA OBTENCION DEL TITULO DE INGENIERO ELECTRICO

QUITO - JULIO - 1987.

Certifico que la presente tesis, ha sido desarrollada por el señor Germán Enrique Castro Macancela, bajo mi dirección

go Banda G. DIRECTOR

AGRADECIMIENTO

Deseo dejar constancia de mi sincero agradecimiento hacia aquellas personas que de alguna manera colab<u>o</u> raron en la realización del presente trabajo.

De manera especial al Ingeniero Hugo Banda G. Direc tor de Tesis, por su valioso y desinteresado asesoramiento, a los compañeros que laboran en el Labor<u>a</u> torio de Circuitos Eléctricos por las facilidades brindadas para realizar la experimentación.

Germán Castro Macancela

A MIS PADRES

INDICE GENERAL

Introducción

Capítulo I : ASPECTOS GENERALES

1.1 Definiciones generales 5 Definiciones matemáticas 1.1.1 5 1.1.2 Simbología matemática fundamental 13 Conceptos básicos en el dominio de la frecuencia 1.1.3 14 Consideraciones generales 1.1.4 14 1.2 Técnicas de control de la corriente alterna 29 1.2.1 Control de fase 36 1.2.2 Control por ciclo integral 38 1.2.3 Troceador A.C. 39 Reguladores diferenciales 1.2.4 41 1.3 Potencia reactiva y compensación 42 Objetivo del trabajo propuesto 1.4 44

PG

1

Capítulo II : ANALISIS Y CONTROL DEL FACTOR DE POTENCIA EN CIRCUITOS CON CORRIENTE ALTERNA SINUSOIDAL CONTROLADA

2.1	Análisis de la potencia reactiva y del factor	
	de potencia para un circuito con carga resis-	
	tiva	47
2.1.1	Introducción	47
2.1.2	Análisis matemático de la potencia activa,	
	reactiva y de distorsión en un circuito con	
	carga resistiva	47
2.1.3	Análisis matemático del factor de potencia	
	para un circuito con carga resistiva	57
2.2	Control del factor de potencia	58
2.2.1	Compensación con capacitor ideal	61
2.2.2	Compensación con capacitor real	72
2.3	Potencia reactiva y factor de potencia 🏻 para	
	un circuito con carga inductiva-resitiva(R-L)	84
2.3.1	Análisis matemático de las potencias, activa,	
	reactiva y del factor de potencia para un ci <u>r</u>	
	cuito con carga inductiva-resistiva	85

2.4	Factor de potencia para un circuito con carga		
	resistiva-inductiva acoplado un circuito de		
	compensación capacitivo puro	105	
2.4.1	Análisis matemático de la potencia reactiva y		
	del factor de potencia con capacitor ideal en		
	el circuito de compensación	106	

Capítulo III : EXPERIMENTACION

3.1	Aspectos básicos de la instrumentación	119
3.2	Circuito experimental	123
3.2.1	Circuito de control	125
3.3	Resultados experimentales	128
3.3.1	Mediciones con cargas R lineales	131
3.3.2	Mediciones con cargas R no-lineales	146
3.3.3	Mediciones con carga R-L	156

Capítulo IV : CONCLUSIONES Y RECOMENDACIONES

4.1 Resultados del modelo matemático 160

4.1.1	Factor d	le potencia para una carga resistiva			
	lineal.	· · · <i>,</i> · · · · · · · · · · · · · · · · · · ·	162		
4.1.2	Factor d	le potencia para una carga resistiva			
	no-linea	a]	165		
4.1.3	Factor d	le potencia para una carga resistiva-			
	inductiv	/a	171		
4.2	Análisis de resultados1				
4.2.1	Controla	ador con cargas resistivas	174		
4.2.2	Controla	ador con carga R-L	180 [.]		
4.3	Conclust	iones y recomendaciones	182		
ANEXOS:	Nº 1	Condiciones de Dirichlet	185		
	№ 1.1	Términos de Fourier	186		
	Nº 2	Condiciones de simetría de ondas peri <u>ó</u>			
•	·	dicas	19 1		
	№ 2.1	Teorema de Parseval	194		
	Nº 3	Vatímetro, voltímetro-amperímetro osci-			
		loscopio	197		
	Nº 4	Lista de elementos del circuito exper <u>i</u>			
		mental	208		
BIBLIOGRAFIA 210					

۱

- - - - - -

.

INTRODUCCION

El uso de las diferentes formas de energía, debe ser realizado de \underline{u} na manera óptima y racional, tanto por los países que tienen gra<u>n</u> des recursos económicos, como por aquellos de economías modestas, más aún, cuando éstos no son capaces de producir energía y tienen que importar del mercado mundial.

Si la producción de energía, es a base de recursos naturales no renovables, el análisis se torna más complejo, ya que las decisiones

y la política económica adoptadas deben permitir un desarrollo con<u>s</u> tante, adecuado y acorde con la realidad histórica del mundo conte<u>m</u> poráneo.

Todo esto, hace que las diferentes ramas de la Ingeniería, partic<u>i</u> pen en la solución de los distintos casos, de una manera activa y <u>e</u> ficaz, incorporando nuevas técnicas y utilizando renovados mecanismos de operación; es decir, que día a día se requiere de una constante investigación de nuevas alternativas, para buscar mejores s<u>o</u> luciones a los diversos problemas que tiene un país.

La energía eléctrica que es utilizada de muchas formas, también r<u>e</u> quiere un tratamiento especial por parte de las dos grandes especialidades que tiene la Ingeniería Eléctrica, como son: la Electrónica y los SEP. En la actualidad, se han combinado los problemas <u>e</u> lectrónicos y de potencia, creándose la especialidad llamada Ele<u>c</u> trónica de Potencia, que también da su aporte con el control a los distintos circuitos eléctricos.

Las varias etapas que conforman un sistema Eléctrico de Potencia,c<u>o</u> mo son: la generación, transformación, transmisión, distribución y hasta la entrega al consumidor, requieren de un constante y perm<u>a</u> nente control, en especial, de los parámetros variables que se pr<u>e</u> sentan al transmitir la potencia desde el generador o generadores, hasta cuando son alimentadas las cargas conectadas al sistema.

El avance de la tecnología moderna, con la ïmplementación y uso de

los elementos electrónicos, permite controlar el flujo de grandes cantidades de potencia eléctrica. Las principales ventajas que pr<u>e</u> sentan los elementos electrónicos para control de potencia, en r<u>e</u> lación a los elementos electromecánicos, son: no hay arcos elé<u>c</u> tricos ni ruidos mecánicos, su desgaste es mínimo y su vida útil mayor, haciendo que el mantenimiento sea con menor frecuencia y por lo tanto de reducido costo. Adicionalmente se debe mencionar, que la respuesta en el control es prácticamente instantánea, logrando gobernar a la onda de corriente o voltaje en cualquier pu<u>n</u> to, dependiendo únicamente de la aplicación que se quiera dar. en los diversos circuitos o sistemas de control electrónico de Pote<u>n</u> cia.

Estas y otras son las razones por las que su utilización es cada vez mayor en campos industriales; sin embargo, debe anotarse que su operación origina también algunos inconvenientes, debidos a la forma de control que se ejerce sobre las ondas de voltaje o co rriente que alimentan una determinada carga.

En los últimos años, se han desarrollado varias investigaciones relacionadas con el efecto de las ondas distorsionadas en las redes eléctricas, consiguiéndose algunos aportes importantes a la teoría de circuitos eléctricos, como son las generalizaciones de los conceptos de potencia activa, reactiva y aparente, y la def<u>i</u> nición de una nueva componente ortogonal de potencia, denominada potencia de distorsión o residual.

Paralelamente, ha aparecido la necesidad de desarrollar métodos <u>a</u> nalíticos e instrumentales, para la determinación de las variables <u>e</u> léctricas bajo condiciones de distorsión. Posiblemente entre los aspectos mas importantes están el desarrollo de nuevas técnicas p<u>a</u> ra el control del factor de potencia, y la generación estática de potencia reactiva.

En este trabajo se presenta un estudio preliminar de la potencia reactiva y del factor de potencia en circuitos con ondas sinusoidales controladas, utilizando para el análisis en el dominio de la frecuencia, las series de Fourier, ya que los resultados que se pueden obtener, se adoptan muy facilmente a la parte experimental, con el apoyo de la instrumentación tradicional.

En el capítulo I, se dan las relaciones y definiciones generaliza das, fundamentales para la comprensión del método analítico que se desarrolla en el capítulo II, para cargas resistivas y resisti vas-inductivas; así como para el método experimental que se plantea en el capítulo III, con el apoyo de instrumentos disponibles en el Laboratorio de Circuitos Eléctricos.

Finalmente,se analizan los resultados teóricos y experimentales , estableciendo las conclusiones y recomendaciones necesarias, en el capítulo IV.

......4

ASPECTOS GENERALES

Ι

1.1. DEFINICIONES GENERALES

1.1.1 DEFINICIONES MATEMATICAS

- SERIE DE FOURIER

Toda función periódica compleja, que cumpla con las condiciones de

. 5

DIRICHLET, tal que f(t) = f(t + T) con período T, será expresada como un conjunto infinito de funciones, formando la llamada <u>SE</u> RIE DE FOURIER.

Conociendo que la función f(t) cumple con las condiciones básicas de DIRICHLET (*anexo 1*), tendrá la forma siguiente:

$$f(\omega t) = A_0 + \sum_{n=1}^{\infty} (A_n \cos n \omega t + B_n \sin n \omega t) \qquad E-1.1$$

$$f(\omega t) = A_0 + \sum_{n=1}^{\infty} C_n \operatorname{sen}(n \, \omega t + \Psi_n) \qquad \text{E-1.2}$$

donde los coeficientes: A_0 , A_n , B_n , C_n , Ψ_n de las ecuaciones E-1.1 y E-1.2 se determinan con las siguientes relaciones:

$$A_0 = \frac{1}{T} \int_0^T f(\omega t) dt \qquad E-1.3$$

$$A_{n} = \frac{2}{T} \int_{0}^{T} f(\omega t) \cos n \omega t dt \qquad E-1.4$$

$$B_{n} = \frac{2}{T} \int_{0}^{T} f(\omega t) \operatorname{sen n} \omega t \, dt \qquad \text{E-1.5}$$

$$C_n = (A_n^2 + B_n^2)^{\frac{1}{2}}$$
 E-1.6

$$\Psi_n = \operatorname{Arc} \operatorname{tg} \left(\frac{A_n}{B_n} \right)$$
 E-1.7

Mayor será la aproximación de la función compleja original, cuanto mayor sea el número de términos empleados en la serie equivalente de Fourier (*anexo* 1.1).

En la ecuación E-1.2 que define el espectro de frecuencias, A_0 , es la magnitud de la componente de frecuencia cero, la que equiv<u>a</u> le a la componente continua o valor medio (E-1.3); el resto de s<u>u</u> mandos se los denomina como las componentes alternas de frecuencia angular n ω con un ángulo de fase Ψ_n (E-1.7); conociéndose c<u>o</u> mo componente fundamental, aquella en la que n = 1.

Los límites de integración deben incluir un período completo, p<u>e</u> ro no es preciso que sea de O a T ó de O a 2π . En lugar de é<u>s</u> to, la integración puede efectuarse desde $-\frac{T}{2}$ a $\frac{T}{2}$ ó de $-\pi$ a $+\pi$, con el propósito de simplificar el estudio de la función. <u>A</u> dicionalmente dependiendo de la forma de onda a ser analizada y considerando el "tipo de simetría de la onda", se determinará cu<u>a</u> les componentes intervienen en el estudio. Los coeficientes dete<u>r</u> minados por las integrales anteriores, hacen que la serie converja uniformemente a la función en todos los puntos de discontinu<u>i</u> dad, esto para los casos más generales de ondas períodicas de fo<u>r</u> mas variadas.

– SIMETRIA

Si la forma de onda es par, todos los términos de la serie corres pondientes son cosenos, más una constante si la onda tiene un va lor medio distinto de cero, por lo tanto no se calculan los coefi cientes B_n , es decir no hay términos seno. (Anexo 2)

Si la forma de onda es impar, la serie sólo contiene senos. La on da sólo puede ser impar después de eliminar la constante, en cuyo caso su representación de Fourier contendrá simplemente tal constante y una serie de términos en seno.

Si la onda tiene simetría de "semi-onda", en la serie habrá solamente armónicos impares. Estas series contendrán términos en seno y coseno a menos que la función sea también par o impar. En todo caso A_n y B_n son nulos para $n = 2, 4, 6, \dots$ para cualquier onda con simetría de semi-onda (anexo 2).

- VALOR MEDIO O PROMEDIO (V MED)

De una función f(t) dentro del período T, es la media aritméti-

tica de sus valores instantáneos y definido por:

$$V_{\text{MED}} = \frac{1}{T} \int_{0}^{T} f(\omega t) \cdot dt \qquad \text{E-1.8}$$

Sustituyendo f(ω t) de la ecuación E-1.2 en la ecuación E-1.8 se transforma en:

$$V_{\text{MED}} = \frac{1}{T} \int_{0}^{T} \left[A_{0} + \sum_{n=1}^{\infty} C_{n} \operatorname{sen}(n \omega t + \Psi_{n})\right] dt \qquad \text{E-1.9}$$

$$V_{\text{MED}} = A_0$$
 E-1.9.a

- VALOR MEDIO CUADRATICO O VALOR EFICAZ (V $_{\rm R.M.S}$)

Dada una función f(t) de período T, su valor eficaz o raíz cuadrática media es, por definición y utilizando en la función de la expresión E-1.2

$$V_{\text{RMS}} = \left[\frac{1}{T} \int_{0}^{T} \left[A_{0} + \sum_{n=1}^{\infty} C_{n} \operatorname{sen}(n \, \omega t + \Psi_{n})\right]^{2} dt\right]^{\frac{1}{2}} \qquad \text{E-1.10}$$

9

empleando EL TEORENIA DE PARSEVAL (anexo 2.2), la ecuación E-1.10 será:

$$V_{\text{RMS}} = \left[A_0^2 + \sum_{n=1}^{\infty} \left(\frac{C_n}{\sqrt{2}} \right)^2 \right]^{\frac{1}{2}}$$
 E-1.11

La ecuación E-1.11 indica el valor RMS total de una onda compl<u>e</u> ja, siendo igual a la combinación cuadrática de su valor medio o componente continua y del valor RMS de su componente alterna. E-1.11 serán entonces

$$V_{\rm RMS} = \left[V_{\rm MED}^2 + V_{\rm RMS}^2 \right]^{\frac{1}{2}}$$
 E-1.12

- FACTOR DE PICO (K_F)

Esta definido como la relación entre la máxima amplitud y el va lor RMS de una función periódica.

$$K_{F} = \frac{Amplitud_{max}}{V_{RMS}} = -1.13$$

Para una función periódica, el cociente entre el valor RMS y el valor medio es conocido como factor de forma:

$$F = \left[\frac{A_0^2 + V_{RMS_{AC}}^2}{A_0}\right]^{\frac{1}{2}} = \left[1 + \left[\frac{V_{RMS_{AC}}}{A_0}\right]^2\right]^{\frac{1}{2}} E^{-1.14}$$

- FACTOR DE DISTORSION O DISTORSION ARMONICA TOTAL (${\tt D}_{\tt a}$)

Está definida por la relación entre el valor medio cuadrático de las componentes armónicas a partir de la segunda y el valor medio cuadrático de la componente fundamental.

$$D_{A} = \frac{\begin{bmatrix} \sum_{n=2}^{\infty} (\frac{C_{n}}{\sqrt{2}})^{2} \end{bmatrix}^{\frac{1}{2}}}{\frac{C_{1}}{\sqrt{2}}} = \frac{\begin{bmatrix} \sum_{n=2}^{\infty} C_{n}^{2} \\ n=2 \end{bmatrix}^{\frac{1}{2}}}{C_{1}}$$
 E-1.15

En la práctica la función que tenga menos del 5% de distorsión a<u>r</u> mónica total, se la considera como si fuese una sinusoide pura.

- TERMINOS DE FOURIER

Cada uno de los términos de Fourier E-1.1 se considera como una fuente de tensión independiente figura 1.1 y utilizando el *teore-* ma de superposición, se puede desarrollaren:

$$f(\omega t) = A_0 + A_1 \cos \omega t + A_2 \cos 2 \omega t + A_3 \cos 3 \omega t + A_4 \cos 4 \omega t +$$

$$+ A_5 \cos 5 \omega t + \dots A_n \cos n \omega t + \dots A_n \cos n \omega t + \dots A_n \cos n \omega t + \dots A_n \sin n \omega t + \dots A_n \cos n \omega t + \dots A_n$$

Figura 1.1 Representación de la serie de Fourier como fuentes de tensión

____12

1.1.2 SIMBOLOGIA MATEMATICA FUNDAMENTAL

$$f(\omega t) = df(\omega t)/dt$$

$$f(\omega t) = \frac{1}{T} \int_{0}^{T} f(\omega t) dt$$

V = valor RMS del voltaje

$$V_{\rm m}$$
 = valor máximo = $\sqrt{2}$ V

 $v; V = valor instantáneo y RMS de \frac{dv}{dt}; \frac{dV}{dt}$ respectivamente

 $\overline{v}\,;\overline{V}$ = valor instantáneo y RMS de \int v dt respectiva-mente

i = valor instantáneo de corriente; $i(\omega t)$

I = valor RMS de la corriente

 $I_m = amplitud de corriente máxima = \sqrt{2} I$

i;I = valor instantáneo y RMS de $\frac{di}{dt}$; $\frac{dI}{dt}$ respectivamente

i;I = valor instantáneo y RMS de ∫ i dt respectiv<u>a</u> mente

1.1.3 CONCEPTOS BASICOS EN EL DOMINIO DE LA FRECUENCIA

En este análisis se tomará en cuenta que las funciones son periódicas satisfaciendo las condiciones de *Dirichlet* (*anexo 1*), de tal forma que se puedan representar utilizando el análisis de las s<u>e</u> ries de Fourier. E-1.1. y E-1.2

1.1.4 CONSIDERACIONES GENERALES

En el circuito de la figura 1.2 se considera que la onda de volt<u>a</u> je de la fuente (v) y la de corriente (i) tienen una forma arbi traria, pero con periodicidad similar.

Figura 1.2 Circuito controlador de corriente

Yaque las funciones de corriente y voltaje son variables dependientes de ω t podrán ser expresadas como series de Fourier, mediante la ayuda de la ecuación E-1.1 y E-1.2 como:

$$v(\omega t) = V_0 + \sum_{m=1}^{\infty} \sqrt{2} V_m \operatorname{sen}(m \omega t + \Psi_{vm})$$
 E-1.16

$$i(\omega t) = I_0 + \sum_{n=1}^{\infty} \sqrt{2} I_n \operatorname{sen}(n \, \omega t + \Psi_{in}) \qquad \text{E-1.17}$$

- VALOR MEDIO CUADRATICO O RMS

En base a las definiciones dadas, E-1.10 y E-1.11, se tienen los siguientes valores RMS:

$$V = \left(v_0^2 + \sum_{m=1}^{\infty} V_m^2\right)^{\frac{1}{2}} = \left[\sum_{m=0}^{\infty} V_m^2\right]^{\frac{1}{2}}$$
E-1.18

$$I = (I_0^2 + \sum_{n=1}^{\infty} I_n^2)^{\frac{1}{2}} = \left[\sum_{n=0}^{\infty} I_n^2\right]^{\frac{1}{2}} = [-1.19]$$

- POTENCIA APARENTE

Está definida como el producto de los valores medios cuadráticos del voltaje y de la corriente

$$S = V . I$$
 E-1.20

reemplazando E-1.18 y E-1.19 en E-1.20 se tiene:

$$S = \begin{bmatrix} \sum_{m=0}^{\infty} & \sum_{m=0}^{\infty} & V_m^2 & I_n^2 \end{bmatrix}^{\frac{1}{2}} E-1.21$$

- POTENCIA INSTANTANEA

1

Está definida la potencia instantánea como el producto del voltaje

16

y corriente instantánea, como se indica:

$$p = v \cdot i$$
 E-1.22

y luego de reemplazar el voltaje (v) y la corriente (i) de las \underline{e} cuaciones E-1.16 y E-1.17 respectivamente, en E-1.22 se tiene:

$$p = \left[V_0 + \sum_{m=1}^{\infty} \sqrt{2} V_m \operatorname{sen}(m \, \omega t + \Psi_{vm}) \right] \cdot \left[I_0 + \sum_{m=1}^{\infty} \sqrt{2} V_m \operatorname{sen}(m \, \omega t + \Psi_{vm}) \right]$$

+
$$\Sigma \sqrt{2} I_n \operatorname{sen}(n \omega t + \Psi_{in})]$$
 E-1.23
n=1 E-1.23

- POTENCIA MEDIA, REAL O ACTIVA

Es el valor medio de la función en el tiempo, que representa a la potencia instantánea, siendo equivalente a la expresión:

$$P = \frac{1}{T} \int_{0}^{T} p dt \qquad E-1.24$$

donde, integrando y simplificando E-1.24 se tiene:

$$P = V_0 I_0 + \sum_{n=1}^{\infty} V_n \cdot I_n \cos(\Psi_{vn} - \Psi_{in}) \qquad E-1.25$$

Nótese que solamente intervienen los productos de los valores RMS de las componentes espectrales de corrientes y voltaje que son del mismo orden, por el coseno del ángulo de fase entre la respectiva componente de voltaje y de corriente.

Cada término del sumatorio de E-1.25 corresponde, en la *teoría* clásica, a la parte real del *Fasor de Potencia* de la respectiva componente armónica.

Si la forma de onda de una corriente distorsionada reproduce la forma de onda del voltaje aplicado, se concluye que toda la poten cia suministrada al sistema por esa corriente es una POTENCIA A<u>C</u> TIVA.

- POTENCIA REACTIVA

En los primeros años de la comercialización de la energía eléctr<u>i</u> ca, surgió la pregunta: ¿Debe pagar el usuario sólo por la energía consumida, o también se le debe cobrar por aquella energía que recibe durante un tiempo y luego la devuelve prácticamente intacta?. Si se considera que los costos de generación son iguales p<u>a</u> ra la empresa, sea que se consuma totalmente, o que parte se la devuelva, la respuesta es evidente.

Había entonces que designar de algún modo a ésta energía que exp<u>e</u> rimenta un vaivén entre la fuente y el circuito. Aunque el término "potencia" no es muy apropiado, se popularizó la expresión "p<u>o</u> tencia reactiva".

Para definir más exactamente lo que se entiende por potencia reac tiva, de tal modo que sea posible calcularla con la misma exactitud que la potencia media, pareció lógico acudir a una formulación razonable, haciendo referencia al diagrama vectorial de las funciones sinusoidales del voltaje y la corriente a los terminales de entrada del circuito. El defasaje entre el voltaje y la corrie<u>n</u> te incide directamente en la reducción de la potencia real y en el incremento de la "potencia reactiva".

 $v = \sqrt{2} V \text{ sen } \omega t$

 $i = \sqrt{2} I \operatorname{sen} (\omega t + \phi)$

 $i_{R} = \sqrt{2} I \cos \phi \sin \omega t$

$$=\sqrt{2}I_{\rm R}$$
 sen ωt

 $i_Q = \sqrt{2} I \operatorname{sen} \phi \cos \omega t$

 $= \sqrt{2} I_{Q} \cos \omega t$

Figura 1.3 Descomposición fasorial de la corriente para cálculo de potencia real y voltamperios reactivos

Partiendo de la definición de potencia media se tiene:

$$P = \frac{1}{2\pi} \int_{0}^{2\pi} (\sqrt{2} V \operatorname{sen} \omega t) [\sqrt{2} I \operatorname{sen}(\omega t + \phi)] \cdot d\omega t$$

 $P = V \cdot I \cos \phi = V \cdot I_{R}$

La potencia media resulta ser igual al producto de los valores RMS del voltaje y de la componente de la corriente que está en fase con el voltaje. Resultó entonces, natural elegir, a modo de definición arbitraria, al producto de los valores RMS del voltaje y de la componente de corriente que está en cuadratura con el volt<u>a</u>

 Para el cálculo de la potencia media y de los voltamperios reactivos se pueden utilizar la descomposición fasorial de la co rriente, tomando el fasor de voltaje como uno de los ejes de proyección.

Desde el punto de vista actual, se pueden producir defasajes entre la corriente y el voltaje, ya sea por la presencia en el circuito de elementos reactivos lineales (capacitores, inductores) o por

la acción de los elementos de estado sólido para conmutación de potencia (transistores, tiristores, diodos). Consecuentemente, en el caso general, que se tengan dispositivos de acción no-l<u>i</u> neal, que produzcan distorsiones, los voltamperios reactivos NO NECESARIAMENTE estarán asociados con el almacenamiento de energía en campos de fuerza.

Con la ayuda de la teoría clásica mediante la descomposición fas<u>o</u> rial se dirá, que la "potencia reactiva es el producto del valor . RMS del voltaje, con el valor RMS de la componente de la corriente que están en cuadratura con el voltaje.

Si las funciones de voltaje y corriente son complejas se tendrá que, por cada componente armónico de potencia real, existirá una componente de potencia reactiva en cuadratura, resultando que la potencia reactiva total es igual al sumatorio de todas las comp<u>o</u> nentes armónicas de potencia reactiva de la siguiente manera:

$$Q = \sum_{n=1}^{\infty} V_n \cdot I_n \cdot \text{sen } \phi_n \qquad \text{E-1.26}$$

donde:

$$\phi_n = \Psi_n - \Psi_{in} \qquad \text{E-1.26.a}$$

POTENCIA REACTIVA: CAPACITIVA-INDUCTIVA

.

La función de potencia reactiva capacitiva instantánea Q_c (wt)es tá determinada para un capacitor C como:

$$Q_{-}(\omega t) = C \cdot v \cdot v$$
 E-1.27

reemplazando en la ecuación E-1.27 la ecuación E-1.16 y derivándola a esta misma, tendremos que la potencia reactiva y capac<u>i</u> tiva instantánea tiene la forma:

$$Q_{c}(\omega t) = \omega C \{ V_{0} + \sum_{n=1}^{\infty} \sqrt{2} V_{n} \operatorname{sen}(n \omega t + \Psi_{n}) \}.$$

 $\{\sum_{m=1}^{\infty} \sqrt{2} V_m m \cos(m \omega t + \Psi_m)\}$

E-1.28

de donde:

$$Q_{c}(\omega t) = \omega C \{ V_{0}, \sum_{m=1}^{\infty} \sqrt{2} m V_{m} \cdot \cos(m \omega t + \Psi_{vm}) + m = 1 \}$$

$$+ \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} m \cdot V_{n} \cdot V_{m} \cdot sen[(n+m)\omega t + \Psi_{vn} + \Psi_{vm}] + m = 1 n = 1$$

$$+ \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} m V_{n} \cdot V_{m} \cdot sen[(n-m)\omega t + \Psi_{vn} - \Psi_{vm}] \}$$

$$= 1.29$$

El valor medio de la expresión E-1.29 resulta ser igual a cero,es decir, un elemento capacitivo ideal no consume energía eléctrica, simplemente la almacena y la devuelve.

La función de la potencia reactiva inductiva instantánea $\,Q^{}_{\rm L}$ (wt) está definida para una inductancia L como:

$$Q_{T_i}(\omega t) = L \cdot i \cdot i$$
 E=1.30

Para el caso general de la corriente expresada como la serie, e-

cuación E-1.31.

$$i(\omega t) = I_0 + \sum_{n=1}^{\infty} \sqrt{2} I_n \operatorname{sen}(n \, \omega t + \Psi_{in}) \qquad \text{E-1.31}$$

Reemplazando la ecuación E-1.31 en E-1.30 se transforma en:

$$Q_{L}(\omega t) = \omega L \cdot \{ I_{0} + \sum_{n=1}^{\infty} \sqrt{2} I_{n} \operatorname{sen}(n \omega t + \Psi_{in}) \} .$$

$$\{\sum_{m=1}^{\infty} \sqrt{2}m I_{m} \cdot \cos(m\omega t + \Psi_{im})\} = E-1.32$$

$$Q_{L}(\omega t) = \omega L \cdot \{I_{0} \cdot \Sigma \quad \sqrt{2} \cdot m I_{m} \cdot \cos(m \omega t + \Psi_{im}) + m = 1 \}$$

$$\begin{array}{ccc} & & & & \\ & & & \\ + & & \Sigma & \\ & & n = 1 & \\ & & m = 1 & \\ \end{array} \begin{array}{c} & & \\ & &$$

+ $\Sigma \qquad \infty$ n=1 m=1 M . I . Sen[(n-m) ω t + Ψ - Ψ]} E-1.33 El valor medio de la expresión E-1.33 es igual a cero, lo que $i\underline{n}$ dica que un elemento inductivo ideal no consume energía, solamente la almacena y la entrega.

POTENCIA RESIDUAL O POTENCIA DE DISTORSION

Si se analizan los resultados obtenidos para $P \neq Q$, se puede d<u>e</u> mostrar que en el caso de ondas distorsionadas

$$S^2 \neq P^2 + Q^2 \qquad \qquad E-1.34$$

Lo que pone de manifiesto la existencia de una componente adicional que se la puede definir como un residuo,resultante de la distorsión de las ondas, que se encuentra en cuadratura con P y Q.

$$D = \left[S^{2} - (P^{2} + Q^{2})\right]^{\frac{1}{2}} E-1.35$$

donde,utilizando la expresión E-1.21, E-1.25 y E-1.26 en E-1.35 se obtiene:

$$D = \left\{ \begin{array}{cc} \infty & \infty \\ \Sigma & \Sigma \\ m=0 & n=0 \end{array} \right. \left[\begin{array}{cc} V_m^2 & I_n^2 - V_n & V_m & I_n & I_m \\ m & n & n & m \end{array} \right]$$

$$\cos(\phi_{n} - \phi_{m})^{\frac{1}{2}}$$
 E-1.36

donde:

$$\phi_{n} = \Psi_{vn} - \Psi_{in} \qquad \text{E-1.37}$$

$$\phi_{m} = \Psi_{vm} - \Psi_{im} \qquad \text{E-1.38}$$

La componente D, toma el nombre de Potencia de Distorsión o Residual. La potencia aparente que para el caso sinusoidal es un fasor, en el caso general de ondas distorsionadas, se convierte en un vector de tres componentes.

$$S^2 = P^2 + Q^2 + D^2$$
 E-1.39

Nótese que para el caso sinusoidal:

.

$$P = V \cdot I \cdot \cos \phi$$
 E-1.40

$$Q = V$$
 . I . sen ϕ E-1.41

$$D = 0$$
 E-1.42

$$\therefore S^2 = P^2 + Q^2$$
 E-1.43

FACTOR DE POTENCIA

Está definida como la relación entre la potencia media y la potencia aparente

$$F_{p} = \frac{P}{S}$$
 E-1.44

sustituyendo las potencias de las ecuaciónes E-1.25 y E-1.20en la definición de la relación E-1.44 se tiene que:

.

$$F_{p} = \frac{V_{0} \cdot I_{0} + \sum_{n=1}^{\infty} V_{n} \cdot I_{n} \cdot \cos(\Psi_{vn} - \Psi_{in})}{V_{RMS} \cdot I_{RMS}}$$
E-1.45

igual a:

$$F_{p} = \frac{V_{0}}{V_{RMS}} \cdot \frac{I_{0}}{I_{RMS}} + \sum_{n=1}^{\infty} \frac{V_{n}}{V_{RMS}} \cdot \frac{I_{n}}{I_{RMS}} \cdot \cos(\Psi_{vn} - \Psi_{in}) \quad E-1.46$$

sabiendo que F es igual al factor de forma se tiene:

$$F_{p} = \frac{1}{F_{v}} \cdot \frac{1}{F_{i}} + \sum_{n=1}^{\infty} \frac{V_{n}}{V_{RMS}} \cdot \frac{I_{n}}{V_{RMS}} \cdot \cos(\Psi_{vn} - \Psi_{in}) \qquad \text{E-1.47}$$

TECNICAS DE CONTROL DE LA CORRIENTE ALTERNA 1.2

Para poder controlar la potencia que se suministra a una carga, _ existen algunas formas básicas de control, cuando la fuente de ali mentación es de voltaje alterno. Con fines de análisis, se considerará el voltaje alterno como puramente sinusoidal, y la fuente de voltaje con impedancia interna igual a cero (fuente ideal).
El controlador básico de corriente alterna, puede ser realizado con dos SCR'S en inverso-paralelo para el caso de cargas altamente reactivas, como indica la figura 1.4., o con un triac para el c<u>a</u> so de cargas puramente resistivas como indica la figura 1.5.

Figura 1.4. Regulador de C.A. utilizando tiristores como controladores. Carga R - L

Figura 1.5. Regulador de C.A. empleando un triac para el control. Carga R

- 30

Bajo las condiciones anotadas anteriormente, e independientemente de la técnica utilizada para el control de la corriente alterna , se pueden aplicar a este caso particular, las definiciones gener<u>a</u> les en el dominio de la frecuencia.

- El voltaje de la fuente, se asume que está dado por:

$$v(t) = \sqrt{2} V \text{ sen } \omega t$$
 E-1.48

$$\Psi_{vn} = \Psi_{v_1} = 0 \qquad \text{E-1.49}$$

- La corriente que entrega la fuente, en general, va a tener una forma de onda cuya frecuencia angular fundamental es igual a la del voltaje de la fuente (ω), y por tratarse de controlad<u>o</u> res de corriente alterna, su valor medio será siempre igual a cero (I₀ = 0), en consecuencia, la corriente tendrá la forma general:

$$i(t) = \sum_{n=1}^{\infty} \sqrt{2} I_n \operatorname{sen}(n \, \omega t + \Psi_n) \qquad \text{E-1.50}$$

POTENCIA APARENTE: Utilizando la definición descrita por la E-1.20
 y reemplazando el valor de la corriente y voltaje de las <u>e</u>
 cuaciones E-1.50 y E-1.48 se tiene que:

$$S = V \cdot I = V \cdot \left[\sum_{n=1}^{\infty} I_n^2\right]^{\frac{1}{2}}$$
 E-1.51

- POTENCIA INSTANTANEA: Puesto que por definición la Potencia ins tantánea es igual al producto del voltaje por la corriente; se reemplaza en E-1.22 las ecuaciones E-1.48 y E-1.50 resultando:

$$p = \sum_{n=1}^{\infty} 2 V \cdot I_n \operatorname{sen} \omega t \cdot \operatorname{sen}(n \omega t + \Psi_{in})$$
 E-1.52

resultado que:

$$p = \sum_{n=1}^{\infty} V \cdot I_n \cdot \{ \cos[(n-1)\omega t + \Psi_{in}] - \cos[(n+1)\omega t + \Psi_{in}] \}$$
E-1.53

- POTENCIA MEDIA: Mediante el reemplazo en la ecuación de la de finición E-1.24 con la potencia instantánea E-1.53 se tiene:

$$P = \frac{1}{T} \int_{0}^{T} p \cdot dt$$

resultando:

$$P = V \cdot I_1 \cdot \cos \phi_1$$
 E-1.54

$$\phi_1 = - \Psi_{i_1} \qquad \qquad \text{E-1.55}$$

Donde:

$$I_{1} = \frac{\sqrt{2}}{2} \left[A_{i_{1}}^{2} + B_{i_{1}}^{2} \right]^{\frac{1}{2}}$$
 E-1.56

٠

para el ángulo:

Sabiendo que las componentes fundamentales son:

$$A_{i_1} = \frac{2}{T} \int_0^T i(t) \cdot \cos \omega t \cdot dt$$

E-1.58

$$B_{i_1} = \frac{2}{T} \int_0^T i(t) \cdot \operatorname{sen} \omega t \cdot dt$$

 POTENCIA REACTIVA: Empleando la ecuación que representa a la potencia reactiva E-1.26 se tiene:

$$Q = V \cdot I_1 \cdot sen \phi_1$$
 E-1.60

 $\phi_1 = - \Psi_{i_1}$

 POTENCIA DE DISTORSION : Una vez realizado el análisis en la <u>e</u> cuación E-1.35 para la corriente y voltaje representados en las ecuaciones E-1.48 y E-1.50 se reduce a tener:

 $D = V \cdot [I^2 - I_1^2]^{\frac{1}{2}}$ E-1.61

equivalente a:

$$D = V \cdot \left[\sum_{n=2}^{\infty} I_n^2 \right]^{\frac{1}{2}}$$
 E-1.62

E-1.59

 FACTOR DE POTENCIA: Con el reemplazo en la definición dado por la relación E-1.44 tanto de la potencia media como la aparente de las ecuaciones E-1.54 y E-1.51 se tiene:

$$F_{p} = \frac{P}{S} = \frac{I_{1}}{I} \cdot \cos \phi_{1}$$
 E-1.63

El control de corriente alterna, al variar la función i(t),pr<u>o</u> voca la variación de P, Q y D y del factor de potencia, ya que todas estas magnitudes eléctricas, dependen del valor que as<u>u</u> ma la componente fundamental de la corriente, así como de su relación de fase con el voltaje de la fuente.

Si la componente fundamental de la corriente se adelanta re<u>s</u> pecto al voltaje aplicado, la potencia reactiva generada será de carácter capacitiva, en cambio si se retarda, la potencia reactiva cambia de signo, indicando que es de naturaleza indu<u>c</u> tiva. Adicionalmente, si se logra mantener la componente fund<u>a</u> mental en fase con el voltaje aplicado, la potencia reactiva <u>ge</u> nerada, será nula.

Para variar la función de la corriente, i(t), que entrega la fuente a la carga, se pueden identificar las siguientes técni-

cas fundamentales. (Con fines ilustrativos, se considera que la carga es una resistencia pura).

1.2.1 CONTROL DE FASE

Caracterizado porque el control se lo hace en cada semiciclo de la onda, existiendo conducción solo en una parte de la misma.

Este control a su vez puede ser:

- DIRECTO: Una vez que comienza el semiciclo, el tiristor permanece bloqueado, al que luego se lo envía un impulso de dispa ro con un retardo de α/ω para que per mita la conducción. Tomando en consideración la variación del ángulo de disparo α , se puede ver que la poten cia entregada a la carga también es va riable, según la figura 1.6 - a. Este control se caracteriza porque los ti ristores se bloquean de forma natural al anular su intensidad, el control de potencia es contínuo, es fácil de implementar, varía el factor de poten cia con que trabaja el generador, el ángulo α hace que se retrase la comp<u>o</u> nente fundamental de la corriente re<u>s</u> pecto de la tensión, dando lugar al <u>a</u> parecimiento de la potencia reactivainductiva. La intensidad de la carga tiene armónicos de todos los órdenes lo que produce interferencia de R.F. hay elevados $\frac{dv}{dt}$ y di/dt que producen ruidos electromagnéticos.

INVERSO: Se da cuando el interruptor de potencia conecta carga en el cruce por c<u>e</u> ro y la desconecta en un ángulo $\beta(\beta < \pi)$, figura 1.6 - b caracterizándose por ser un sistema de conmutación fo<u>r</u> zada, el sistema de control es más complejo, la interferencia de R.F. es mínima, el control de potencia es co<u>n</u> tínuo. En este caso la componente fu<u>n</u> damental de la corriente se adelanta respecto al voltaje aplicado, lo que da lugar al aparecimiento de potencia

- SIMETRICO:Este control se manifiesta como una

combinación de los dos anteriores, pues to que actúa el interruptor de potencia, conectando la carga a partir de ·un ángulo α, y desconectándola en un ángulo igual a π - α . Como consecuencia de esta simetría, se puede observar que la potencia generada por el adelanto de la componente fundamental de la corriente al voltaje de entrada v · la potencia presentada por el atraso de estos dos mismos elementos, son e-. quivalentes, lo que permite concluir que no existe generación de potencia reactiva.

1.2.2 CONTROL POR CICLO INTEGRAL

Consiste en aplicar a la carga un número entero de ciclos "N" bl<u>o</u> queando otro número entero de ciclos de un total "T". La relación de "N" y "T" hace que el regulador sea considerado como periódico ó aperiódico: figura 1.6.-.d y 1.6.- e respectivamente. Las dv/dt son de bajo valor y el contenido de armónicos es mínimo, sin em bargo hay presencia de subarmónicos de frecuencia inferior a la

del generador.

El control periódico consta de un circuito complejo, el control de potencia es en pasos discretos; tiene relación lineal entre la p<u>o</u> tencia entregada y el número de ciclos aplicados a la carga; no genera interferencia en R.F. pero si en baja frecuencia.

$$P = \frac{V^2}{R} \cdot \left(\frac{N}{T}\right)$$

El control aperiódico consta de un circuito de control sencillo,no existe relación lineal entre la potencia entregada a la carga, con los ciclos aplicados a la misma.

1.2.3 TROCEADOR AC.

Este regulador varía el voltaje RMS a la carga como muestra la figura 1.6 - g. Se caracteriza por tener componentes armónicas de alta frecuencia, según la frecuencia del troceado, que son facil mente filtrables. Fundamentalmente se utiliza para control de potencia con cargas resistivas.

.

1.2.4 REGULADORES DIFERENCIALES

En estos circuitos la tensión de salida tiene un rango más estr<u>e</u> cho de variación y se necesita de un autotransformador figura 1.7. El valor instantáneo de la tensión de salida es el de la te<u>n</u> sión máxima v_{s1} ó bien de la tensión v_{s2} . Las formas de onda se pueden ver en las figuras 1.6. - c; 1.6 - f.

Figura 1.7. Regulador diferencial de C.A.

Dependiendo de la técnica de control, pueden ser diferenciales con control de fase o con control por ciclo integral.

1.3 POTENCIA REACTIVA Y COMPENSACION

El propósito de evaluar la potencia reactiva en circuitos con ondas sinusoidales es porque, los sistemas eléctricos de potencia d<u>e</u> ben operar bajo las mejores condiciones, esto es, conseguir que la potencia transferida de la fuente a la carga sea la mayor posible, sin que se produzcan pérdidas significativas, como tampoco transferencia innecesaria, como es el caso de la potencia fluctuante.

Existen muchas razones por las que esta potencia fluctuante o de vatiada debe ser controlada; a continuación se exponen algunas de ellas:

- La existencia de esta potencia produce pérdida de energía.
- Al controlar esta potencia, mejora el perfil de voltaje del sistema con lo cual se logra una mayor capacidad de transferencia de Potencia Activa.
- Considerando la potencia activa y el voltaje constantes,el control de la potencia reactiva hace que la corriente re querida por la carga sea menor.
- Disminuir la potencia reactiva, significa mejorar el factor de potencia, lo cual es ventajoso para los usuarios que

.....42

son penalizados por tener bajo Factor de Potencia.

- Minimizar la potencia reactiva , permite optimizar la cargabilidad de los generadores.

De acuerdo con las definiciones dadas, se puede ver que la pote<u>n</u> cia reactiva es suceptible de compensación. Si una determinada ca<u>r</u> ga hace que la corriente de la fuente esté retrazada con respecto al voltaje aplicado, la potencia reactiva generada tendrá carácter inductivo, entonces se puede intercalar en paralelo con dicha ca<u>r</u> ga un generador de potencia reactiva de carácter capacitivo de un valor tal que tienda a compensar el efecto reactivo inductivo de la carga, de tal forma que la fuente "vea" a sus terminales <u>u</u> na carga puramente resistiva. De igual manera, si la carga hace que la corriente de la fuente se adelante respecto al voltaje apl<u>i</u> cado, la potencia reactiva generada será de carácter capacitivo , pudiendo ser compensada por la conexión en paralelo de un generador de potencia reactiva inductiva.

Este concepto básico de compensación, puede resultar evidente para el caso en que todas las ondas son sinusoidales y las cargas son impedancias inductivas o capacitivas, sin embargo para el c<u>a</u> so general de ondas distorsionadas. ¿ Con qué facilidad se podrá aceptar que una resistencia pura sometida a una cierta forma de control de potencia por medio de elementos no lineales (tiristo res,transistores), sea capaz de generar potencia reactiva?, y más aún, ¿ Se podrá aplicar el concepto básico de compensación a dicho caso?. Si las preguntas planteadas tienen respuestas afirmativas,c<u>a</u> be entonces preguntarse, ¿ Si una resistencia pura es capaz de generar potencia reactiva, bajo control no-lineal, que podría esperarse de un elemento reactivo sometido a la misma forma de control?.

1.4 OBJETIVO DEL TRABAJO PROPUESTO

Para quienes hemos recibido una formación dentro de los conceptos clásicos de circuitos eléctricos, no resultan evidentes las re<u>s</u> puestas a las preguntas planteadas anteriormente. Sin embargo,exi<u>s</u> te una diversidad de circuitos y sistemas en donde se manifiestan estos fenómenos que no concuerdan aparentemente, con la te<u>o</u> ría clásica; y lo que es más, son los insospechados causantes de perturbaciones, fallas, incremento de pérdidas etc, en las redes y equipos de distribución eléctrica.

En el presente trabajo, se tratará de demostrar matemática y experimentalmente la naturaleza de la potencia reactiva en circuitos bajo control no-lineal, así como sus posibles formas de compensación.

Para el efecto, se emplea como controlador no-lineal de potencia, a un par de tiristores en conexión inverso-paralelo, alimentando

a las diferentes cargas. Aunque el circuito es aparentemente simple, garantiza la universabilidad de las conclusiones que se puedan obtener, manteniendo una razonable complejidad en la manipul<u>a</u> ción matemática.

ANALISIS Y CONTROL DEL FACTOR DE POTENCIA EN CIRCUITOS CON CORRIENTE ALTERNA SINUSOIDAL CONTROLADA

En un sistema eléctrico en general, es conveniente que el factor de potencia sea igual a la unidad, lo cual se consigue cuando el voltaje y la corriente instantánea está en fase en todos los in<u>s</u>

ΙI

tantes del tiempo, efecto que se logra sólo en casos muy partic<u>u</u> lares; pero cuando el propósito es el de generalizar ya sea con diferentes formas de onda así como también variando las cargas del circuito, no se cumple este propósito, por lo que se requiere de un análisis mas amplio como el que se detalla a continuación:

2.1 ANALISIS DE LA POTENCIA REACTIVA Y DEL FACTOR DE POTENCIA PARA UN CIRCUITO CON CARGA RESISTIVA

2.1.1 INTRODUCCION

Con la ayuda del circuito de la figura 2.1., que tiene una carga resistiva $[R_L]$, una fuente de voltaje sinusoidal pura, un siste ma de control monofásico con tiristores en contra fase y más el análisis de la potencia reactiva (como indica el estudio del ca pítulo I), se puede claramente detectar y justificar la existencia de volta-amperios reactivos sin la presencia de inductancia [L].

2.1.2 ANALISIS MATEMATICO DE LAS POTENCIAS ACTIVA, REACTIVA Y DE DISTORSION EN UN CIRCUITO CON CARGA RESISTIVA

Con relación a la figura 2.1, se establece el siguiente análisis: los tiristores se los considera con pérdidas despreciables, la fuente entrega voltaje sinusoidal puro, y su impedancia de salida es mínima.

. . . . 47

Dé acuerdo con la ley de voltaje de Kirchhoff

 $v(\omega t) = v_{T} + v_{RL}$ E-2.1.1

donde:

$$v(\omega t) = \sqrt{2} N \text{ sen } \omega t$$
 E-2.1.2

$$v_{R_{L}}(\omega t) = \begin{cases} \sqrt{2} V \text{ sen } \omega t & | \\ & \alpha, \pi + \alpha... \\ 0 & | \\ & \alpha, \pi + \alpha... \\ 0 & | \\ & 0, \pi... \end{cases}$$
 E-2.1.3

$$v_{T}(\omega t) = \begin{cases} \alpha, \pi + \alpha, \dots \\ \sqrt{2} V \text{ sen } \omega t & | \\ 0, \alpha, \dots, \\ \pi, 2\pi, \dots, \\ 0 & | \\ \alpha, \pi + \alpha, \dots \end{cases} E-1.2.4$$

siendo α el ángulo de disparo de los tiristores.

Puesto que, la corriente (i) tiene la misma forma de onda que la del voltaje, cuando se trata de una carga resistiva, se la puede representar de la siguiente forma:

$$i = \begin{cases} 0 & 0 \leq \omega t \leq \alpha \\ \frac{\sqrt{2} V}{R_{L}} \sin \omega t & \alpha \leq \omega t \leq \pi \\ 0 & \pi \leq \omega t \leq (\pi + \alpha) \\ \frac{\sqrt{2} V}{R_{L}} \sin \omega t & (\pi + \alpha) \leq \omega t \leq 2\pi \end{cases}$$
 E-2.1.5

Expresada en la forma de series de Fourier, sería:

.

۱

$$i(\omega t) = \sum_{n=1}^{\infty} (A_n \cos n \omega t + B_n \sin \omega t) = E-2.1.5.a$$

$$i(\omega t) = \sum_{n=1}^{\infty} C_n \operatorname{sen}(n \, \omega t + \Psi_n)$$
 E-2.1.6

.

donde A_n , B_n , C_n , Ψ_n se determina con la ayuda de las ecuaciones E-1.4, E-1.5, E-1.6, E-1.7.

•

Para n=1 se tiene:

$$A_{1} = \frac{\sqrt{2} I}{2\pi} (\cos 2\alpha - 1)$$
 E-2.1.7

$$B_{1} = \frac{\sqrt{2}I}{2\pi} \left[\text{sen } 2\alpha + 2(\pi - \alpha) \right] \qquad \text{E-2.1.8}$$

$$C_{1} = \frac{I}{\sqrt{2}\pi} \left[(\cos 2\alpha - 1)^{2} + (\sin 2\alpha + 2(\pi - \alpha))^{2} \right]^{\frac{1}{2}} \qquad E.2.1.9$$

donde:

$$I_{1} = \frac{I}{2\pi} \left[(\cos 2\alpha - 1)^{2} + (\sin 2\alpha + 2(\pi - \alpha))^{2} \right]^{\frac{1}{2}} E-2.1.10$$

para el presente caso:

$$= \frac{V}{R_{L}}$$

Ι

E-2.1.11

como también

ı

$$\Psi_1 = \text{Arc Tg} \left| \frac{A_1}{B_1} \right| \qquad \text{E-2.1.12}$$

para n = 3, 5, 7, 9 se tiene (Anexo 2)

- .

•

$$A_{n} = \frac{\sqrt{2}I}{2\pi} \left[\frac{2}{n+1} \left\{ \cos(n+1)\alpha - 1 \right\} - \frac{2}{n-1} \left\{ \cos(n-1)\alpha - 1 \right\} \right]$$
E-2.1.13

$$B_{n} = \frac{\sqrt{2}I}{2\pi} \left[\frac{2}{n+1} \operatorname{sen}(n+1)\alpha - \frac{2}{n-1} \operatorname{sen}(n-1)\alpha\right] \qquad \text{E-2.1.14}$$

+
$$\left[\frac{2}{n+1} \operatorname{sen}(n+1) \alpha - \frac{2}{n-1} \operatorname{sen}(n-1) \alpha\right]^2$$
 E-2.1.15

$$\phi_{n} = \operatorname{Arc} \operatorname{Tg} \left[\frac{A_{n}}{B_{n}} \right]$$

.

•

Para obtener la potencia media se utilizan las ecuaciones: E-1.54 E-1.56 y E-1.57

$$P = \frac{(\sqrt{2} V)^{2}}{2 R_{T}} \left[\frac{\sec 2\alpha + 2(\pi - \alpha)}{.2\pi} \right]$$
 E-2.1.16

El valor RMS de la onda de corriente (i), está dada por:

I =
$$\frac{V}{R_{L}} \left[\frac{1}{\pi} \left(\pi - \alpha + \frac{1}{2} \operatorname{sen} 2\alpha \right) \right]^{\frac{1}{2}}$$
 E-2.1.17

•

en consecuencia, la potencia aparente resulta ser,

.

$$S = \frac{V^{2}}{R_{L}} \left[\frac{1}{\pi} \left(\pi - \alpha + \frac{1}{2} \operatorname{sen} 2\alpha \right) \right]^{\frac{1}{2}}$$
 E-2.1.18

reemplazando E-2.1.8 en E-2.1.18 resulta

$$S = V \left[\frac{V}{R_{L}} \cdot \frac{B_{1}}{\sqrt{2}} \right]^{\frac{1}{2}}$$
 E-2.1.19

Sabiendo que el voltaje v = $\sqrt{2}$ V sen ω t y que el ángulo Ψ_{vn} = = Ψ_{v_1} = 0 , la potencia reactiva, está dada por la ecuación E-1.60

$$Q = V$$
 . I_{1} . sen φ_{1}

•

Si se reemplaza φ_{1} por - Ψ_{1} , resulta:

$$Q = -V \cdot I_1 \text{ sen } \Psi_1$$
 E-2.1.20

De E-2.1.12, se puede obtener,

sen
$$\Psi_1 = \frac{A_1}{C_1}$$
 E-2.1.21

Por otro lado, recordando que:

$$I = \frac{C_1}{\sqrt{2}}$$
 E-2.1.22

Se puede efectuar los reemplazos respectivos en E-2.1.20, resul

tando:

Q = -V.
$$\frac{C_1}{\sqrt{2}}$$
. $\frac{A_1}{C_1}$ E-2.1.23
Q = -V. $\frac{A_1}{\sqrt{2}}$ E-2.1.24

reemplazando A_{1} de la ecuación E-2.1.7 se tiene:

$$Q = \frac{V^2}{2\pi R_{T}} \cdot (1 - \cos 2\alpha) = Q_{L}$$
 E-2.1.25

siendo equivalente a:

$$Q_{\rm L} = \frac{V^2}{\pi R_{\rm L}} \cdot \operatorname{sen}^2 \alpha \qquad \qquad \text{E-2.1.26}$$

La figura 2.2, permite apreciar la forma en que varía Q_L en función del ángulo α , estableciéndose que para $\alpha = \frac{\pi}{2}$, se obtiene la máxima potencia reactiva inductiva.

Si bien es cierto, hasta el momento aparece Q_L como resultado de aplicar las definiciones generalizadas al circuito considerado, en

la parte siguiente, se tratará de demostrar que Q_{L} es una pote<u>n</u> cia reactiva pura, tal y como podría ser generada por un inductor cuya inductancia equivalente estaría dada por:

 $L_{eq} = \frac{\pi R_{L}}{\omega \operatorname{sen}^{2} \alpha}$ Q_{T.} V.A.R K = 122,37 V.A.R. $Q_r = K \operatorname{sen}^2 \alpha$ 130,76 120,76 -110,64 100,58 90,52 80,47 70,41 60,35 50,29 40,23 30,17 . 20,12 . 10,06 12 24 1 36 α • 0 48 60 72 84 96 108 120 156 168 180 132 144

E-2.1.27

La potencia de distorsión se obtendrá de las ecuaciones anteriores:

$$D = \frac{V^2}{R_L} \left[\frac{1}{\pi} \left\{ \pi - \alpha + \frac{1}{2} \sin 2 \alpha - \frac{1}{2} \left(\pi - \alpha + \frac{1}{2} \sin 2 \alpha \right)^2 - \frac{1}{4\pi} \left(1 - \cos 2 \alpha \right)^2 \right]^{\frac{1}{2}}$$
 E-2.1.28

$$D = V \left[\frac{V}{R_{L}} \cdot \frac{B_{1}}{\sqrt{2}} - \left[\frac{C_{1}}{\sqrt{2}}\right]^{2}\right]^{\frac{1}{2}} E-2.1.29$$

2.1.3 ANALISIS MATEMATICO DEL FACTOR DE POTENCIA PARA UN CIRCUITO CON CARGA RESISTIVA

Una vez analizadas las potencias del circuito de la figura 2.1,co mo variables dependientes del ángulo de disparo de los tiristores resulta conveniente obtener la expresión del factor de potencia.

$$F_{p} = \left[\frac{1}{\pi} (\pi - \alpha + \frac{1}{2} \sec 2\alpha)\right]^{\frac{1}{2}}$$
 E-2.1.30

2.2. CONTROL DEL FACTOR DE POTENCIA

El factor de potencia es el indicador del grado de utilización efectivo de la energía entregada por la fuente, a una determinada carga. Como se podrá apreciar del análisis generalizado que se efectuó anteriormente, si no se consideran las pérdidas propias en el sistema, parte de la energía se transforma en trabajo útil (P), otra parte está transitando entre la carga y la fuente sin realizar ningún trabajo (Q), y otra parte se desperdicia en las armón<u>i</u> cas generadas por efecto de la distorsión de la corriente que entrega la fuente (D).

Indudablemente el objetivo debe ser el mantener un factor de potencia tan alto como sea posible, para lo cual se deberá neutral<u>i</u> zar tanto la potencia reactiva (Q), como la potencia de distorsión (D). Estas funciones deben ser realizadas por un sistema de co<u>m</u> pensación, intercalado entre la carga y la fuente.

La figura 2.3, permite ilustrar el principio básico de la compensación. La corriente de la carga i_L , al sumarse con la corriente del compensador i_c , debería dar como resultado una corriente i_s , tal que su forma de onda sea idéntica y además esté en fase con la forma de onda del voltaje de la fuente, es decir:

$$i_{r} = i_{r} + i_{r} = Kv$$
 E-2.2.1

donde:

$$K = constante real$$

Cumplida idealmente la función de compensación establecida,se pu<u>e</u> de demostrar que el factor de potencia a los terminales de la fue<u>n</u> te resulta ser unitario

- POTENCIA INSTANTANEA

$$p_{c} = v \cdot i_{c} = K v^{2}$$
 E-2.2.2

- POTENCIA MEDIA

$$P_{s} = K V^{2}$$
 E-2.2.3

. 4

$$= I_{.} V = K V^{2}$$
 E-2.2

$$F = \frac{P_s}{S} = 1$$
 E-2.2.5

Nótese que para el caso ideal planteado, la corriente que produzca el compensador debe ser capaz, por un lado de neutralizar la comp<u>o</u> nente reactiva de i_L , y por otro lado de tener componentes arm<u>ó</u> nicas idénticas en orden, magnitud y fase, pero de signos contra rios a aquellas contenidas en i_r .

S

La primera acción de compensación se la puede implementar facilmen te con la ayuda de elementos reactivos (inductores, capacitores), sin embargo para la segunda acción de compensación, en la práctica resulta ser sumamente difícil satisfacer dichos requerimientos. Má ximo se podría neutralizar alguna armónica en particular y aún así la circuitería y técnica de control serían complejas. Esto ha dado lugar a que los compensadores reactivos sean de mayor utilización en la Ingeniería Eléctrica. En el caso general de ondas distorsionadas, aún con el capacitor o reactor óptimos no se logrará factor de potencia unitario, ya que todavía quedará sin compensarse la potencia de distorsión. Estos aspectos quedarán mejor aclarados y demostrados, en los diferentes análisis y experimentos realizados en la continuación del presente trabajo.

2.2.1 COMPENSACION CON CAPACITOR IDEAL

En el circuito de la figura 2.4; C es el condensador de compensación considerado ideal, por el que circula la corriente i_c .

Figura 2.4 Circuito controlado de corriente, compensado por un condensador puro

La corriente total instantánea está determinada por:

$$i_s = i_c + i_L$$

donde:

$$i_c = C \frac{d}{dt} (\sqrt{2} V \operatorname{sen} \omega t) = C \omega \sqrt{2} V \cos \omega t$$

E-2.2.6

$$i_{L} = \sum_{n=1,3,5,7,\ldots}^{\infty} C_{n} \operatorname{sen}(n \, \omega t + \Psi_{n}) \qquad \text{E-2.2.7}$$

Reemplazando los valores de las corrientes $i_c = i_L$, la corrientes te total i_s es:

 $i_s = (C \omega \sqrt{2} V + C_1 \operatorname{sen} \Psi_1) \cos \omega t + C_1 \cos \Psi_1 \operatorname{sen} \omega t + C_1 \cos \Psi_1 \otimes \psi t + C_1 \cos \Psi_1 \otimes \psi t + C_1 \cos \Psi_1 \otimes \psi t + C_1 \cos \Psi_1 \otimes \psi$

+ Σ C sen(n
$$\omega$$
t + Ψ) E-2.2.8
n=3,5,7....

A continuación se realizan algunas sustituciones,para reducir la expresión anterior.

De E-2.1.12 y E-2.1.21, se obtiene:

$$A_1 = C_1 \text{ sen } \Psi_1$$
 E-2.2.9

 $B_1 = C_1 \cos \Psi_1$ E-2.2.10

 $C_1^2 = A_1^2 + B_1^2$ E-2.2.11

A los factores de la componente fundamental, se los puede designar de la siguiente manera:

$$A_{s_1} = C \omega \sqrt{2} V + C_1 \operatorname{sen} \Psi_1 = C \omega \sqrt{2} V + A_1$$
 E-2.2.12

$$B_{S_2} = C_1 \cos \Psi_1 = B_1$$
 E-2.2.13

Con la ayuda de las definiciones dadas para las series de Fourier, la ecuación de la corriente de la fuente, quedaría,

$$i_{s} = \left[A_{s_{1}}^{2} + B_{s_{1}}^{2}\right]^{\frac{1}{2}} \operatorname{sen}(\omega t + \beta) + \sum_{n=3,5,7}^{\infty} \operatorname{C}_{n} \operatorname{sen}(n \omega t + \Psi_{n})$$

E-2.2.14

donde:

$$\beta = \operatorname{Arc} Tg \left(\frac{A_{s_1}}{B_{s_1}} \right)$$
 E-2.2.15

$$\beta = \operatorname{Arc} \operatorname{Tg} \left[\frac{C \omega \sqrt{2} V + A_{1}}{B_{1}} \right] \qquad \qquad \text{E-2.2.16}$$

. . . .64

$$A_{s_1}^2 + B_{s_1}^2 = C_{s_1}^2 = \left[\sqrt{2} \ I_{s_1}\right]^2$$
 E-2.2.17

Finalmente, la ecuación de i , puede ser escrita como,

$$i_{s} = \sqrt{2} I_{s_{1}} \operatorname{sen}(\omega t + \beta) + \sum_{n=3,5,7...}^{\infty} \sqrt{2} I_{n} \operatorname{sen}(n \omega t + \Psi_{n})$$

E-2.2.18

Su valor · RMS , estará dado por: .

.

$$I_{s} = \frac{1}{\sqrt{2}} \left[(C \omega \sqrt{2} V)^{2} + 2C \omega \sqrt{2} V \frac{\sqrt{2}I}{2\pi} \left[\cos 2\alpha - 1 \right] + \right]$$

+
$$\left(\frac{\sqrt{2}I}{2\pi}\right)^{2} \left[(\cos 2\alpha - 1)^{2} + (\sin 2\alpha + 2(\pi - \alpha))^{2} + \right]$$

+
$$\sum_{n=3,5,7...}^{\infty} \left\{ \left[\frac{2}{n+1} \left\{ \cos(n+1)\alpha - 1 \right\} - \frac{2}{n-1} \left\{ \cos(n-1)\alpha - 1 \right\} \right]^2 + \right\}$$

+
$$\left[\frac{2}{n+1} \operatorname{sen}(n+1)\alpha - \frac{2}{n-1} \operatorname{sen}(n-1)\alpha\right]^{2}$$
 E-2.2.19

donde:

$$I = \frac{V}{R_{L}}$$

La expresión para la potencia aparente, resulta ser:

$$S = V \cdot V \left[(C \omega)^2 + \frac{C \omega}{\pi R_L} \left[\cos 2\alpha - 1 \right] + \frac{1}{(2\pi R_L)^2} \left[(\cos 2\alpha - 1)^2 + \frac{1}{(2\pi R_L)^2} \right] \right]$$

+
$$(sen 2\alpha + 2(\pi - \alpha))^2$$
 + $\sum_{n=3,5,7..}^{\infty} \{ [\frac{2}{n+1} \{ cos(n+1)\alpha - 1 \} - 1 \} \}$

$$-\frac{2}{n-1} \{\cos(n-1)\alpha - 1\}\right]^2 + \left[\frac{2}{n+1} \sin(n+1)\alpha - 1\right]^2$$

$$-\frac{2}{n-1}$$
 sen(n-1) α]²}]² E-2.2.20

La potencia activa que entrega la fuente se la encuentra con ayuda

.
de la ecuación E-1.54.

.

 $P = V \cdot I_{s_1} \cos \beta$

.

E-2.2.21

$$I_{s_{1}} = \frac{\sqrt{2}}{2} \left[(C \omega \sqrt{2} V + A_{1})^{2} + B_{1}^{2} \right]^{\frac{1}{2}} = \frac{\sqrt{2}}{2} C_{s_{1}} \qquad E-2.2.22$$

$$\cos \beta = \frac{B_1}{\sqrt{2} I_{s_1}}$$
 E-2.2.23

Reemplazando, se obtiene,

.

. . .

$$P = \frac{1}{2} \sqrt{2} V. B_1$$
 E-2.2.24

Sustituyendo B1 de la ecuación E-2.1.8 en la ecuación de la Poten cia activa E-2.2.24 se tiene finalmente:

$$P = \frac{V^2}{2\pi R_{L}} [sen 2\alpha + 2(\pi - \alpha)]$$
 E-2.2.25

$$\cos \beta = \frac{B_1}{\sqrt{2}I}$$

La ecuación E-2.2.25 muestra que la potencia activa del circuito compensado con una capacitancia C (figura 2.3) es igual a la potencia activa de la ecuación E-2.1.16 correspondiente a la figura 2.1, cuando no se tenía compensación.

Con ayuda de E-2.1.20, se puede expresar, para este caso, la p<u>o</u> tencia reactiva

$$Q = -V \cdot I_{s_1} \cdot sen \beta$$
 E-2.2.26

donde: I , está dada por E-2.2.22 y, sen ß obtenida de E-2.2.23 ${}_{\rm S_1}$

Reemplazando en E-2.2.26, se obtiene

$$Q' = -\frac{1}{2}\sqrt{2}V \cdot (C \omega \sqrt{2}V + A_1)$$
 E-2.2.28

Sustituyendo A1, dado por E-2.1.7, quedaría

$$Q = \frac{V^2}{2\pi R_{L}} (1 - \cos 2\alpha) - V^2 \omega C \qquad E-2.2.29$$

Relacionando este resultado con E-2.1.25, se tiene

$$Q = Q_{T_1} - Q_{C_2}$$
 E-2.2.30

donde:

 $\cdot \quad Q_{c} = V^{2} \cdot \omega \cdot C \qquad \qquad \text{E-2.2.31}$

Analizando el resultado obtenido en E-2.2.30, se puede ver facilmente que Q puede ser reducida a cero, haciendo que Q_c sea igual a Q_L . Nótese que Q_c es una potencia reactiva capacitiva pura, que es capaz de neutralizar a la potencia reactiva inductiva, producida por efecto del control ejercido por los tiristores, sobre la corriente a través de la carga resistiva pura.

Al valor del capacitor que puede neutralizar a Q_{L} , se lo va a designar como capacitor óptimo (C_{op}).

De E-2.2.29, igualando a cero, se obtiene

$$C_{\rm op} = \frac{1 - \cos 2\alpha}{2\pi \,\omega R_{\rm L}}$$
 E-2.2.32

Una vez determinadas las potencias, tanto activa, reactiva, como aparente se procede a obtener el factor de potencia reemplazando en la ecuación E-1.44 las ecuaciones E-2.2.25 y E-2.2.20 que al reducirlas se presenta como:

$$F_p = \frac{p}{S}$$

$$F_{p} = \frac{1}{2\pi R_{L}} \left[\operatorname{sen} 2\alpha + 2(\pi - \alpha) \right] \div \left[(C\omega)^{2} + \frac{C\omega}{\pi R_{T}} \left\{ \cos 2\alpha - 1 \right\} + \frac{1}{2\pi R_{T}} \right]$$

+
$$\frac{1}{(2\pi R_{\rm L})^2} \left[(\cos 2\alpha - 1)^2 + (\sin 2\alpha + 2(\pi - \alpha))^2 + \right]$$

+-
$$\sum_{n=3,5,7..}^{\infty} \left\{ \left[\frac{2}{n+1} \left\{ \cos(n+1)\alpha - 1 \right\} - \frac{2}{n-1} \left\{ \cos(n-1)\alpha - 1 \right\} \right]^2 + \right\}$$

+ $\left[\frac{2}{n+1} \operatorname{sen}(n+1)\alpha - \frac{2}{n-1} \operatorname{sen}(n-1)\alpha\right]^2$ }] $\frac{1}{2}$ E-2.2.33

CALCULO DEL CAPACITOR OPTIMO PARA MAXIMO FACTOR DE POTENCIA

Para cada ángulo de disparo (α); se puede calcular el valor de c<u>a</u> pacitor de compensación óptimo consiguiéndose con esto que el fa<u>c</u> tor de potencia sea máximo.

El valor del *capacitor óptimo* estará determinado cuando el factor de potencia de la ecuación E-2.2.33 sea máximo es decir $\frac{d}{d_{\rho}}(F_{p}) = 0$

Por lo tanto, derivando el factor de potencia se tiene:

$$\frac{d}{d_{c}}(F_{p}) = -\left[\operatorname{sen} 2\alpha + 2(\pi - \alpha) \right] \left[2\omega^{2}C + \frac{\omega}{\pi R_{L}} \left(\cos 2\alpha - 1 \right) \right] \div$$

$$(2\pi R_{I})^{2} [(C\omega)^{2} - \frac{C\omega}{\pi R_{I}} (\cos 2\alpha - 1) +$$

+
$$\frac{1}{(2\pi R_{\rm L})^2} \left[(\cos 2\alpha - 1)^2 + (\sin 2\alpha + 2(\pi - \alpha))^2 + \right]$$

+
$$\sum_{n=3}^{\infty} \left\{ \left[\frac{2}{n+1} \left\{ \cos(n+1)\alpha - 1 \right\} - \frac{2}{n-1} \left\{ \cos(n-1)\alpha - 1 \right\} \right] + \right\}$$

+
$$\left[\frac{2}{n+1} \operatorname{sen}(n+1) \alpha - \frac{2}{n-1} \operatorname{sen}(n-1) \alpha\right]^{2}$$
] $(E-2.2.34)$

La ecuación E-2.2.34 será igual a cero únicamente cuando su n<u>u</u> merador sea igual a cero:

$$2\omega^2 C + \frac{\omega}{\pi R_{r_i}} \cdot (\cos 2\alpha - 1) = 0$$

Obteniéndose el capacitor óptimo así:

$$C_{op} = \frac{1 - \cos 2\alpha}{2\pi R_{r} \omega} = \frac{\sin^{2} \alpha}{\pi \omega R_{r}}$$
 E-2.2.35

Las ecuaciones E-2.2.32 y E-2.2.35 son idénticas, lo cual d<u>e</u> muestra que el capacitor óptimo que neutraliza la potencia react<u>i</u> va inductiva generada por el circuito controlador, al mismo tiempo maximiza el factor de potencia del circuito.

Haciendo el reemplazo de la ecuación E-2.2.35 en la ecuación E-2.2.33, se consigue el máximo factor de potencia

$$F_{p_{(max)}} = [sen 2\alpha + 2(\pi - \alpha)] \div [(sen 2\alpha + 2(\pi - \alpha))^{2} +$$

+
$$\sum_{n=3}^{\infty} \left\{ \left[\frac{2}{n+1} \left\{ \cos(n+1)\alpha - 1 \right\} - \frac{2}{n-1} \left\{ \cos(n-1)\alpha - 1 \right\} \right]^2 + \right\}$$

+
$$\left[\frac{2}{n+1} \operatorname{sen}(n+1) \alpha - \frac{2}{n-1} \operatorname{sen}(n-1) \alpha\right]^{2}$$
 E-2.2.36

La expresión del factor de potencia del circuito, conteniendo el capacitor de compensación óptimo, solo para $\alpha = 0$ resulta igual a la unidad, para cualquier otro valor de α , siempre será menor que la unidad. Esto es explicable, ya que no se está compensando el efecto de las armónicas generadas, cuya presencia da lugara la existencia de la potencia de distorsión D.

2.2.2 COMPENSACION CON CAPACITOR REAL

El estudio que se realiza a continuación tiene el objeto de dar un mayor alcance a la compensación que se asume en el caso anterior, mediante la utilización de un modelo real simple de capacitor. Con ayuda del modelo utilizado, se espera cuantificar el efecto de las pérdidas del dieléctrico del capacitor, sobre el trabajo del compensador reactivo.

El análisis siguiente, se realiza con referencia al circuito de la figura 2.5

Figura 2.5 Circuito de corriente controlada acoplada una resistencia R y un capacitor C como compens<u>a</u>

ción

Recordando que además se puede decir:

 $v(\omega t) = \sqrt{2} V \operatorname{sen} \omega t$

 $i_s = i_{cR} + i_{L}$

E-2.2.37

donde:

$$i_{cR} = i_{c} + i_{R}$$

E-2.2.38

 i_{R} = corriente en la resistencia R

 i_{c} = corriente con el capacitor C

$$i_R = \frac{\sqrt{2}V}{R}$$
 sen ωt E-2.2.39

$$i_c = C \frac{d}{dt} \cdot v(\omega t) = C \omega \sqrt{2} V \cdot \cos \omega t$$
 E-2.2.40

La función matemática de $~\rm i_L$, es la misma que se estableció para

el análisis en el numeral 2.2.1

$$i_{L} = C_{1} \operatorname{sen}(\omega t + \Psi_{1}) + \sum_{n=3,5,7...}^{\infty} C_{n} \operatorname{sen}(n \, \omega t + \Psi_{n})$$

La corriente total i_s es:

١

$$i_{s} = \frac{\sqrt{2} V}{R} \operatorname{sen} \omega t + C \omega \sqrt{2} V \cos \omega t + C_{1} \operatorname{sen} (\omega t + \Psi_{1})$$
$$+ \sum_{n=3, 5, 7...}^{\infty} C_{n} \operatorname{sen} (n \omega t + \Psi_{n}) \qquad \text{E-2.2.41}$$

agrupando la expresión descrita por la ecuación E-2.2.41 en térm<u>i</u> nos de seno y coseno se tiene:

$$i_s = (C \omega \sqrt{2} V + C_1 \operatorname{sen} \Psi_1) \cos \omega t + (\frac{\sqrt{2} V}{R} + C_1 \cos \Psi_1) \operatorname{sen} \omega t + (\frac{\sqrt{2} V}{R} + C_1 \cos \Psi_1) \operatorname{sen} \omega t + (\frac{\sqrt{2} V}{R} + C_1 \cos \Psi_1) \operatorname{sen} \omega t + (\frac{\sqrt{2} V}{R} + C_1 \cos \Psi_1) \operatorname{sen} \omega t + (\frac{\sqrt{2} V}{R} + C_1 \cos \Psi_1) \operatorname{sen} \omega t + (\frac{\sqrt{2} V}{R} + C_1 \cos \Psi_1) \operatorname{sen} \omega t + (\frac{\sqrt{2} V}{R} + C_1 \cos \Psi_1) \operatorname{sen} \omega t + (\frac{\sqrt{2} V}{R} + C_1 \cos \Psi_1) \operatorname{sen} \omega t + (\frac{\sqrt{2} V}{R} + C_1 \cos \Psi_1) \operatorname{sen} \omega t + (\frac{\sqrt{2} V}{R} + C_1 \cos \Psi_1) \operatorname{sen} \omega t + (\frac{\sqrt{2} V}{R} + C_1 \cos \Psi_1) \operatorname{sen} \omega t + (\frac{\sqrt{2} V}{R} + C_1 \cos \Psi_1) \operatorname{sen} \omega t + (\frac{\sqrt{2} V}{R} + C_1 \cos \Psi_1) \operatorname{sen} \omega t + (\frac{\sqrt{2} V}{R} + C_1 \cos \Psi_1) \operatorname{sen} \omega t + (\frac{\sqrt{2} V}{R} + C_1 \cos \Psi_1) \operatorname{sen} \omega t + (\frac{\sqrt{2} V}{R} + C_1 \cos \Psi_1) \operatorname{sen} \omega t + (\frac{\sqrt{2} V}{R} + C_1 \cos \Psi_1) \operatorname{sen} \omega t + (\frac{\sqrt{2} V}{R} + C_1 \cos \Psi_1) \operatorname{sen} \omega t + (\frac{\sqrt{2} V}{R} + C_1 \cos \Psi_1) \operatorname{sen} \omega t + (\frac{\sqrt{2} V}{R} + C_1 \cos \Psi_1) \operatorname{sen} \omega t + (\frac{\sqrt{2} V}{R} + C_1 \cos \Psi_1) \operatorname{sen} \omega t + (\frac{\sqrt{2} V}{R} + C_1 \cos \Psi_1) \operatorname{sen} \omega t + (\frac{\sqrt{2} V}{R} + C_1 \cos \Psi_1) \operatorname{sen} \omega t + (\frac{\sqrt{2} V}{R} + C_1 \cos \Psi_1) \operatorname{sen} \omega t + (\frac{\sqrt{2} V}{R} + C_1 \cos \Psi_1) \operatorname{sen} \omega t + (\frac{\sqrt{2} V}{R} + C_1 \cos \Psi_1) \operatorname{sen} \omega t + (\frac{\sqrt{2} V}{R} + C_1 \cos \Psi_1) \operatorname{sen} \omega t + (\frac{\sqrt{2} V}{R} + C_1 \cos \Psi_1) \operatorname{sen} \omega t + (\frac{\sqrt{2} V}{R} + C_1 \cos \Psi_1) \operatorname{sen} \omega t + (\frac{\sqrt{2} V}{R} + C_1 \cos \Psi_1) \operatorname{sen} \omega t + (\frac{\sqrt{2} V}{R} + C_1 \cos \Psi_1) \operatorname{sen} \omega t + (\frac{\sqrt{2} V}{R} + C_1 \cos \Psi_1) \operatorname{sen} \omega t + (\frac{\sqrt{2} V}{R} + C_1 \cos \Psi_1) \operatorname{sen} \omega t + (\frac{\sqrt{2} V}{R} + C_1 \cos \Psi_1) \operatorname{sen} \omega t + (\frac{\sqrt{2} V}{R} + C_1 \cos \Psi_1) \operatorname{sen} \omega t + (\frac{\sqrt{2} V}{R} + C_1 \cos \Psi_1) \operatorname{sen} \omega t + (\frac{\sqrt{2} V}{R} + C_1 \cos \Psi_1) \operatorname{sen} \omega t + (\frac{\sqrt{2} V}{R} + C_1 \cos \Psi_1) \operatorname{sen} \omega t + (\frac{\sqrt{2} V}{R} + C_1 \cos \Psi_1) \operatorname{sen} \omega t + (\frac{\sqrt{2} V}{R} + C_1 \cos \Psi_1) \operatorname{sen} \omega t + (\frac{\sqrt{2} V}{R} + C_1 \cos \Psi_1) \operatorname{sen} \omega t + (\frac{\sqrt{2} V}{R} + C_1 \cos \Psi_1) \operatorname{sen} \omega t + (\frac{\sqrt{2} V}{R} + C_1 \cos \Psi_1) \operatorname{sen} \omega t + (\frac{\sqrt{2} V}{R} + C_1 \cos \Psi_1) \operatorname{sen} \omega t + (\frac{\sqrt{2} V}{R} + C_1 \cos \Psi_1) \operatorname{sen} \omega t + (\frac{\sqrt{2} V}{R} + C_1 \cos \Psi_1) \operatorname{sen} \omega t + (\frac{\sqrt{2} V}{R} + C_1 \cos \Psi_1) \operatorname{sen} \omega t + (\frac{\sqrt{2} V}{R} + C_1 \cos \Psi_1) \operatorname{sen} \omega t + (\frac{\sqrt{2} V}{R} + C_1 \cos \Psi_1) \operatorname{sen} \omega t + (\frac{\sqrt{2} V}{R} + C_1 \cos \Psi_1) \operatorname{sen} \omega t +$$

+ Σ C sen(n
$$\omega$$
t + Ψ₁) E-2.2.42
n=3,5,7....

Luego de realizar algunas sustituciones, la expresión de la corriente de la fuente, para este caso puede ser representada por:

$$i_{s} = \sqrt{2} I_{Y_{1}} \operatorname{sen}(\omega t + \delta) + \sum_{n=3,5,7...}^{\infty} \sqrt{2} I_{n} \operatorname{sen}(n \, \omega t + \Psi_{n}) \quad \text{E-2.2.43}$$

donde:

$$\sqrt{2} I_{y_1} = C_{y_1} = \begin{bmatrix} A_{y_1}^2 + B_{y_1}^2 \end{bmatrix}^{\frac{1}{2}}$$
 E-2.2.44

$$A_{y_1} = C \omega \sqrt{2} V + C_1 \text{ sen } \Psi_1 = C \omega \sqrt{2} V + A_1$$
 E-2.2.45

$$B_{Y_1} = \frac{\sqrt{2}V}{R} + C_1 \cos \Psi_1 = \frac{\sqrt{2}V}{R} + B_1$$
 E-2.2.46

Reemplazando en E-2.2.44 se tiene:

.

$$C_{Y_1}^2 = (C \omega \sqrt{2} V)^2 + A_1^2 + B_1^2 + (\frac{\sqrt{2} V}{R})^2 +$$

+ 2 A₁ C $\omega \sqrt{2}$ V + 2 . $\frac{\sqrt{2}}{R}$. B₁ E-2.2.47

Sabiendo que A_1 y B_1 estan dadas, respectivamente por E-2.1.7 y E-2.1.8

El ángulo δ está dado por:

$$\delta = \operatorname{Arc} \operatorname{Tg} \frac{A_{Y_1}}{B_{Y_1}} \qquad E-2.2.48$$

equivalente a:

$$\delta = \operatorname{Arc} \operatorname{Tg} \left[\frac{C \omega \sqrt{2} V + A_{1}}{\frac{\sqrt{2} V}{R} + B_{1}} \right] = E-2.2.49$$

El valor RMS de la corriente de la fuente es entonces:

$$I_{Y} = \frac{1}{\sqrt{2}} \left[(C \omega \sqrt{2}V)^{2} + C_{1}^{2} + (\frac{\sqrt{2}V}{R})^{2} + \frac{\sqrt{2}V}{R} \right]^{2} + \frac{\sqrt{2}V}{R} + 2C \omega \sqrt{2}C_{1} \operatorname{sen} \Psi_{1} + 2 \frac{\sqrt{2}V}{R} C_{1} \cos \Psi_{1} + \frac{\sqrt{2}V}{R} \right]^{2}$$

 $+ \sum_{n=3,5,7\ldots}^{\infty} C_n^2]^{\frac{1}{2}}$

E-2.2.50

donde C₁ está definida por E-2.19

El valor de la *potencia aparente* se determina, utilizando su def<u>i</u> nición E-1.20 resultando ser

$$S = V \cdot \left[\frac{1}{2} \cdot (C \omega \sqrt{2} V)^{2} + (\frac{C_{1}}{\sqrt{2}})^{2} + \frac{1}{2} \cdot (\frac{\sqrt{2} V}{R})^{2} + C \omega \sqrt{2} V C_{1} \operatorname{sen} \Psi_{1} + \frac{\sqrt{2} V}{R} \cdot C_{1} \cos \Psi_{1} + \sum_{n=3,5,7..^{n}}^{\infty} C_{n}^{2}\right]^{\frac{1}{2}}$$

E-2.2.51

La potencia activa está representada por

$$P = V \cdot I_{Y_1} \cos \delta \qquad E-2.2.52$$

donde:

$$I_{Y_{1}} = \frac{1}{\sqrt{2}} \left[(C \omega \sqrt{2} V + A_{1})^{2} + (\frac{\sqrt{2} V}{R} + B_{1})^{2} \right]^{\frac{1}{2}} = \frac{1}{\sqrt{2}} C_{Y_{1}}$$

E-2.2.53

÷

mediante la ecuación E-2.2.48 se obtiene

 $\cos \delta = \frac{B_{Y_1}}{C_{Y_1}}$

igual a:

$$\cos \delta = \frac{\frac{\sqrt{2} V}{R} + B_1}{\frac{\sqrt{2} I_{\chi_1}}}$$

E-2.2.55

E-2.2.54

Sustituyendo B1 con la ecuación E-2.1.8

$$P = \frac{V^2}{2\pi R_{T}} \left[sen 2\alpha + 2(\pi - \alpha) \right] + \frac{V^2}{R}$$
 E-.2.2.57

Esta ecuación E-2.2.57 pone de manifiesto que la potencia activa aumentó su valor en $\frac{V^2}{R}$ respecto a las potencias que se tiene en las ecuaciones E-2.1.16 y E-2.2.25. Esta diferencia es debido a la presencia de la resistencia que representa el dieléctrico del condensador real del modelo analizado, siendo apreciable cuanto mayor sea el ángulo de control α , ya que el primer sumando tien de a ser cero. Si el ángulo de control es igual a cero, siempre se encontrará presente esta disipación de energía, pero no es significativa en el resultado total puesto que la resistencia está en el orden de los 10^5 ó 10^6 Ω .

Con la ayuda de E-2.1.20 , se puede expresar

$$Q = -V \cdot I_{v_1} \cdot sen \delta$$
 E-2.2.58

donde I $_{\rm Yl}$ está dado por E-2.2.50 y, sen δ es despejado desde la ecuación E-2.2.54 como

$$\operatorname{sen} \delta = \frac{A_{Y_1}}{C_{Y_1}} \qquad \qquad \text{E-2.2.59}$$

reemplazando en E-2.2.58 se tiene

$$Q = -\frac{V}{\sqrt{2}}$$
 . $[C \omega \sqrt{2} V + A_1]$ E-2.2.60

Sustituyendo $\mbox{ A}_1$, dado por $\mbox{ E-2.1.7}$ quedará:

$$Q = \frac{V^{2}}{2\pi R_{T}} [1 - \cos 2\alpha] - V^{2} C\omega \qquad E-2.2.61$$

Esta potencia reactiva E-2.2.61, tiene la forma analizada ant<u>e</u> riormente en la ecuación E-2.2.30

$$Q = Q_{L} - Q_{c}$$

de donde también se puede encontrar el valor del capacitor óptimo bajo el análisis que se hace a la mencionada ecuación

lo que hace que el valor del capacitor óptimo sea igual al caso anterior:

 $\therefore Q_{\rm L} = Q_{\rm C}$

$$C_{op} = \frac{1 - \cos 2\alpha}{2\pi \omega R_{L}} \qquad E-2.2.62$$

. 81

El que tanto la potencia reactiva Q y el C_{op} sean respectivamente iguales con los ya demostrados en el caso de la compensación id<u>e</u> al, es porque no afecta en absoluto a la potencia reactiva, la p<u>re</u> sencia de la resistencia en paralelo al condensador ideal.

El valor del factor de potencia se obtiene con la ayuda de la definición E-1.44, mas las potencias activa y aparente obtenidas en las ecuaciones E-2.2.57 y E-2.2.51.

$$F_p = \frac{P}{S}$$

$$F_{p} = \left[\frac{1}{R} + \frac{\operatorname{sen} 2\alpha + 2(\pi - \alpha)}{2\pi R_{T}}\right] \div \left[\frac{1}{R^{2}} + \frac{\operatorname{sen} 2\alpha + 2(\pi - \alpha)}{\pi \cdot R \cdot R_{T}}\right] +$$

+
$$(C \omega)^{2} + \frac{C \omega}{\pi R_{L}} (\cos 2\alpha - 1) + \frac{1}{(2\pi R_{L})^{2}} [(\cos 2\alpha - 1)^{2} +$$

+ {sen $2\alpha + 2(\pi - \alpha)$ }² + $\sum_{n=3,5,7...}^{\infty}$ { $\left[\frac{2}{n+1} \left\{\cos(n+1)\alpha - 1\right\} - \right]$

$$-\frac{2}{n-l}\left\{\cos(n-1)\alpha-1\right\}^{2}+\left[\frac{2}{n+l}\operatorname{sen}(n+1)\alpha-\right]$$

 $-\frac{2}{n-1} \operatorname{sen}(n-1) \alpha]^{2}]^{\frac{1}{2}}$ E-2.2.63

. . . 82

Una vez determinado el factor de potencia y si se procede a derivarle respecto a C e igualando a cero, se obtiene el valor del capacitor óptimo, el cual se demuestra que es igual al ya obtenido por el otro método en la ecuación E-2.2.62. Si este C_{op} es reemplazado en la ecuación del factor de potencia se tiene el valor del factor de potencia se tiene el valor del factor de potencia máximo

$$F_{p_{max}} = \left[\frac{1}{R} + \frac{\sec 2\alpha + 2(\pi - \alpha)}{2\pi R_{L}}\right] \div \left[\frac{1}{R^{2}} + \frac{\sec 2\alpha + 2(\pi - \alpha)}{\pi R \cdot R_{L}} + \left\{\frac{\cos 2\alpha - 1}{2\pi R_{L}}\right\}^{2} + \frac{1}{(2\pi R_{L})^{2}} \left[\left\{\cos 2\alpha - 1\right\}^{2} + \frac{1}{(2\pi R_{L})^{2}}\right]\right]$$

+ {sen
$$2\alpha + 2(\pi - \alpha)$$
}² + $\sum_{n=3,5,7...}$ { $\left[\frac{2}{n+1}\left\{\cos(n+1)\alpha - 1\right\}\right]$ -

$$-\left[\frac{2}{n-1}\left\{\cos(n-1)\alpha-1\right\}\right]^{2} + \left[\frac{2}{n+1}\operatorname{sen}(n+1)\alpha-\right]^{2}$$

$$-\frac{2}{n-1}$$
 sen(n-1) α]² }]^{1/2} E-2.2.64

. . . 83

2.3 POTENCIA REACTIVA Y FACTOR DE POTENCIA PARA UN CIRCUITO CON CARGA INDUCTIVA-RESISTIVA (R-L)

Una vez analizado el comportamiento de los circuitos de las figuras 2.1 y 2.3, en los cuales se verifica la existencia de potencia reactiva y de un factor de potencia menor que la unidad siendo la carga netamente resistiva, se puede prever que, al añadir a la ca<u>r</u> ga de dichos circuitos un inductor, la potencia reactiva aumentará, y por lo tanto el factor de potencia será alterado aún más.

Lo anteriormente expuesto se demostrará matemáticamente con la ayuda del circuito de la figura 2.6, en el cual se tiene la carga serie, resistiva-inductiva (R-L) y, el circuito de control conformado por un par de tiristores en contra fase, alimentados por una fuente de voltaje sinusoidal puro y de impedancia despreciable.

84

2.3.1 ANALISIS MATEMATICO DE LAS POTENCIAS ACTIVA, REACTIVA Y DEL FACTOR DE POTENCIA PARA UN CIRCUITO CON CARGA INDUC-TIVA - RESISTIVA

Mediante la ley de voltajes de Kirchhoff en la figura 2.6, el vo<u>l</u> taje de la fuente resulta ser igual a la suma de tres componentes que son: la caída de tensión en los tiristores v_{T} , la caída de tensión v_{R} en la resistencia y v_{L} en la inductancia, como representa la ecuación.

$$v = v_{T} + v_{R} + v_{L}$$
 E-2.3.1

Estas caídas de tensión se las observa gráficamente como indican las diferentes formas de onda en el gráfico de la figura 2.7.

Cuando hay conducción se considera que el voltaje en los tiristores es prácticamente cero ya que haciendo una comparación con las caídas de tensión en la bobina y en la resistencia, éstas son mu cho mayores; por lo tanto se dice que $v_T \cong 0$, lo que reduce a la ecuación del voltaje. E-2.3.1 durante los períodos de conducción a:

$$v = v_{R} + v_{L} |_{\alpha, \pi + \alpha}^{x, \pi + x}$$

E-2.3.2

donde:

$$v = \sqrt{2} V \text{ sen } \omega t$$

$$v_{R} = i_{L}R |_{\alpha,\pi+\alpha}^{\chi,\pi+\chi}$$

$$v_{\rm L} = L \cdot \frac{d}{dt} (i_{\rm L}) \Big|_{\alpha, \pi + \alpha}$$

La ecuación E-2.3.2 representada como una ecuación diferencial de primer orden es la siguiente, para los intervalos indicados

$$\sqrt{2}$$
 V sen $\omega t = i_{L}R + L$. $\frac{di_{L}}{dt} \mid_{\pi + \alpha \leq \omega t \leq \pi + x}^{\alpha \leq \omega t \leq x} E-2.3.3$

Para encontrar la corriente i_L en función de (ω t) se resuelve la ecuación diferencial E-2.3.3 empleando el método de la transform<u>a</u> da de Laplace, esto es:

$$I(s) = \frac{\sqrt{2} V \omega + (S^{2} + \omega^{2})(L I_{0}^{+})}{(R + L S)(S^{2} + \omega^{2})}$$
 E-2.3.4

.

•.

$$i_{\underline{L}}(\omega t) = \frac{\sqrt{2} V}{|Z|} \left[sen(\omega t - \phi) \Big|_{0,\alpha,\alpha+\pi}^{X-\pi,X,2\pi} + \right]$$

+ sen(
$$\alpha - \phi$$
) e^{-cot $\phi(\omega t + \pi - \alpha)$} $\Big|_{0}^{\chi - \pi}$

$$- \operatorname{sen}(\alpha - \phi) e^{- \cot \phi (\omega t - \alpha)} \Big|_{\alpha}^{X} +$$

+ sen(
$$\alpha - \phi$$
) e^{-cot} $\phi(\omega t - \pi - \alpha \Big|_{\pi + \alpha}^{2\pi} \Big]$ E-2.3.5

Para:
$$\begin{cases} \alpha \leq \omega t \leq x \\ \pi + \alpha \leq \omega t \leq \pi + x \end{cases}$$

donde: Tg $\phi = \frac{\omega L}{R}$ E-2.3.6

$$|Z| = [R^{2} + (\omega L)^{2}]^{\frac{1}{2}}$$
 E-2.3.7

Siendo:

 α = ángulo de disparo de los tiristores

x = ángulo de extinsión de la corriente

Con el afán de utilizar las formas matemáticas que representan las definiciones anteriormente mencionadas, se utilizará una n<u>o</u> menclatura que será similar a las empleadas en los literales a<u>n</u> teriores, ya que no presentan ningún conflicto de apreciación.

Cuando $\alpha \leq \phi$, no se realiza el control deseado, presentándose el voltaje en la carga, como una señal senoidal pura, puesto que la corriente i_L, no es controlada y solo se manifiesta defasada, re<u>s</u> pecto al voltaje, como indica la línea entrecortada de la figura 2.7.

Figura 2.7 Representación de las formas de onda para el circuito de la figura 2.6 cua<u>n</u> do $\alpha' > \phi$

-- 89

Para calcular el valor RMS de la corriente i_L en la carga de la figura 2.6 se utilizarán las series de Fourier; para lo cual conviene estudiar la naturalezade "forma de onda" que tiene la ecuación i_L en E-2.3.5, la que está representada gráficamente en la figura 2.8 donde facilmente se observa que dicha corriente e<u>s</u> ta formada por la superposición de dos componentes, la que repr<u>e</u> senta el estado estable, y la que corresponde al estado transitorio.

Figura 2.8 Descomposición teórica de la corriente de carga i_L para un circuito de carga R-L donde $\alpha > \phi$

90

En el instante en que el ángulo de disparo de los tiristores es α , la corriente en la carga es cero, resultando ser igual el v<u>a</u> lor instantáneo de la corriente de características sinusoidales (línea punteada) como la ecuación $\sqrt{2}$ I sen($\omega t - \phi$), y con la e<u>x</u> ponencial exp $\left[-\frac{R}{\omega L} (\omega t - \alpha)\right]$. Existiendo corriente por la ca<u>r</u> ga $\alpha \leq \omega t \leq x$ y también $\pi + \alpha \leq \omega t \leq \pi + x$.

El ángulo de disparo α toma diferentes valores en su control de corriente, donde el ángulo "x" llamado de corte o de extinsión viene determinado por la resolución de la ecuación trascendental.

- Para $\alpha > \phi$

$$sen(x - \phi) - sen(\alpha - \phi) e^{-\cot\phi(x - \alpha)} = 0 \qquad E-2.3.8$$

-Para cualquier ángulo α menor o igual a ϕ , no se tiene el co<u>n</u> trol requerido, y la ecuación E-2.3.8 se reduce a:

$$sen(x - \phi) = 0$$
 E-2.3.9

cuya resolución es:

 $X = \pi + \phi$

E-2.3.10

Todo esto permite aseverar que el ángulo (ω t) para el cual la c<u>o</u> rriente i_L está bajo el control de los tiristores, es $\alpha \leq \omega$ t $\leq x$; intervalo que se lo conoce también como el águlo de conducción Θ_c , valor que es igual a:

$$\Theta_{\alpha} = x - \alpha \qquad \qquad \text{E-2.3.11}$$

Mediante las ecuaciones que determinan los coeficientes de la s<u>e</u> rie de Fourier de la corriente i_L , se tiene:

para n = 3,5,7,9

$$A_{n} = \frac{\sqrt{2}V}{2\pi|Z|} \left[\frac{2}{n+1} \left\{ \cos\left[(n+1)\alpha - \phi\right] - \cos\left[(n+1)x - \phi\right] \right\} - \frac{1}{2\pi|Z|} \left\{ \cos\left[(n+1)\alpha - \phi\right] - \cos\left[(n+1)x - \phi\right] \right\} - \frac{1}{2\pi|Z|} \left\{ \cos\left[(n+1)\alpha - \phi\right] - \cos\left[(n+1)\alpha - \phi\right] \right\} - \frac{1}{2\pi|Z|} \left\{ \cos\left[(n+1)\alpha - \phi\right] - \cos\left[(n+1)\alpha - \phi\right] \right\} - \frac{1}{2\pi|Z|} \left\{ \cos\left[(n+1)\alpha - \phi\right] - \cos\left[(n+1)\alpha - \phi\right] \right\} - \frac{1}{2\pi|Z|} \left\{ \cos\left[(n+1)\alpha - \phi\right] - \cos\left[(n+1)\alpha - \phi\right] \right\} - \frac{1}{2\pi|Z|} \left\{ \cos\left[(n+1)\alpha - \phi\right] - \cos\left[(n+1)\alpha - \phi\right] \right\} - \frac{1}{2\pi|Z|} \left\{ \cos\left[(n+1)\alpha - \phi\right] - \cos\left[(n+1)\alpha - \phi\right] \right\} - \frac{1}{2\pi|Z|} \left\{ \cos\left[(n+1)\alpha - \phi\right] \right\} - \frac{1}$$

$$-\frac{2}{n-1} \{ \cos[(n-1)\alpha - \phi] - \cos[(n-1)x - \phi] \} +$$

$$+ \frac{4 \operatorname{sen}(\alpha - \phi)}{n^2 + \cot^2 \phi} \{ (\cot \phi \cos n x - n \operatorname{sen} n x) e^{-\cot \phi (x - \alpha)} = - \frac{1}{2} e^{-\cot \phi ($$

- $(\cot \phi \cos n\alpha - n \sin n\alpha)$] E-2.3.12

Para que la expresión se la vea reducida se reemplaza por F_{an} a uno de los factores de A_n , expresándose como:

$$A_n = \frac{\sqrt{2}V}{2\pi |Z|} \cdot F_{an}$$
 E-2.3.13

$$B_{n} = \frac{\sqrt{2}V}{2\pi|Z|} \left[\frac{2}{n+1} \left\{ \operatorname{sen}\left[(n+1)\alpha - \phi \right] - \operatorname{sen}\left[(n+1)x - \phi \right] \right\} \right] -$$

$$-\frac{2}{n-1} \{sen[(n-1)\alpha - \phi] - sen[(n-1)x - \phi]\} +$$

+
$$\frac{4 \operatorname{sen}(\alpha - \phi)}{n^2 + \cot^2 \phi}$$
 {(cot ϕ sen n x + n cos n x) $e^{-\cot \phi (x - \alpha)}$ -

- $(\cot \phi \operatorname{sen} n \alpha + n \cos n \alpha)$ E-2.3.14

Esta ecuación E-2.3.14 también se la cambiará de forma, considerando a uno de los factores como $F_{\rm bm}$, reduciéndose a:

$$B_n = \frac{\sqrt{2}V}{2\pi |Z|}$$
 . F_{bn} E-2.3.15

Ya que:

$$C_n = [A_n^2 + B_n^2]^{\frac{1}{2}}$$
 E-2.3.16

y haciendo el reemplazo de $\mbox{A}_{\rm n}$ y $\mbox{B}_{\rm n}$ de las ecuaciones E-2.3.13 y E-2.3.15 en la ecuación E-2.3.16 se tiene

•

$$C_n = \frac{\sqrt{2}V}{2\pi|Z|} \left[F^2_{an} + F^2_{bn}\right]^{\frac{1}{2}}$$
 E-2.3.17

El ángulo Ψ_n es:

.

.

$$\Psi_{n} = \operatorname{Arc} Tg \quad \frac{A_{n}}{B_{n}} \qquad \qquad \text{E-2.3.18}$$

Lo que resulta:

$$\Psi_n = \operatorname{Arc} \operatorname{Tg} \frac{F_{an}}{F_{bn}}$$
 E-2.3.19

Para determinar las componentes fundamentales de Fourier, se con sidera n = 1 en las ecuaciones E-2.3.12 y E-2.3.14 reduciéndose a:

$$A_{1} = \frac{\sqrt{2}V}{2\pi|Z|} \left[\cos(2\alpha - \phi) - \cos(2x - \phi) - (2x - 2\alpha) \sin \phi + \frac{1}{2\pi|Z|} \right]$$

+ 4 sen ϕ sen $(\alpha - \phi)$ { cos $(\phi + x)$ e^{-cot $\phi(x - \alpha)$} -

$$-\cos(\phi + \alpha)$$
 $] < 0$ E-2.3.20

Esta ecuación E-2.3.20 se la escribe también como se indica a continuación, en donde F_{a_1} es siempre menor que cero, para cual quier ángulo α , dentro del rango de control.

$$A_{l} = \frac{\sqrt{2}V}{2\pi|Z|}$$
 . $F_{a_{l}} < 0$ E-2.3.21

Haciendo cálculo y reducción para B_1 se tiene:

$$B_{1} = \frac{\sqrt{2} V}{2\pi |Z|} \left[\operatorname{sen}(2\alpha - \phi) - \operatorname{sen}(2x - \phi) + \cos \phi(2x - 2\alpha) + \right]$$

+ 4 sen ϕ sen($\alpha - \phi$) { sen(ϕ + x) e^{- cot ϕ (x - α)} - sen(ϕ + α) }

E-2.3.22

equivalente a:

$$B_{1} = \frac{\sqrt{2}V}{2\pi|Z|} \cdot F_{b_{1}}$$

E-2.3.23

96

Ahora dado que:

$$C_{1} = \left[A_{1}^{2} + B_{1}^{2} \right]^{\frac{1}{2}}$$
 E-2.3.24

y haciendo los reemplazos de A_1 y B_1 en E-2.3.24, se tiene una vez simplificado:

$$C_{1} = \frac{\sqrt{2}V}{2\pi|Z|}$$
 . $[F_{a_{1}}^{2} + F_{b_{1}}^{2}]^{\frac{1}{2}}$ E-2.3.25

Para determinar el ángulo Ψ_1

$$\Psi_1 = \operatorname{Arc} Tg \quad \frac{A_1}{B_1} \qquad \qquad \text{E-2.3.26}$$

Sustituyendo en E-2.3.26 las ecuaciones E-2.3.21 y E-2.3.23 se

reduce a:

$$\Psi_1 = \text{Arc Tg} \quad \frac{F_{a_1}}{F_{b_1}}$$

E-2.3.27

Finalmente la corriente i puede ser escrita como:

$$i_{L} = \frac{\sqrt{2} V}{2\pi |Z|} \cdot \left[F_{a_{1}}^{2} + F_{b_{1}}^{2} \right]^{\frac{1}{2}} \operatorname{sen}(\omega t + \Psi_{1}) +$$
$$+ \sum_{n=3,5,7...2\pi |Z|}^{\infty} \cdot \left[F_{a_{1}}^{2} + F_{b_{1}}^{2} \right]^{\frac{1}{2}} \operatorname{sen}(n \, \omega t + \Psi_{n}) \text{ E-2.3.28}$$

entonces; el valor $_{\rm RMS}$ de $\rm i_{L}$, será (I) :

$$I = \frac{V}{2\pi |Z|} \left[F_{a_1}^2 + F_{b_1}^2 + \sum_{n=3,5,7...}^{\infty} F_{a_1}^2 + F_{b_1}^2 \right]^{\frac{1}{2}}$$

E-2:3.29

Reemplazando F_{an} ; F_{bn} ; F_{a_1} ; F_{b_1} en la ecuación E-2.3.29 se ti<u>e</u> ne el valor RMS de la corriente expresada en función del ángulo de disparo.

$$= \frac{V}{2\pi|Z|} \left[\left[\cos(2\alpha - \phi) - \cos(2x - \phi) - \sin\phi(2x - 2\alpha) + 4 \sin\phi\sin(\alpha - \phi) \left\{ \cos(\phi + x) e^{-} \cot\phi(x - \alpha) \right] \right]^{2} + 4 \sin\phi\sin(\alpha - \phi) \left\{ \sin(\phi + x) \right\} \right]^{2} + \left[\sin(2\alpha - \phi) - \sin(2x - \phi) + 4 \sin\phi\sin(\alpha - \phi) \left\{ \sin(\phi + x) \right\} \right]^{2} + \sum_{n=3,5,7...}^{\infty} \left[\frac{2}{n+1} \left\{ \cos\left[(n+1)\alpha - \phi\right] - \cos\left[(n+1)x - \phi \right] \right\} - \frac{2}{n-1} \left\{ \cos\left[(n-1)\alpha - \phi\right] - \cos\left[(n-1)x - \phi \right] \right\} + \frac{4 \sin(\alpha - \phi)}{n^{2} + \cot^{2}\phi} \left\{ \left(\cot\phi\cos n\alpha - n \sin n\alpha \right) \right\} \right]^{2} + \frac{2}{n+1} \left\{ \sin\left[(n+1)\alpha - \phi \right] - \sin\left[(n+1)x - \phi \right] \right\} - \frac{2}{n-1} \left\{ \sin\left[(n+1)\alpha - \phi \right] - \sin\left[(n+1)x - \phi \right] \right\} + \frac{4 \sin(\alpha - \phi)}{n^{2} + \cot^{2}\phi} \left\{ \left(\cot\phi\cos n\alpha - n \sin n\alpha \right) \right\} \right]^{2} + \frac{2}{n+1} \left\{ \sin\left[(n+1)\alpha - \phi \right] - \sin\left[(n+1)x - \phi \right] \right\} - \frac{2}{n-1} \left\{ \sin\left[(n-1)\alpha - \phi \right] - \sin\left[(n-1)\alpha - \phi \right] \right\} + \frac{4 \sin(\alpha - \phi)}{n^{2} + \cot^{2}\phi} \left\{ \left(\cot\phi \sin nx + n \cos nx \right) \right\} - \frac{2}{n^{2} + \cot^{2}\phi} \left\{ \left(\cot\phi \sin nx + n \cos nx \right) \right\} - \frac{2}{n^{2} + \cot^{2}\phi} \left\{ \left(\cot\phi \sin nx + n \cos nx \right) \right\} \right]^{2} \right]^{\frac{1}{2}}$$

I

۱

E-2.2.30

.

98

La potencia aparente será:

,

$$S = \frac{V^{2}}{2\pi |Z|} \left[F_{a_{1}}^{2} + F_{b_{1}}^{2} + \sum_{n=3,5,7..}^{\infty} F_{a_{n}}^{2} + F_{b_{n}}^{2} \right]^{\frac{1}{2}} E-2.2.31$$

•

La potencia activa que entrega la fuente esta determinada por la ecuación E-1.54

$$P = V \cdot I_1 \cdot \cos \Psi_1$$

Entonces el valor RMS de la corriente I_1 es

$$I_1 = \frac{C_1}{\sqrt{2}}$$

y sabiendo que la ecuación E-2.3.25 es la de C_1 , se tiene

.

$$I_{1} = \frac{V}{2\pi |Z|} \cdot \left[F_{a_{1}}^{2} + F_{b_{1}}^{2}\right]^{\frac{1}{2}}$$
 E-2.3.32

El cos $\Psi_{1}~$ se obtiene despejando de la ecuación E-2.3.26

$$\cos \Psi_{1} = \frac{F_{b_{1}}}{[F_{a_{1}}^{2} + F_{b_{1}}^{2}]^{2}}$$
 E-2.3.33

٠

reduciendo se tiene:

1

$$P = \frac{V^2}{2\pi |Z|}$$
 . F_{b_1} E-2.3.34

$$P = V \cdot \frac{B_1}{\sqrt{2}}$$
 E-2.3.35

$$P = \frac{V^2}{2\pi |Z|} \left[sen(2\alpha - \phi) - sen(2x - \phi) + \frac{V^2}{2\pi |Z|} \right]$$

 $+\cos\phi(2x-2\alpha)+4\sin\phi\sin(\alpha-\phi)$ { sen($\phi+x$) .

 $e^{-\cot \phi (x - \alpha)} - sen(\phi + \alpha) \}$ E-2.3.36

100

Mediante la ecuación E-2.1.20, se puede expresar

donde I_{1} es la ecuación E-2.3.32 y el sen Ψ_{1} , se obtiene de E-2.3.26

•

sen
$$\Psi_1 = \frac{F_{a_1}}{[F_{a_1}^2 + F_{b_1}^2]^2}$$
 E-2.3.38

reemplazando en E-2.3.37 se obtiene

$$Q = -\frac{V^2}{2\pi |Z|}$$
 . F_{a_1} E-2.3.39

$$Q = -V \cdot \frac{A_1}{\sqrt{2}}$$
 E-2.3.40

Sustituyendo A1 con la ecuación E-2.3.20, la potencia reactiva es
102

igual a:

$$Q = -\frac{V^2}{2\pi |Z|} \quad . \quad \left[\cos(2\alpha - \phi) - \cos(2x - \phi) - \right]$$

- $\operatorname{sen} \phi (2x - 2\alpha) + 4 \operatorname{sen} \phi \operatorname{sen} (\alpha - \phi) \{ \cos(\phi + x) \}$.

$$e^{-\cot\phi(x-\alpha)} - \cos(\phi+\alpha)$$
 E-2.3.41

El factor de potencia se determina reemplazando y simplificando las ecuaciones E-1.3.34 y E-2.3.39 en la ecuación de la definición E-2.1.23

$$F_{p} = \frac{F_{b_{1}}}{\left[F_{a_{1}}^{2} + F_{b_{1}}^{2} + \sum_{n=3,5,7..}^{\infty} \{F_{an}^{2} + F_{bn}^{2}\}\right]^{\frac{1}{2}}} E-2.3.42$$

Esta ecuación en función del ángulo de disparo,del ángulo de extinsión y de la carga es:

$$F_{p} = \left[\operatorname{sen}(2\alpha - \phi) - \operatorname{sen}(2 \times - \phi) + \cos \phi(2 \times - 2\alpha) + \right. \\ + 4 \operatorname{sen} \phi \operatorname{sen}(\alpha - \phi) \left\{ \operatorname{sen}(\phi + x) e^{-\operatorname{cot} \phi(x - \alpha)} - \right. \\ - \operatorname{sen}(\phi + \alpha) \right\} \right] \div \left[\left[\cos(2\alpha - \phi) - \cos(2 \times - \phi) - \right. \\ - \operatorname{sen} \phi(2 \times - 2\alpha) + 4 \operatorname{sen} \phi \operatorname{sen}(\alpha - \phi) \left\{ \cos(\phi + x) \right. \right. \\ \cdot e^{-\operatorname{cot} \phi(x - \alpha)} - \cos(\phi + \alpha) \right\} \right]^{2} + \left[\operatorname{sen}(2\alpha - \phi) - \right. \\ - \operatorname{sen}(2 \times - \phi) + \cos \phi (2 \times - 2\alpha) + 4 \operatorname{sen} \phi \operatorname{sen}(\alpha - \phi) \cdot \\ \cdot \left\{ \operatorname{sen}(\phi + x) e^{-\operatorname{cot} \phi(x - \alpha)} - \operatorname{sen}(\phi + \alpha) \right\} \right]^{2} + \right. \\ + \left. \sum_{n=3,5,7,\ldots}^{\infty} \left\{ \left[\frac{2}{n+1} \left\{ \cos[(n+1)\alpha - \phi] - \cos[(n+1)x - \phi] \right\} \right] \right. \\ \left. - \frac{2}{n-1} \left\{ \cos[(n-1)\alpha - \phi] - \cos[(n-1)x - \phi] \right\} + \right. \\ \left. + \frac{4 \operatorname{sen}(\alpha - \phi)}{n^{2} + \cot^{2} \phi} \left\{ \left(\cot \phi \cdot \cos n \alpha - n \operatorname{sen} n \alpha \right) \right\} \right]^{2} + \right.$$

$$-\frac{2}{n-1} \left\{ \operatorname{sen}[(n-1)\alpha - \phi] - \operatorname{sen}[(n-1)\alpha - \phi] \right\} +$$

 $+ \frac{4 \operatorname{sen}(\alpha - \phi)}{n^2 + \cot^2 \phi} \{ (\cot \phi \operatorname{sen} n x + n \cos n x) e^{-\cot \phi (x - \alpha)} -$

$$- (\cot \phi \operatorname{sen} n \alpha + n \cos n \alpha)]^{2}]^{\frac{1}{2}} E^{-2.3.43}$$

donde:

x = ángulo de extinsión de la corriente resultado de la solución de la ecuación trascendental

$$sen(x - \phi) - sen(\alpha - \phi) e^{-\cot\phi(x - \alpha)} = 0$$

 $\omega = 2\pi f$

 $f = frecuencia [H_z]$

L = inductancia de carga [H]

R = resistencia de carga [Ω]

2.4 FACTOR DE POTENCIA PARA UN CIRCUITO CON CARGA RESISTIVA INDUCTIVA ACOPLADO UN CIRCUITO DE COMPENSACION CAPACITIVO PURO

Con el estudio anterior se determinó que la potencia reactiva i<u>n</u> crementa su valor cuando se encuentra como parte de la carga una inductancia L, lo que hace pensar que para corregir a esta pote<u>n</u> cia reactiva inductiva, es necesario acoplar un condensador que presente una mayor potencia reactiva capacitiva de compensación.

Se hará este análisis matemático con el afán de observar la vari<u>a</u> ción que tiene el factor de potencia y la potencia reactiva, cua<u>n</u> do una resistencia en serie con una inductancia, son sometidas a control no-lineal de corriente.

Se utiliza para el análisis matemático un condensador ideal figura 2.9 porque como se demostró en el párrafo 2.2, la presencia de una resistencia en paralelo al condensador no influye mayormente con el resultado total, sabiendo que ésta representa las pérdidas en el dieléctrico real.

. . . 1.05

Figura 2.9 Circuito controlado de corriente, con carga R-L y compensación capacitiva ídeal C

2.4.1 ANALISIS MATEMATICO DE LA POTENCIA REACTIVA Y DEL FACTOR DE POTENCIA CON CAPACITOR IDEAL EN EL CIRCUITO DE COM-PENSACION

En el circuito de la figura 2.9 se tiene un controlador de corrie<u>n</u> te alterna, alimentando una carga inductiva-resistiva. Está acoplado un condensador ideal C como compensador, y la fuente de al<u>i</u>

106

mentación del circuito tiene voltaje sinusoidal puro v(ω t) e imp<u>e</u> dancia interna despreciable.

$$v(\omega t) = \sqrt{2} V \text{ sen } \omega t$$

La corriente total del circuito es:

$$i_{s} = i_{c} + i_{T}$$

donde:

$$i_{c}(\omega t) = C \frac{dv}{dt} = C \omega \sqrt{2} V \cos \omega t$$
 E-2.4.1

La corriente i_L esta dada por E-2.3.5, la misma que en forma sim plificada puede ser representada por:

$$i_{L} = \sum_{n=1}^{\infty} C_{n} \operatorname{sen}(n \, \omega t + \Psi_{n}) \qquad \text{E-2.4.2}$$

Por lo que la corriente que entrega la fuente, resulta ser:

 $i_{s} = C \omega \sqrt{2} V \cos \omega t + \sum_{n=1}^{\infty} C_{n} \operatorname{sen}(n \omega t + \Psi_{n}) \qquad \text{E-2.4.3}$

108

$$i_{s} = \sqrt{2} I_{z_{1}} \operatorname{sen}(\omega t + \beta_{i}) + \sum_{n=3,5,7}^{\infty} \sqrt{2} I_{n}(n \omega t + \Psi_{n})$$

.

E-2.4.4

• •

sabiendo que:

•

$$A_{Z_1} = C \ \omega \ \sqrt{2} \ V + C_1 \ \text{sen} \ \Psi_1 = C \ \omega \ \sqrt{2} \ V + A_1$$
 E-2.4.5

•

$$B_{z_1} = C_1 \cos \Psi_1 = B_1$$
 E-2.4.6

•

$$C_{Z_{1}} = \sqrt{2} I_{Z_{1}} = [(C_{\omega}\sqrt{2}V)^{2} + C_{1}^{2} + 2C_{\omega}\sqrt{2}V A_{1}]^{\frac{1}{2}} E-2.4.7$$

.

donde:

۱

$$A_{1} = \frac{V}{\sqrt{2}\pi|Z|} \cdot F_{a_{1}}$$

$$B_1 = \frac{V}{\sqrt{2\pi}|Z|} \cdot F_{b_1}$$

$$C_{1} = \left[A_{1}^{2} + B_{1}^{2} \right]^{\frac{1}{2}}$$

.

$$\beta_{i} = \operatorname{Arc} \operatorname{Tg} \quad \frac{C \omega \sqrt{2} V + C_{1} \operatorname{sen} \Psi_{1}}{C_{1} \cos \Psi_{1}} \qquad \qquad \text{E-2.4.8}$$

de E-2.3.19 se tiene Ψ_n

$$\Psi_n = \operatorname{Arc} Tg \xrightarrow{F_{an}}_{F_{bn}} E-2.4.9$$

El término A₁ está dado por la ecuación E-2.3.20 y los factores F_{an} y F_{bn} son los factores de las ecuaciones E-2.3.13 y E-2.3.15 respectivamente.

Para el cálculo del valor eficaz o RMS de la corriente i_s se emplea la ecuación E-2.4.4 y se utiliza el Teorema de Parseval.

$$I_{Z} = \frac{1}{\sqrt{2}} \left[(C \omega \sqrt{2} V)^{2} + 2 C \omega \sqrt{2} V A_{1} + (A_{1}^{2} + B_{1}^{2}) + \sum_{n=3,5,7}^{\infty} C_{n}^{2} \right]^{\frac{1}{2}}$$

E-2.4.10

Mediante el análisis matemático de la potencia activa para el circuito de la figura 2.9 donde se tiene un capacitor ideal C,

se comprobará que tiene un comportamiento similar al del circuito de la figura 2.8 porque el capacitor ideal no consume potencia.

$$P = V \cdot I_{z_1} \cdot \cos \beta_i$$
 E-2.4.11

Sabiendo que mediante la ecuación E-2.4.8 se puede despejar el cos β_i

$$\cos \beta_{i} = \frac{B_{1}}{\sqrt{2} I_{Z_{1}}}$$
 E-2.4.12

Ya que $B_1 = B_{z_1}$ como indica la E-2.4.6

.

Reemplazando las ecuaciones E-2.4.12 en E-2.4.11 se tiene:

$$P = V \cdot \frac{B_1}{\sqrt{2}}$$
 E-2.4.13

siendo igual a la ecuación E-2.3.35 la cual demuestra que no se puede alterar.

Reemplazando las ecuaciones E-2.4.13 con la ecuación E-2.4.6 y luego de reducir se tiene:

$$P = \frac{V^{2}}{2\pi |Z|} \cdot F_{b_1}$$

E-2.4.14

$$P = \frac{V^2}{2\pi |Z|} \cdot \left[\operatorname{sen}(2\alpha - \phi) - \operatorname{sen}(2x - \phi) + \cos \phi(2x - 2\alpha) + \frac{1}{2\pi |Z|} \right]$$

+ 4 sen ϕ sen $(\alpha - \phi)$ { sen $(\phi + x)$ e^{-cot $\phi(x - \alpha)$} -

 $- sen(\phi + \alpha) \}$ E-2.4.15

La ecuación E-2.4.14 determina la potencia activa para el circuito compensado con el condensador C siendo igual a la ecuación do<u>n</u> de no se tiene ninguna compensación. Pero el análisis de la pote<u>n</u> cia aparente y el factor de potencia variarán, puesto que con el capacitor, se modificará la corriente RMS y por ende el factor de potencia , tal como se lo indica a continuación.

Con la ayuda de la definición:

 $S = V \cdot I_{Z}$

y al hacer el reemplazo tanto la corriente como el voltaje RMS se tiene

$$S = V \cdot \frac{1}{\sqrt{2}} \left[(C \omega \sqrt{2} V)^2 + 2C \omega \sqrt{2} V A_1 + (A_1^2 + B_1^2) + \sum_{n=3,5,7..}^{\infty} C_n^2 \right]^{\frac{1}{2}}$$

E-2.4.16

lo que resulta en:

$$S = \frac{V^2}{2\pi \cdot |Z|} \cdot \left[(2\pi \cdot |Z| \cdot C\omega)^2 + F_{a_1}^2 + F_{b_1}^2 + \right]$$

+ 2 C
$$\omega$$
. 2 π . |Z| F + Σ (F² + F² bn)]¹/₂
n=3,5,7.. E-2.4.17

Haciendo el análisis de potencia aparente entre la ecuación E-2.3.39 que no tiene compensación, y la ecuación E-2.4.17 con compensación, son diferentes debido a la presencia del condensador C que modifica el comportamiento de la corriente total.

Con la ayuda de la ecuación E-2.1.20 se determina la potencia reactiva Q

$$Q = -V \cdot I_{Z_1} \cdot \text{sen } \beta_1$$
 E-2.4.18

donde:

$$I_{Z_1} = \frac{C_{Z_1}}{\sqrt{2}}$$
 E-2.4.19

 $\operatorname{sen} \beta_{i} = \frac{A_{Z_{1}}}{C_{Z_{1}}}$

E-2.4.20

remplazando en Q , tanto $I_{_{\mathbf{Z}_{\mathbf{1}}}}$ y sen $\boldsymbol{\beta}_{_{\mathbf{i}}}$ se tiene

$$Q = -\frac{V}{\sqrt{2}} \cdot A_{Z_1}$$
 E-2.4.21

$$Q = -V^2 C \omega - A_1 \cdot \frac{V}{\sqrt{2}}$$
 E-2.4.22

Para esta última expresión en la potencia reactiva, recuérdese que $A_1 < 0$, lo que da lugar a que exista un valor de $C = C_{op}$, capaz de neutralizar la potencia reactiva generada por el ci<u>r</u> cuito

$$C_{op} = -\frac{F_{a_1}}{2\pi |Z|\omega}$$

E-2.4.23

Para determinar el factor de potencia se utiliza la definición <u>ge</u> neral

$$F_p = \frac{p}{S}$$

Con las ecuaciones de potencia activa de la ecuación E-2.4.14 y la potencia aparente de la ecuación E-2.4.17 se reduce el factor de potencia a:

$$F_{p} = F_{b_{1}} \div [(2\pi \cdot |Z| \cdot C\omega)^{2} + F_{a_{1}}^{2} + F_{b_{1}}^{2} +$$

+ 2 C
$$\omega$$
 . 2 π |Z| F + Σ (F² + F²)]¹
n=3.5.7 an bn

E-2.4.24

Entonces el factor de potencia, dependiente de los ángulos de co<u>n</u> trol y de extinsión estará dado por:

$$F_{p} = \left[\operatorname{sen}(2\alpha - \phi) - \operatorname{sen}(2x - \phi) + \cos\phi(2x - 2\alpha) + \right]$$

+ 4 sen
$$\phi$$
 sen $(\alpha - \phi)$ { sen $(\phi + x) e^{-\cot \phi(x - \alpha)}$ -

- $sen(\phi + \alpha) \}$] ÷ $[(2\pi |Z| C \omega)^2 + {cos(2\alpha - \phi) - }$

$$-\cos(2x-\phi) - \sin\phi(2x-2\alpha) +$$

+ 4 sen ϕ sen($\alpha - \phi$) { cos(ϕ + x) e^{- cot ϕ (x - α) -}

- $\cos(\phi - x)$ }² + { $sen(2\alpha - \phi) - sen(2x - \phi) +$

•

+ $\cos \phi(2x - 2\alpha) + 4 \operatorname{sen} \phi \operatorname{sen}(\alpha - \phi) \{ \operatorname{sen}(\phi + x) e^{-\cot \phi (x - \alpha)} - \phi \} = - \operatorname{sen}(\phi + x) e^{-\cot \phi (x - \alpha)} = -$

$$- \operatorname{sen}(\phi + \alpha) \}^{2} + 4\pi C \omega | z | \{ \cos(2\alpha - \phi) - \cos(2x - \phi) - \sin\phi(2x - 2\alpha) + \\ + 4 \operatorname{sen} \phi \operatorname{sen}(\alpha - \phi) \{ \cos(\phi + x) e^{-\cot\phi(x - \alpha)} - \\ - \cos(\phi - x) \} + \sum_{n=3,5,7}^{\infty} \left[\left[\frac{2}{n+1} \{ \cos[(n+1)\alpha - \phi] - \\ - \cos[(n+1)x - \phi] \} - \frac{2}{n-1} \{ \cos[(n-1)\alpha - \phi] - \\ - \cos[(n-1)x - \phi] \} + \frac{4 \operatorname{sen}(\alpha - \phi)}{n^{2} + \cot^{2}\phi} \{ (\cot\phi\cos nx - \\ n \operatorname{sen} nx) e^{-\cot\phi(x - \alpha)} - (\cot\phi\cos n\alpha - \\ n \operatorname{sen} nx) e^{1} - \frac{2}{n+1} \{ \operatorname{sen}[(n+1)\alpha - \phi] - \\ - \operatorname{sen}[(n+1)x - \phi] \} - \frac{2}{n-1} \{ \operatorname{sen}[(n-1)\alpha - \phi] - \\ - \operatorname{sen}[(n+1)x - \phi] \} - \frac{2}{n-1} \{ \operatorname{sen}[(n-1)\alpha - \phi] - \\ - \operatorname{sen}[(n+1)x - \phi] \} - \frac{2}{n-1} \{ \operatorname{sen}[(n-1)\alpha - \phi] - \\ - \operatorname{sen}[(n+1)x - \phi] \} - \frac{2}{n-1} \{ \operatorname{sen}[(n-1)\alpha - \phi] - \\ - \operatorname{sen}[(n+1)x - \phi] \} - \frac{2}{n-1} \{ \operatorname{sen}[(n-1)\alpha - \phi] - \\ - \operatorname{sen}[(n+1)x - \phi] \} - \frac{2}{n-1} \{ \operatorname{sen}[(n-1)\alpha - \phi] - \\ - \operatorname{sen}[(n+1)x - \phi] \} - \frac{2}{n-1} \{ \operatorname{sen}[(n-1)\alpha - \phi] - \\ - \operatorname{sen}[(n+1)x - \phi] \} - \frac{2}{n-1} \{ \operatorname{sen}[(n-1)\alpha - \phi] - \\ - \operatorname{sen}[(n+1)x - \phi] \} - \frac{2}{n-1} \{ \operatorname{sen}[(n-1)\alpha - \phi] - \\ - \operatorname{sen}[(n+1)x - \phi] \} - \frac{2}{n-1} \{ \operatorname{sen}[(n-1)\alpha - \phi] - \\ - \operatorname{sen}[(n+1)x - \phi] \} - \frac{2}{n-1} \{ \operatorname{sen}[(n-1)\alpha - \phi] - \\ - \operatorname{sen}[(n+1)x - \phi] \} - \frac{2}{n-1} \{ \operatorname{sen}[(n-1)\alpha - \phi] - \\ - \operatorname{sen}[(n+1)x - \phi] \} - \frac{2}{n-1} \{ \operatorname{sen}[(n-1)\alpha - \phi] - \\ - \operatorname{sen}[(n+1)x - \phi] \} - \frac{2}{n-1} \{ \operatorname{sen}[(n-1)\alpha - \phi] - \\ - \operatorname{sen}[(n+1)x - \phi] \} - \frac{2}{n-1} \{ \operatorname{sen}[(n+1)\alpha - \phi] - \\ - \operatorname{sen}[(n+1)x - \phi] \} - \frac{2}{n-1} \{ \operatorname{sen}[(n+1)\alpha - \phi] - \\ - \operatorname{sen}[(n+1)x - \phi] \} - \frac{2}{n-1} \{ \operatorname{sen}[(n+1)\alpha - \phi] - \\ - \operatorname{sen}[(n+1)x - \phi] \} - \frac{2}{n-1} \{ \operatorname{sen}[(n+1)\alpha - \phi] - \\ - \operatorname{sen}[(n+1)x - \phi] \} - \frac{2}{n-1} \{ \operatorname{sen}[(n+1)\alpha - \phi] - \\ - \operatorname{sen}[(n+1)x - \phi] \} - \frac{2}{n-1} \{ \operatorname{sen}[(n+1)\alpha - \phi] \} - \\ - \operatorname{sen}[(n+1)x - \phi] \} - \frac{2}{n-1} \{ \operatorname{sen}[(n+1)\alpha - \phi] - \\ - \operatorname{sen}[(n+1)x - \phi] \} - \\ - \operatorname{sen}[(n+1)x - \phi] \} - \\ - \operatorname{sen}[(n+1)x - \phi] \} - \\ - \operatorname{sen}[(n+1)x - \phi] + \\ - \operatorname{sen}[(n+1)x - \phi] \} - \\ - \operatorname{sen}[(n+1)x - \phi] + \\ - \operatorname{sen}[(n+1)x - \phi]] + \\ - \operatorname{sen}[(n+1)x - \phi] + \\ -$$

$$- \operatorname{sen}[(n-1)\alpha - \phi] + \frac{4 \operatorname{sen}(\alpha - \phi)}{n^2 + \cot^2 \phi}$$

- cos[(n +

- cos[(n-

- sen[(n+

{
$$(\cot \phi \operatorname{sen} n x + n \cos n x) e^{-\cot \phi (x - \alpha)}$$
 -

- $(\cot \phi \operatorname{sen} n x + n \cos n \alpha)]^2$ E-2.4.25

116

El factor de potencia ya analizado en la ecuación E-2.4.25, será el mejor cuando el condensador de compensación en el circuito de la figura 2.9 sea el óptimo. Esto se conseguirá matemáticamente, con la ayuda de la definición de la primera derivada de una función <u>i</u> gualada a cero, ésta es:

$$\frac{d_{Fp}}{d C} = 0 \qquad E-2.4.26$$

Haciendo el reemplazo de la primera derivada de la ecuación E-2.4.25 en la ecuación E-2.4.18 e igualando a cero se tiene:

$$[\operatorname{sen}(2\alpha - \phi) - \operatorname{sen}(2x - \phi) + \cos\phi(2x - 2\alpha) +$$

+ 4 sen ϕ sen($\alpha - \phi$) { sen($\phi + x$) e^{- cot $\phi(x - \alpha)$} -

$$-\operatorname{sen}(\phi + \alpha) \}] \cdot [2(2\pi |Z| \omega)^2 C -$$

$$-4\pi\omega |Z| F_{2} = 0$$

E-2.4.27

Determinando C óptimo, que resulta ser igual al obtenido por el método anterior (E-2.4.23)

$$C_{\rm op} = \frac{-F_{\rm a_1}}{2\pi |Z| \omega}$$
 E-2.4.28

reemplazando el valor del factor F_{a_1} en la ecuación E-2.4.20 se transforma en:

$$C_{\text{op}} = -\frac{1}{2\pi |Z|\omega} \left[\cos(2\alpha - \phi) - \cos(2x - \phi) - - \cos(2x - \phi) \right]$$

- sen $\phi(2x - 2\alpha) + 4 \operatorname{sen} \phi \operatorname{sen}(\alpha - \phi)$.

$$\{\cos(\phi + x) e^{-\cot\phi(x - \alpha)} - \cos(\phi + \alpha) \}]$$

F-2.4.29

III

EXPERIMENTACION

3.1 ASPECTOS BASICOS DE LA INSTRUMENTACION

Para poder conseguir las respuestas requeridas según el análisis teórico que se realizó en el capítulo anterior, se deben tomar en cuenta algunos aspectos que permiten conformar tanto el circuito experimental, como otros que tienen que ver con la instrumentación a emplearse.

La implementación del circuito electrónico que controla la forma de la onda de corriente que circula por la carga, dependerá de las características, de las cargas que se vayan a utilizar. Por otro lado, para tener mejores resultados, las lecturas de los instr<u>u</u> mentos de medida, deben ser realizadas evitando, en lo posible,el efecto de carga que introducen los propios instrumentos.

Para el presente trabajo, se escogen tres tipos de cargas: resistencias lineales; resistencias no-lineales y resistencias en serie con inductor. Los valores utilizados, y que fueron medidos en el laboratorio, se dan en el siguiente cuadro:

RESISTENCIAS LINEALES: 963Ω; 125,3Ω; 28,1Ω

RESISTENCIAS NO-LINEALES: 2 lámparas 115/100ω; 4 lámparas 115/100ω

CARGA R-L: Req = $88,7 \Omega$ L = 0,15 H a 60 H₂

Como fuente se utilizó la red de alimentación de corriente alterna, manteniendo su voltaje RMS constante e igual a 115,5 V Fr<u>e</u> cuencia; 60 H_{$_{7}$} Tomando en consideración que se debía determinar experimentalmente la presencia de potencia reactiva pura en controladores de f<u>a</u> se directa, con carga resistiva, se estableció la siguiente metodología de trabajo:

- Medir para un ángulo de fase dado, dentro del rango de 30°
 a 150°, la potencia media y la potencia aparente del contr<u>o</u>
 lador, variando con un banco de capacitores, la potencia
 reactiva capacitiva del compensador.
- Calcular el factor de potencia en cada paso, para ubicar el valor de capacitor que es capaz de optimizar el factor de potencia.

La potencia reactiva generada por el capacitor óptimo representa, en valor absoluto, la potencia reactiva inductiva generada por el controlador. Es decir, la medición de la potencia reactiva del controlador, es indirecta. Igual procedimiento se sigue para la carga R-L, así como para la carga resistiva no-lineal (banco de lámparas incandescentes), a efectos de investigar su comportamie<u>n</u> to, en relación con las resistencias lineales.

Debido a la presencia de ondas distorsionadas en el circuito co<u>n</u> trolador, el escoger la instrumentación adecuada, requiere de las siguientes consideraciones:

- Para medir la potencia media con el mínimo error posible ,

se necesita de un vatímetro tipo dinamométrico, cuyo ancho de banda de medición,garantice la interacción del mayor n<u>ú</u> mero de componentes armónicas en su respuesta.

- La potencia aparente, puede ser facilmente determinada, mi diendo el valor RMS del voltaje de la fuente, y el VERDA DERO VALOR RMS de la corriente de linea. Aquí cabe señalar que en general los instrumentos de medición con escala de alterna, vienen calibrados para indicar la lectura correcta solo para ondas sinusoidales.

La introducción en estos instrumentos de otras ondas no si nusoidales,o distorsionadas, provocarán lecturas erróneas. Unicamente aquellos instrumentos que tienen la indicación "TRUE RMS", pueden dar lecturas correctas del VERDADERO VA LOR RMS de ondas alternas distorsionadas, que tengan valor medio igual a cero, y factores de pico menores o igua les a 3.

$$K_{\rm F} = \frac{V_{\rm MAX}}{V_{\rm RMS}} \leq 3$$

 En cuanto se refiere a la disposición experimental, se de ben minimizar los errores de inserción de los instrumentos al tomar las lecturas. La figura 3.1 muestra lo utilizado

en este trabajo.

Figura 3.1 Configuración del circuito empleado en la experimentación y disposición de los instrumentos de medida.

 Para detectar el ángulo de disparo, y evaluar visualmente las formas de onda, se utiliza un osciloscopio, que tenga un moderado ancho de banda.

En el anexo N^2 3 se pueden encontrar las características y especificaciones de los instrumentos de medida utilizados en la experimentación.

3.2 CIRCUITO EXPERIMENTAL

123

El circuito experimental consta de una carga resistiva o resistiva-inductiva, que será conectada a la fuente de alimentación alterna, de forma de onda sinusoidal e impedancia cero, a través de un circuito que regula la forma de onda de corriente, que circula por la carga, según la figura 3.2

Figura 3.2 Circuito experimental simplificado

El par de tiristores que se encuentran conectados en paralelo y en contrafase, requieren ser activados por un circuito externo, el cual permite que se disparen dichos tiristores, haciendo posible la circulación de la corriente (i_{ℓ}) a la carga. La corriente $i_{\ell} se$ rá cero, si el circuito de activado a los tiristores no genera nin guna señal, pero a medida que esta unidad de control externa emite la señal de disparo, permitirá la conducción de los semiconductores para que la carga sea alimentada con una onda sinusoidal recortada, de án-

gulo de conducción variable.

3.2.1 CIRCUITO DE CONTROL

Dado que el propósito es el de analizar experimentalmente la exis tencia de potencia reactiva en un circuito exitado con forma de onda no sinusoidal y que es independiente del valor de la potencia de la carga, se ha visto conveniente utilizar *tiristores* con una capacidad de corriente del orden de unos 10 A. RMS y un volta je de aislación $V_{DRM} = 600 V$, especificaciones que son suficien tes para hacer el estudio práctico.

CIRCUITO DE DISPARO DE LOS TIRISTORES

Para determinar las condiciones de activado, y así provocar la conducción de los tiristores, hay que valerse de las característ<u>i</u> cas de compuerta, que presenta el fabricante para estos semicondu<u>c</u> tores. El punto de trabajo deberá estar dentro del área rayada de la figura 3.3.

Figura 3.3 Area de disparo de un tiristor

Esta figura muestra que hay valores mínimos de tensión y de co rriente de puerta, que por debajo de los cuales el tiristor no se excitará.Los tiristores de alta potencia, requieren de corriente in tensas de puerta, por lo cual se hace útil saber utilizar el manual de características respectivas.

El circuito de la figura 3.4, permitirá proveer los pulsos de a<u>c</u> tivado necesarios para los SCR que son utilizados en la experi mentación. Se trata de un circuito generador tipo pedestal-rampa cosenoidal, que utiliza un transistor unijuntura programable(PUT).

El puente rectificador que realiza la sincronización de los pu<u>l</u> sos es alimentado por la red alterna de 115,5 voltios/60 H_z , que será también la que alimenta al circuito del análisis y estudio (características de los elementos, ver anexo N² 4)

126

127

Figura 3.4 Circuito generador de pulsos

El tren de pulsos que genera el circuito de la figura 3.4 es <u>en</u> viado a través del opto-acoplador led-Tiristor NTE 3048, al circuito de la figura 3.5 para que se activen las compuertas de los tiristores de potencia.

Figura 3.5 Circuito regulador de la corriente I_{l}

El activado de los tiristores, es decir la conducción de la corriente ($i_{\mathcal{L}}$) a la carga, se podrá controlar con el potenciómetro R_7 de la figura 3.4 ya que al variar esta resitencia se control<u>a</u> rá la posición de los pulsos, dentro de cada semiciclo de la red, y por ende el ángulo de corte de la onda sinusoidal alimentada al sistema; ángulo que no podrá tomar un valor extremado de cero,por que como se ha mencionado, se necesita un mínimo valor de voltaje o de corriente en los tiristores para que entre en conducción. E<u>s</u> to da lugar a que el rango de variación normal de α este entre 30° y 150°, lo que para los fines del presente trabajo es más que suficiente.

3.3 RESULTADOS EXPERIMENTALES

A continuación se presentan en cuadros explicativos, los resultados experimentales de las pruebas efectuadas en el laboratorio p<u>a</u> ra las diferentes cargas, ya sean estas resistivas puras o inductivas en serie a las resistivas. También se tiene descrito el efe<u>c</u> to de los compensadores (C) al circuito, dando una variación a la corriente I_T , como también a la potencia aparente S, características que hacen variar el factor de potencia. Además se incluyen algunos casos para los cuales el compensador es el capacitor óptimo y la variación del factor de potencia para estos casos.

Es conveniente entonces hacer una descripción de las diferentes va

los distintos análisis, siendo éstas las siguientes:

VARIABLES CONSIDERADAS EN LOS DIFERENTES RESULTADOS

 $V_{RMS} = 115,5 V$. voltaje de la fuente

V = Voltaje en la carga (voltios) RMS

 $W_{_{\rm T}}$ = Potencia activa total (WATTS) a los terminales de entrada del controlador

 W_{c} = Potencia activa en la carga (WATTS)

 α = Angulo de control (grados)

 α_{c} = Angulo de extinsión (grado)

C = Capacitor variable (μF)

$$I_{c}$$
 = Corriente en la carga (mA)
 I_{T} = Corriente total (mA) = I_{T}

$$F_{p}$$
 = Factor de potencia del circuito

R = Resistencia de carga (Ω)

. •

L = Inductancia de carga (H)

 C_{op} = Capacitor óptimo teórico (µF)

.

.

3.3.1 MEDICIONES CON CARGA RESISTIVA LINEAL

a.- Para: $R_{L} = 963 \Omega$ y 115.5 V_{RMS}

TABLA Nº 1

 $V_{c} = 113.5$ V $I_{c} = 115.8$ mA $W_{T} = 18.3$ Wtts $W_{c} = 12.95$ Wtts

α	C	I _{T.}	S	Fp
30°	0	115,8	13,375	0,968
	0,1	115,7	13,363	0,969
	0,2	115,4	13,329	0,972
	0,3	115,8	13,375	0,968
	0,4	116,0	13,398	0,967
	0,5	116,5	13,456	0,962
	1,0	126,0	14,553	0.890
.•	1,5	135,1	15,604	0,830
	2,0	154,3	17,822	0,727
	4.0	222,8	25,733	0,503
	6.0	304,8	35,204	0,368
	8,0	398,6	46,038	0,281
	10,0	487,7	56,329	0,230
	12,0	589,6	68,099	0,190
	14,0 .	669,6	77,339	0,167
	16,0	772,0	89,166	0,145
	18,0	860,8	99,422	0,130
	20,0	964,2	111,365	0,116

 $C_{\rm op} = 0,219 \ \mu F$

 $V_{c} = 105.3 V$ $I_{c} = 107.0 m A$

۰.

1

W_{c}	=	11.0	Watts
W_{T}	Ħ	13.7	Watts

α	C	IT	S	F p
60 °	0	107,0	12,359	0,890
	0,1	106,3	12,278	0,896
	0,2	105,8	12,220	0,900
	0,3	105,2	12,151	0,905
	0,4	105,0	12,128	0,907
	0,5	104,7 .	12,093	0,910
	0,6	105,0	12,128	0,907
	0,7	105,1	12,139	0,906
	0,8	105,2	12,151	0,905
	0,9	106,2	12,266	0,897
	1,0	107,0	12.359	0,890
	1,5	113,8	13,144	0,837
	2,0	124.7	14,403	0,764
	2,5	137,5	15,881	0,693
	3,0	155,6	17,972	0,612
	4,0	200,8	23,192	0,474
	6,0	283,1	32,698	0,336
	8,0	377,3	43,578	0,252
	10,0	462,2	53,384	0,206
	14,0	648,1	74,856	0,147
	16,0	739,0	85,355	0,129
	20,0	923,0	106,607	0,103

 $C_{\rm op} = 0,65 \ \mu F$

۷ _c	=	84.7	V
I _c	=	87.7	m A

Wc	=	7.35	watts
\mathbb{W}_{T}	11	9.9	watts

α	C	I _T	'S	Fp
90°	0	87,7	10,129	0,726
	0,1	86,1	9,945	0,739
	0,3	83,5	9,644	0,762
	0,4	82,3	9,506	0,773
	0,5	81,6	9,425	0,780
	0,6	81,0	9,356	0,786
	0,7	80,7	9,321	0,789
	0.8	80,7	9,321	0,789
	0,9	80,8	9,332	0,788
	1,0	81,3	9,390	0,783
	1,1	82,1	9,483	0,775
	1,2	83,0	9,587	0,767
	1,3	84,3	9,737	0,755
	1,4	86,2	9,956	0,738
	1,5	87,1	10,060	0,731
	1,6	89,7	10,360	0.709
	1,7	91,6	10,580	0,695
	1,8	93,8	10,834	0,678
	1,9	96,0	11,088	0,663
	2,0	98,1	11,331	0,649
	2,5	111,7	12,901	0,570
	3,0	131,1	15,142	0,485
	3,5	148,7	17,175	0,428
	4,0	178,4	20,605	0.357
	4,5	197,8	22,846	0,322
	5,0	215,7	24,913	0,295
	5,5	235,7	27,223	0,270
	6.0	263,5	30,434	0,242
	8,0	359,6	41,534	0,177
	10,0	449,9	51,963	0,141

C_{op} = 0,87 μF

TABLA № 4

 $V_{c} = 57.4$ V $I_{c} = 58.8$ mA

۱

 $W_c = 3.3$ Watts $W_T = 5.55$ Watts

α	С	Γ _T	S	Fp
120°	0	58,7	6,780	0,487
	0,1	56,7	6,549	0,504
	0,2	55,0	6,353	0,519
	0,3	53,4	6,168	0,535
	0,4	52,1	6,018	0,548
	0,5	51,5	5,948	0,555
	0,6	50,9	5,879	0,561
	0,7	50,9	5,879	0,561
	0,8	51,3	5,925	0,557
	0,9	51,9	5,994	0,551
	1,0	53,7	6,202	0,532
	1,1	55,3	6,387	0,517
	1,2	57,0	6,584	0,501
	1,3	59,2	6,838	0,483
	1,4	62,4	7,207	0,458
	1,5	63,9	7,380	0,447
. ·	1,6	67,8	7,831	0,421
	1,7	70,6	8,154	0,405
	1,8	73,8	8,524	0,387
	1,9	76,9	9,882	0,372
	2,0	79,8	9,217	0,358
	3,0	120,2	13,883	0,238
	3,5	140,1	16,182	0,204
	4,0	172,3	19,901	0,166
	4,5	193,0	22,292	0,148
	5.0	211,8	24,463	0,135

 $C_{\rm op} = 0.65 \ \mu F$

135

TABLA Nº 5

 $V_{c} = 26.1 V$

 $I_{c} = 26.0 \text{ mA}$

 $W_{c} = 0.66$ Wtts.

nA

 $W_{T} = 2.8$ Wtts.

α	С	· I	S	F .
150°	0	26,0	3,003	0,220
	0,1	24,3	2,807	0,235
	0,2	23,2	2,680	0,246
	0,3	23,2	2,680	0,246
	0;4	23,8 .	2,749	0,240
	0,5	24,5	2,830	0,233
	0,6	27,2	3,142	• 0,210
	0,7	29,7	3,430	0,192
	0,8	32,6	3,765	0,175
	0,9	35,6	4,112	0,161
	1,0	39,1	4,516	0,146

 $C_{\rm op} = 0,219 \ \mu F$

Se puede observar que el capacitor óptimo y el valor práctico para el cual el factor de potencia es el mejor, son muy similares, dando con esto buenos resultados a la experimentación. Además el valor del capacitor para los ángulos 30° y 150° son iguales como también para 60° y 120°, cumpliéndose de esta manera, la simetría de la variación del valor del capacitor óptimo cuando es una carga resist<u>i</u> va constante.

 $W_c = 100$ Wtts.

 $W_{\rm T}$ = 103,5 Wtts.

b.- Para $R_L = 125,3 \ \Omega$ como carga, Voltaje de alimentación 115,5 V

 $I_{c} = 890 \text{ mA}$ $V_{c} = 113, 1 \text{ V}$

		•		
α	С	I _T (A)	S	Fp
30°	0	0,890	102,80	0,973
	2	0,889	102,68	0,974
	4	0,898 .	103,72	0,964
	6	0,917	105,91	0,944
	8	0,943	108,92	0,918
	10	0,978	112,96	0,885
	12	1,021	117,93	0,848
	14	1,077	124,39	0,804
·	16	1,130	130,52	0,766
	18	1,195	138,02	0,725
	20	1,257	145,18	0,689
	22	1,333	153,96	0,650
	24	1,393	160,89	0,622
	26	1,475	170,36	0,587
	28	1,548	178,79	0,559
	30	1,633	188,61	0,530

$$C_{op} = 1,68 \ \mu F$$

-

TABLA Nº7

Ic	=	821	mΑ
٧ _c	=	104,3	۷

 $W_{c} = 85$ Wtts. $W_{T} = 89$ Wtts.

С	I _T (A)	S	Fp
0	0,821	94,83	0,896
2	0,804	92,86	0,915
4	0,797	92.05	0,923
6	0,801	92,52	0,919
8	0,815	94,13	0,903
10	0,839	96,91	0,877
12	0,873	100,83	0,843
14	0,920	106,23	0,800
16	0,968	111.80	0,760
18	1,028	118,73	0,716
20	1,086	125,43	0,678
22	1,161	134,10	0,634
24 .	1,222	141,14	0,602
26	1,300	150,15	0,566
28	1,372	158,47	0,536
30	1,457	168,28	0,505
	C 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30	C $I_T^{(A)}$ 00,82120,80440,79760,80180,815100,839120,873140,920160,968181,028201,086221,161241,222261,300281,372301,457	C $I_T (A)$ S00,82194,8320,80492,8640,79792.0560,80192,5280,81594,13100,83996,91120,873100,83140,920106,23160,968111.80181,028118,73201,086125,43221,161134,10241,222141,14261,300150,15281,372158,47301,457168,28

 $C_{\rm op} = 5,05 \ \mu F$
TABLA Nº 8

 $I_{c} = 657 \text{ mA}$ $V_{c} = 83,3 \text{ V}$ $W_{c} = 54,6$ Wtts. $W_{T} = 56,2$ Wtts.

α	С	I _T (A)	S	Fp
90°	0	0,657	75,88	0,720
	1	0,640	73,92	0,739
	2	0,626	72,30	0,755
	3	0,615	71,03	0,769
	4	0,607	70,11	0,779
	5	0,602	69,53	0,785
	6	0,600	69,30	0,788
	.7	0,601	69,42	0,787
	8	0,606	69,99	0,780
	10	0,626	72,30	0,755
	12	0,658	75,99	0,718
	14	0,709	81,89	0,667
	16	0,762	88,01	0,620
	18	0,827	95,52	0,572
	20	0,892	103,03	0,530
	24	1,036	119,66	0,456
	28	1,199	138,49	0,394
	30	1,290	148,99	0,366

 $C_{\rm op} = 6,074 \ \mu F$

I c	=	429	mA
٧ _c	=	54,3	۷

$$W_c = 23,1$$
 Wtts.
 $W_T = 25,9$ Wtts.

α	C	I _† (A)	S	F p
120°	0	0,429	49,55	0,466
	2	0,389	44,93	0,514
	3	0,377	43,54	0,531
	4	0,370 [.]	42,73	0,541
	5	0,369	42,62	. 0,542
	6	0,371	42,85	0,539
	7	0,379	43,78	0,528
	8	0,394	45,51	0,508
	9	0,413	47,70	0,484
	10	0,436	50,36	0,459
	14	0,564	65,14	0,355
	18	0,720	83,16	0,278
	22	0,892	103,03	0,224
	26	1,064	122,89	. 0,188
	30	1,246	143,91	0,161

 $C_{op} = 5,05 \ \mu F$

$$I_c = 163$$
 mA

 $V_{c} = 20,5$ V

W_c = 3,2 Wtts.

 $W_{\rm T}$ = 5,2 Wtts.

α	С	I _T (A)	S	Fp
150°	0	0,163	18,83	0,170
	1	0,147	16,98	0,188
	2	0,145	16,75	0,191
	3	0,156	18,02	0,178
	.4	0,176	20,33	0,157
	5	0,208	24,02	0,133
	6	0,241	27,84	0,115
	8	0,319	36,85	0,087
	10	0,405	46,78	0,068

C_{op} = 1,68 μF

. 140

c.-Para R_L = 28,1 Ω como carga

Voltaje de alimentación 115.5 V

 $W_c = 436$ Wtts

TABLA I	\ <u></u> 2]	.1
---------	--------------	----

 $I_{c} = 3.890$ mA $V_{c} = 112,3$ V

α	С	I _T (A)	S	Fp
30°	0	3,89	449,29	0,970
	2	3,89	449,29	0,970
	4	3,89	449,29	0.970
	6	3,89	449,29	0.970
	8	3,88	448,14	0.973
	10	3,89	448,29	0,970
	12	3,89	448,29	0,970
	14	3,90	450,45	0.968
	16	3,91	451,61	0,965
	18	3,93	453,92	0,961
	20	3,94	455,07	0,958
	22	3,96	457,38	0,953
	24	3,97	458,54	0,951
	26	4,00	462,00	0.944
	28	4,30	496,65	0,878
	30	4,50	519,75	0,839

 $C_{op} = 7,51 \ \mu F$.

TABLA Nº 12

I_c = 3.560 mA

 $W_c = 369,5$ · Wtts

 $V_{c} = 103, 3$ V

α	C	I _T (A)	S	Fp
60°	0	3,56	411,18	0,899
	2	3,56	411,18	0,899
	4	3,55	410,03	0,901
	6	3,53	407,72	0,906
	8,	3,52 .	406,56	0,909
	10	3,51	405,41	0,911
	12	3,50	404,25	0,914
	14	3,50	404,25	0,914
	16	3,49	403,01	0,917
	18	3,49	403,01	0.917
	20	3,48	401,94	0,919
	22	3,48	401.94	0,919
	24	3,48	401,94	0,919
	26	3,50	404,25	0,914
	28	3,51	405,41	0,911
	30	3,52	406,56	0,909
	32	3,54	408,87	0.904
	34	3,56	411,18	0,899
	· · 36	3,58	413,49	0,894
	38	3,60	415,80	0,889
	40	3,62	418,11	0,884

 $C_{\rm op} = 22,54 \ \mu \dot{F}$

 $I_{c} = 2.840$ mA

 $W_c = 231,5$ Wtts.

V_c = 81,5 V

α	C	I _T (A)) S	Fp
90° ·	0	2,84	328,02	0,706
	2	2,80	323,40	0,716
	4	2,77	319,94	0,724
	6	2,74	316,47	0,732
	8	2,71	313,01	0,740
	10	2,69	310,70	0,745
	12	2,66	307,23	0,754
	14	2,65	306,08	0,756
	16	2,63	303,77	0,762
	18	2,62	302,61	0,765
	20	2,60	300,30	0,771
	22	2,60	300,30	0,771
	24	2,59	299,15	0,774
	26	2,59	299,15	0,774
	28	2,58	297,99	0,777
	30	2,58	297,99	· 0,777
	32	2,61	301,46	0,768
	34	2,63	303,77	0,762
	36	2,64	304,92	0,759
	38	2,66	307,23	0,754

 $C_{\rm op} = 30,05 \ \mu F$

. TABLA Nº 14

 $I_{c} = 1.824$ mA

V_c = 51,6 V

α	С	.I _T (A)	S	Fp
120°	0	1,824	210,67	0,446
	2	1,784	206,05	0,456
	4	1,743	201,32	0,467
	6	1,712	197,74	0,475
	8	1,680	194,04	0,484
	10	1,650	190,58	0,493
	12	1,623	187,46	0,501
	14	1,602	185,03	0,508
	16	1,590	183,65	0,512
	18	1,577	182,14	0,516
	20	1,571	181,45	0,518
	22	1,576	182,03	0,516
	24	1,580	182,49	0,515
	26	1,590	183,65	0,512
	28	1,611	186,07	0,505
	30	1,635	188,84	0,498
	32	1,662	191,96	0,490
	34	1,692	195,43	0,481
	36	1,728	199,58	0,471
	38	1,766	203,97	0,461
	40	1,812	209,29	0,449

 $C_{\rm op} = 22,54 \ \mu F$

•

145

 $W_c = 12,3$ Wtts.

TABLA Nº 15

I_c = 705 mA

V_c = 19,5 V

Wtts.

 $W_{c} = 94$

٠

 $W_c = 12,3$ Wtts.

V_c = 19,5 V

α	С	I _T (A	() S	Fp
150°	0	0,705	81,43	0,151
	2	0,664	76,69	0,160
	4	0,641	74,04	0,166
	6	0,630	72,77	0,169
	8	0,630	72,77	0,169
	10	0,638	73,69	0,167
	12	0,659	76,12	0,162
	14	0,698	80,62	0,153
	16	0,743	85,82	0,143
	18	0,801	92,52	0,133
	20	0,859	99,22	0,124

 $C_{\rm op} = 7,51 \ \mu F$

.

3.3.2 MEDICIONES CON CARGA RESISTIVA NO-LINEAL

a.-LUMINARIAS DE 400 Wtts (110 V.) como carga

VOLTAJE DE ALIMENTACION 115.5 V_{RMS}

TABLA	N≌	1
INDLA		_

۷ _c	=	112 V.
I _c	=	3,37 A .
R _{t.}	=	3 3, 28 Ω

	Wc	11	378	Wtts
1	$W_{_{\mathrm{T}}}$	=	386	Wtts

α.	С	I _T	S	F
30°	0	3.37 .	389,23	0,971
	2	3,37	389,23	0,971
	4	3,37	389,23	0,971
	6	3,37	389,23	0,971
	-8	3,38	390,39	0,968
	10	3,38	390,39	0,968
	12	3,40	392,70	0,963
	14	3,41	393,86	0,960
	16	3,43	396,17	0,954
	18	3,44	397,32	0,951
	20	3,45	398,48	0,949
	22	3,46	399,63	0,946
	24	3,50	404,25	0,935
	26	3,50	404,25	0,935
	28	3,55	410,03	0,922
	30	3,55	410,03	0,922
	32	3,56	411,18	0,919
	34	3,60	415,80	0.909
	36	3,63	419,27	0,902
	38	3,65	421,58	0,897
	40	3,73	430,82	0,877

146

 $V_{c} = 103 \cdot V$ $I_{c} = 3,23 \text{ A}$ $R_{L} = 32 \Omega$ $W_c = 334$ wtts $W_T = 345$ wtts

۱

α	C	I T	S	Fp
60°	0	3,23	373,07	0,895
	2	3,21	370,76	0,901
	4	3,19	368,45	0,907
	6	3,18 [.]	367,29	0,909
	8	3,17	366,14	0,912
	10	3,17	366,14	0,912
	12	3,16	364,98	0,915
	·14	3,16	364,18	0,915
	16	3,15	363,83	0,918
	18	3,15	363,83	0,918
	20	3,15	363,83	0,918
	22	3,15	363,83	0.918
	24	3,15	363,83	0,918
	26	3,16	364,98	0,915
	28	3,17	366,14	0,912
	30	3,17	366,14	0,912
	32	3,18	367,29	0.909
	34	3,20	369,60	0.904
	36	3,22	371,91	0.898
	38	3,24	374,22	0,893
	40	3,26	376,53	0,887

C_{op} = 19,78 μF

147

 $V_{c} = 81.5 V$ $I_{c} = 2.84 A$ $R_{L} = 28,52 \Omega$ $W_c = 230$ Wtts $W_T = 250$ Wtts

α.	С	I T	S	Fp	
000	0	2 04	220 02	0 701	
90	2	2,04	320,02	0,701	
	۲. ۵	2,01	324,00	0,705	
	6	2.75	317.63	0.724	
	8	2,73	315,32	0,729	
	10	2,70	311,85	0,738	
	12	2,69	310,70	0,740	
	14	2,66	307,23	0,749	
	16	2,65	306,08	0,751	
	18	2,64	304,92	0,754	
	20	2,64	304,92	0,754	
	. 22	2,63	303,77	0,757	
	24	2,63	303,77	0,757	
	26	2,61	301,46	0,763	
	28	2,61	301,46	0,763	
	ЗÖ	2,61	301,46	0,763	
	32	2,61	301,46	0,763	
	34	2,62	302,61	0,760	
	36	2,64	304,92	0,754	
	38	2,65	306,08	0,/51	
	40	2,07	308,39	0,/40	

.

148

.

TABĽA Nº4

.

۷ _c	=	53.3	۷	
I _c	=	2.29	Α.	
R _T	Ξ	23.27,	Ω	

Wc	=	120	Wtss
W _T	=	134	Wtss

α	С	I _T	S	Fp
120°	0	2,29	264,49	0,454
	2	2,28	263,34	0,456
	4	2,21	255,26	0,470
	6	2,21	255.26	0,470
	8	2,14	247,17	0,480
	10	2,14	247,17	0,480
	12	2,00	231,0	0,519
	14	1,961	226,50	0,530
	16	1,95	225,23	0,533
	·18	1,93	222,92	0,538
	20	1,918	221,53	0,542
	22	1,904	219,91	0,546
	24	1,902	219,68	0,546
	26	1,902	219,68	0,546
	28	1,91	220,61	0,544
	30	1,92	221,76	0,541
	32	1,93	222,92	0,538
	34	1,94	224,07	0,536
	36	1,96	226,38	0,530
	38	1,98	228,69	0,525
	40	2.05	236,78	0,507
	42	2.69	310,70	0,740
	44	2,71	313,01	0,735
	46	2,75	317,63	0,724
	48	2,77	319,94	0,719
	50	2,82	325,71	0,706

.

 $C_{op} = 27.21 \ \mu F$

 $V_{c} = 21.6 V$ $I_{c} = 1.45 A$ $R_{L} = 14.79 \Omega$ $W_c = 30$ Wtts $W_T = 44$ Wtts

α	· C	I _T	S	Fp	
150°	0	1,46	168,63	0,178	
	2	1,46	168,63	0,178	
	4	1,39	160,55	0,187	
	·6	1,39 '	160,55	0,187	
	8	1,34	154,77	0,194	
	10	1,34	154,77	0,194	
	12	1,32	152,46	0,197	
	.14	1,31	151,31	0,198	
	16	1,30	150,15	0,200	
	18	1,30	150,15	0,200	
	20	1,31	151,31	0,198	
	22	1,33	153,62	0,195	
	24	1,35	155,93	0,192	
	26	1,37	158,24	0,190	
	28	1,40	161,7	0,186	
	30	1,44	166,32	0,180	
	32	1,48	170,94	0,176	
	· 34	1,52	175,56	0,171	
	36	1,57	181,34	0,165	
		-	-	-	

C_{op} = 14,27 μF

b.-LUMINARIAS DE 200 WTTS (110 V) COMO CARGA

TABLA Nº 6

 $V_{c} = 112.4 V$ $I_{c} = 1.666,0 m A$

 $W_{T} = 194.5$ Wtts $W_{c} = 189,5$ Wtts

٠

α	C	. I _T	S	F
30°	0	1666,0	192,42	0,985
	0,1	1666,5	192,48	0,985
	0,2	1666,5	192,48	0,985
	0,5	1665,8	192,40	0,985
	1,0	1665,1	192,32	0,985
	1,5	1665,9	194,41	0,985
	2,0	1665,5	192,37	0,985
	2,5	1666,2	192,45	0,985
	3,5	1667,8	192,63	0,984
	4,0	1670,7	192,97	0,982
	4,5	1672,3	193,15	0,981
	5.0	1673,3	193,27	0,981
	5,5	1675,5	193,52	0,979
	6,0	1680,4	193,76	0,978
	8,0	1695,3	195,81	0,968
	10,0	1713.0	197,85	0,958
	12,0	1736,7	200,59	0,945
	14,0	1765,5	203,92	0,929
	16,0	1796,7	207,52	0,913
	18,0	1831,9	211,58	0,896
	20,0	1872,2	216,24	0,876
	22,0	1916,1	221,31	0,856
	24,0	1961,9	226,60	0,836
	25,0	1986,2	229,41	0,826
	30,0	2130,0	246,02	0,770

 $C_{op} = 3,1 \ \mu F$

· 151

TABLA Nº 7

 $V_{c} = 102,78$ V $I_{c} = 1587,0$ m A W_c = 164,5 Wtts W_T = 169,0 Wtts

α	С	· ^I T	S	Fp
60°	0	1587,0	183,30	0,897
	1,0	1578,0	182,26	0,903
	1,5	1573,4	181,73	0,905
	2,0	1569,2	181,24	0,908
	2,5	1565,0	180,76	0,910
	3,0	1560,3	180,28	0,912
	3,5	1557,6	179,90	0,914
	4,0	1553,8	179,46	0,917
	4,5	1551,5	179,20	0,918
	5,0	1548,3	178,83	0,920
	5,5	1546,3	178,60	0,921
	6.0	1543,1	178,23	0,923
	6,5	1541,7	178,07	0,924
	7,0	1541,4	178,03	0,924
	8,0	1539,6	177,82	0,925
	9,0	1538,1	177,82	0,926
	9,5	1537,9	177,63	0,926
	10,0	1538,2	177,66	0,926
	10,5	1539,3	177,79	0,925
	11,5	1543,0	178,22	0,923
	12,0	1545,0	178,45	0,922
	14,0	1555,5	179,66	0,916
	16,0	1572,2	181,59	0,906
	20,0	1620,9	187,21	0,879
	25,0	1710,3	197,54	0,833
	30,0	1829,2	211,27	0,779

 $C_{\rm op} = 9.7 \ \mu F$

 $V_{c} = 83,48$ V $I_{c} = 1418,9$ m A W_c = <u>120,5</u> Wtts W_T = 124,8 Wtts

α	С	IT	S	F P
90°	0	1418,9	163,88	0,735
	1	1402,2	161,95	0,744
·	2	1386,1	160,11	0,753
	3	1370,9	158,33	0,761
	4	1356,7	156,70	0,769
	5 .	1344,0	155,23	0,776
	6	1333,3	153,99	0,782
	7	1323,0	152,81	0,789
	8	1315,0	151,88	0,793
	9	1308,0	151,07	0,798
	10	1303,0	150,50	0,801
	11	1300,0	150,15	0,803
	12	1298,0	149,92	0,804
	13	1299,0	150,04	0,803
	14	1299,0	150,04	0,803 .
	· 15	1304,8	150,70	0,800
	16 .	1309,8	151,282	0,797
	17	1313,0	151,65	0,795
	18 .	1324,7	153,00	0,788
	19	1335,0	154,19	0,781
	20	1350,0	155,93	0,773
	22	1377,0	159,04	0,758
	24	1415,9	163,54	0,737
	26	1454,8	168,03	0,717
	28	1503,0	173,60	0,694
	30	1551,0	179,14	0,673

= 14.1 µF

Cop

153

۷ _c	=	53,8	V	
I ć	=	1125,6	m A	•

 $W_c = 60.$ Wtts $W_T = 64$ Wtts

-	_				
_	α	С	I _T	S	Fp
	120°	0	1125,6	130,01	0,462
		1	1104,5	127,57	0,470
	•	2	1081,7	124,94	0,480
		3	1060,8	122,52	0,490
		4	1049,3	121,19	0,495
		5	1030,8	119,06	0,504
		6	1015,2	117,26	0,512
		7	1006,7	116,27	0,516
		8	994,6	114,88	0,522
		9	984,8	113,74	0,527
		10	977,4	112,89	0,531
		11	976,1	112,74	0,532
		12	974,6	112,57	0,533
		13	975,0	112,61	0,533
		14	977,0	112,84	0,532
		15	982,2	113,44	0,529
		16	. 989,5	114,29	0,525
		17	997,8	115,25	0,521
		18 .	1008,7	116,51	0,515
		20	1038,7	119,97	0,500
		25	1137,8	131,42	0,457
		30	1270,0	146,69	0,409
		32	1332,0	153,85	0,390
		34	1404,0	162,16	0,370
		40	1617,8	186,86	0,321

C_{op} = 13,37 μF

₩ _c	=	18,	1	Wtts	

 $I_{c} = 755 mA$

24,29

۷

۷_c

=

 $W_{T} = 21,2$ Wtts

α	С	.I _T (A)	S	Fp
150°	0	0,755	87,20	0,208
	1	0,734	84,78	0,214
	2	0,714	82,47	0,219
	3	0,698	80,62	0,225
	4.	0,688.	79,46	0,228
	5	0,677	78,19	0,231
	6	0,667	77,04	0,235
	7	0,663	76,58	0,236
	8	0,6635	76,63	0,236
	9	0,6650	76,81	0,236
	10	0,668	77,15	0,235
	11	0,677	77,04	0,235
	12	0,688	79,46	0,228
	13	0,703	81,20	0,223
	14	0,717	82,81	0,219
	15	0,738	85,24	0,212
	16	0,754	87,01	0,208
	20	0,861	99,45	0,182
		-,	22910	0,202

 $C_{\rm op} = 6,65 \ \mu \, F$

Puede observarse que el valor del capacitor óptimo, no cumple la simetría que se establece cuando setiene el caso de una resistencia lineal ya que el valor de la resistencia equivalente de las lumin<u>a</u> rias es función del voltaje aplicado y su comportamiento no es con<u>s</u> tante. 3.3.3 Mediciones con carga Resistiva inductiva (R-L)

Para $R_{L} = 84.1 \Omega$ y L = 0.15 H; 4.6 Ω

TABLA Nº 1

I_c = 934,1 mA V_c = 107,5 V

Wc	=	79	Wtts.
W_	-	82,6	Wtts.

α	С	I _т	S	F P
60°	$\begin{array}{c} 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 21 \\ 22 \\ 23 \\ 24 \\ 25 \\ 26 \\ 27 \\ 28 \\ 29 \\ 30 \\ 35 \\ 40 \end{array}$	934,1 904,6 877,4 850,2 828,4 804,4 785,1 767,1 750,8 738,7 727,0 715,0 715,7 715,0 715,7 715,0 718,0 721,6 730,3 742,9 757,7 772,8 791,3 813,2 834,8 860,9 886,4 912,5 943,6 973,8 1005,9 1036,7 1072,6 1257,8 1458,8	107,889 104,481 101,340 98,198 95,680 92,908 90,679 88,600 86,717 85,320 83,969 83,276 82,663 82,583 82,583 82,929 83,345 84,350 85,805 87,514 89,258 91,395 93,925 96,412 99,434 102,379 105,394 108,986 112,474 108,986 112,474 116,181 119,739 123,885 145,276 168,491	0,732 0,756 0,780 0,804 0,826 0,850 0,871 0,922 0,911 0,926 0,941 0,949 0,956 0,957 0,953 0,953 0,953 0,953 0,953 0,957 0,953 0,953 0,953 0,957 0,953 0,957 0,953 0,957 0,953 0,957 0,953 0,957 0,953 0,957 0,955 0,864 0,772 0,755 0,754 0,5544 0,469

I_c = 671,7 mA V_c = 85,78 V

 $W_c = 41, 2$ Wtts. $W_{\rm T}$ = 44,1 Wtts.

α	C	I T	S	Fp
90°	0	671,7	77,581	0,531
	1	635,3	73,377	0,561
	2	601,5	69,473	0,593
	3	569,8	65,812	0,626
	4	544,3	62,867	0,655
	5	515,0 ·	59,483	0,693
	6	492,1	56,838	0,725
	7	472,5	54,574	0,755
	8	455,3	52,587	0,783
	.9	442,3	51,086	0,806
	10	434,0	50,127	0,822
	11	430,1	49,677	0,829
	12	432,8	49,988	0,824
	13	439,0	50,705	0,813
	14	454,9	52,541	0,784
	15	467,8	54,031	0,763
	16	491,1	56,722	0,726
	17	517,4	59,760	0,689
	18	545,3	62,982	0,654
	19	573,3	66,216	0,622
	20	605,0	69,878	0,590
	21	641,8	74,128	0,556
	22	680.0	78,540	0,525
	23	720,8	83,252	0,495
	24	748,0	86,394	0,477
	28	907,0	104,759	0,393
	30	996,7	115,119	0,358
	35	1206,0	139,293	0,296
	40	1426,7	164,784	0,250

- I_c = 356,7 mA ۷
- $V_{c} = 55,57$

W_c = 11,8 Wtts. $W_{\rm T} = 14, 1$ Wtts.

α	C	IT	S	Fp
120°	0	356,7	41,199	0,286
	1	319,0	36,845	0,320
	2	286,7	33,114	0,356
	3 .	257,3	29,718	0,397
	4	237,1 ·	27,385	0,431
	5	220,0	25,410	0,464
	6	213,0	24,602	0,480
	.7	215,4	24,879	0,474
	8	227,8	26,311	0,448
	9	247,4	28,575	0,413
	10	275,0	31,763	0,372
	12	341,0	39,386	0,300
	14	426,6	49,272	0,239
	16	508,0	58,674	0,201
	18	600,2	69,323	0,170
	20	686,7	79,314	0,149
	25	906,2	104,666	0,113
	30	1134,5	131,035	0,090

158

TABLA Nº 4

Ic	=	116	mA
٧ _c	=	26,4	۷

W_c = 1,26 Wtts. W_T = 3,58 Wtts.

α	С	I _T	S	Fp
150°.	0	116,0	13,398	0,094
	0,2	110,2	12,728	0,099
	0,4	104,1	12,024	0,105
	0,6	100,5	11,608	0,109
	0,8	95,4	11,019	0,114
	1.0	92,4	10,672	0,118
	1,2	87,8	10,141	0,124
	1,4	84,5	9,760	0,129
	1,6	84,6	9,771	0,129
	1,8	85,4	9,864	0,128
	2,0	88,0	10,164	0,124
	· 2,2	90,8	10,487	0,120
	2,4 ·	93,6	10,811	0,117
	2,6	97,4	11,250	0,112

. 159 [.]

CONCLUSIONES Y RECOMENDACIONES

4.1 RESULTADOS DEL MODELO MATEMATICO

Los resultados que a continuación se presentan en cuadros, son obtenidos con las relaciones matemáticas que se demostraron en el capítulo II , las mismas que fueron calculadas con la ayuda de un

ΙV

P.C. Los resultados son obtenidos con una considerable aproximación matemática, mediante la ayuda de las series enésimas (n) de Fourier, siendo la mayor aproximación hasta la 19º armónica, suf<u>i</u> cientes como para hacer una buena comparación con los resultados prácticos cuyo alcance como sedijo es hasta la 16º armónica.

Se muestra a continuación los resultados teóricos de la variación del factor de potencia para algunos valores de cargas, resistivas y resistivas-inductivas, idénticas a las que se usaron en la exp<u>e</u> rimentación; los mismos que son:

- CARGAS RESISTIVAS LINEALES: 963Ω ; $125, 3 \Omega$; $28, 1 \Omega$
- CARGAS RESISTIVAS NO-LINEALES: 200 wtts y 100 wtts (Lámparas incandescentes)

- CARGA RESISTIVA-INDUCTIVA: $R = 88.6 \Omega \text{ y} \text{ L} = 0.15 \text{ H}$

La variación del ángulo de control es en pasos de 30° y los pasos del condensador depende del caso.

 $\alpha = [grados °]$ L = [H]

 $C = [\mu F]$ $F_p = Factor de potencia$

 $R = [\Omega] C_{p} = Capacitor of timo teórico [µF]$

161

-	C (T Fp	C	<u>2</u> Fp	162
4.1.1 FACTOR DE POTE <u>N</u> CIA PARA UNA CARGA RE-	0.00 0.02 0.04 0.06	0.986953 0.987516 0.988025 0.988482	0.00 0.05 0.10 0.15	0.901657 0.906416 0.910866 0.914992	
SISTIVA LINEAL	0.08 0.10	0.989895 0.989234 0.989230	0.20 0.25 0.30	0.919780 0.922215 0.925285	
$R = 963 \Omega$	0.14 0.16 0.18	0.989771 0.989959 0.990092	0.35 0.40 0.45	0.927980 0.930288 0.932201	
Tabla α C _{op}	0.20 0.22 0.24 0.25	0.930171 0.990196 0.990167 0.990084	0.50 0.55 0.60 0.65	0.933710 0.934811 0.935499 0.935771	
1;5 30°;150° 0,22	0.28 0.30 0.32 0.34	0.989946 0.989754 0.989508 0.989508	0.70 0.75 0.80 0.85	0.935625 0.935064 0.934088 0.932702	
2;4 60°;120° 0,66	0.36 0.38 0.50 1.00	0.988854 0.988447 0.984890 0.951263	0.90 1.00 3.00 6.00	0.930911 0.926144 0.655299 0.379208	
3 90° 0,88	4.00 6.00 8.00 10.00	0.575679 0.419230 0.324784 0.263631	9.00 12.00 18.00 24.00	0.255534 0.191248 0.126504 0.024449	
C (3) Fp			30.00 35.00 40.00	0.075277 0.054374 0.055224	
0.00 0.715271	C	Fp	C	5 Fp	
0.00 0.715271 0.06 0.725280 0.12 0.734965 0.18 0.744266 0.24 0.753117 0.30 0.761452 0.36 0.769205 0.42 0.775310 0.48 0.782704 0.54 0.78327 0.60 0.793125 0.54 0.793125 0.66 0.797049 0.72 0.802119 0.862119 0.803223 0.96 0.802451 1.02 0.802451 1.02 0.797810 1.14 0.797810 1.20 0.77820 1.32 0.777820 1.32 0.770870 1.44 0.755049 1.56 0.737104	0.00 0.105 0.1205 0.20	0.451970 0.462389 0.472651 0.492294 0.501441 0.509971 0.517751 0.524649 0.530538 0.535303 0.535303 0.535844 0.541086 0.541978 0.541978 0.539665 0.536511 0.532108 0.532108 0.512418 0.512418 0.59944 0.512418 0.594101 0.485526	0.00 0.02 0.04 0.05 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12	0.179058 0.182991 0.186781 0.190378 0.190379 0.190379 0.199469 0.201752 0.203578 0.203578 0.205963 0.205963 0.205963 0.205964 0.205964 0.205964 0.204820 0.20596545 0.199267 0.195545 0.193470 0.1986483 0.182680 0.178737 0.170608	

-

				163 -
	C .	(6) Fp	С	(7) Fp .
	מ מי	M 995953	<u>ര</u> മമ	0.901657
·	0.00 0.10	· 0.987325	1.00	0.913391
	0.20	0.387675	2.00	0.922873
b Resistencia de carga	0.30	0.988002	3.00	Ø.929873
	0.40	0.988307	4.00	0.934210
$R = 125, 3 \Omega$	0.50	0.388583	4.50 4.50	U.30004Z 0 935485
	0.60 0.70	0.388848 0.989085	4.60 4.70	0.935599
	0.70 0.90	0.989299	4.90	0.935684
	0.90	0.989490	4.90	0.935742
	1.00	0.989659	5.00	0.935771
Tabla α C_{op}	1.10	0.989804	5.10	0.335772 0.335775
	1.20	U. 383327 0 990077	3.20 5 30	0.935690 0.935690
6;10 30°;150° 0,22	1 AB	0.990103	5.50	0.935495
	1.50	0.990157	6.00	0.934514
	1.60	0.990188	7.00	0.930471
7:9 60°:120° 5.05	1.70	0.990196	8.00	0.923751
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1.80	0.990181	10 00 9.00	U. 314327 0 903033
	1.90	0.330143 0.990082	10.00 70 00	$D_{1} = 703020$
	2.00 3.00	о. 998215 • 0. 988215	30.00	0.551534
8 95 6,74	4,00	Ø. 984Ø97	40.00	0.432247
	5.00	0.977810	•	
C (8) Fp	E.ØØ	0.969478		C ·
	7.00	0.959262	С	(10) Fp
G G G G G T 15071	8.00 9 00	0.347344 0.933926		
0.50 0.726109	10.00	0.919219	0.00	0.179058
1.00 0.736562		• -	0.10	0.181631
1.50 0.746549	C	(9) + P	0.20	0.184150
2.00 0.755988			0.30	0.186603
2.50 0.764794 Trada di 773097	0.00	0.451970	14.41 0 50	U.188974 M 191251
3.00 0.772665 3.50 0.790172	0.40	0.462813	0.J0 0.E0	0.193417
4.00 0.786584	Ø.80	0.473481	0.70	0.195458
4,50 0.792045	. 1.20	0.483862	0.80	0.197359
5.00 0.796492	1.60	0.493827	0.90	0.199104
5.50 0.799870	ደ"ወወ ግ ለወ	0.303241 0 511956	1.00	0.200678
6.00 0.802137	2.80	0.519823	1.10	0.202069
	3.20	0.526694	1.20	0.203263
750 0.802058	3.60	0.532429	1.40	0.205020
8.00 0.799739	4,00	0.536904	1.50	0.205565
8.50 0.796311	4.40	0.540018	1.60	0.205879
9.00 0.791817	4.80 5 30	0.341693 0 541935	1.70	0.205960
9.50 0.796311	5.50	0.541655 0.540614	1.80	0.205807
	E.00	0.537882	1.30	U. ZU34Z1 0 20/907
	Б.40	0.533765	2.10 2.10	0.203970
11.50 0.755570	6.80	0.528357	2.20	0.202918
12.00 0.746104	7.20	0.521779	2.30	0.201662
12.50 0.736094	7.60 0.00	U. 31415/ M SMELLS	2.40	0.200213
13.00 0.725622	8.40 8.40	0.49E42E	2.50	0.198585
14 00 0.714/68	8.80	Q. 486595	2.60 9 70	0.135/31 0 19/9/5
14.50 0.703003	9.20	0.476314	£. 70	M.T34940
15.00 0.680653	Э.БØ	0.465711		•

				· .				164
			С) Fp	- C	(10)	Γ́Ρ
				(11	/			
							-	
			0.00	Ø	.986953	0.00	Ø.	901657
			1.00	Ö	.987756	2.00	· Ø.	907182
			2.00	Ø	.988446	4.00	Ø.	912283
c Re	sistencia	de carq	a 3.00	Ø	. 389023	5.00	· Ø.	916935
		- J	4.00	Ø	. 989485	8.00	Ø.	321117
	0.00	1 0	5.00	Ø	.989832	10.00	Ø.	924807
	R = 28,	1 52	E.00	Ø	. 390065	12.00	Ø.	927988
			7.20	Ø	. 990191	14.00	Ø.	930642
			7.30	Ø	. 330134	16.00	Ø.	932756
			7.40	Ø	.990196	18.00	Ø.	934317
			7.50	Ø	.990196	20.00	Ø.	935319
T-61-	~	0	7.51	17)	.990196	22.00	Ø.	935755
ladia	α	op	7.60	Ø	.990196	22.20	Ø.	935767
		-	7.70	Ø	.990194	22.30	Ø.	935772
11.14	200.1500	7 51	7.80	Ø	.990192	22.40	Ø.	935774
11,14	30-,150	/,51	8.00	Ø	.990183	22.50	Ø.	935775
			10.00	辺	.989839	22.60	0.	935775
			12.00	Ø	.989035	22.70	Ø.	935773
10.15	609.1009	00 EA	14.00	Ø	.987774	22.80	Ø.	935771
12,15	60,120	22,54	16.00	Ø	.986061	24.00	Ø.	935623
			18.00	Ø	.983903	26.00	Ø.	934924
			20.00	Ø	.981310	28.00	Ø.	933662
10	009	20 05	22.00	(2)	.978291	30.00	Ø.	931843
13	90	30,05	24.00	Ø	.974858	32.00	Ø.	929476
			26.00	Ø	.971025	34.00	Ø.	926576
			28.00	·Ø	.966807	36.00	Ø.	923157
			30.00	Ø	.962219	38.00	Ø.	919236
5			5	(\mathbf{x})			\frown	
	(13)	r P	L	(14)	P P	C	(15)	Fp
64. 6464	7 7	15071		0	451070		-	120200
2.00	171 7	25010	2 00	2 (3	401970	0.00	U. D	179058
4.00	0.7	20010 34445	1 MM	(D) (D)	404110	0.00 1 DO	(J.	181333
6. ØØ	0.7 07	ARR10	4.00 E 00	20. (7)	470001 AQ7547	1.00	(U), (T)	184752
8.00	Ø. 7	52173	8.00	20, 171	107043 1099173	1.00	۷. ص	107476
10,00	0.7	50345	10.00	ບ. ເວ	509619	2.00	עש. מ	190032
12.00	0.7	67976	12.00	2. (7)	517774	2.00	2. Di	10/010
14.00	Ø. 7	75003	14.00	0. 0.	525727	5.00 3.50	42 . (7)	197000
16.00	Ø. 7	81369	16.00	Л	532277	2.UD 4 00	رې ۲۵	197082
18.00	0.7	87018	18.00	ด	537248	4,00 4 50	ю. гл	100004
20.00	0.7	91898	20.00	Ø.	540497	5 00	ين. رم	200214
22.00	Ø. 7	95963	22.00	0.	541927	5.00	0. M	202340
24.00	Ø. 7	99173	24.00	Д	541454	5.00 E 00	2. D	200017
26.00	Ø.80	21496	26.00	Ø.	539211	5.50 E 50	о. Л	204028
28.00	0.80	02909	28.00	Ø.	535147	0.00 7 00	0. Ø	200002
30.00	0.80	23396	30.00	Ø.	529423	7.50	.ש ה	2000000
32.00	0.80	02953	32.00	Ø.	522198	9.00 8.00	ວ. ທ	2000000
34.00	0.90	01585	34.00	Ø.	513662	8.50	сэ. ГЛ	205390
36.ØØ	0.79	39304	35.00	Ø.	504020	9.00	(). (7)	2005000
38.00	0.79	96136	38.00	Ø.	493485	9.50	ເມ. ເກ	204070
40.00	0.79	92111	40.00	Ø.	492261	10.00	ບ. ທ	200071
42.00	0.78	37269	42.00	Ø.	470541	10.50	0. D	202407 200992
44.00	0.75	1656	44.00	Ø.	458500	11.00	(7)	1991/3
46.00	0.77	75323	46.00	Ø.	446290	11.50	о. М	197191
48.00	0.76	8326 .	48.00	Ø.	434044	12.00	о. И	195024
50.00	0.76	0723	50.00	Ø.	421868	12.50	2. Di	192594
						13.00	а. 0	190214
						13.50	Ø.	187603
						14-00	2	10/00/

4.1.2 FACTOR DE POTENCIA PARA UNA CARGA RESISTIVA NO-LINEAL

a.- Carga de 400 Wtts; lámparas incandescentes

Angulo = α° C = Capacitor [μ F] F = Factor de potencia

TABLA № 1

TABLA № 2

ANGULD	С	Ê b	ANGULO	C	Fp
30		an and foul star out and and and and	 60		
	0.00	0.986953		0.00	0.901657
	2.00	Ø.988672		2.00	0.907916
	4.00	0.989752		4.00	0.913620
	6.20	0.990187		6.00	0.918735
	8.00	0.989974		8.00	0.923228
	10.00	0.989115		10.00	0.927070
	12.00	0.987614		12.00	0.330235
	14.00	0.985480		14.00	0.932703
	16.00	0.982726		16.00	0.934455
	18.00	0.979367		18.00	0.335481
	20.00	Ø.975422		20.00	0.935771
	22.00	0.970913		22.00	0.935326
	24.00	0.965864		24.00	0.934146
	26.00	0.960301		26.00	0.932242
	28.00	0.954253		28.00	Ø.929626
	30.00	0.947748		30.00	0.926316
	32.00	0.940813		32.00	0.922334
·	34.00	0.933495		34.00	0.917703
	36.00	0.925810		36.00	0.912466
	38.20	0.317795		38.00	0.906642
	42.00	Ø.909482		40.00	0.900271

ANGULO	CCuF) F	Þ	ANGUL	0 (с [.]	Fp
90	0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00 20.00 24.00 24.00 24.00 30.00 34.00 34.00 36.00 36.00 40.00 36.00 36.00 40.00 36.00	0.71 0.72 0.73 0.74 0.75 0.76 0.76 0.76 0.77 0.77 0.77 0.79 0.79 0.79 0.79 0.79	5271 5153 4722 3916 2675 0935 8631 2083 7720 2550 96556 1843 37720 1091 8539 0747 5650 2550 96550 33710 10938 5079747 55650 25560 5079747 55650 25560 56550 57039 56550 56550 57039 56550 57039 56550 56550 57039 56550 56550 57039 56550 56550 56550 56550 57739 56550 5650 5600 5600 5600 5600 5600 5600 5600 5600 5600		0.0 2.0 4.0 6.0 10.0 12.0 14.0 15.0 20.0 22.0 22.0 24.0 25.0 30.0 30.0 30.0 30.0 30.0	20 0 20 0	$\begin{array}{c} 451970\\ 462043\\ 471972\\ 481669\\ 491030\\ 499951\\ 508316\\ 516004\\ 522898\\ 528879\\ 533841\\ 537689\\ 540346\\ 541758\\ 540754\\ 538359\\ 534759\\ 530027\\ 524255\\ 517547\\ \end{array}$
TABLA N	ü 5	ANGULO 150	C 2.00 2.00 4.00 5.00 10.00 10.00 12.00 14.00 15.00 15.00 20.00 22.00 24.00 25.00	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	Fp 179058 185043 190627 195620 199823 203045 205125 205951 205477 203730 200804 195851 192053 186611 180717		

28.00 30.00 32.00

34.00

36.00 38.00 40.00 0.174547 0.168252

0.161954 0.155745 0.149696

0.143853

b.- Carga 200 Wtts; lámparas incandescentes

Angulo = α°

 $C = Capacitor \mu F$

 F_{p} = Factor de potencia

TABLA Nº 6

TABLA Nº 6 - a

•

:

ANGULO	C EuFJ	· Fp	ANGULO	C [uF]	Fp
30	and have story have provided and have provided a series		30	and and the party party have been price and the party have and	
	0.00	0.986953		15.50	0.942857
•	0.50	0.987904		16.00	0.939249
	. 1.00	0.988691		16.50	0.935542
	1.50	0.989314		17.00	0,931740
	2.00	0.989773		17.50	0.927847
	2.50	0.990065		18.00	0.923867
	3.00	0.990191		18.50	0.919804
	3.50	0.990150		19.00	0.915663
	4.00	0.989944		19.50	0.911447
	4.50	0.989571		20.00	0.907161
	5.00	0.989032		20.50	0.902809
	5.50	0.988329		21.00	0.898394
	6.00 .	0.987462		21.50	0.893921
	5.50	0.986433		22.00	0.889393
	7.00	0.985243	1. ²	22.50	0.884815
	7.50	0.983894	•	23.00	0.880190
	8.00	0.982388		23.50	0.875521
	8.50	0.980727		24.00	0.870813
	3.00	0.978913		24.50	0.866068
	9,50	0.976949		25.00	0.861291
	10.00	0.9/4839		25.50	0.856484
	10.50	0.972584		26.00	0.851650
	11.00	0.370133		25.00	0.845/93
	10.00	0.367654		27.00	0.841917
	12.00	0.964986		27.00	0.837023
	17 00	0.362187		20.00	0.832114
	12 50	0.303261 0.050344		20.00	V. 527134 D. 9999964
	14 00	.U. JOUZII 0 geraaa		20 50	0.022264
	14.00	0.3004Z 0.979757		23.JU TO 00	0.01/028
	15 00	0.343/3/ 0.9/5361			0.812088
	10.00	v. 346001		,	

continúa....

TABLA № 7

TABLA Nº 7 - a

ANGULO	C LUFJ	Fp	ANGULO	 С [uF]	Fp
E0		a print part from the print have a large large large			
0	0.00	0.901557	62	15.50	0.923663
	0.50	0.304891		16.00	0.921504
	1.00	0.907987		16.50	0.919181
	1.50	0.910941		17.00	0.916699
	2.00	0.913748		17.50	0.314059
	2.50	0.916405		18.00	0.911269
	3.00	0.918906		18.50	0.908331
	3.50	Ø.921247		19.ØØ	0.905251
	4.00	0.923425		19.50	0.902033
	4.50	0.925436		20,00	0.898682
	5,00	0.927277		20.50	0.895292
	5.50	0.928944		21.00	0.891600
	. 6.00	0.930434		21.50	0.887880
	6.50	0.931746		22.00	0.884046
	7.00	0.932876		22.50	0.880105
	7.50	0.933823		23.00	0.876061
	8.00	0.934584		23.50	0.871920
	8.50	0.935159		24.00	0.867687
	9.ØØ	0.935547		24.50	0.863366
	9.50	0.335746		25.00	0.858963
	10.00	0.935757		25.50	0.854484
	10.50	0.935579		26.00	0:849932
	11.00	0.935213		26.50	0.845313
	11.50	Ø.934659		27.00	0.840632
	12.00	0.933919		27.50	0.835893
	12.50	0.932993		28.00	0.831102
	13.00	0.931884		28.50	0.826262
	13.50	.0.930593		29.00	Ø.821378
	14.00	0.929123		29.50	0.816454
	14.50	0.927476		30.00	0.811494
	15.00	0.925655			

Continúa

TABLA № 8

TABLA № 9

ANGULO	C CuFJ	۹٦	•	ANGULO	C CuF3	Fp.
9Ø		a mana ana padi kami kan ana padi kada ma		120		ga Malan arang persa kunik kanan penge bahay aktan anggi penag
	.0.00	0.715271			0.00	0.451970
	1.00	0.725459	•		1.00	0.462314
	2.00	0.735310			2.00	0.472504
	3.00	0.744751			3.00	0.482442
	4.00	0.753741			4.00	0.492020
	5.00	0.762182			5.00	0.501119
	6.ØØ	0.770012			6.00	0.509614
	7.00	0.777164			7.00	0.517375
	8.00	0.783571			8.00	0.524274
	. 3.00	0.789170			9.00	0.530186
	10.00	0.793904			10.00	0.534997
	11.00	0.797724			11.00	0.538608
	12.00	0.800588			12.00	0.540944
	13.00	0.802465			13.00	V.541952
	14.00	0.803333			14,00	0.541612
	15.00	0.803182			15.00	0.009900
		0.802015			17 00	0.006340
	17.00	0.799844			17.00	0.002/1/
	18,00	W. 735530			10.00	0.327338
	പാം യയ	0.732038			00 100	0.520514
	20.00	0.70/600			20.00	0,010004
	22 00	0.731733			21.00	0.303417 0 796601
	22,00	0,77JI20 0 757765	•		22.00 73.00	0.49001
	20.00	0.767766 0.759770			20,00	0.407.240 0.77777
	25 00	0.755748			24.00	0.477472 0.457395
	25.00	0.701140			25,00	0.407000 0 /57115
	20.00	0.742014 0.730/30			20.00 77 00	0.407110
	28 00	0,702400 0 700/90			28 00	0.43EX00
	29.00	0.7122400 0.712205			29.00	0.425927
	30.00	0.701678			30.00	0.415643
	31.00	0.690353			31.00	0.405502
	32.00	0.680085			32.00	0.395541
	33.00	0.669125			33.00	0.385792
	34.00	0.659116			34.00	0.376276
	35.00	0.647099			35.00	0.367011
	36.00	0.636111			36.00	0.358007
	37.00	0.625183			37.00	0.349273
	38.00	0.614343			38.00	0.340811
	39.00	0.603615			33.00	0.332623
	40.00	0.593018			40.00	0.324707

TABLA № 10

		Ball and safe his such that and had see of
ANGULO	C LuFJ	Fp
150		
	0.00	0.179058
	1.00	0.185551
	2.00	0.191550
	3.00	0.196809
	4.00	0.201072
	5.00	0.204104
	5.00	0.205720
	7.00	0.205815
	8.00	0.204382
	9.00 .	0.201516
	10.00	0.197392
	11.00	0.192243
	12.00	0.186321
	13.00	0.179876
	14.00	0.173132
	15.00	0.166274
	16.00	0.159449
	17.00	0.152767
	18.00	0.146303
	19.00	0.140106
	20.00	0,134206
	21.00	Ø.128615
	22.00	0.123337
	23.00	0.118364
	24.00	0.113688
	25.00	0,109293
	26.00	0.105166
	27.00	0.101289
	28.00	0.037646
	23.00	0.034221
	30.00	0.091000
	31.00	0.087968
	32.00	0.085110
	33.00	0.082415
	34.00	0.079870
	35.00	0.077465
	3E.00	0.075189
	37.00	0.073034
	38.00	0.070991
	33.00	0.069052
	40.00	0.067210

FACTOR DE POTENCIA PARA UNA CARGA RESISTIVA-INDUCTIVA 4.1.3

carga

 $R = 84.1 \Omega$

 $L = 0,15 H (4,6 \Omega \text{ propia de la inductancia})$

TABLA Nº 5

ANGULO

150.00

FACTOR DE POTENCIA

TABLA Nº 1

TABLA Nº 3 FACTOR DE POTENCIA

Fp

· ANGULD C [UF]

FACTOR DE POTENCIA

C [UF]

6.20

2.00

4.60

5.20

8.90

10.02

12.00

Fρ

0.023897

0.024372

0.022879

0.023273

0.017547

0.015147

0.013172

ANGULO	C (uF)	F¤
32.55		
	0.00	0.842936
	2.00	0.878342
	4.00	0.911844
	6.00	0.942019
	S. 00	0.967393
	16.00	0.986151
	12.00	0,997261
	14.00	0.333803
	15.00	0.993579
	18,00	0.979067
	28.90	0.957322
	22.00	0.329778
	24.00	0.858011
	26.00	0.863544
	28.00	0.827705
	30.00	0.791557
iducta T FACT	ancia = 0. ABLA Nº TOR DE POT	13 Kenrios 2 ENCIA
NGULO	C [uF]	Fp
	8.88	0.710194
	2.20	0.752385
	4.80	8.794989
	6.00	0.835279
	8.00	0.873919
	16.00	0.925095
	12.00	0.926908
	14.90	0.936987
	15.00	8.934135
	18.CG	8.318700
	20.00	0.892457
	22.90	0.358092
	24.00	0.918533
	26.00	0.776417
	28.66	0.733818
	30.00	0.692194
euto	d = 32.50	18 Grados
icto		1 Dialoc

Inductancia = 0.15 Henrios

	0.60	0.506200
	2.00	0.557258
	4.00	0.613185
	5.00	0.671045
	8.00	0.724785
	10,00	0.765108
	12.00	0.782143
	14.00	0.770872
	15.00	0.734675
	18.00	0.582883
	20.00	0.825270
	22,60	0.569608
	24.00	0.516405
	25.00	0.469915
	28.00	0.429180
	30.00	0.393713
Ansulo	ø = 32.	548 Grados
Resiste	encia =	84.1 Ohmios
Inducta	incia = 0	.15 Henrios
ΤA	ABLA N≦	2 4
FORT		TENEIO
		ICNUTH
angulo	C (uF)	Fp
123.00		
120.00	0.90	8.248505
120.00	0.00 2.00	0.248505 0.283554
120.00	0.00 2.00 4.00	0.248505 0.289554 0.330242
120.00	0.00 2.00 4.00 5.00	0.248505 0.289554 0.330242 0.354800
120.00	0.90 2.02 4.00 5.00 5.00	0.248505 0.289554 0.330242 0.354800 0.348307
120.00	0.00 2.00 4.00 5.00 8.00 10.00	0.248505 0.289554 0.330242 0.354800 0.348307 0.315187
120.00	0.00 2.00 4.00 5.00 5.00 10.00 12.00	0.248505 0.289554 0.330242 0.354800 0.348307 0.315187 0.273039
120.00	0.00 2.00 4.00 5.00 9.00 10.00 12.00 14.00	0.248505 0.289554 0.330242 0.354800 0.348307 0.315187 0.273039 0.233853
120.00	0.00 2.00 4.00 5.00 8.00 10.00 12.00 14.00 15.00	0.248505 0.289554 0.330242 0.354800 0.348307 0.315187 0.273039 0.233853 0.233853 0.201294
120.00	0.00 2.00 4.00 5.00 8.00 10.00 12.00 14.00 14.00 15.00	0.248505 0.289554 0.330242 0.354800 0.348307 0.315187 0.273039 0.233853 0.201284 0.175135
120.00	0.00 2.02 4.00 5.00 9.00 10.00 12.00 14.00 15.00 15.00 15.00	0.248505 0.289554 0.330242 0.354800 0.348307 0.315187 0.273039 0.233853 0.201294 0.175135 0.154215
120.00	0.00 2.02 4.00 5.00 9.00 10.00 12.00 14.00 15.00 18.00 20.00 20.00	 e. 248505 e. 289554 e. 330242 e. 354800 e. 315187 e. 273039 e. 233853 e. 201284 e. 175135 e. 154215 e. 137338
120.00	0.00 2.00 4.00 5.00 8.00 10.00 12.00 14.00 14.00 15.00 18.00 20.00 22.00 24.00	 e. 248505 e. 289554 e. 330242 e. 354800 e. 348367 e. 315187 e. 273039 e. 233853 e. 201284 e. 175135 e. 154215 f. 137338 e. 123556
120.00	0.00 2.00 4.00 5.00 8.00 10.00 12.00 14.00 15.00 18.00 18.00 28.00 22.00 24.00 25.00	0. 248505 0. 289554 0. 330242 0. 354800 0. 348307 0. 315187 0. 273039 0. 233853 0. 201284 0. 175135 0. 154215 0. 137338 0. 123550 0. 112134
120.00	0.00 2.00 4.00 5.00 8.00 10.00 12.00 14.00 14.00 15.00 14.00 15.00 20.00 22.00 24.00 25.00 25.00	 8. 248505 9. 289554 9. 330242 9. 354800 9. 348307 9. 315187 9. 273039 9. 233853 9. 201284 9. 175135 9. 154215 9. 123556 9. 123556 9. 12134 9. 162559
120.00	0.00 2.02 4.00 5.00 0.00 12.00 14.00 15.00 15.00 22.00 22.00 22.00 24.00 25.00 28.00 30.00	 e. 248505 e. 289554 e. 330242 e. 354800 e. 348307 e. 315187 e. 273039 e. 233853 e. 201284 e. 175135 e. 154215 e. 154215 e. 137338 e. 123556 e. 112134 e. 102559 e. 094433
120.00	0.00 2.02 4.00 5.00 1.00 12.00 14.00 15.00 18.00 20.00 22.00 24.00 25.00 25.00 30.00 30.00 30.00	6. 248505 0. 289554 0. 330242 0. 354800 0. 348367 0. 315187 0. 273039 0. 233853 0. 201284 0. 175135 0. 137338 0. 123556 0. 112134 0. 102559 0. 094433 0. 094433
120.00 Ansulo (Resister	0.00 2.00 4.00 5.00 9.00 10.00 12.00 14.00 15.00 14.00 15.00 20.00 22.00 24.00 25.00 25.00 30.00 5.00 5.00 25	0. 248505 0. 289554 0. 330242 0. 354800 0. 348307 0. 315187 0. 273039 0. 233853 0. 201284 0. 175135 0. 137338 0. 123550 0. 112134 0. 102559 0. 094433

14.00 0.011575 15.00 0.010283 19.20 8.009227 20.00 0.008354

Ansulo Ø = 32.548 Grados Resistencia = 84.1 Obmios Inductancia = 0.15 Henrios

172

.

	VALOR OPT	IMO DEL	CAPACITOR	EN' UF
ALFA	28.10	125.30	963.00	
18	2.87	0.64	0.08	
24	4.97	1.11	0.15	
30	7.51	1.68	0.22	
36	10.38	2.33	0.30	
42	13.45	3.02	0.33	
48	16.59	3.72	0.48	
54	19.67	. 4.41	0.57	•
EØ	22.54	5.05	0.56	
66	25.08	5.62	0.73	
72 .	27.18	6.10	0.79	Variación del C _{op}
78	28.75	6.45	0.84	en función del a <u>n</u>
84	29,72	6.66	0.87	gulo α, para dif <u>e</u>
90	30.05	Б.74	0.38	rentes valores de
36	29.72	6.68	Ø.87	carga resistiva R _r
102	28.75	6.45	0.84	_
108	27.18	6.10	Ø.79	
114	25.08	5.62	0.73	
120	22.54	5.05	0.66	
126	. 19.67	4.41	0.57	
132	16.59	3.72	0.43	
138	13.45	3.02	0.39	
144	10.38	2.33	0.30	
150	7.51	1.68	Ø.22	
156.	4.37	1.11	0.15	

ALFA EXPRESADO EN GRADOS RESISTENCIA EXPRESADA EN OHMIDS CAPACITOR EXPRESADO EN MICROFARADIOS

173

Capa	<u>icitor óp</u>	timo uF	
~ °	- <u>φ</u> 5.00	φ 32,55	Ψ 85
Ø			
<u>ः</u>	0 (7)		
ປ ເ	2,101		
с 9	2.100		
2 (7	2.200		
12	2.403 0.50A		
10 12	2,004		
20	Z. 7.10 Z. 0/E		
24	3, 323		
24	3 825		•
32	5.949		
31	01242	12,742	
33	4, 291	12.844	
35	4.547	13.034	
39 -	5.012	13.214	
42	5.383	13.382	
45	5.755	13.528	
· 48	5.123	13, 854	
51	5.482	13,754	
54	5.829	13, 326	
57	7.150	13,856	
50	7.470	13, 371	
53	7.755	13,833	
56	3.013	13,768	
69	8.239	13,658	
72	8.431	13,505	
75	8,587	13, 312	
/8 51	8.704	15.0/8	
81 04	5.781	12,753	
04 05	0,010	12.402	76 355
00 97	0 000	12 125	24.000
907 907	8,759	11.731	21, 995
93	8.5E7	11.392	21, 550
96 96	8.533	19.840	19, 158
99	8,358	10,349	17.753
102	8,144	9,832	16.365
105	7.893	9,292	15.029
178	7.635	8.734	13,684
111	7,288	8, 151	12.338
114	5.940	7.578	11.158
117	5.567	5,930	9.370
120	5,172	5.401	8.839
123	5.759	5.815	7.770
126	5.332	5,238	5, 757
129	4.895	4.673	5,833
132	4,454	4.125	4.970
135	4.011	5.801	4.182
138	5.572	5.101	5.46S
141	3.142	2.6.30	2,823
144	2.124	2.195	2.263
150	1.040	1.731	1.774
150	1.342	1 105	1 004
155	1 250	2,200	0 713

Variación C_{op} en función del ángulo α , para diferentes v<u>a</u> lores de carga R-L. Se mantendrá constante el módulo de la impedancia |Z| pero si v<u>a</u> ría su ángulo de fase ϕ
4.2 ANALISIS DE RESULTADOS

Para tener una mejor visión comparativa entre los resultados obtenidos mediante las ecuaciones teóricas, cuyos cuadros se dan en el numeral 4.1 y los resultados obtenidos experimentalmente, cuyos cua dros se dan en el numeral 3.3, se presentan a continuación en for ma gráfica, los dos resultados superpuestos.

4.2.1 CONTROLADOR CON CARGAS RESISTIVAS

A continuación, se presentan los gráficos que muestran con línea contínua los resultados teóricos, y con línea segmentada los resultados experimentales interpolados, de la variación del factor de potencia en función del capacitor de compensación, manteniendo constante el ángulo de activado de los tiristores.

Fo	¢ 🗒	1									li ili	:	1. j.														
. (.eo -																-		4									
- 6.90-			<u>i</u>		<u> </u>												i	44									
0:80 -	ا الله 									и	ار ا						- I- I		-	-							11
0.70									.		u di	·	-1	11	1.4.9				1111	<u> </u>		<u>11</u>					
- 0.60-	· ·	+++++					 - - -	14	-		1				+++							1	+ 4				III.
· -	A	<u> </u> . <u> </u>										-i-		. <u> </u>			4		<u>r h</u>				-44				Ē
-0.50-	/	<u></u>		<u>ki</u> li			ين انتا										II.			<u>р</u> ф			-		1111		
-0:40-			. 4.4			2			1.1													<u>111-1</u>					111
· 0.30 -		·i	<u></u>			5			1.00		α.	30°							· · · · ·	1							
0.20	h.t		508	\square			1700															1. 1. <u>1</u> . 1. 1.		1		··· [:41	
-0.10 -					1.1.1		120-								1 .				jo	. 6		1.	œ	• 60°			111
0	:							- 10 -11 -11					[j	<u>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 </u>	<u>[</u>		<u> !</u>	1 - 1 - 	1.1.								
_	.				٩	7 (11)					p-j-1	1	2	ויייק	1	51	61	7	8	9 - 2	0 2	12	2:-2	} ∙ ¦ 2	4- 2	بر خ	F.

Gáfico 4.1 Variación del factor de potencia, en función del capa-

citor de compensación. $R_{T} = 963 \Omega$ (lineal)

		<u>ا ا</u>	I. E.		[] :[]	[]]]:				11		1					1.4									11-1-
	Fp	 		; ·,;·	:	i i	i. :	ιI		-1		. 1 . 1	 	1				諞	<u>i</u>			1.1.2				
<u>-</u>	-00					x • 30	• .1 .	· !		1			·				: :		<u>.</u>							1.11
	-0190 -							201	-		-		, i		- 	-	:			<u></u>			<u> : :</u>]	1111	-	11
-	0.80-										24				<u>i:</u>		- 4	İ.	1. 14				1	1.4		!
	0-70-	1				: : [1]	II4.		\sim		<u>a</u> -	900							 سابزند				1.1.1.	11.1		,
-	0.60-	1.1.		1	1		11.14											11	1/1	2ª	30			iL.i.ii		
-	0-50-						<u>. a</u>	<u> </u>	20°			į.								₹=60°						•
	0.40-					1		·~. 					<u>i</u> .					ینے۔ نیا ت) har	11.15		erin				
	0.30-							<u>.</u>	 			12	i.					11		11.11						
1	0-20-							: !:Ľ.																		
	0=10-		.11;1.1						50			1.4	i 1.i.			·	1									
-							- 10 -				.16			× 1		24.1		1			1			<u>11</u>	- 141 n11111	
	1		† I.	T		1 t	ίľ	t i		ĩi	. 'ĭ	.1	1	Ĩi	1	7	10.	: 1	1		1	T . i.:	1 1-	[.].	1.4	

Gráfico 4.2 Variación del factor de potencia, en función del capacitor de compensación. $R_L = 125, 3 \Omega$ (líneal)

<u> </u>	Δ.	1		1	. [• :-	Ľ	·1··	ŀ		Ŀ,	12	11	1		: ·			.	·	-	Ð	Ţ,	· ''	. "	`	.	• .	•	•••	-l ti	: ; , ,	.	- Ter	ų.	' *;,	-	1	<u>ا</u> با	P+F	!' !!		H111		1111	北田	41(1)	1999	990	1711	Ħ
FP	ŀ		:	: .	·			-		-	- - -			1	1			÷.				-	-	-	-			-		-	-		1	1			1	1	<u> </u>		1						1		Ĭ.			
											4			1					-		Þ				t			ļ.					1		21	ilut		111	11		.iii							1.1				Ш Ц
-1-00-	=				=		-		T.	-	-				-	1-	+			-				-	· [·	-			_	ŀ		-	1.	1	æ		90	i.		199 196				1		1111	1 1112	<u>1997</u> 1997	112		베	田田
-0.90 -	-	1	-	-	=	-		÷	1. 	1	-	-	==		=	Ē	-	-	-	=	-			-	Ŧ			-			-	=					-	=						1,	٩	6	00	ŦF.	1	Į.	3	
-0.80 -			-				-			-				; :										-		-			-	Ť	-	÷			.1		4			i.	-								1			
-h-70-	-			-			<u></u>		11:. T	+					Ē	<u> </u>	1-							1	ŧ		Ť			••••		ŀ		-		Īī	İ.	†		 :	<u> </u>			1.	- 0		90					
	-	1	:.			. :						:					F					1												111						i+ <u>1</u>												ļ
- 1-						-				-		:-		1	1			1		1	:	•			İ.		ŀ			:	-			::.:			1	11	-					-				<u>.</u>	T			1
-0.50-	Ŀ	1	-	1	-		-	-		T		-					t	1						1	1	1	•		•			<u>i</u> 1	†∼	<u>د</u>						-			-	÷	+	<u> </u>	r i		iliill ihal	! , * <u> </u> 	<u>11.</u> -	4
-0.40-	_	1.1	ŀ		_	÷	1	1.	11		<u>.</u>	1	li i	11						ŀ					Ľ		1							÷.,		1					1			1	a		20	1.11		n:	÷	
-0.30 -				-	-						-		.:	· •.	·	-		-		•	•	••••	:					•	-	••••		· 		1		ŀ		-		j,	-	5	1	-			11					I
								;	:			:, :	::. <u>.</u>	; •	;				•	ŀ	••		· · ·	: <u>.</u> .,					-					:													-1					
		1		1-	-				 	1		-					-		k	-	_1	50	• • • •			1.	1.		·	:	• •	.:		11		iii:																in the second se
-0.10-	;	<u>ي:</u>		:		-								. :.					-		-	l'i	÷			-		- -									T.		-						-			11		1		IN THE R
. O			Ł		{		6		ŀ			ю	<u>,</u>	: 1	2.		† .	İ.	15	Ť	18		2	p		2	Ť	t z	-+ 	2	5 .	2		ъ	0	3	2	: 3		3	5	; 3	3	1	0		2	4		15	11	

Gráfico 4.3 Variación del factor de potencia en función del

capacitor de compensación. $R_{\rm L}$ = 28,1 Ω (lineal)

]	.7	6
--	---	----	---

μ		-	i-		li i	: · 	; 				- 	1 1					•.		• • ••••			•••
Į.	- p 						<u>. </u>					1		•••••••••••••••••••••••••••••••••••••••	1	••••	1.	· · ·	• ••••••••••••••••••••••••••••••••••••	· ·		
ŀ	1.00	 a 1 6)°	T	[]. []		72.1-7	+												i.		
<u>.</u>	0,90-										<u> </u>								!			
ŀ	0;60-										-					35.55	72-7				α.	0.
ļ		1		.			1.	++ +		-										-		
	11.11 11.11	ц.												- 1.			111	È	<u>+</u>		اللہ۔ احد	20°
F	0-40-														44	4-1-						4
	030-						111				4	1.1.1.1	4	1	<u>i (</u>]11.			<u>. </u>			<u>н</u> Ц.,	
	D.20-			́	<u> </u>				lii lii					J-		÷.					<u>i i</u>	
ļi.	0.10-	 -		 			+	.i.: i:	4												-d •	50. <u>9'll</u>
1								·		····		 		 		÷						
	<u> </u>	{		6 (D	21	4	61	8	0 - 2	2 - 2	42	626	8 3) <mark>3</mark>	2	43	63	84	0	F
亅		111-111		1 dille	lin hat		Li allin	نا با نا ا	_نابنا	اسرادا ا	ند ا نه ا		· []]] ::		dinta:		_ نائيا	i:Lulli:	الأأسر	Lil Li	alltel	

Gráfico 4.4 Variación del factor de potencia en función del ca-

pacitor de compensación. ${\bf R}_{\rm L}$ = lámparas incandescentes

de 400 w (ho-lineal)

ļ		4				- 11	-	<u>.</u> !		••-	цi,				4		-						1	<u>.</u>			ļ				ļ			
-	- r p	-1-								÷ŀ	<u>.</u>		- <u> ·</u>	1	_	-		· ·	1		·	1	:	<u>·</u>			'		1.3	1.1	1		14	
1		-					i					·		4		<u>i</u>	·		<u></u>		<u>.</u>		÷.			ці.					<u> </u>			1111
÷	-1.00-	-+-					<u> </u>	:		-+-	<u> </u>	<u>.</u>			<u> </u>		1 :							1			1		1 1 "	1.,	1: C		1.1	1. 11
Ľ	-	-		α	£ 60	0							-	1	ļ					<u>-</u> -		;-	4.			≝.			1		Ŀ		iir	
ŤŒ	0.90					$\alpha = 6$	0°						+	_		-	the second	$ \rightarrow $	100.00				_			_	<u> . i .</u>				1			
	·	÷	- -	·	÷ -		-				<u>. ::</u>		· <u></u>	<u> </u>							VI.	-	+	<u> </u>]	.1.			1		_		i iii
to	-0.60	÷- -	T.	-α	rýo	• :				-	ممضور	÷	+				-					1	- 7-	-		٦Ť.								17.
-	++++	ł	-!-		T				÷	- -	4		·	÷		÷				1=			4		-	0	1= 50° 1= 30°			-i	<u>.</u>		14	
÷	·0 . 70·	-1-	1.	deri .	. -		i	. :			- <u> </u>		1.							·			·	-				1	1.		<u> </u>		- 1-	1 P I
#	- : <u>:</u> :- <u> </u> :-	-	-			+	-	·		1	-		11:1	Щ.	Ш.	<u>4</u> .			·	. .			i: 4										44	
R.	h.a o.	77				1		. 1	· 1	1	1	1	1 : .	1	1.1					i -			-		127	τ÷				1			<u>a z</u> d	0
н. н	' <u>በ ዳስ</u>	1-			-			-						; ;===			1		····i·					- -	-	-	<u> </u>	• ; -					-12	
he	1.1	·	بجشت	-		÷.	1.1	• ;	4. 11		1	1.01.1	1.11	Ľ							-		• •	din.	Thi I	4 1	ind 1		i	t i		<u></u>		
P	0.40				1	1.		-		1				Ħ	-	Ħ		•••				1	1		1.1.1		ц÷.			·	4	.#il:#	7.44	ЩЩ
ļ.		4				<u> </u>	4	Щ.	<u>.</u>	1	4		.	4	ш.,	4								-	· [·		L			-		·	α π 1	00
ti.	0.30		1	int.		nic.	1.1	ti l		÷	÷		÷						·		-				1.4	÷			<u> </u>				- , , ,	1.1
H		-				1.1.11				4	<u>(+1</u>	0		<u></u> .	÷	¥.		<u>.</u>				÷		44		4.		÷÷	- 4-		4			
11:	0-20	F	1		. <u> </u> .					T						T	T	1		-		- 11		1	1							_		
2	0-10-	1		<u> </u>		-		·••-		•	·		-	÷	1	-	-	-	h				-	÷	-	4.	÷÷÷÷		-	-		· <u> </u>		
i.,	0-10	Ŀ	1.1		1	11.		1			3.5	111	1	5.1	::::		11	-	1	-		1	11		1	=				<u> </u>	-	· · ·	a . 1	0.4
		1	1		[],		+;			- -				÷		÷÷-	÷	[·					-	4		·· ~								
ıĽ.	0	1:	11.		1.1			·]	1.	1	1.7		Į.			1	Ţ	1	1		T		1	T	1 1	1	1.1	- 1 - 1		i 1	T I			
		-	-				2			-10-	1	[]		1	<u>،</u> •	18	3	20) 2	2	• 2	· · · ·	26		28	-30	3	23	43	Б	3	3	0-ii	F
<u>.</u>	hill.	I	di la		1		.:.i	:: .!:		:1.:		adin.		•	<u>. j</u>			.: .	lii.				: 1	1.1	1.1	i d	1.	intit.	niel II.		<u>.;;</u>	Joh		

Gráfico 4.5 Variación del factor de potencia en función del capacitor de compensación. $R_L = L$ ámparas incandescentes de 200 w (no-lineal)

Para C = 0, el factor de potencia depende solo de α , pero no de R_L (ecuación E-2.1.30). Esto se puede ver en los cinco gráficos an teriores, que se cumple con una razonable aproximación, en el caso práctico, tanto para las resistivas lineales, como para las no-lineales. Igualmente, se puede notar que para cada ángulo de activado de los tiristores, hay un valor de capacitor, que hace máximo el factor de potencia. También el máximo factor de potencia, depende sólo de α , y no del valor de R_L (ecuación E-2.2.36). Para mayor claridad, se presenta la información pertinente, en el siguiente gráfico, en el cual se ve como varía el factor de potencia máximo, con el ángulo de activado de los tiristores (línea contínua), y las figuras superpuestas, indican los resultados experimentales alcanzados para los diferentes valores de R_L

ŦŀĽ	111114		12111 <u>1</u> 1	1	11	期間	利用語				111	, to 1'											1
	FP	1_					. 1	11		. 1		1.11	1	11	Eler	··	13	<u> [.]</u>			<u> </u>	-1-2	<u> 1</u>
ŢŢŢ					11				l'aliter.	CHIP.	11-1		111										<u>'lif</u>
÷.,		110			1	.i.,		: H.			1 .	•		1.1.1				Δ	carg	a R	= 28,	,1Ω	
131	:TTTT		111	1.1				TT		Ultra				Triffit.			i lin	0	carg	a R	= 963	នល]	11
	1.00		1.1	1.1	~	4						1.12	11 = +	1-1-1-1				+	caro	a no-	linea	n l	盟
ТĮ.	0.00		1.6.				1			11		a dat	1	Willing.		114 J	11-11		do 1	5000.0	20.00		1
Π.	0.90-					1									: 1				ue I	ampar	as 20	iu i	11:
1	1.111			•		1		1			1.	10100				<u> </u>	1		wtts	•		Ц	11
	0.00-	·	1.4				4	1.1.											carg	a no-	linea	1 1	1
1		- 1 -	<u> </u>			-11:11:		THE .	1.1.1			1.17			1,12	191			de 1	iona r	ac 40	<u> </u>	H
	0:70-		1	1	•					1		l lie		.		<u> </u>				unhat.	43 40	<u>ا</u> ۲	
<u>n</u> r	-1-1-1				i T									N.					WEES			1	11
	0.60-	1.1.1	. 1. 3							1 -	11.									<u>: </u>		11	_
-		11		1	1.	. جابات	.	1.1.2	ن ا ندا	1. 11		1.1.				1.01	11	1.16		1.11	.1. <u>1</u> . h	. 111	
	0.50-		-1			3.6.0			1.1		. 1	1 1	:								1		
ŤŦ.					ΓT.					1.1						XI					11. 1		iil
••••	0.40			1						1 :	11.	1:1	1	1		/	1.	·				- Hir	
TP:	·	7.17			17			111			1					Ξ	मिनि	TI					:11
÷	D.30-	. 1									1.1.	1.			1	·	1		* 1 64	1.1	44.5		1.1
77	· … i …		1.1	i II	177			This		T.	1993			r	1	1		1 1 1		Hap			Ш
:	0,20-		1	1-					1. 1	1.1		1.1	- <u> </u> .	1				1			14		(-)
17	-41-4	··· -···	1		i				1	伊伊		1	"" "";		1.1				["""	[
	0.10-		1	-	1.				1	İ.İ		1	i .	1.1	1	TI	1.1.		\square	;		11	
1	rin i	-		• • • • •	·		1.1.	مه از از				· · · · · · · · · · · · · · · · · · ·	 	·[+++			11	•••••	L	· · ·		110	71
	<u> </u>		1 .	Ť-			17	1	ī		1	1 :	1.	1	1	1	Γ.	I					
itt	T		0	20.	3	p4	05	0- 6	0	p - 1	60 ·· 3	ا ب و	00 1	10-1	10 - 1	30 1	1.1 0	50 - 1	0 17	0 11	9	0005	
			1		•	· · · · · · · · · · · · · · · · · · ·	1						_		******	**************************************			*********				1

Gráfico 4.6 Variación del factor de potencia máximo, en función del ángulo de activado. Carga resistiva lineal y no lineal.

Si bien en la práctica, resulta imposible poner el capacitor óptimo, cada vez que se cambie el ángulo de activado, puede ser una bu<u>e</u> na alternativa poner el capacitor óptimo para el máximo ángulo que permita tener un factor de potencia mínimo de 0,80, con lo cual el rango de variación de α , quedaría restringido al rango entre 0°y 90 ? Para mayores ángulos, el factor de potencia se degrada rápidamente ya que la potencia de distorsión comienza a ser mucha más significativa que la potencia reactiva generada por el controlador.

Para cada valor de α , se puede determinar la potencia reactiva inductiva generada por el controlador, sabiendo que para el capacitor óptimo, el factor de potencia se hace máximo, porque se neutralizan entre sí los efectos reactivos (ecuación E-2.2.30).

$$Q_{II} = Q_{C} = \omega \cdot V^{2} C_{OD} \qquad \text{E-4.3.1}$$

En el gráfico y tabla siguientes, se muestra la variación de la p<u>o</u> tencia, reactiva inductiva, en función del ángulo de activado α , para tres valores de R_L. (ecuación E-2.2.32). Nótese que el pr<u>o</u> ducto $C_{op} \cdot R_{L}$, es el mismo para un valor dado de ángulo α . Independientemente de R_L siempre se tiene el máximo valor de potencia reactiva inductiva, para $\alpha = 90^{\circ}$. Sobre el gráfico se ind<u>i</u> ca con asteriscos, los resultados experimentales obtenidos. Simil<u>a</u> res resultados se obtuvieron para las cargas resistivas no-lineales (TABLA 4.1).

TABLA 4.1

	R_= 9	i63 Ω	R ⁼	125,36	R _L =	28 , 1Ω	200	ω.	400)ώ.
α	Fpmax	C _{op_{µF}}	Fpmax	с ор _µ ғ	Fpmax	C _{op_{µF}}	Fpmax	С _{ор}	Fpmax	С °Р ₄ F
30°	0,972	0,2	0,974	2	0,973	8	0,985	0,1 a 2,5	0,971	2 a 6
60°	0,910	0,5	0,923	4	0,919	20 22 24	0,926	9 a 10	0,918	16 a 24
90°	0,789	0,7 0,8	0,788	6	0,777	28 30	0,804	12	0,763	26 a 32
120°	0,561	0,6 0,7	0,542	5	0,518	20	0,533	12/13	0,546	22 26
150°	0,246	0,2	0,191	2	0,169	8	0,236	7/9	0,200	16 a 18

Factor de potencia máximo y capacitor óptimo, para cargas resistivas, en función de $\,\alpha\,.$

1d ⁴ d		 	Σ	÷			1		1			÷ŀ	-	14	!	ji i	11- 1		.1.	÷.			::. :				:	12	-		<u>+</u>		"		*		•	11	1	•••
####u	F.		VAR						.								1	••••					:		::.:			•					1							
	0,00	- 1	0						1		1			-				\geq													4	-								
2	3.00- 		14.					11.1								7-		1			: <u>-</u>		\mathbb{N}						Ė.		1			1						1
	;00-	-13	12	51	. <u>;</u> :	-		Ц.,							/.			ŗ					: .	7			. <u>.</u>		••••	-	11' 	1			-	1				:
2	-00-													Á	1.	1									ľ									L						÷.
	2:00-	<u>- 1)</u> 	2.5			-						10.4	/			.11		_														1.,				<u>, 1</u>		1		
2	0,00-				: .		1		-		-	22/ 2/		_	1						1			1	ľ,	<u></u> ۱۰														
	.00-						1)	/					1		 - :	-							\ .	$\overline{\left\langle \cdot \right\rangle}$	_											
	5.00 	- 7	5	1.2 (1.) (2.)	· •		-				/		:	4.1	: ::							1			<u> </u>				<u>.</u> :					-		7				
	- 00						11 11 12			/			-		•).									-		
	2.00-		6.Z	5			.1	111 112	/						-										1			.		1										
T 1	0.00-							1	/						;						.	-		-	-		-	-			1									
1	8.00-	-	7.5	0				¥-													Ŀ	F					Ē	 		j								1		
	6 00-		1			1	/					12	30	-	<u> </u>					†		F	<u> </u>	Ť.	1	K	į.					1	<u>(</u>				•	1		.
	1.00		8.7	5	17	/	 								 -					-			† .		Ī	† . .	Ţ	ř					.	1	 			Ţ		.
	2.00				Ĺ	F	1		Ţ::					[R	30	53.0	0.0	1	• •	1-	-	Ţ	F	1			-	ļ.		Ì	-	5	Ļ	X			Ì	-	Ī
	ò		1		5			20	1.		5		6	þ		ĺ	5		19	i i	-	1	105	Ì	1	20	1	1	35		1	50		1	65 1		1	50		1

Gráfico 4.7 Variación de la potencia reactiva inductiva del controlador, en función del ángulo de activado α , para cargas resistivas.

capacitor de compensación, para carga R - L |Z| = 105,11 $_{\Omega}$ φ = 32,55 °

Otro aspecto importante es que tanto el capacitor óptimo, como el máximo factor de potencia, dependen de la impedancia de la carga. Además, el rango en que puede operar el ángulo activado de los tiristores, se restringe al intervalo $\phi \leq \alpha \leq 180^{\circ}$. Cabe recordar que para cualquier ángulo $\alpha \leq \phi$, la operación se vuelve totalmente sinusoidal, ya los tiristores dejan de ejercer control sobre la corriente.

Concordantemente con lo expresado anteriormente, la variación de la potencia reactiva toma una forma que depende de α , y del án<u>gu</u> lo de fase de la carga R-L (ϕ), para un valor dado de impedancia,

Gráfico 4.9 Variación de la potencia react<u>i</u> va inductiva, en función de α , para carga P.-L. $|Z| = 105,11 \Omega$ ϕ = variable.

4.3 CONCLUSIONES Y RECOMENDACIONES

Esta tesis aporta con las siguientes conclusiones y recomendaci<u>o</u> nes de interés, tanto para quienes tienen que hacer una apelación directa en la práctica, cuanto para aquellos que están interesados en continuar con otras investigaciones dentro de la Ingeniería Eléctrica.

- @a.- En general la potencia reactiva está asociada con el defasaje que exista entre la onda sinusoidal de voltaje y la onda sinusoidal de corriente. Cualquier elemento, circuito o sistema capaz de producir dicho efecto, generará potencia reactiva.
- b.- La distorsión de las ondas de corriente provocan, además de potencia media y reactiva, una componente denominada poten cia de distorsión. En consecuencia, la potencia aparente pu<u>e</u> de ser representada como un vector con tres componentes ort<u>o</u> gonales: P, Q y D.
 - c.- Un compensador reactivo puro, sólo compensa la componente de potencia reactiva del sistema con corriente distorsionada.
 - d.- La compensación de la componente de potencia de distorsión,
 merece una futura investigación, a fin de optimizar aún más
 el factor de potencia en estos sistemas. Con cargas resisti vas, se vuelve imprescindible para ángulos de activado mayo

res que 90°; y para cargas R-L, según sea su ángulo de fase.

- e.- Las cargas resistivas lineales y no lineales presentan un com portamiento similar ante las acciones de control del regula dor de voltaje alterno.
- f.- En un siguiente paso, convendría analizar el efecto que tiene la impedancia de la fuente sobre las variables eléctricas del controlador, ya que eso nos acercaría más al caso real.
- g.- Si bien los resultados experimentales y teóricos, tienen una razonable aproximación en la mayoría de las mediciones realizadas, es necesario investigar con mayor profundidad sobre el grado de precisión o confiabilidad que se podría esperar de la utilización de la instrumentación eléctrica clásica, en la medición de corriente o voltajes distorsionados.
- h.- Extender el análisis teórico-experimental hacia la utilización de ondas de voltaje o corriente más generalizada
- i.- Desarrollar instrumentación especial, para la medición de variables eléctricas con ondas distorsionadas.
- j.- Aplicar técnicas de análisis y experimentación con definicio nes en el dominio del tiempo, para establecer comparaciones con las técnicas en el dominio de la frecuencia.

- k.- Investigar sobre los efectos de las ondas distorsionadas en redes de distribución eléctrica.
- Desarrollar sistemas de compensación del factor de potencia, para sistemas con ondas distorsionadas.
- m.- Adoptar los conceptos generales desarrollados para el caso de ondas distorsionadas, a los cursos regulares de Circuitos Eléctricos que se dictan en la Facultad.

ANEXO Nº 1

CONDICIONES DE DIRICHLET

Para que una función $f(\omega t)$ sea representada en forma de serie de Fourier deberá cumplir las condiciones de Dirichlet que se clasifican como: "condición debil de Dirichlet" esto es cuando f(t) es a<u>b</u> solutamente integrable sobre un período, es decir la integral existe.

$$\frac{\frac{T}{2}}{\int |f(t)| dt} = E-A.D.1$$
$$-\frac{T}{2}$$

Si una función satisface la condición de la ecuación E-A.D.1, <u>en</u> tonces es posible encontrar los coeficientes de la serie. Sin emba<u>r</u> go, puede suceder que la función satisface esta condición pero que la serie sea divergente. Para que una serie sea convergente es nec<u>e</u> sario que la función f(t) satisfaga las llamadas "condiciones {uertes de Dirichlet", las que se resumen así: que la función sea finita, que tenga un número finito de máximos y mínimos y un número <u>fi</u> nito de discontinuidades finitas. Cabe hacer notar que toda <u>se</u> ñal que puede generarse en el laboratorio satisface las condiciones fuertes de Dirichlet, y por lo tanto tiene una serie de Fourier co<u>n</u> vergente.

ANEXO Nº 1.1.

TERMINOS DE FOURIER

Los términos de Fourier se obtendrán para una función f(t) que cum ple con las condiciones de Dirichlet donde T es el período por lo tanto:

$$f(t) = f(t+T) \qquad E-A.F.1$$

que se la escribe como la serie de Fourier de la forma:

$$f(t) = A_0 + \sum_{n=1}^{\infty} [A_n \cos(n \omega t) + B_n \sin(n \omega t)] \qquad \text{E-A.F.2}$$

multiplicando a la serie E-A.F.2 por $cos(K \omega t)$ e integramos con re<u>s</u> pecto a t desde t₀ + T

$$t_{0} + T$$

$$f(t) \cos(K \omega t) dt = \int_{0}^{t_{0} + T} A_{0} \cos(K \omega t) dt + t_{0}$$

$$+ \sum_{n=1}^{\infty} \{\int_{0}^{t_{0} + T} A_{n} \cos(n \omega t) \cos(K \omega t) dt + t_{0}$$

$$+ \int_{0}^{t_{0} + T} B_{n} \sin(n \omega t) \cos(K \omega t) dt \} = E-A.F.3$$

Puesto que las condiciones de ortogonalidad cumplen las funciones

trigonométricas empleadas en el análisis, se puede decir que:

$$t_0 + T$$

 $f = sen(K \omega t) sen(n \omega t) dt = 0$ Si $k \neq n$ E-A.F.4
 t_0

 $t_0 + T$ $\int \cos(K\omega t) \cos(n\omega t) dt = 0$ Si $K \neq n$ E-A.F.5 t_0

$$f_{0} = \frac{t_{0} + T}{\cos(n \omega t) \cos(K \omega t)} dt = \frac{T}{2}$$
 Si K = n E-A.F.7
t₀

reemplazando las ecuaciones de ortogonalidad E-A.F.4; E-A.F.5;E-A. F.6 y E-A.F.7 en la ecuación E-A.F.3 con n= K es igual a:

despejando de la ecuación E-A.F.8 el coeficiente A

$$A_{n} = \frac{2}{T} \int_{t_{0}}^{t_{0} + T} f(t) \cos(n \omega t) dt \qquad E-A.F.9$$

para n = 1, 2, 3, 4, 5

De igual forma, multiplicando la serie de la ecuación E-A.F.2 por sen(n ω t) e integrando con respecto a t desde t₀ hasta t₀ + T se obtiene:

$$B_n = \frac{2}{T} \int_{t_0}^{t_0 + T} f(t) \operatorname{sen}(n \, \omega t) \, dt \qquad \text{E-A.F.10}$$

para $n = 1, 2, 3, 4, 5, 6, \ldots$

En particular, integrando la fórmula E-A.F.2 entre t $_0$ y t $_0$ + T se obtiene:

$$A_0 = \frac{1}{T} \int_{t_0}^{t_0 + T} f(t) dt \qquad E-A.F.11$$

con estos coeficientes determinados, se entiende que la función f(t) está definida la ecuación E-A.F.2, a la que se la conoce tam bién con el nombre de Serie Trigonométrica de Fourier.

Esta función f(t) también se la expresa en la llamada serie exponen cial de Fourier lo que es posible, empleando la fórmula de Euler, com binar los términos en senos (n ω t) y cos (n ω t) y encontrar una so la fórumula para el cálculo de los coeficientes; la fórmula de Eu ler dice:

$$exp(jn\omega t) = cos(n\omega t) + jsen(n\omega t)$$
 E-A.F.12

o también:

$$exp(-jn\omega t) = cos(n\omega t) - jsen(n\omega t)$$
 E-A.F.13

de donde con las ecuaciones E-A.F.12 y E-A.F.13 se deduce:

$$sen(n \omega t) = \frac{1}{2j} [exp(j n \omega t) - exp(-j n \omega t)] \qquad E-A.F.14$$

$$cos(n \omega t) = \frac{1}{2} [exp(j n \omega t) + exp(-j n \omega t)]$$
 E-A.F.15

Sustituyendo estas ecuaciones de sen $(n \omega t)$ y cos $(n \omega t)$ en la ecuación E-A.F.2 se tiene:

$$f(t) = A_0 + \sum_{n=1}^{\infty} \left\{ \frac{A_n - jB_n}{2} \cdot \exp(jn\omega t) + \right\}$$

$$+ \frac{A_n + jB_n}{2} \cdot exp(-jn\omega t) \} = E-A.F.16$$

designando con X_n al número complejo

$$X_{n} = \frac{A_{n} - j B_{n}}{2} \qquad \qquad \text{E-A.F.17}$$

$$X_{-n} = \frac{A_{n} + j B_{n}}{2}$$
 E-A.F.18

Se reduce la ecuación E-A.F.16, mediante los reemplazos de X_n y X_{-n} a:

$$f(t) = \sum_{n=-\infty}^{\infty} X \exp(jn\omega t) \qquad E-A.F.19$$

Sustituyendo las integrales E-A.F.9 y E-A.F.10 en la ecuación E-A.F.17 se obtiene:

$$X_{n} = \frac{1}{T} \int_{t_{0}}^{t_{0} + T} f(t) \exp(-jn\omega t) dt \qquad E-A.F.20$$

Esta ecuación E-A.F.20 permite el cálculo de los coeficientes de la serie exponencial de Fourier.

ANEXO Nº 2

CONDICIONES DE SIMETRIA DE ONDA PERIODICA

Mediante la observación de la gráfica de una función, puede simplificarse la ecuación que la determina, esto es, analizando si conti<u>e</u> ne armónicas pares, impares o ambas, y términos en seno (n ω t) ó cos(n ω t) exclusivamente, por lo que reduce notablemente los cálculos.

FUNCION PAR: Una función f(t) es par cuando cumple que:

f(t) = f(-t)

La función par es simétrica respecto al eje vertical.

Si la función f(t) es par, se tiene que:

 $f(t) \operatorname{sen}(n \omega t) = -f(-t) \operatorname{sen}[n \omega (-t)]$

Pero se ve que la integral de f(t) sen(n ωt) en cualquier intervalo de tiempo centrado en el origen, es nula.

De la ecuación E-A.F.10 y E-A.F.9 se tiene:

$$B_{n} = \frac{2}{T} \int_{t_{0}}^{t_{0}+T} f(t) \operatorname{sen}(n \, \omega t) \, dt = \frac{2}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) \operatorname{sen}(n \, \omega t) \, dt = 0$$

$$= -A.S.1$$

$$A_{n} = \frac{2}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) \cos(n \omega t) dt = \frac{4}{T} \int_{0}^{\frac{T}{2}} f(t) \cos(n \omega t) dt$$

E-A.S.2

puesto que si la función f(t) es par

$$\int_{-\frac{T}{2}}^{0} f(t) \cos(n \, \omega t) \, dt = \int_{0}^{\frac{T}{2}} f(t) \cos(n \, \omega t) \, dt$$

Por lo que se concluye que si la función es par y la ecuación E-A.S.1 es igual a cero, entonces la serie E-A.F.2 no conti<u>e</u> ne términos en sen(n ω t) La ecuación E-A.S.2 determina que no es necesario integrar en el período completo para obtener A₂; basta hacerlo en medio período.

FUNCION IMPAR: Una función f(t) es impar si cumple que:

$$f(t) = - f(-t)$$

En la función impar, la serie de Fourier no contiene términos en $\cos(n \, \omega t)$ y que para calcular los coeficientes B_n hasta in tegrar en medio período. Estas conclusiones se las podría de mostrar matemáticamente siguiendo un mecanismo similar al c<u>a</u> so anterior, pero éste no es el propósito del estudio.

PROPIEDADES: El producto de dos funciones pares o de dos funciones impares es una función par, y el producto de una función par y una función impar, es una función impar.

- Para una función par se cumple:

$$\int_{-T}^{T} f(t) \cdot dt = 2 \int_{0}^{T} f(t) dt$$

- Para una función impar se cumple:

$$\int_{-T}^{T} f(t) \cdot dt = 0$$

f(o) = 0

FUNCION DE SIMETRIA DE MEDIA ONDA: Es llamado también simetría de semi-onda cuando satisface la condición:

$$f(t) = -f(t + \frac{T}{2})$$

Una onda que cumpla las condiciones de semi-onda y además sea una función par o impar, entonces de dice que f(t) tiene una simetría de cuarto de onda par o impar. ANEXO Nº 2.1

TEOREMA DE PARSEVAL

Aproximando una función f(t) en el intervalo $t_1 < t < t_2$, mediante n funciones ortogonales, se dice que:

$$f(t) \cong \sum_{\substack{i=1 \\ i=1}}^{n} a_{i} f_{i}(t) \quad t_{1} < t < t_{2} \qquad \text{E-A.P.1}$$

determinando los coeficiente a de esta expresión de manera que el error medio cuadrático "e" entre la función f(t) y su aproximación expresada en la ecuación E-A.P.1 sea mínima, se dice:

$$e = \frac{1}{t_2 - t_1} \int_{t_1}^{t_2} [f(t) - \sum_{i=1}^{n} a_i f_i(t)]^2 dt \qquad E-A.P.2$$

ya que e es función de a_1, a_2, \ldots, a_n , las derivadas parci<u>a</u> les del error con respecto a ellas deben ser nulas, es decir:

y haciendo el reemplazo de la ecuación E-A.P.2 en E-A.P.3 se tiene:

$$\frac{\partial}{\partial a_{i}} \int_{t_{1}}^{t_{2}} [f(t) - \sum_{i=1}^{n} a_{i}f_{i}(t)]^{2} dt = 0 \qquad \text{E-A.P.4}$$

se pueden obtener los coeficientes a_i con la expresión:

$$a_{i} = \int_{t_{1}}^{t_{2}} f(t) f_{i}(t) dt \qquad E-A.P.5$$

Haciendo uso de la ecuación E-A.P.5 para a el e de la ecuación E-A.P.2 se puede expresar como:

$$e = \frac{1}{t_2 - t_1} \int_{t_1}^{t_2} f^2(t) dt - \sum_{i=1}^{n} a^2 = E-A.P.6$$

Pero cuando el error e es cero la ecuación E-A.P.6 se concluye que es:

$$f_{2}^{f} = \int_{t_{1}}^{\infty} f^{2}(t) dt = \sum_{i=1}^{\infty} a_{i}^{2} = E-A.P.7$$

conociéndose la ecuación E-A.P.7 como el teorema de Parseval

Expresando este teorema en términos de Fourier, mediante el reempl<u>a</u> zo de f(t) de la ecuación E-A.F.19 por uno de los factores de E-A.P.7 se tiene:

$$\frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} |f(t)|^2 dt = \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) \sum_{n=-\infty}^{\infty} \chi_n \exp(jn\omega t) dt$$
E-A.P.8

se reduce a:

$$\frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} |f(t)|^2 dt = a_0^2 + \frac{1}{2} \sum_{n=1}^{\infty} (a_n^2 + b_n^2)$$
 E-A.P.9

conociéndose a esta expresión como el *teorema* de *Parseval* expresados en términos de fourier

ANEXO № 3

VATIMETRO VOLTIMETRO-AMPERIMETRO OSCILOSCOPIO

VATIMETRO

El vatímetro tipo 2041 "Yew" Yokogawa es de tipo electrodinámico con una banda tensa de suspensión de movimiento. Permite medir en DC como en AC en un rango de 25 a 1000 H_z, límites que permiten intervenir en las mediciones con ondas distorsionadas hasta la 16° armónica, lo cual garantiza una adecuada aproximación de las medidas obtenidas.

Las bobinas fijas o bobinas de campo, mostradas como dos elementos separados en la figura A.3.1, están conectadas en serie y conducen la corriente total de la línea (i_c). La bobina móvil localizada en el campo magnético producido por las bobinas fijas, se conectan en serie con una resistencia limitadora de corriente a través de la línea de potencia y conduce una pequeña corrie<u>n</u> te (i_p).

La deflexión de la bobina es proporcionada al producto de estas dos corrientes y se pueden escribir la deflexión promedio en un periódo como:

$$A_{\text{prom}} = K \frac{1}{T} \int_{0}^{T} i_{c} i_{p} dt \qquad \text{E-3.1}$$

$$\theta_{\text{prom}} = K_2 \frac{1}{T} \int_0^T e i dt$$
E-3.2

Ya que la potencia media en un circuito está determinada por la expresión:

$$P = \frac{1}{T} \int_{0}^{T} e i dt \qquad E-3.3$$

Permite que la ecuación E-3.2 pueda ser empleada para cualquier forma de onda, ya sea de voltaje o corriente, limitada solamente por el ancho de banda del instrumento de medida.

La deflexión quedará determinada cuando el voltaje y la corriente sean senoidales como:

$$\theta_{\text{prom}} = K_3 V I \cos \phi \qquad E-3.4$$

Donde la forma de v, e, i son:

$$v = V_{max} \operatorname{sen} \omega t$$

 $i = I_{max} \operatorname{sen}(\omega t \pm \phi)$

VOLTIMETRO Y AMPERIMETRO

Tanto el valor verdadero RMS (TRUE RMS) del voltaje como el de la corriente de las ondas que son empleadas en el presente trabajo, son medidas con el multímetro FLUKE 8040; instrumento que según el fabricante esta permitido utilizarlo para diferentes formas de onda y con factores de pico de un valor máximo igual a 3, garantizando un error de 1.9 del valor máximo de su lectura.

El diagrama de bloques del multímetro justifica que en realidad pu<u>e</u> da ser procesada cualquier forma de onda y conseguir como resultado su valor eficaz. Este diagrama de bloques consta de dos grandes sec

ciones de trabajo, una "Analógica" por donde se recibe la información y otra "Digital" por donde se obtienen respuestas, es decir las medidas. Figura A.3.2

Figura A.3.2 Diagrama de bloques del multímetro FLUKE 8040 A

Aplicando el voltaje o la corriente por sus respectivos terminales, éstas señales seguirán, según el diagrama de bloques, hacia el circuito amplificador (BUFFER) en el que seleccionará la dirección correcta para continuar con el análisis; ya para ser comparada con la referencia en el circuito A/D Referencia, o para que procese la onda a su valor RMS; para luego llegar al circuito conversor A/D (convertidor de señales analógicas-digitales) y así pues, de esta manera representar la respuesta en la pantalla.

CONVERTIDOR RMS

El circuito que permite hacer el cálculo del valor eficaz se lo de nomina convertidor RMS, el cual se representa en la figura A.3.3.

RMS

Puesto que una magnitud eficaz es aquella cuyo valor de corriente alterna o voltaje alterno determina la misma disipación de potencia en una resistencia dada, que una corriente o voltaje contínuo del mismo valor numérico, se lo puede expresar matemáticamente de la s<u>i</u> guiente manera:

$$V_{\rm RMS} = \sqrt{V_{\rm i}^2}$$
 E-3.5

donde V_i es el valor del voltaje alterno en cualquier instante dado, entonces el conversor RMS monitorea a éste voltaje instantáneo y calcula el valor eficaz de la señal de entrada. El diagrama de bloques de la figura A.3.3 describe el método implícito para el cálculo del valor eficaz (V_0) , que es un voltaje continuo proporcional al valor eficaz del voltaje alterno aplicado al multímetro. Esto se prueba mediante las relaciones matemáticas siguientes:

$$V_0 = \frac{V_1^2}{V_0} E-3.6$$

multiplicando ambos miembros de la ecuación E-3.6 por V_0 se co<u>n</u> sigue:

$$V_0^2 = V_1^2$$
 E-3.7

ahora tomando la raíz cuadrada a la ecuación E-3.7 se tiene demostrada la ecuación E-3.5

$$V_0 = \sqrt{\frac{V_1^2}{V_1^2}}$$

CIRCUITO SINPLIFICADO DE CONVERSION:

El circuito simplificado de conversión de la figura A.3.4, muestra el proceso que realizan las varias funciones para llegar a conseguir el cálculo del valor eficaz de la entrada. La señal inicial (V_i) llega primero a un circuito que produce una corriente representativa al valor absoluto de la entrada.

Figura A.3.4 Circuito simplificado de conversión RMS

La siguiente etapa es la del multiplicador-divisor (figura A.3.3) que trabaja utilizando un circuito Log-Antilog.

El voltaje base emisor de un transitor esta relacionado en forma l<u>o</u> garítmica casi perfecta con la corriente del colector, entonces p<u>o</u> ner dos tiristores en serie es conseguir dos veces el logaritmo de la entrada, luego tomando el antilogaritmo se obtiene un voltaje pr<u>o</u> porcional al cuadrado de la entrada (V_{i}^{2}) . Por tanto la corriente se aplica al colector del primero de los dos tiristores conectados en serie y en conjunto con el amplificador operacional U 38, pr<u>o</u> duce una salida de voltaje que representa a dos veces el logaritmo

de V_{i} . Un circuito de realimentación de U-13 (pins 1, 2 y 3) y el transitor superior de la derecha en arreglo con U-11 provee un voltaje igual al logaritmo de V₀ sacando el logaritmo de V₀ de dos veces al logaritmo de V₁ es igual a la función matemática.

$$\frac{V^2}{\underline{i}}$$

El paso final para determinar el valor eficaz, es efectuado por U-13(pons 7, 6 y 5), el transitor inferior de la derecha en arre glo con U – 11 y más el filtro de salida (resistencia 47 k Ω y ca pacitor 0,47 μ F). Estas componentes calculan el antilogaritmo de:

$$\frac{V^2}{\underline{i}}$$

Produciendo un voltaje de salida igual a $\sqrt{V_{i}^{2}}$; siendo este voltaje directamente proporcional al voltaje eficaz de la entrada aplicada al multímetro.

Si la señal al medir contiene componente contínua, debe ser prime

ro medido su valor en el modo DC y luego se tomará el valor que corresponde a la señal alterna en AC cuyos valores deberán ser ca<u>l</u> culados con la ecuación E-1.12 que dice:

$$V_{RMS} = \left[V_{MED}^2 + V_{RMS}^2 \right]^{\frac{1}{2}}$$

de esta manera queda determinado el valor RMS de la variable a ser considerada.

OSCILOSCOPIO

Con el afán de hacer un análisis objetivo al comportamiento insta<u>n</u> táneo de las ondas de corriente y voltaje en el circuito experime<u>n</u> tal, se emplea el osciloscopio de doble canal PM 3211 - PHILIPS.

Este instrumento tiene una alta sensibilidad de 2 mV /DIV un ancho de banda de 15 MH_z y un panel de trazo de 8 x 10 cm. además es designado y probado de acuerdo al IEC en la publicación 348 como de clase II.

El osciloscopio PM 3211 consta de las siguientes características fundamentales:

DESCRIPCION	ESPECIFICACION	INFORMACION ADICIONAL
Amplificador vertical	Canal A Canal B	
	АуВ sincronizados	
	Ау B alternados	
	Ау B sumados	
Forma de entrada	ÁC, DC, O	
Polaridad canal B	Normal invertida	•
Respuestas:		
Rangos de frecuencia	DC:)15 MH _Z (-3db)	Medidas de 6 div. a <u>m</u> plitud
	AC: 10 H $_{ m z}$ 15 MH $_{ m z}$	
•	(- 3 db)	
Escalas	2 m V/DIV10 V/DIV	
Precisión	± 3%	· · ·
Impedancia de entrada	1 M Ω/25 pF	
Tiempo de entrada RC	22 ma	Función AC
Tiempos-base		
Escalas-tiempo	0,2 s/DIV 0,5 µs/DIV	

. •

207

Rango de control				-
contínuo	1: > 2.5			
Coeficiente de error	± 3%			
Amplificación	5 X .			
Error Adicional				
por aplificación	± 2%			
Disparo				
Fuente	ch. A, ch. B, entrada			
	externa y línea/canal			
	·			
Forma de disparo .	Automático o Normal			
Forma de disparo . Sensibilidad de	Automático o Normal			
Forma de disparo . Sensibilidad de disparo	Automático o Normal Interno: 0,75 DIV	señal	≦ 5	MHz
Forma de disparo Sensibilidad de disparo	Automático o Normal Interno: 0,75 DIV 0,5 DIV	señal señal	≦ 5 ≦ 15	MH _z MH _z
Forma de disparo Sensibilidad de disparo	Automático o Normal Interno: 0,75 DIV 0,5 DIV Externo: 0,8 V	señal señal señal	≤ 5 ≤ 15 ≤ 15	MH _z MH _z MH _z

Rango de frecuencia de disparo $20 \text{ H}_{z} \dots 15 \text{ MH}_{z}$ $10 \text{ H}_{z} \dots 15 \text{ MH}_{z}$

.

. ,•

ANEXO Nº 4

LISTA DE COMPONENTES DEL CIRCUITO EXPERIMENTAL

Los elementos empleados en el circuito experimental tiene las si. guientes características:

R ₁ .	3	K	Ω.	10	W
R ₂	2	K	Ω	.5	w
R ₃	3.6	K	Ω	.5	W
R ₄	2	М	Ω	.5	W
R ₅	8.2	K	Ω	.5	W
R ₆	10	K	Ω	.5	W
R ₇	10	K	Ω	.5	W
R _B	2.7	K	Ω	.5	W

D₂, D₃, D₄ I TT 1N 0407 1A/1.000 V silicio

P puente rectificador ECG 5304 1.5 A/400 v

.

 C_1 condensador 0.1 μ F 50 v

PUT ECG 6402

A Foto diodo acoplador ECG 3048

SCR1 y SCR2 ECG 5466 10A/600 v

REFERENCIAS Y BIBLIOGRAFIA

- N. L. KUSTERS, W. J. M. MOORE, "On the definition of Reactive Power Under Non sinusoidal Conditions", IEEE TRANS, Power APP. Syst. Vol. Pas - 99, Sept. 1980 P.P. 1845 - 1854
- N. L. KUSTERS and W.J.M. MOORE, "Reactive Power Under Non sin<u>u</u> soidal conditions" (Additional Discussion) IEEE TRANS, Power APP. Syst. Vol. Pas 102 Nº 4, april 1983 P.P. 1023 1024
- J.A. GUALDA S. MARTINEZ P.M. MARTINEZ "Electrónica Industrial.
 Técnicas de Potencia" Marcombo Barcelona Méjico 1982
- V. GEREZ GREISER y V. DE GEREZ "Circuitos y sistemas electro-Mecánicos" Tomo I, serie: Métodos para el análisis de Sistemas de Ingeniería # 6 R.S.I. México 1974
- HUGO BANDA G. "Potencia reactiva en circuitos con formas de ondas complejas", anales de Ingeniería Eléctrica y Electrónica , E.P.N., FIE, Quito P.P. 12 - 14, vol. Nº 6, junio 1985
- HUGO BANDA G. "Factores de Potencia en circuitos con Tiristores"
 I seminario de Educación Continua, Escuela Politécnica Nacional, noviembre 1980
- S.B. DEWAN, A. STRAUGHEN "Power semiconductor circuits" JOHN WILEY and Sons, U.S.A. 1975
- T. J. E. MILLER "Reactive Power Control in Electric Systems", General Electric. Co. JOHN WILEY and sons, U.S.A. 1982