## COMPORTAMIENTO DE LINEAS DE TRANSMISION A DESCARGAS ATMOSFERICAS DIRECTAS.- MODELOS DE ANALISIS

TESIS PREVIA A LA OBTENCION DEL TITULO DE INGENIERO EN LA ESPECIALIZACION DE INGENIERIA ELECTRICA EN LA ESCUELA PO-LITECNICA NACIONAL.

### CARLOS E. RIOFRIO REYES

Quito, Julio de 1977

CERTIFICO QUE EL PRESENTE TRABAJO DE TESIS HA SIDO REALIZADO EN SU TOTALIDAD POR EL SEÑOR CARLOS E.

RIOFRIO REYES. IDG. ALFREDO MENA P. U DIRECTOR DE TESIS.

#### AGRADECIMIENTO:

Al Ing. Alfredo Mena, director de tesis, a los compañeros del Departamento de Potencia, a los compañeros del Instituto de Computación, a la Srta. Ana J.Buitrón por su magnífico trabajo mecanográfico, a mi hermano Víctor Hugo por la ayuda prestada en la elaboración de los gráficos, en fin, a todos quienes con su col<u>a</u> boración han hecho posible el desarrollo de la presente tesis. · · ·

. .

### DEDICATORIA:

· · · · · ·

## A MIS PADRES

## COMPORTAMIENTO DE LINEAS DE TRANSMISION A DESCARGAS ATMOSFERICAS DIRECTAS.- MODELOS DE ANALISIS

# CONTENIDO:

-

...

Pág.

INTRODUCCION

.. ......

| CAPITULO I: NATURALEZA DE LAS DESCARGAS ATMOSFE-       |    |
|--------------------------------------------------------|----|
| RICAS                                                  | ٦  |
| 1.1. Generalidades                                     | 1  |
| 1.2. Características de las descargas,                 | 4  |
| 1.2.1. Forma de Onda                                   | 4  |
| 1.2.2. Estadística de descargas atmosféricas,          | 4  |
| 1.2.3. Nivel isoceráunico, densidad de descargas a     |    |
| tierra                                                 | 7  |
| 1.3. Mecanismos                                        | 8  |
| CAPITULO II : IMPORTANCIA DEL APANTALLAMIENTO EN       |    |
| LINEAS DE TRANSMISION                                  | 12 |
| 2.1. Generalidades                                     | 12 |
| 2.2. Líneas sin apantallamiento                        | 14 |
| 2.3. Apantallamiento (cables de tierra)                | 17 |
| 2.4. Una primera aproximación a la evaluación de       |    |
| la confiabilidad del apantallamiento en una l <u>í</u> |    |
| nea de transmisión                                     | 20 |
| 2.4.1. Método de Burgsdorf-Kostenko                    | 21 |

| CAPITUL | 0 III:    | CALCULO ANA             | ALITICO DI                         | EL NUMERO DE                            | SALI          |             |
|---------|-----------|-------------------------|------------------------------------|-----------------------------------------|---------------|-------------|
|         |           | DAS DE UNA              | LINEA DE                           | TRANSMISION                             | DEBI          |             |
|         |           | DO A FALLAS             | 5 DE SU AI                         | PANTALLAMIEN                            | то            | 25          |
| 3.1. Co | nsideraci | ones genera             | ales                               |                                         |               | 25          |
| 3.2. Al | gunos asp | ectos relat             | tivos al r                         | modelo elect                            | roge <u>o</u> |             |
| mé      | trico     | • • • • • • • • • • • • | <i>.</i>                           |                                         |               | 26          |
| 3.2.1.  | Distancia | crítica de              | e arqueo.                          |                                         |               | 26          |
| 3.2.2.  | Electroge | ometría de              | la línea                           | de transmis                             | ión           | 27          |
| 3.2.3.  | Apantalla | miento efec             | ctivo                              |                                         | ••••          | 28          |
| 3.2.4.  | Geometria | real de la              | a línea, a                         | aproximación                            | del           |             |
|         | estudio   | • • • • • • • • • •     | · · · · · · · · · · ·              |                                         |               | 29          |
| 3.3. Fo | rmulaciór | matemática              | a del mode                         | elo                                     | • • • • •     | 3.1         |
| 3.3.1.  | Efecto de | la distrib              | oución ang                         | gular en las                            | des-          |             |
|         | cargas    |                         |                                    |                                         |               | 33          |
| 3.3.2.  | Límites c | e integrac              | ión. Ψ <sub>1</sub> y              | Ψ <sub>2</sub>                          | • • • • • •   | 34          |
| 3.3.3.  | Limites d | e integrac              | ión θ <sub>1</sub> y (             | θ <sub>2</sub>                          |               | 37          |
| 3.3.4.  | Límites c | e integrac              | ión <sup>Y</sup> sc m <sup>4</sup> | ín <sup>y Y</sup> sc máx                |               | 37          |
| 3.3.5.  | Función c | e distribud             | ción de de                         | ensidad de p                            | roba-         |             |
|         | bilidad c | e la direco             | ción del d                         | camino de la                            | des-          |             |
|         | carga     | •••••                   | •••••                              |                                         |               | 40          |
| 3.3.6.  | Función d | e distribuc             | ción de de                         | ensidad de p                            | roba-         |             |
|         | bilidad d | e distancia             | as crítica                         | as de arqueo                            | ••••          | 43          |
| 3.3.7.  | Número to | tal de sal              | idas de un                         | na línea de                             | tran <u>s</u> |             |
| 1       | misión po | r unidad de             | e tiempo.                          |                                         | •••••         | <b>4</b> 4. |
| 3.4. Pr | ograma di | gital                   | •••••                              | ••••••••••••••••••••••••••••••••••••••• |               | 46          |
| 3.4.1.  | Método de | sòlución                |                                    |                                         |               | 46          |

•-

| 3.4.2. Diagrama de flujo                            | . 46           |
|-----------------------------------------------------|----------------|
| 3.4.3. Implementación del programa                  | . 48           |
| 3,4.4. Entrada de datos                             | . 50           |
| 3.4.5. Salida de resultados                         | . 53           |
| 3.5. Evaluación de resultados                       | . 53           |
| CAPITULO IV: CALCULO ALEATORIO DEL NUMERO DE SAL    | <u>I</u>       |
| DAS DE UNA LINEA DE TRANSMISION POR                 |                |
| FALLA DE SU APANTALLAMIENTO METO                    | -              |
| DO DE SIMULACION DE MONTE-CARLO APL                 | <u>I</u>       |
| CADO AL MODELO ELECTROGEOMETRICO                    | . 55           |
| 4.1. Consideraciones generales                      | - 55           |
| 4.2. Características del método de Monte-Carlo Re   | e              |
| lación con el modelo electrogeométrico              | . 56           |
| 4.2.1. Simulación de una descarga                   | . 58           |
| 4.2.2. Número total de descargas simuladas          | . 59           |
| 4.3. Formulación del modelo                         | . 61           |
| 4.3.1. Generalidades                                | . 61           |
| 4.3.2. Función de probabilidad acumulada del ángulo | o <sup>(</sup> |
| de la descarga                                      | . 63           |
| 4.3.3. Función probabilidad acumulada de magnitudes | 5              |
| de corriente de descargas                           | . 64           |
| 4.3.4. Número de descargas en un día de tormenta e  | -              |
| léctrica                                            | . 65           |
| 4.3.5. Punto final de la descarga                   | . 66           |
| 4.4. Programa digital                               | . 67           |
| 4.4.1. Método de solución,,                         | . 67           |

• • •

. . . 7

| 4.4.2. Diagrama de flujo                         | 67         |
|--------------------------------------------------|------------|
| 4.4.3. Implementación del programa               | 67         |
| 4.4.4. Entrada de datos                          | 73         |
| 4.4.5. Salida de resultados                      | 76         |
| 4.5. Evaluación de resultados                    | 77         |
| CAPITULO V · COMPARACION DE RESULTADOS - CONCLU- |            |
| CATINES 4. CONTACTOR DE RESSETADOS, CONCES       |            |
| SIONES Y RECOMENDACIONES                         | 79         |
| ANEXO 1                                          | <b>8</b> 2 |
| ANEXO 2                                          | 84         |
| ANEXO 3                                          | 105        |
| REFERENCIAS.                                     |            |

# I N T R O D U C C I O N

 $(\mathbf{L})$ 

A medida que los sistemas eléctricos transmiten mayo res bloques de energía, se hace necesario controlar el nú mero de salidas del sistema o parte de él, debido a las implicaciones económicas y de servicio que éstas represen tan.

Las salidas debidas a descargas atmosféricas constituyen un buen porcentaje de las salidas totales de una l<u>í</u> nea y entre éstas las debidas a fallas del apantallamiento (blindaje).

El problema planteado es entonces, conocer el compo<u>r</u> tamiento de una línea, considerando el efecto de las descargas atmosféricas que impactan directamente sobre los conductores de fase, esto durante la etapa de diseño, ya que una vez en operación, no conviene hacerle modificaci<u>o</u> nes. Para realizar ésto, tomando en cuenta la naturaleza aleatoria de las descargas, se requiere el empleo de técnicas de simulación y la elaboración de algún modelo que represente a la línea.

El presente trabajo pretende reunir dos de los est<u>u</u> dios más recientes, y que de acuerdo a la literatura técnica son los de mayor uso en la actualidad, con el objeto de sacar conclusiones que puedan ser utilizadas en nue<u>s</u> tro País.

#### CAPITULOI

#### NATURALEZA DE LAS DESCARGAS ATMOSFERICAS .--

Ya para el año de 1752 Benjamín Franklin identificó las descargas atmosféricas como electricidad, sin embargo es en éste último siglo que se les ha presentado mayor atención debido a los efectos destructivos que éstos fenómenos ocasionaban en instalaciones que requerían cada vez mayor seguridad.

#### 1.1. GENERALIDADES.-

El rayo es simplemente un gigantesco arco eléctrico resultante de una diferencia de potencial de millones de voltios, entre nube y tierra, producido por la separación de cargas positivas y negativas.

Existen varias teorías del proceso de acumulación de cargas en la nube (13)-(14), pero para el presente e<u>s</u> tudio se considerará la nube como un gran generador ele<u>c</u> trostático que acumula cargas, hasta llegar a un potencial muy elevado. Una descarga a tierra usualmente se presenta al ojo humano como un solo haz luminoso, algunas veces puede apreciarse variaciones en la intensidad luninosa, fotogr<u>a</u> fías obtenidas con cámaras especiales han revelado que la mayoría de las descargas son seguidas por otras, que viajan a lo largo del camino establecido por la primera a intervalos de 0.5 - 500 ms, éste proceso puede repeti<u>r</u> se muchas veces, se ha observado que de un 30 a 80 % de descargas tienen al menos dos componentes y cerca del 20 % de tres a cinco, pero se ha llegado a apreciar hasta 40 componentes en una misma descarga. (4).

Cuando el gradiente en la nube es suficientemente alto, aproximadamente la tercera parte del gradiente de disrupción del aire seco y a nivel del mar (30 KV/cm),se produce una aceleración de cargas negativas hacia abajo. La primera pierde rápidamente su energía, pero deja un canal altamente ionizado por el cuál van produciéndose descargas sucesivas que llegan cada vez más lejos, en pasos de aproximadamente 50 m. La velocidad promedio de propagación es de cerca de 150 Km/s., si la distancia e<u>n</u> tre el punto de orígen de la descarga (nube) y tierra es 3000 m. demorará unos 20 ms en llegar a ella.

Durante su, relativamente, lento descenso, la descarga deposita cargas negativas a lo largo de su camino,

- 2 -

lo que significa una reducción de su voltaje.

Cuando la guía de la descarga se aproxima a tierra, se inducen cargas positivas en la zona de influencia de tierra, sin embargo el punto de impacto permanece indeterminado hasta que la punta o guía haya llegado a una cierta distancia de algún elemento en tierra.

A esta distancia la guía produce en el"electrodo"de tierra un gradiente suficiente para causar la descarga final. Debido a la no uniformidad del campo el gradiente crítico promedio para esta distancia, es del orden de un sexto del gradiente de ruptura en aire seco. En ésta etapa predescargas positivas suben desde tierra a encontrar la guía descendente negativa, y cuando éstas se encuentra, una intensa descarga luninosa empieza de la ti<u>e</u> rra a la nube, viajando a una velocidad que varía entre el 10 y 50 % de la velocidad de la luz.

El hecho de que la descarga principal se origine en tierra, se debe a que ésta tiene una gran conductividad y hace posible que las cargas se acumulen más rápidamente en el sitio debido, lo cual no pasa en las nubes, pues éstas tienen una resistencia sumamente elevada.

La corriente en el punto de impácto puede ser consi

derada tanto como una corriente negativa que fluye hacia tierra, ó una corriente positiva que sale de ella. Solo una pequeña proporción de las descargas son producidas por acumulación de cargas positivas en la nube. (4),(12) (13).

1.2, CARACTERISTICAS DE LAS DECARGAS.-

Las investigaciones realizadas en los últimos 50 años han conducido a un cierto grado de conocimiento sobre las características y efectos de las descargas atmo<u>s</u> féricas sobre líneas de transmisión aéreas.

1.2.1. Forma de Onda,-

Oscilogramas de corriente de rayos han mostrado que alcanza su máximo valor en unos pocos microsegundos(fre<u>n</u> te de onda), decrece a su valor medio en un tiempo de hasta 100  $\mu$ s (amplitud media) y llega a cero en tiempos de hasta 400  $\mu$ s.

Un oscilograma típico se muestra en la (Fig. l.l). 1.2.2. Estadística de descargas atmosféricas.-

La magnitud y tiempo de una descarga son cantidades

estadísticas y dependen de varios factores, entre ellos, de la energía almacenada en la nube y de la diferencia de potencial entre nube y tierra al momento de la desca<u>r</u> ga.



Fig. 1.1. Oscilograma típico de corriente de una descarga atmosférica. (12).

En la (Fig. 1.2) se encuentran curvas que han sido obtenidas de cientos de medidas de magnitudes de corrie<u>n</u> tes de descargas en altas torres, edificios y en líneas de transmisión. La curva l ha sido la más usada en el cálculo para líneas de transmisión, las curvas 2 y 3 son más pesimistas y sugieren que la probabilidad que se pr<u>e</u> senten corrientes de rayos mayores de 100 KA es mucho ma

- 5 -



3. (Popolansky)

yor que el indicado por la curva l. Se ha determinado que objetos de tierra relativamente altos "atraen" una mayor proporción de corrientes elevadas de descarga.(12)

. ...

Para propósitos de este trabajo, en lo sucesivo se utilizará la curva de distribución l de la (Fig. 1.2).

1.2.3. Nivel Isoceráunico, Densidad de descargas a tierra.-

El riesgo al que está expuesta una instalación ha sido relacionado al grado de actividad de tormentas elé<u>c</u> tricas en la zona en que se ubica.

El grado de actividad de tormentas eléctricas ó <u>Ni-</u> <u>vel Isoceráunico</u> (NI), definido como el número de días en un año en que se oye por lo menos una descarga, en una localidad determinada. El problema de esta medida es que no se puede distinguir entre descargas nube-tierra y descargas nube-nube.(12).

La densidad de descargas a tierra, está relacionada al nivel isoceráunico por la relación:

 $N_0 = C.$  NI descargas/Km<sup>2</sup> por año (1.1)

Donde: N<sub>o</sub> = Densidad de descargas a tierra. C = Constante para una determinada región tiene valores entre 0.1 y 0.2 NI = Nivel isoceráunico.

#### 1.3. MECANISMOS.-

Mediante observación y experiencias en laboratorio se ha llegado a determinar expresiones matemáticas que <u>a</u> yudan a explicar la mecánica de las descargas atmosféricas, al mismo tiempo que cuantifican sus influencias y sus efectos.

Un concepto de mucha importancia para el desarrollo del presente trabajo es la llamada "<u>Distancia crítica de</u> <u>arqueo</u>" (Strike distance).- Esta distancia es la que existe desde el punto de encuentro de las guías descende<u>n</u> tes y ascendentes, hasta el punto en tierra de donde pa<u>r</u> tió la guía ascendente. En otras palabras la descarga completa tiene lugar en dos etapas: en la primera, el l<u>í</u> der o guía desciende de la nube sin influencia de objetos en tierra, hasta cierta distancia; en la segunda, una guía ascendente parte del objeto en tierra hasta encontrar la descendente.

Se ha determinado que esta distancia es función de la

magnitud de la corriente de descarga. La relación entre la distancia de arqueo y la magnitud de la corriente de descarga fué encontrada por una serie de dependencias.

$$v = v(I) \qquad (1.2)$$

q

$$V_{s} = V_{s}(I,v)$$
 (1.3)  
 $R_{s} = R_{s}(V_{s})$  (1.4)

 $\rightarrow R_{s} = R_{s}(I) \tag{1.5}$ 

Unas primeras aproximaciones fueron encontradas(1), a base de estudios realizados por Wagner (5), (11) y están dadas por las siguientes expresiones:

$$v = I^{1/3} / 13.4 \tag{1.6}$$

$$V_{s} = .276 \times I/v$$
 (1.7)

$$R_{s} = 1.4 \times V_{s}^{1.2} \tag{1.8}$$

De donde:  $R_s = 6.72 \times 1^{0.8}$  (1.9)

- v = Velocidad de retorno de la descarga en por un<u>i</u> dad de la velocidad de la luz.
- V = Voltaje del lider o guía de la descarga.- (Megavoltics).

R<sub>c</sub> = Distancia crítica de arqueo (metros).

I = Magnitud de la corriente de descarga (Kiloampe rios). Se ha demostrado (11) que la velocidad de retorno de la corriente de descarga depende solamente de su magnitud y no de la velocidad con que ésta alcanza su máximo valor, por lo que las expresiones (1.6) a (1.9) fueron obtenidas a base de considerar ondas rectangulares que se mueven a velocidad constante.

Una nueva aproximación de la distancia crítica de arqueo, fué determinada por Whitehead y utilizada en su trabajo sobre apantallamiento de líneas de transmisión -(2). Esta expresión es:

$$R_{c} = 7.1 \times I^{3/4}$$
 (1.10)

(R en metros, para I en KA.).

Esta expresión será utilizada en lo que sigue del pr<u>e</u> sente trabajo.

La figura 1.3., explica en forma gráfica el proceso.

Punto de encuentro de los guías

Descarga Total

Tierra Tiempo



Gulas

. ...

Ascendentes

Guías Descendentes

Ś



#### CAPITULOII.

## IMPORTANCIA DEL APANTALLAMIENTO EN LINEAS DE TRANSMISION.-

2.1. GENERALIDADES.-

El comportamiento de una línea de transmisión, fre<u>n</u> te a las sobretensiones originadas por descargas atmosf<u>é</u> ricas, se mide por el número de salidas que éstas puedan provocar.

Las salidas de líneas, debidas a descargas atmosféricas son el resultado de dos eventos: rayos que terminan en los conductores y rayos que terminan en los cables de guarda. Al primer evento se lo llama falla de <u>a</u> pantallamiento (cables de guarda), por cuanto estos dejan pasar los rayos a los conductores.

Las descargas directas a los conductores de fase producen los más altos sobrevoltajes para una cierta c<u>o</u> rriente de descarga. Un valor aproximado del potencial del conductor en el punto de descarga es fácilmente calculado bajo la consideración de que la magnitud de la c<u>o</u> rriente de descarga (I) es afectada muy poco por el valor de la impedancia terminal (Z)<sup>(12)</sup> la cual, en éste caso, es la mitad de la impedancia transitoria del conductor de fase (Z<sub>0</sub>) por cuanto la corriente inyectada – fluye en ambas direcciones.

Entonces: 
$$V = \frac{1}{2} IZ_0$$
 (2.1)

Una corriente de descarga tan baja como 10 KA.,( la cual de acuerdo a la (Fig. l.2 curva l) tiene una probabilidad de ser excedida del 65 %) causará un sobrevoltaje de 2000 KV. para un valor de  $Z_0 = 400 \Omega$ . (12), (4).

Si se toma en cuenta las curvas 2 y 3 de la (Figura 1.2) aproximadamente un 90 % de las corrientes de desca<u>r</u> ga excederán de 10 KA.

Para estructuras bajas usadas en redes de distribución, la mayoría de las descargas van directamente a ti<u>e</u> rra o a árboles cercanos. Conforme se incrementa la altura de las estructuras, el número de descargas a los conductores de fase llegaría a ser prohibitivamente gra<u>n</u> de, a menos que, alguna forma de protección sea utilizada. El uso de cables sobre los conductores de fase, han permitido que la mayoría de las descargas puedan ser de

- 13 -

rivadas a tierra a través de la estructura.

Con bajas resistencias de puesta a tierra de las es tructuras, solamente descargas de magnitudes grandes cau sarán salidas por contorneos inversos.. Si consideramos una descarga de lO KA. y una resistencia de puesta a ti<u>e</u> rra de la torre de 50  $\Omega$ , bajo el supuesto de que toda la corriente se derive a tierra a través de la estructura se tendría un voltaje de 500 KV, que en todo caso es muchísimo menor que en el caso de una descarga directa al conductor de fase.

Solamente líneas aisladas, para muy altas tensiones, soportarán parte de los sobrevoltajes producidos pos re<u>s</u> cargas directas a los conductores de fase. La probabil<u>i</u> dad de corrientes de descarga de magnitudes relativamente grandes es muy pequeña y el:número de salidas de una línea puede ser reducido grandemente, mediante una buena ubicación de cables de guarda, que nos permitan "Apantallar" a los conductores de fase, con un buen grado de confianza.

2.2. LINEAS SIN APANTALLAMIENTO.-

La evaluación del número de salidas de una línea sin. cables de guarda, puede realizarse en forma sencilla me-

- 14 -

diante el siguiente análisis:

a) Determinar el número de descargas sobre la línea, en base a una cierta zona de "atracción", dada por la siguiente relación:

$$N_{D} = N_{o} (4 h + b') L$$
 (2.2)

Donde: N<sub>D</sub> = Número de descargas sobre la línea. N<sub>o</sub> = Densidad de descargas a tierra, dado por la expresión (1.1). - Descargas/Km<sup>2</sup>). h = Altura media del conductor más elevado. b' = Distancia entre conductores superiores extremos.

L = Longitud de la línea.

(4h + b')L = Area estimada de la zona expuesta. (Km<sup>2</sup>).



Fig. 2.1. Ancho de atracción de descargas a la

l'inea.

b) Determinar la corriente mínima de descarga que prod<u>u</u>
cirá contorneo a través del aislamiento.
De la expresión (2.1) se tiene:

$$Imin = \frac{2 \times CFO}{Z_0}$$
(2.3)

Aquí (CFO) representa el voltaje crítico de contorneo del aislamiento (Critical Flashover) ó BIL de la linea. Puede expresar el voltaje crítico del aislamie<u>n</u> to fase-tierra ó fase-fase, dependiendo cuál sea el mínimo.

- c) Con el valor de (Imín) obtenido de (2.3), determinar la probabilidad de que las corrientes en las descargas excedan dicho valor. Esta probabilidad (P<sub>1</sub>) pu<u>e</u> de obtenerse de la (Fig. 1.2).
- d) Las referencias (1), (8), (12), indican que no todas las descargas que causan contorneo, producen salida de la línea, es decir, la falla franca de potencia industrial ó de 60 Hz. Esta probabilidad (P<sub>2</sub>) varía entre 0.8 y 1.0 para estructuras metálizas y entre 0.2 y 0.8 para estructuras de madera.- Los valores más usados y que se utilizarán en éste trabajo son: 0.9 y 0.5 para estructuras metálicas y de madera re<u>s</u> pectivamente.

De acuerdo al análisis anterior, el número de salidas (N<sub>S</sub>) de una línea sin apantallamiento, viene dado por la siguiente expresión:

$$N_{s} = P_{1} \times P_{2} \times N_{D} \qquad (2.4)$$

2.3, APANTALLAMIENTO (CABLES DE TIERRA).-

Como se ha expuesto anteriormente, los cables de tierra, llamados más comunmente cables de guarda, sirven ante todo para proteger a los conductores de la red de los <u>efectos directos de las descargas atmosféricas</u>, siem pre que éstos se encuentren dentro de su "campo de acción".

Según Peek, el cable de tierra tiene que colocarse por encima de los conductores que han de proteger, a una altura tal, que las relaciones de distancias (de acuerdo a la notación de la(Fig. 2.2.), cumplan la siguiente relación:

$$\Delta h \ge 1.1 \left(\frac{x^2}{2h} + x \sqrt{\frac{2h}{H}}\right)$$
 (2.5)

La altura mínima de las nubes (H), se supone en 200 m., ambas magnitudes (h) y (x) se refieren al conductor más saliente en relación a la ubicación del cable de guarda.- (15).





Según Schwaiger, puede dibujarse el espacio proteg<u>i</u> do, delimitándolo con un arco circular de radio igual a la altura del cable de tierra sobre el suelo, como se muestra en la Fig. 2.3. 7.2.2

Ha sido conocido por varios años que para obtener <u>u</u>

- 18 -

na protección efectiva, se requieren ángulos de apantallamiento relativamente pequeños.- Un ángulo de apantallamiento de 30°fue considerado adecuado para líneas con estructuras no más altas de 30 m. (12).



Fig. 2.3. Determinación del espacio protegido según Schwaiger.- (15).

La evolución de los sistemas eléctricos han llev<u>a</u> do a incrementos considerables en los voltajes de transmisión, con lo que fue necesario aumentar <u>las alturas de</u> <u>las estructuras</u> y desarrollar nuevas técnicas de análisis de las mismas, que tomen en cuenta una adecuada seg<u>u</u> ridad de acuerdo a su importancia y tratando de reducir al mínimo su costo.

# 2.4. UNA PRIMERA APROXIMACION A LA EVALUACION DE LA CO<u>N</u> FIABILIDAD DEL APANTALLAMIENTO EN UNA LINEA DE TRANSMISION.-

Como se enunció anteriormente, el comportamiento de una línea de transmisión frente a sobre tensiones originadas por descargas atmosféricas, se mide, por el número de salidas de la línea por año que éstas pueden prov<u>o</u> car, por el riesgo ó probabilidad de falla que se pueda esperar.

Se han propuesto varios métodos para determinar el comportamiento del apantallamiento en líneas de transmisión, que pueden clasificarse en grupos empíricos y analíticos. También se entudiaron modelos a escala, pero sus resultados son de dudosa validez, debido a que son procesos no lineales y no han podido ser representados correctamente en pequeña escala. (12).

Considerando el juego de azar de la naturaleza, se desarrollan métodos que tratan de simular éste juego,co<u>n</u> siderando ciertas características ya establecidas por el hombre.

Como una primera aproximación a la evaluación de lä confiabilidad del apantallamiento en líneas de transmisión se ha tomado un método empírico, que por su sencillez es de fácil aplicación y nos encamina hacia una comprensión más cabal del problema.

2.4.1. METODO DE BURGSDORF-KOSTENKO.- (12)

Basado en una amplia experiencia de observaciónes y medidas en líneas existentes, inicialmente Burgsdorf relaciona la probabilidad de falla del apantallamiento( $P_{\theta}$ ), como una función directa del ángulo de apantallamiento -( $\theta_s$ ). Posteriormente Kostenko reexaminando los datos de campo, encuentra que la altura del cable de tierra ( $h_t$ ), tiene también una influencia directa en la probabilidad de falla del apantallamiento y propone la siguiente ecu<u>a</u> ción que relaciona estos parámetros:

$$\log_{10} P_{\theta} = \theta_{s} \sqrt{h_{t}/90} - 2$$
 (2.6)

 $(P_{\theta})$  en tanto por ciento para  $(\theta_s)$  en grados y  $(h_t)$  en metros, tanto  $\theta_s$  y  $h_t$  son medidos en la estructura.- (Ver fig. 2.4).

Para determinar el número de fallas del apantallamiento debe encontrarse el número de descargas sobre la línea (N<sub>D</sub>) de la expresión (2.2) en que (h y b') representan en éste caso la altura media y separación de los

- 21 -

cables de guarda respectivamente.

De las expresiones (2.1) y (2.3) se determina la corriente mínima de descarga que puede producir salida (I<sub>mín</sub>).

Burgsdorf<sup>'</sup> también determina una relación empírica para determinar la probabilidad (P<sub>l</sub>) de que la corriente de la descarga exceda al valor de (I<sub>mín</sub>):

$$\log_{10} P_1 = 2 - I_{min}/60$$
 (2.7)

 $(P_1)$  en tanto por ciento para  $(I_{min})$  en Kiloamperios.;

El número de salidas de una línea de transmisión d<u>e</u> bidas a fallas de su apantallamiento (N<sub>s</sub>) se calculará,de acuerdo a la siguiente expresión:

$$N_{s} = N_{D} P_{1} P_{\theta} 10^{-4}$$
 (2.8)

Para visualizar de una mejor forma se muestran gráficamente las expresiones (2.6) y (2.7) en las figuras -(2.4).

- 23 -<u> 1</u>Pe (%) 90 85 80 75 60 50 50 40 30 20 10 =50° 5 05 2 09 I 30° 0.5 =20º 0.2 G2 05=150 05=100 0.1 0.05 0s=5° 0.01 50 ht (mt) 20 25 5 10 15 30 35 40 45



(ь)





#### C A P I T U L O III

CALCULO ANALITICO DEL NUMERO DE SALIDAS DE UNA L.T. DEBIDO A FALLAS DE SU APANTALLAMIENTO.-

METODO DE WHITEHEAD.- MODELO ELECTROGEOMETRICO.-

3.1. Consideraciones Generales.- Whitehead expresa cla ramente que un modelo analítico contiene constantes ajustables, y debe ser solamente considerado como referencia, y ser calibrado por comparación con datos de campo para su utilización. (1), (7).

Whitehead toma en cuenta en la calibración de su mo delo muchos años de datos obtenidos en el campo y especialmente los resultados obtenidos en el denominado proyecto "Pathfinder" en que se instalaran 4615 aparatos en aproximadamente 433 millas de líneas por sobre los 100KV. Estos aparatos fueron especialmente diseñados para diferenciar entre descargas al conductor o al cable de guarda, la polaridad de la descarga y si se produce o no la falla franca de 60 Hz., todo ésto a través de sensores convenientemente ubicados e indicadores que eran facilmente leídos desde tierra.- (1), (10).

En un avance al trabajo realizado por Young, Clayton y Hileman (3) (en que se consideran solamente descargas verticales) se da la posibilidad, bajo una cierta función de distribución de probabilidad, de que las descargas tengan alguna variación en el ángulo de su trayectoria. (Descargas laterales).

3.2. ALGUNOS ASPECTOS RELATIVOS AL MODELO ELECTROGEOME-TRICO.-

·3.2.1. Distancia crítica de arqueo.- En el capítulo I se define éste parámetro, en el presente capítulo se ampliará su definición en forma matemática para lo que s<u>i</u> gue del presente trabajo.

La distancia de arqueo a un componente del sistema  $(\gamma_{sc})$  es relacionada a la corriente de descarga (I) por:

$$\gamma_{sc} = K_{sc} \cdot K_{I} \cdot I^{b} \qquad (3.1)$$

donde  $(K_I)$  y (b) son constantes que dependen de la forma de relación entre la distancia de arqueo y la magnitud
de corriente y  $(K_{sc})$  es una constante que depende del com ponente asumido, es decir, la variación de la influencia del elemento en tierra sobre la punta o guía de la desca<u>r</u> ga. La distancia de arqueo no es realmente un valor invariable para un valor dado de corriente, pero muy poco se conoce de sus desviaciones.- (1), (10).

3.2.2. Electrogeometría de la línea de transmisión.- La geo

metría del modelo de la línea está representada en la (Figura 3.1), en la cual se ilustra la di<u>s</u> tancia de arqueo ( $\gamma_{sc}$ ) a los conductores y ( $\gamma_{sg}$ ) a tierra, en las que se considera una diferencia dada por la constante ( $K_{sg}$ ), (relacionada a ( $K_{sc}$ ) cuando el componente asumido es tierra) debida a variaciones en el gradiente crítico en las cerc<u>a</u> nías de éstos elementos. ( $\Theta_s$ ,  $\overline{H}$  y  $\overline{Y}$ ) son parámetros efectivos medios; del ángulo de apantallamiento, altura de los cables de guarda y conductores de fase respectivamente.- (1), (2).

Los ángulos (θ<sub>1</sub> y θ<sub>2</sub>) limitan la superficie cilíndrica expuesta a las descargas, indicada por el arco <u>abc</u> (Ψ) es el ángulo de aproximación de la descarga.

Al aumentar la magnitud de la corriente de la desca<u>r</u>

ga, se incrementará  $(\gamma_{sc})$  y  $(\gamma_{sg})$  de tal manera que el área expuesta dada por el arco <u>abc</u> de la (Figura 3.1) no exista, por lo tanto habrá un  $\gamma_{sc}$  máximo sobre el cual no existan fallas de apantallamiento y las descargas impactarán a los cables de guarda o a tierra, (Figura 3.2) De manera similar habrá  $\gamma_{sc}$  mínimo debido a una corriente de descarga mínima, que aún impactando a los conduct<u>o</u> res de fase no produzcan falla de la línea.



línea de transmisión.

3.2.3. Apantallamiento efectivo.- Si  $\gamma_{sc}$  minimo =  $\gamma_{sc}$ máximo, "<u>No</u>" ocurrirán fallas en el apantallamiento, ésto implica <u>u</u> na ubicación conveniente del o de los cables de guarda. (Figura 3.3.).



Sin embargo ésto no significa que no puedan ocurrir fallas, puesto que, las magnitudes utilizadas en el análisis son cantidades promedio y no puede hablarse de un. apantallámiento perfecto.- (2).

3.2.4. Geometría real de la línea, aproximación del estudio.- En una línea real, debe analizarse su ruta en que se tomará en cuenta altitud (para efectos del voltaje crítico de contorneo)y características físicas, del terreno, de las dimensiones de las estructuras y vanos, pueden hacerse consideraciones referentes a las flechas de los conductores y determinar los parámetros -

· 29 -

angulares y las alturas del modelo mostrado en la (Figura 3.1.).



Fig. 3.3. Electrogeometría de apantallamiento efectivo.

Las alturas efectivas de los conductores y cables de guarda no deben tomar en cuenta sólo sus respectivas flechas, de acuerdo al perfil de la línea, puede estima<u>r</u> se una cierta "flecha de tierra" como se muestra en la (Figura 3.4.), en que se consideran tres tipos de terreno; plano, medio y montañoso.- (1).

- 30 -



Fig. 3.4. Estimación de parámetros de tierra para el cálculo de alturas efectivas del modelo.-

> $(F_c, F_g \ y \ F_t$  representan las flechas de los conductores, cables de guarda y ti<u>e</u> rra respectivamente. Los subíndices P, Md y M se refieren al tipo de terreno, plano, medio ó montañoso respectivamente)

3.3. FORMULACION MATEMATICA DEL MODELO.-

. Para una línea ubicada en una región de densidad de descargas conocida No (descargas por kilómetro cuadrado)

31 -

puede definirse un ancho efectivo (X) a cada lado de la línea (indicador de una franja efectiva de exposición a las descargas) tal que: Si todas las descargas fuesen verticales el ancho (X) caerá sobre la proyección del a<u>r</u> co <u>ab</u> sobre el eje horizontal (Figura 3.1).- De manera general tomando en cuenta la posibilidad de la existencia de descargas laterales, habrá una franja efectiva de ancho (X) que dependerá de la función densidad de probabilidad del ángulo de la descarga ( $\Psi$ ).

Tomando en cuenta que las magnitudes de corriente de descarga son magnitudes aleatorias obtenidas a lo la<u>r</u> go del tiempo, de las cuales puede obtenerse una función densidad de probabilidad h(I) y por la relación (3.1),se obtiene la función densidad de probabilidad de la dista<u>n</u> cia crítica de arqueo  $f(\gamma_{sc})$ , la relación entre funciones monotónicas es:

$$f(\gamma_{sc}) = h(I) \frac{dI}{d\gamma_{sc}}$$
(3.2)

Por lo tanto, el número de fallas de apantallamiento (que pueden provocar salida de la línea) por unidad de longitud y tiempo, para una región de densidad de de<u>s</u> cargas No es dado por:

$$n = 2 \text{ No} \begin{cases} \gamma_{\text{sc}} \text{ máx} \\ X. f(\gamma_{\text{sc}}) \text{ d } \gamma_{\text{sc}} \\ \gamma_{\text{sc}} \text{ min} \end{cases}$$
(3.3)

- 32 -

El coeficiente numérico se debe a la simetría cons<u>i</u> derada en el modelo de la línea.- (l), (2).

3.3.1. Efecto de la distribución angular en las descargas.- Se ha observado que no todas las descar-

> gas a tierra caen en dirección vertical, por lo que debería determinarse alguna distribución angular en las descargas para una mejor aproximación del estudio. Si  $\Psi$  es definido como en las Figura (3.1) y (3.5) y una función de di<u>s</u> tribución de densidad de probabilidad g( $\Psi$ ) es determinada, puede demostrarse que:

$$X = \gamma_{S} \int_{\theta_{2}}^{\theta_{1}} \int_{\Psi_{2}(\theta)}^{\Psi_{1}(\theta)} \frac{\operatorname{Sen}(\theta - \Psi)}{\cos \Psi} g(\Psi) d\Psi d\theta \qquad (3.4)$$

El coeficiente trigonométrico resulta del hecho, de que un número de descargas con un ángulo de dirección  $\Psi$ con variación d $\Psi$ , llegan a un elemento diferencial  $\gamma_{sc}$ . d $\theta$  del arco <u>abc</u>, por lo tanto:

$$d A = \gamma_{sc}, d\theta Sen (\theta - \Psi)$$
 (3.5)

En que d A representa el área elemental (por unidad de longitud) presentada perpendicularmente a descargas que llegan con ángulo Ψ.

Si No es la densidad de descargas en la región:

$$Nh = No g(\Psi) d\Psi$$
(3.6)

- 34 -

Nh será la densidad de descargas con variación angular dΨ medida en la horizontal y:

$$N\Psi = \frac{No g(\Psi) d\Psi}{Cos \Psi}$$
(3.7)

NΨ es la densidad de descargas que sería medida sobre el plano del área elemental d A.

El número de descargas sobre el elemento diferencial  $\gamma_{sc}$ . d $\theta$  del arco <u>abc</u> es:

$$dn = N\Psi d A f (\gamma_{sc}) d \gamma_{sc}$$
(3.8)

Con lo que las expresiones (3.3) y (3.4) quedan demostradas. La (Figura 3.5) muestra la ubicación geométr<u>i</u> ca del área elemental d A, los signos corresponden al sentido considerado en el ángulo Ψ.

3.3.2. Limites de integración.  $\Psi_1 y \Psi_2$ . - Se asume que - no se presen-

tan descargas por bajo de la horizontal, entonces, tomando como referencia el eje vertical y el giro contrario a las agujas del reloj como sentido positivo de los ángulos; se tiene que  $\Psi_2 = -\pi/2$  independientemente de la posición de  $\Theta$  (Figura 3.6), mientras que  $\Psi_1$ , a lo largo del camino de integración, es siempre una función de  $\Theta$ .



Fig. 3.5. Ubicación geométrica del área elemental d A.-

Para  $\theta_{S} \ge \theta \ge \theta_{2}$  de las (Figuras 3.6.a y b) puede verse que:

 $\Psi_1(\theta) = \theta \tag{3.9}$ 

Para  $\theta_{s} \leq \theta \leq \theta_{1}$  (Figura 3.6.c): Tomando como origen la ubicación del cable de guarda; la ecuación del contorno de influencia de éste cable sobre la punta o guía de la descarga es:

 $\chi^2 + \gamma^2 = \gamma^2_{sc}$ 

(3.10)

La ecuación de la recta que pasa por el punto  $P(X_T, Y_T)$ , situado sobre el contorno de influencia del - conductor de fase externo y es tangente al contorno (3. 10), es:

- - -

$$Y - Y_{T} = m (X - X_{T})$$
 (3.11)

m es la pendiente de la recta.

De la solución de (3.10) y (3.11) se llega a:

$$\chi^{2}(1+m^{2}) - 2mx(mX_{T} - Y_{T}) + (mX_{T} - Y_{T})^{2} - \gamma_{sc}^{2} = 0$$
  
(3.12)

De ésta ecuación, las dos raices de X deben ser iguales, es decir, un solo punto de corte entre (3.10) y (3.11) con lo que (3.11) cumple la condición de ser tangente a (3.10), para ésto el discriminante de la ecuación (3.12) debe ser igual a cero.

De donde:  

$$m_{1,2} = \frac{-X_T Y_T + Y_{sc} \sqrt{Y_T^2 + X_T^2 - Y_{sc}^2}}{Y_{sc}^2 - X_T^2}$$
(3.13)

$$\alpha = \tan^{-1} m \tag{3.14}$$

$$\Psi_1 = \alpha - \pi/2$$
 (3.15)

Del análisis de (3.13), (3.14) y (3.15) se llega a:

$$\Psi_{1} = \tan^{-1} \left[ \frac{-\chi_{T} \gamma_{T} + \gamma_{sc} \sqrt{\chi_{T}^{2} + \gamma_{T}^{2} - \gamma_{sc}^{2}}}{\gamma_{sc}^{2} - \chi_{T}^{2}} \right] - \pi/2$$
(3.16)

Que cumple con la condición del problema presentado en la (Figura 3.6.c).

3.3.3. Límites de integración  $\theta_1 y \ \theta_2$ .- Del análisis de la (Figura 3.1)

se llega a:

.. ...

$$\theta_1 = \theta_s + \text{Sen}^{-1} \left( -\frac{\overline{H} - \overline{Y}}{2\gamma_{sc} \cos \theta_s} \right)$$
 (3.17)

$$y: \quad \theta_2 = \operatorname{Sen}^{-1} \left( K_{sg} - \frac{\overline{Y}}{Y_{sc}} \right)$$
(3.18)

3.3.4. Límites de Integración  $\gamma_{sc}$  mín  $y \gamma_{sc}$  máx - El va lor de

<sup>Y</sup>sc mín <sup>e</sup>stá dado para I<sub>mín</sub> de la expresión (2.3) en (3.1).

$$\gamma_{sc min} = K_{sc} K_{I} (I_{min})^{b}$$
(3.19)

 $\gamma_{\text{sc máx}},$  está dado cuando al incrementar  $\gamma_{\text{sc}}$  se cum ple que:

$$\theta_1 = \theta_2 \tag{3.20}$$







Fig. 3.6. Límites de integración  $\Psi_1$  y  $\Psi_2$ 

- 38 -

39 --7 =0.7 0 θs ที่=เ 717/2017/2017/2017/2017/2017/2017 6 Tscmáx pu H 2 3 5 4 ¢Ÿpu de Ĥ θs (Ιοχίδ)(20) (25) (30) (45) (50) (85) (40)

es (°)

50

45

40

35

30

25

20

15

10

5

o

1.0

0.9

0.8



Las (Figuras 3.7) fueron obtenidas de resolver la ecuación (3.20) para diferentes valores de  $\theta_s$  y en por un<u>i</u> dad de  $\overline{H}$ .

3.3.5. Función de distribución de densidad de probabilidad de la dirección del camino de la descarga.-

La función de distribución respecto al ángulo de la descarga, puede al presente solo ser estimada (2). Sin ÷ embargo un gran número de soluciones es representado por:

$$g(\Psi) = \begin{cases} 0, & \alpha_2 < \Psi < \alpha_1 \\ & K_m \cos m\Psi, & \alpha_2 \ge \Psi \ge \alpha_1 \end{cases}$$
(3.21)

De la (Figura 3.8), el punto (P) como punto de incidencia de la descarga y el eje vertical como referencia; el ángulo ( $\Psi$ ) da la dirección del camino de la descarga . Si se considera que no existen descargas por debajo de la horizontal, entonces los límites  $\alpha_1$  y  $\alpha_2$  serán  $-\pi/2$  y  $\pi/2$ respectivamente.

La condición que debe cumplir la función g(Ψ) para representar una función de probabilidad es:

$$\int_{\alpha_{1}}^{\alpha_{2}} g(\Psi) d\Psi = \int_{\pi/2}^{\pi/2} km \cos^{m} \Psi d\Psi = 1 \qquad (3.22)$$

El coeficiente Km se determina de (3.22) por:



descargas.

De la solución de (3.23) para diferentes valores de m se obtiene la siguiente tabla de valores.

| m  | 0   | 1   | 2   | 3   | 4    | 5     | → ∞ · |
|----|-----|-----|-----|-----|------|-------|-------|
| km | 1/π | 1/2 | 2/π | 3/4 | 8/3π | 15/16 | *:    |

\* Cuando m → ∞ la función g(Ψ) tiende a la función im- pulso unitaria δ(Ψ), que representa todas las descargas
 en dirección vertical (Figura 3.9.).

- 41 -



Fig. 3.9. Función densidad de probabilidad del ángulo Ψ.- (1).

m = O indicaría igual probabilidad en las descargas con ángulo (Ψ) comprendido dentro del intervalo consid<u>e</u> rado, se ha observado una densidad de descargas mayor con ángulos cercanos a la vertical, por lo que m = O no tiene ningún sentido en el presente análisis.- (1), (2).

Las referencias (1) y (2) expresan que valores comprendidos entre 1 y 2 para m, pero más cercanos a 2, han dado mejores resultados en la calibración del modelo.

En el presente trabajo se analizará, por simplicidad, valores para m = 1, 2,  $\infty$ ; en que m =  $\infty$ , introduce el trabajo realizado por Young, Clayton y Hileman (3), en que se consideran solamente descargas verticales.

3.3.6. Función de distribución de densidad de probabilidad de distancias críticas de arqueo.-

Esta función fué definida por la expresión (3.2) en que es necesario determinar h(1). La referencia (1) propone la expresión:

$$h(I) = K_1 e^{-I/I_1} + K_2 e^{-I/I_2}$$
 (3.24)

Y calibrada para las curvas de distribución de corrientes de descarga obtenidas por AIEE propone:

$$h(I) = 4.75 e^{-I/20} + 0.10 e^{-I/50} \%$$
 (3.25)

Para I de la expresión (3.1), de (3.2) se puede obt<u>e</u>: ner la función  $f(\gamma_{sc})$ .

Para efectos de cálculo, la referencia (2) propone la utilización de una aproximación para el cálculo de  $f(\gamma_{sc})$ ,

- 44 -

para I de (1.10) se tiene que:

$$f(\gamma_{sc}) = 7.4 \gamma_{sc}$$
 (3.26)

La(figura 3.10) muestra gráficamente las expresiones (3.2) y (3.26), en lo que sigue se utilizará la expresión (3.26).



Figura 3.10. Función densidad de probabilidad de Y<sub>sc</sub>

3.3.7. Número total de salidas de una línea de transmisión por unidad de tiempo.-

La expresión (3.3) representa número de fallas de a-

pantallamiento que pueden producir salida, por unidad de longitud y tiempo para un tramo de la línea.

El número total de salidas de la línea será:

$$N = P_2 \int_0^L n(x) d$$
 (3.27)

en que (x) es la dimensión a lo largo de la línea, (L) la longitud total de la línea, n(x) dado por la expresión (3) y P<sub>2</sub> es la probabilidad, de que la descarga produzca la salida de la línea. (Capítulo 2, numeral 2.2, punto d).(2).

Un cuidadoso análisis del problema, llevará a una s<u>o</u> lución más ventajosa. La expresión (3.27) puede expresa<u>r</u> se por:

$$N = P_{2} \sum_{i=1}^{n} n(x_{i})$$
 (3.28)

en que (nt) representa el número de tramos de la línea y  $(x_i)$  la longitud de cada tramo.-

3.4. PROGRAMA DIGITAL.- El orden metodológico para el desarrollo de éste numeral, se tomó de la referencia (16).

3.4.1. Método de solución.- Para la solución digital del modelo matemático plan-

> teado en el numeral (3.3), bajo las consideraciones hechas en (3.3.5), de la expresión (3.4) se procede a desarrollar algebráicamente la integral entre  $\Psi_2(\theta)$  y  $\Psi_1(\theta)$  y de acuerdo a los límites de integración definidos en los numerales (3.3.2 У 3.3.3), la integral entre  $\theta_2$  y  $\theta_1$  se desarrolla en dos partes; la primera entre  $\theta_2$  y  $\theta_s$  que puede ser resuelta algébricamente y la segunda parte de la integral entre  $\theta_s$  y  $\theta_1$  se resuelve usando e1 método de integración de Simpson. Obtenido el va lor de la expresión (3.4), mediante la regla de integración trapezoidal se incrementa el valor de la expresión (3.3) iterativamente hasta obtener su valor. El proceso se repite para cada tramo de la línea y de la expresión (3.28) se obtiene el resultado final.

3.4.2. Diagrama de Flujo.- La Figura (3.11) presenta el diagrama de flujo general -

del programa.



Figura 3.11. Diagrama de Flujo.- (Cálculo analítico del número de salidas de una línea de transmisión, debido a fallas del apantallamiento, Nétodo de Whitehead).-

3.4.3. Implementación del programa.- El programa está escrito en FORTRAN

> IV para el sistema IBM-370-125-DOS, utiliza una memoria de 7 KBYTES y el tiempo de ejecución para un ciclo completo del programa que representaría un tramo de la línea es de aproximadamente (15) seg\*, que puede variar de acuerdo a la precisión que se desee.- \* (Ver 3.5).

a) Listado de variables principales.-

| FORTRAN | DESCRIPCION                                           |
|---------|-------------------------------------------------------|
| CASG    | Constante que relaciona la distancia de arqueo        |
|         | a tierra con la correspondiente a los conduc-         |
|         | tores y cables de guarda (Ksg).                       |
| CE      | Distancia media entre el cable de guarda y el         |
|         | conductor más saliente (Ĉ).                           |
| CFO     | Voltaje crítico de contorneo del aislamiento          |
|         | de la cadena, (Critical-Flashover) (CFO).             |
| CK      | Probabilidad de que la descarga produzca sal <u>i</u> |
|         | da de la línea (P <sub>2</sub> ).                     |
| CMIN    | Corriente mínima de descarga que puede produ-         |
|         | cir salida de la línea (I <sub>mín</sub> ).           |
| CNO     | Densidad de descargas a tierra (Ground Flash          |
|         | Density) (N <sub>o</sub> ).                           |
| DRS     | Incremento en la distancia crítica de arqueo          |
|         | para efectos de integración. (d <sub>Ysc</sub> ).     |

- 48 -

| FORTRAN | DESCRIPCION                                            |
|---------|--------------------------------------------------------|
| ENE     | Número de salidas de la línea por kilómetro y          |
|         | por año (n).                                           |
| ENET    | Número total de salidas de la línea. (N).              |
| ENETR   | Número de salidas de un tramo de la línea              |
|         | (n(x <sub>i</sub> )).                                  |
| LONG    | Longitud total de la linea. (L).                       |
| ММ      | Tipo de función de distribución angular a <u>u</u>     |
|         | sarse. (m).                                            |
| NTRAM   | Número de tramos considerados en la línea.(nt)         |
| ORDF    | Altura media del conductor de fase para un tr <u>a</u> |
|         | mo. $(\overline{Y})$ .                                 |
| ORDG    | Altura media del cable de guarda para un tramo         |
|         | (H).                                                   |
| PSI     | Angulo de incidencia de la descarga (Ψ)                |
| PTR     | Porcentaje de la longitud de la línea de un            |
|         | tramo.                                                 |
| RINT    | Valor de la integral dada por la expresión –           |
|         | (3.3), en el proceso iterativo.                        |
| RS      | Distancia critica de arqueo. (Strike distance)         |
|         | $(R_s, \gamma_{sc}).$                                  |
| TETA .  | Angulo de barrido en la integración de la zona         |
|         | expuesta a las descargas (0).                          |
| TETS    | Angulo medio de apantallamiento (O <sub>s</sub> ).     |
| TETI    | .Límite superior del ángulo TETA. (0 <sub>1</sub> )    |
| TET2    | Límite inferior del ángulo TETA. (0 <sub>2</sub> )     |

.

- 49

•••

## FORTRAN DESCRIPCION

Ancho efectivo de la zona expuesta a las descargas.- (X).

ZL Impedancia transitoria del conductor de fase (Z).

b) SUBPROGRAMAS. -

Х

FUNCTION F1 y FUNCTION F2.- Evalúan el valor de la función F( $\theta$ ) en el proceso de integración, para dos tipos de la función de distribución angular de las descargas, para m = l y m = 2 respectivamente. El desarrollo analítico se encuentra en el anexo l.

FUNCTION SIMPS (A, B, N,F). - Este subprograma evalúa la integral de F(x) entre los

límites A y B mediante la regla de simpson. N es el núm<u>e</u> ro de intervalos. (16)

c) LISTADO DEL PROGRAMA.- El listado del programa se pr<u>e</u> senta en el anexo 2.

3.4.4. Entrada de datos.-

a) Primera tarjeta de lectura.- Datos generales.

READ 2, LONG, CK, CASG, NTRAM, NLIN, MM, ICOD 2 FORMAT (3F10.0,4I2)

| VARIABLE | COLUMNAS | DESCRIPCION                             |
|----------|----------|-----------------------------------------|
| LONG     | 1 - 10   | Longitud de la línea en (Km)            |
| СК       | 11 - 20  | Probabilidad (P <sub>2</sub> ) en (p.u) |
| CASG     | 21 - 30  | Constantes (K <sub>sg</sub> ) en (p.u)  |
| NTRAM    | 31 - 32  | Número de tramos                        |
| NLIN     | 33 - 34  | Número de tarjetas de título del        |
|          |          | trabajo menor o igual a 5.              |
| MM       | 35 - 36  | Igual a cero (o) para descargas         |
|          |          | verticales, uno (1) o dós (2)p <u>a</u> |
|          |          | ra m = 1 ó 2 en la distribución         |
|          |          | angular en las descargas.               |
| ICOD     | 37 - 38  | Igual a cero (o) si no existe <u>o</u>  |
|          |          | tro caso de estudio. Igual a <u>u</u>   |
|          |          | no (l) si después del caso en           |
|          |          | estudio se leerá un nuevo caso.         |
|          |          |                                         |

b) Segunda tarjeta de lectura.- Títulos.-READ 3, (TIT(I), I = 1,JI)

3 FORMAT (20A4)

| VARIABLE | COLUMNAS | DESCRIPCION                     |
|----------|----------|---------------------------------|
| TIT      | 1 - 80   | Título del trabajo, tantas tar- |
|          |          | jetas como se haya especificado |
|          |          | en NLIN.                        |

c) Tercera tarjeta de lectura.- Datos de cada tramo.tantas tarjetas como -

•••

tramos se considere.-

.. ....

READ 6, ORDF, ORDG, TETS, CNO, CFO, ZL, DRS, PTR, NINT 6 FORMAT (7F10.0,F6.0,I4)

| VARIABLE | COLUMNAS | DESCRIPCION                                  |
|----------|----------|----------------------------------------------|
| ORDF     | 1 - 10   | Altura media del conductor de                |
|          |          | fase $(\overline{Y})$ (metros).              |
| ORDG     | 11 - 20  | Altura media del cable de guar-              |
|          |          | da (H) (metros).                             |
| TETS     | 21 - 30  | Angulo medio de apantallamiento              |
|          |          | (θ <sub>s</sub> ) (grados)                   |
| CNO      | 31 - 40  | Densidad media de descargas a                |
|          |          | tierra (No) (Descargas por Km <sup>2</sup> ) |
| CFO      | 41 - 50  | Voltaje crítico de contorneo -               |
|          |          | del aislamiento en la cadena, -              |
|          |          | corregido para condiciones am-               |
|          |          | bientales (KV).                              |
| ZL       | 51 - 60  | Impedancia transitoria del con-              |
|          |          | ductor de fase (ohmios).                     |
| DRS      | 61 - 70  | Incremento en la distancia crí-              |
|          |          | tica de arqueo. (metros)*                    |
| PTR .    | 71 - 76  | Tanto por ciento de la longitud              |
|          |          | de la línea, correspondiente al              |
|          |          | tramo.                                       |

| VARIABLE | COLUMNAS | DESCRIPCION                                              |
|----------|----------|----------------------------------------------------------|
| NINT     | 77 - 80  | Número de intervalos en la int <u>e</u>                  |
|          |          | gración entre θ <sub>s</sub> y θ <sub>l</sub> , si no se |
|          |          | especifica se toma un valor de                           |
|          |          | NINT = 10*                                               |
|          |          |                                                          |

\* (Ver numeral 3.5).

3.4.5. Salida de resultados.- En el anexo 2 se prese<u>n</u> tan salidas de resultados para el esquema de línea propuesto en el anexo 3.

3.5. EVALUACION DE RESULTADOS

El programa desarrollado, resuelve satisfactoriamente el problema propuesto en (3.3), los resultados obtenidos son equivalentes a los propuestos en el trabajo real<u>i</u> zado por Whitehead, (1), (2).

Cabe señalar que, la aproximación realizada por la expresión (3.26) de acuerdo a (2), para la función densidad de probabilidad de distancias de arqueo, se cumple p<u>a</u> ra valores de corriente de descarga de aproximadamente l2 KA en adelante (Fig. 3.10), ésto significa que, para líneas en que la corriente mínima de descarga que puede pr<u>o</u> ducir salida es menor que l2 KA, la aproximación hecha in troduce un error considerable en la integración. De <u>a</u> cuerdo a lo expuesto y considerando que un valor de I<sub>mín</sub> de 12 KA solo se tendrá para una línea de extra alto voltaje, se presenta una segunda versión del programa (Anexo 2),en que se utiliza para  $f(\gamma_{sc})$  la expresión (3.2) y h(I) de (3.25), los resultados obtenidos (para una línea de 220 KV. con un CFO = 1200 KV (Anexo 3)) con las dos versiones difieren grandemente.

Con el propósito de optimizar tiempos de ejecución se introdujeron dos variables entel programa NINT definida como el número de intervalos en la integración y DRS que representa  $(\Delta \gamma_{sr})$  un intervalo en la distancia crítica de arqueo en el proceso iterativo, es claro que, si se revisa las expresiones (3.3) y (3.4), el tiempo de cálculo dependerá de los valores que se den a NINT y DRS y ésto influirá directamente en la precisión obtenida. Al no tenerse un punto de referencia en precisión de los resultados, se tomó un valor de NINT = 20, DRS = 1 (metros) y el resultado como referencia (tiempo de ejecución 60 seg), disminuyendo NINT y aumentanto DRS para una diferencia en los resultados en el cuarto digito significativo, se llega a NINT = 16 y DRS = 2 (metros) (Tiempo de ejecución 15 seg), se recomienda usar éstos valores en el programa.

- 54 -

## CAPITULO IV

CALCULO ALEATORIO DEL NUMERO DE SALIDAS DE UNA LINEA DE TRANSMISION POR FALLA DE SU APANTALL<u>A</u> MIENTO.- METODO DE SIMULACION DE MONTE-CARLO APLICADO AL MODELO ELECTROGEOMETRICO.-

4.1. CONSIDERACIONES GENERALES. - Tomando en cuenta, la naturaleza aleatoria -

de las descargas atmosféricas, el presente capítulo pretende desarrollar un modelo que haga el juego de azar de la Naturaleza. (6), sobre los mismos principios teóricos del modelo electrogeométrico de Wh<u>i</u> tehead (capítulo 3).- Sin embargo al aplicar un m<u>é</u> todo de simulación, se da una gran flexibilidad al modelo, lo que no puede incluirse fácilmente en un modelo analítico (7).

Para la elaboración del modelo analítico (Capítulo 3), se partió de una geometría simétrica definida de la línea de transmisión, en el presente modelo se podrá analizar cualquier geometría de línea, ésto permitirá por ejemplo, predecir cuales serían - los conductores de fase más solicitados a las descargas atmosféricas debido a las fallas del apantallamiento en una línea de simple o doble circuito, sin que sea neces<u>a</u> rio que presente una geometría simétrica.

Se podrá determinar el número de descargas a la línea y la probabilidad de falla del apantallamiento para descargas con corrientes mayores que Imín.

Se determinará el número de salidas de la línea por cada tramo y totales de la línea.

Un tramo se define por magnitudes geométricas y características eléctricas determinadas.

4.2. Características del método de Monte-Carlo.- Relación con el modelo electrogeométrico.-

En la técnica de Monte-Carlo se procesa cada desca<u>r</u> ga en forma independiente y los varios parámetros que i<u>n</u> tervienen en ella son seleccionados al azar a través de distribuciones probabilísticas de ocurrencia, mediante la utilización de una secuencia de números pseudo-aleat<u>o</u> rios.

Para cada descarga, los parámetros son usados como

datos de entrada al modelo electrogeométrico para determinar el punto terminal de la misma.

Lo siguiente está asumido implicitamente en el des<u>a</u> rrollo del modelo electrogeométrico y es aplicado en el presente modelo:(7).

- a) La localización de la guía de la descarga es indepen diente de posibles influencias de elementos en tierra hasta llegar a cierta distancia, definida como <u>u</u> na distancia crítica de arqueo.
- b) El ángulo de aproximación de la descarga ( $\Psi$ ) es dado a través de la función densidad de probabilidad (g( $\Psi$ )) por la expresión (3.21).
- c) La distancia de arqueo  $(\gamma_{sc})$  es directamente relaci<u>o</u> nada a la magnitud de la corriente de la descarga(I) por la expresión (3.1).
- d) La función de probabilidad acumulada de las magnitudes de corriente de las descargas (H(I)) es conocida.
- e) El punto terminal de la descarga es determinado cua<u>n</u> do la guía de la descarga llega a topar alguna de las influencias de los elementos de tierra.

- f) La densidad de descargas a tierra es conocida y rel<u>a</u> cionada al nivel isoceráunico (NI).
- g) Se considera la representación geométrica del modelo de la línea en un plano de dos dimensiones y se toma en cuenta parámetros geométricos medios.



electrogeométrico).-

4.2.1. Simulación de una descarga.- Para simular una descarga, se proc<u>e</u>

de de la siguiente manera:

- Se elige un punto (x) como probable punto de impácto de la descarga. (azar).
- Se encuentra un ángulo  $\Psi$  desde la función de probabil<u>i</u> dad acumulada (G( $\Psi$ )). (azar).
- Se obtiene al azar una corriente de descarga (I) de la función de probabilidad acumulada (H(I)).
- A partir de la corriente (I) se determinan las distancias de arqueo a los conductores, cables de guarda $(\gamma_{sc})$ y a tierra  $(\gamma_{sg})$ .
- Por último se determina geométricamente a que elemento de tierra hace impácto la descarga.

La (Figura 4.1) muestra la geometría final de la si mulación, se presenta en la figura dos descargas de mag nitudes diferentes y puntos probables de impácto distintos, con lo que se trata de mostrar la cantidad de posibilidades que se tienen al simular una descarga, lo que introduce gran aleatoriedad al problema. (7).

4.2.2. Número total de descargas simuladas.- El número de descar

> gas que se presenten en la simulación, depende de varios factores que se han introducido, con el objeto de dar mayor aleatoriedad al modelo,e<u>s</u> tos son:

- Se considera un ancho (2. XA) en la recta de la línea,
   (Fig. 4.2.) tal que, una descarga con ángulo ¥, pueda tener influencia sobre la línea.
- Se determina un número promedio de descargas por día tormenta para la franja de ancho (2 XA) y una longitud de 100 Km.
- Se obtiene la probabilidad de que ocurra una tormenta eléctrica en un día cualquiera.
- Se asume que el número de descargas en un día de tormen ta sigue una distribución de probabilidades de Poison.
   (8).

El número de descargas que entren en la simulación, dependerá del nivel isoceráunico de la región, del área de la franja considerada, de la actividad de descarga por tormenta y del tiempo de simulación. 4.3. FORMULACION DEL MODELO.-

4.3.1. Generalidades.- En el capítulo III se presenta matemáticamente el modelo electrogeométrico, que es sobre el que se desarrolla el presente modelo, que no es más que un algoritmo de cálculo, basado en la teoría de probabilidades.

Las variables aleatorias que intervienen en la simulación son consideradas como independientes, de manera que puedan ser analizadas separadamente (6), (7). Estas variables están dadas por funciones probabilísticas (frecuencias de ocurrencia) determinadas de datos estadísticos obtenidos a través del tiempo.

En el presente modelo se pueden distinguir dos tipos de funciones probabilisticas, para cada una de las cuales se explica el procedimiento seguido en la simulación, de tal manera de cumplir con éstas restricciones.- (17)

TIPO 1.- Consideremos una variable aleatoria (X) definida por una función de distribución acumulada de frecuencias de ocurrencia F(X) (Fig. 4.2), en que:

$$p(X \ge X_1) = p_1$$
  
 $y: p(X \ge X_2) = p_2$ 
(4.1).

- 61 -

representa que la probabilidad de que la variable aleatoria (X) tome un valor mayor o igual a  $(X_1)$  ó  $(X_2)$  es  $p_1$  ó  $p_2$  respectivamente, de las expresiones (4.2) puede decirse que:





Ahora bien, si se tiene un generador de números al azar, distribuidos uniformemente a lo largo del intervalo (0,1) es decir, que la probabilidad de que un número cualquiera de ellos esté dentro de un intervalo determinado, es precisamente el valor de ese intervalo.

De acuerdo a lo anterior se puede simular cada evento (X) generado al azar un número en el intervalo (0,1)\_y relacionandolo directamente a la función F(X) para obtener el valor de (X).

- 62 -
TIPO 2.- Cuando la variable aleatoria (X) puede tomar s<u>o</u> lamente dos opciones  $(X_1)$  y  $(X_2)$ , que representan "ocurrencia" o "no ocurrencia" de un evento determinado, (Figura 4.3) en que:

 $p(X = X_1) = P_0$  $y: p(X = X_2) = 1 - P_0$ (4.3)



Fig. 4.3. Ocurrencia de la variable aleatoria (X)

Aquí, al generar un número al azar, y si éste cae en intervalo  $(0,p_0)$  ó en el  $(p_0,l)$  el evento ocurrirá o no, respectivamente.

4.3.2. Función de probabilidad acumulada del ángulo de la descarga.- De acuerdo a que la función densidad de probabilidad g(Ψ) expresión

> (3.1) es par alrededor del ángulo 0° (Fig. 3.9), se puede separar la probabilidad de que el ángulo de la descarga sea positivo o negativo y la de – que tenga cierto valor absoluto entre 0 y  $\pi/2$  rad. si llamamos p<sub>1</sub> y p<sub>2</sub> respectivamente a las probab<u>i</u>

lidades antes citadas se tiene que la probabilidad p de que la descarga tenga un ángulo entre  $-\pi/2$  y  $\pi/2$  rad.es:

$$p = p_1 \cdot p_2$$
 (4.4)

en que:  $p_1 = 0.5$  (4.5)

y, 
$$p_2 = 2 \int_{0}^{\Psi \le \pi/2} g(\Psi) \, d\Psi$$
 (4.6)

polinómico por el método de los mínimos cuadrados de la curva propuesta por AIEE (Fig. 1.2, curva 1) se obtiene la siguiente expresión:

$$I = (10)^{f(X)}$$
(4.7)  
y: f(x) = a\_0 + a\_1 x + a\_2 x^2 + a\_3 x^3 (4.8)

para,  

$$a_0 = 0.286561$$
  
 $a_1 = 0.385872 \times 10^{-1}$   
 $a_2 = -0.600879 \times 10^{-3}$   
 $a_3 = 0.391596 \times 10^{-5}$ 

En la figura citada se muestra con cruces el ajuste obt<u>e</u>

nido.

4.3.4. Número de descargas en un día de tormenta eléctrica.- Bajo la condición de que caigan justamente (N<sub>D</sub>) descargas en un intervalo de tiempo determinado (NI), su distribución dentro de éste intervalo será tal, como si las hubiesen tirado al azar, independientemente una de otra. La probabilidad de que caigan (N) descargas en un subintervalo Δ está dado por la distribución de Poisson (8), (17), por la relación:

$$p(N(\Delta) = K) = \frac{\lambda^{k}}{k!} e^{-\lambda}, k = 0, 1, 2..., (4.9)$$

en que  $\lambda$  representa el número medio de descargas por día tormenta y el subintervalo  $\Delta$  un día de tormenta.

$$\lambda = \frac{N_{\rm D}}{N \, {\rm I}} \tag{4.10}$$

aquí N<sub>D</sub> es el número de descargas a tierra para la franja considerada de ancho (2.XA), (NI) es el nivel isocer<u>á</u> unico, ( $\lambda$ ) también puede ser determinado por:

$$\lambda = 0.2 \text{ C}$$
 . XA (4.11)

Para la expresión (4.11), ( $\lambda$ ) representa el número medio

- 65 -

de descargas para una franja de ancho (2 XA) y 100 Km. de longitud, C es la constante que ralaciona el nivel isoceráunico (NI) con la densidad de descargas a tierra (N<sub>o</sub>) expresión (1.1).

4.3.5. Punto final de la descarga.- La ecuación de la influencia de un conductor o de un cable de guarda (sobre la punta o guía de la descarga), ubicado en un punto P de

coordenadas (h, k) es:

$$(X - h)^{2} + (Y - k)^{2} = \gamma_{sc}^{2}$$
 (4.12)

Para un punto probable de impácto sobre tierra (X<sub>1</sub>), la ecuación de la trayectoria de la descarga es:

$$Y = \tan \alpha \left( X - X_{1} \right) \tag{4.13}$$

de las expresiones (4.12) y (4.13) se llega a:

$$AY^2 + 2BY + C = 0$$
 (4.14)

en que: 
$$A = 1/sen^{2} \alpha$$
  
 $B = \frac{X_{1} - h}{\tan \alpha} - k$  (4.15)  
 $C = k^{2} - \gamma_{sc}^{2} + (X_{1} - h)^{2}$ 

De la solución de (4.14) para cada uno de los elemen tos(conductores y cables de guarda) se escoge la ordenada de mayor valor, que luego se compara con el valor de la influencia de tierra ( $\gamma_{sg}$ ) y se determina el punto final de la descarga. Si el valor del discrimante de (4.14)es menor que cero, no existe intersección entre la traye<u>c</u> toria de la descarga y la zona de influencia del elemento ubicado en P(h, k).

4.4. PROGRAMA DIGITAL.- (16).

4.4.1. Método de solución.-Al ser el modelo propuesto un algoritmo de cálculo a un -

> problema planteado, el método de solución ha sido discutido ampliamente en los numerales anteriores.

4.4.2. Diagrama de flujo.- En las Fig. (4,4) y (4.5) se presentan los diagramas de flujo, general del programa y particu}armente de la parte relacionada con la simulación Monte-Carlo.

4.4.3. Implementación del Programa.- El programa está escrito en FORTRAN

IV para el sistema IBM-370-125-DOS, utiliza una



Fig. 4.4. Diagrama de flujo general del programa para determinar el número de salidas de una línea de transmisión debidas a fallas del apantallamiento.-Nátodo de simulación de Monte-Carlo.-



a) Listado de variables principales.-

## FORTRAN <u>DESCRIPCION</u>

| CAM   | Coeficiente de la función de densidad de pr <u>o</u> |
|-------|------------------------------------------------------|
|       | babilidad angular de las descargas. (Km).            |
| CASG  | Factor que relaciona la distancia de arqueo          |
|       | a tierra con la correspondiente a los condu <u>c</u> |
|       | tores y cables de guarda, (K <sub>sg</sub> ).        |
| CFO   | Voltaje crítico de contorneo del aislamiento         |
| СК    | Probabilidad de que la descarga produzca sa-         |
|       | lida de la línea. (P <sub>2</sub> ).                 |
| СКО   | Constante que relaciona el nivel isoceráuni-         |
|       | co y la densidad de descargas a tierra. (c)          |
| CMIN  | Corriente mínima de descarga, que puede pro-         |
|       | ducir salida de la línea. (I <sub>mín</sub> ).       |
| COR   | Corriente de una descarga cualquiera. (I).           |
| EME   | Exponente del coseno del ángulo de la desca <u>r</u> |
|       | ga en la función de probabilidad angular (m)         |
| ENE   | Número de salidas del tramo de la línea por          |
|       | Km y por año (n).                                    |
| ENET  | Número total de salidas de la línea por año.         |
| ENETR | Número de salidas de un tramo de la línea -          |
|       | por año.                                             |

FORTRAN DESCRIPCION HXC(I) Abscisa media de la posición del conductor -(i). HXG(I) Abscisa media de la posición del cable de guarda (i). HYC(I) Ordenada media de la posición del conductor (i). HYG(I) Ordenada media de la posición del cable de guarda (i). LONG Longitud total de la línea. (L). Número de años de simulación. ΝA NC Número de conductores de la línea. NG Número de cables de guarda. ΝI Nivel isoceráunico. NIC(I) Número de descargas al conductor (i). NIG Número de descargas al cable de guarda. NIT Número de descargas a tierra. NPA Niveles de probabilidad angular. NPRT Niveles de probabilidad de descargas por tor menta. NRAY Número de descargas simuladas por año. NRT Número de descargas por tormenta. NSAL Número de salidas de la línea por año. Número de tramos considerados en la línea. NTRAM PFAP Probabilidad de falla del apantallamiento pa

ra corrientes de descarga mayores que I<sub>mín</sub>.

- 71 -

- 72 <del>-</del>

. .

| FORTRAN      | DESCRIPCION                                          |
|--------------|------------------------------------------------------|
| PRT          | Promedio de descargas por tormenta.                  |
| PSI          | Angulo de la descarga con respecto a la ver-         |
|              | tical (Ψ).                                           |
| ΡΤΑ          | Probabilidad de tormenta al año.                     |
| PTR          | Longitud del tramo en porcentaje de la long <u>i</u> |
|              | tud total de la línea.                               |
| RS           | Distancia crítica de arqueo (Y <sub>sc</sub> )       |
| Х            | Sebo del generador de números pseudo-aleato-         |
|              | rios.                                                |
| ХА           | Ancho a cada lado de la línea sobre el que -         |
|              | se considera la franja de terreno de incide <u>n</u> |
|              | cia de las descargas.                                |
| Z            | Impedancia transitoria del conductor de fase.        |
|              |                                                      |
| b) Subprogr  | amas                                                 |
|              |                                                      |
| FUNCTION G(F | PSI) Función densidad de probabilidad del            |
|              | ángulo de la descarga, para ángulos -                |
| positivos er | atre O y π/2 rad., expresión (4.6).                  |
|              |                                                      |
| FUNCTION COF | RTE Subprograma para determinar el punto             |
|              | de corte entre la trayectoria de la de <u>s</u>      |
| carga y los  | contornos de influencia de los elementos de          |
| la línea de  | transmisión.                                         |

.

•

••

|                                     |                                         | • •                                                                                                                |
|-------------------------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| VARIABLE                            | COLUMNAS                                | DESCRIPCION                                                                                                        |
| NA                                  | 35 - 36                                 | Número de años de simulación.                                                                                      |
| ICOD                                | 37 - 38                                 | Igual a cero (o) si no existe                                                                                      |
|                                     |                                         | otro caso de estudio. Igual a                                                                                      |
|                                     |                                         | uno (l) si después del caso en                                                                                     |
| •                                   |                                         | estudio se leerá un nuevo caso.                                                                                    |
| b) Segunda<br>READ 3,<br>3 FORMAT ( | tarjeta de le<br>(TIT(I),I=l,J<br>20A4) | ctura Tītulos<br>I)                                                                                                |
| VARIABLE                            | COLUMNAS                                | DESCRIPCION                                                                                                        |
| TIT .                               | 1 - 80                                  | Título del trabajo, tantas taj <u>e</u><br>tas como se haya especificado -<br>en NLIN.                             |
| c) Tercera                          | tarjeta de le                           | ctura Función densidad de pr <u>o</u><br>babilidad del ángulo de<br>la descarga.                                   |
| READ 2,                             | EME, CAM                                |                                                                                                                    |
| VARIABLE                            | COLUMNAS                                | DESCRIPCION                                                                                                        |
| EME                                 | 1 - 10                                  | Exponente en la función de dis-<br>tribución angular.                                                              |
| САМ                                 | 11 - 20                                 | Coeficiente en la función de<br>distribución angular, correspo <u>n</u><br>diente al valor del exponente -<br>EME. |
| d) Cuarta t                         | arjeta de lec                           | tura Datos de cada tramo                                                                                           |

READ 7, NI, NC, NG, CFO, Z, PTR, CKO, XA,

7 FORMAT (14,213,5F10.0)

.. ....

•

- 74 -

- 75 -

| VARIABLES | COLUMNAS | DESCRIPCION                            |
|-----------|----------|----------------------------------------|
| NI        | 1 - 4    | Nivel isoceráunico.                    |
| NC        | 5 - 7    | Número de conductores de fase,         |
|           |          | menor o igual a 6.                     |
| NG        | 8 - 10   | Número de cables de guarda, m <u>e</u> |
|           |          | nor a 3.                               |
| CFO       | 11 - 20  | Voltaje crítico de contorneo -         |
|           |          | del aislamiento (corregido pa-         |
| . •       |          | ra condiciones ambientales) en         |
|           |          | (KV).                                  |
| Z         | 21 - 30  | Impedancia transitoria del co <u>n</u> |
|           |          | ductor de fase $(\Omega)$              |
| PTR       | 31 - 40  | Porcentaje de la ongitud de la         |
|           |          | línea, correspondiente al tra-         |
|           |          | mc.                                    |
| СКО       | 41 - 50  | Constante que relaciona el ni-         |
|           | ·        | vel isoceráunico y la densidad         |
|           | :        | de descargas a tierra. <sup>.</sup>    |
| ХА        | 51 - 60  | Ancho a cada lado de la línea          |
|           |          | (metros) Si no se especifi-            |
|           |          | ca se toma un valor de 800 me-         |
|           |          | tros (Ver numeral 4.5).                |
|           |          |                                        |

e) Quinta tarjeta de lectura.- Coordenadas de los condu<u>c</u> tores.- (Cuatro pares de

valores por tarjeta).

,- 76 -

READ 8, (HXC(I), NYC(I), I = 1, NC)

8 FORMAT (8F10.5)

| VARIABLE | COLUMNAS | DESCRIPCION                            |
|----------|----------|----------------------------------------|
| HXC(I)   | 1 - 10   | Abscisa del conductor de fase          |
|          |          | (i) (metros).                          |
| 11       | 21 - 30  | 11                                     |
| 11       | 41 - 50  | n .                                    |
| 11       | 61 - 70  | п                                      |
| HYC(I)   | 11 - 20  | Ordenada del conductor de fase         |
|          | 31 - 40  | (i) (metros) <u>(</u> Valores medios). |
|          | 51 - 60  | 11<br>                                 |
|          | 71 - 80  | - n                                    |

f) Sexta tarjeta de lectura,- Coordenadas de los cables de guada, similar a la 5º tarjeta de lectura.

NOTA.- Las tarjetas cuarta, quinta y sexta deberán repetirse por cada tramo de la línea que se considere.

4.4.5. Salida de Resultados.- En el Anexo 2 se presentan salidas de resultados para el esquema de línea propuesto en el Anexo 3.

1

## 4.5. EVALUACION DE RESULTADOS.-

Para evaluar los resultados obtenidos por éste método de cálculo, es necesario tener alguna referencia, en el capítulo 5 se hace la comparación con los resultados del modelo analítico.

Debido a la dificultad de obtener una amplia gama de resultados con éste modelo, por el tiempo realivamente – grande de computación necesario, (350 a 400 seg. por tramo para una simulación de 10 años).

El parámetro XA, (que define el área, en la que cual quier: descarga que tenga un posible punto terminal en ella pueda llegar a la línea de transmisión) se ha tomado como 800 metros, de acuerdo a la referencia (7), en que se hace un análisis por el número de descargas a la línea (NDL) y para valores de XA mayores que 800 metros es aproximadamente constante.- En el presente caso, de acue<u>r</u> do a resultados obtenidos no se presenta ésta tendencia , valores de NDL relativos a los XA considerados se dan en la siguiente tabla:

| XA(metros) | 200 | 400 | ·600 | 800  | 1000 |
|------------|-----|-----|------|------|------|
| NDL ·      | 32  | 33  | 33   | 33.1 | 29   |

NDL representa número de descargas a la línea con c<u>o</u> rrientes mayores que  $I_{min}$ , los valores dados en la tabla son resultado de una y en algún caso de dos corridas para cinco años de simulación, de darse los valores presentados para más corridas, significaría que habría como baja<u>r</u> se en el valor de XA con el consiguiente ahorro del tiempo de computación para un mismo tiempo de simulación.

Los resultados del número de salidas para el modelo de línea propuesto (anexo 3) varían entre 0.7 y l.4 salidas por 100 Km. y por año para las varias corridas que se han hecho.

Una corrida para 10 años de simulación podría ser s<u>a</u> tisfactoria, en la experiencia obtenida no se ha encontr<u>a</u> do diferencias muy marcadas entre uno y otro resultados ÷ para un mismo caso, pero, es necesario aclarar que como – se usa una secuencia de números pseudo-aleatorios en base a un número inicial "sebo", éste debe ser diferente en una segunda corrida, de lo contrario se obtendrían los mi<u>s</u> mos resultados.

## C A P I T U L O V

COMPARACION DE RESULTADOS.- CONCLUSIONES Y RECOMENDACIO-NES.-

Los resultados de uno y otro programa, para un mismo caso de línea de transmisión, deberían, ser por principio si no iguales, dentro de un margen aceptable de aproximación, por cuanto los dos modelos están basados en los mismos principios teóricos y en uno y otro caso se está des<u>a</u> rrollando una integración de las posibles descargas a los conductores de fase, en el primero en forma analítica y en el segundo aleatoriamente.

Los resultados obtenidos (anexo 2) con la versión 2 del modelo analítico y con el modelo aleatorio son relat<u>i</u> vamente equivalentes, es decir que están dentro de un mi<u>s</u> mo orden, para los dos casos mostrados en la función de distribución angular cuando m = 1 y m = 2. Si se analizan los resultados para m = 2 , 1.1 y 0.7 salidas por 100 Km y por año para uno y otro programa respectivamente y si se consideran otras salidas del segundo programa en 5 años de simulación se tuvo resultados 1,1.2,1.4 salidas - por 100 Km y por año, y si de todos éstos resultados se obtiene un promedio, éste es 1.08 que es prácticamente igual al obtenido en el modelo analítico, el método de Burgsdorf y Kostenko da un valor de 0.33 salidas por 100 Km y por año.

Los dos modelos tienen constantes ajustables que deberían ser calibradas de acuerdo a datos que se obtengan en la experiencia de operación de líneas, en nuestro país no se tiene ninguna experiencia en éste campo; como se ha hecho hasta el presente, la utilización de la experiencia de otros paíces es grandemente beneficiosa, sin embargo existen registros que debemos tomarlos nosotros en nuestro territorio, como es el caso de la densidad de descargas a tierra, que es un parámetro propio de cada región , un método moderno de medición de este parámetro es a través de contadores electrónicos que por medio de una antena captan las variaciones rápidas del campo eléctrico.

La filosofía de la presente tesis, es más bien presentar una herramienta para posteriores análisis, se ha tratado de mostrar la cantidad de posibilidades que se tiene en un modelo de simulación de Monte-Carlo, al modelo planteado se puede facilmente ir introduciendo otros parámetros tales como desniveles en el perfil transversal de la línea, cómo influenciarían los árboles ubicados a los costados de la misma, variaciones en el perfil longitudinal, se puede analizar a través de Monte-Carlo la pa<u>r</u> te correspondiente a salidas de la línea por contorneos inversos.

·· · · • •

En sí, los programas están desarrollados para analizar el diseño de una línea y si ésta no cumple con ciertas restricciones, habrá que mejorar el diseño y volver a analizarla en otra corrida, ó a su vez, probar varios diseños y escoger el óptimo. En trabajos posteriores, deb<u>e</u> ría tratarse de resolver el problema inverso, ésto es,dar ciertas restricciones, como la probabilidad de falla ace<u>p</u> table y un diseño base, ajustar el diseño para que cumpla con lo fijado.

En primera instancia, de acuerdo a la experiencia mo<u>s</u> trada en las referencias (1) y (2), el modelo analítico calibrado para m = 2 ha dado buenos resultados, por lo ta<u>n</u> to, para línea de características simétricas y que no pr<u>e</u> senten parámetros que no puedan incluirse en él, se sugi<u>e</u> re usar éste método por su tiempo corto de computación,lo que representa un bajo costo.- En caso contrario se utilizará el modelo aleatorio. A N E X O 1

EVALUACION DEL ANCHO EFECTIVO (X) PARA TRES FUNCIONES DE DISTRIBUCIÓN ANGULAR

a) Para m = 1 y km = 1/2

entonces: 
$$g(\Psi) = \frac{1}{2} \cos \Psi$$
  
 $y: X = \frac{\gamma_{sc}}{2} \int_{\theta_2}^{\theta_1} \int_{\Psi_2(\theta)}^{\Psi_1(\theta)} \operatorname{Sen} (\theta - \Psi) d\Psi d\theta$ 

desarrollando de acuerdo a los límites  $\Psi_2$  y  $\Psi_1$  se llega a:

$$X = \frac{\gamma_{sc}}{2} \int_{\theta_2}^{\theta_1} \{ sen \ \theta(sen\Psi_1(\theta)+1) + cos\Psi_1(\theta)cos \ \theta \} d\theta$$

para:  $\theta_2 \leqslant \theta \leqslant \theta_s$  se tiene que:

 $\Psi_1(\Theta) = \Theta$ 

$$X_{1} = \frac{\gamma_{sc}}{2} (\theta_{s} - \theta_{2} - \cos \theta_{s} + \cos \theta_{2})$$

para:  $\theta_{s} \leq \theta \leq \theta_{1}$ 

$$X_{2} = \frac{\gamma_{sc}}{2} \int_{\theta_{s}}^{\theta_{1}} \{sen\theta(sen\Psi_{1}(\theta)+1)+cos\Psi_{1}(\theta)cos\theta\} d\theta$$

- 82 -

x = x<sub>1</sub> + x<sub>2</sub>  
b) Para m = 2 y km = 2/π  
entonces: g(Ψ) = 
$$\frac{2}{\pi}$$
 cos<sup>2</sup> Ψ  
de igual manera que en caso anterior se llega a:  
para:  $\theta_2 < \theta < \theta_5$   
x<sub>1</sub> =  $\frac{\gamma_{sc}}{\pi}$  {2sen $\theta_s$ -2sen $\theta_2$ -( $\theta_s$ + $\pi$ /2)cos $\theta_s$ +( $\theta_2$ + $\pi$ /2)cos $\theta_2$ }  
para:  $\theta_s < \theta < \theta_1$   
x<sub>2</sub> =  $\frac{\gamma_{sc}}{\pi} \int_{\{sen\theta(\Psi_1(\theta) + \frac{1}{2}sen2\Psi_1(\theta) + \pi/2) + \frac{1}{2}cos\theta(cos2\Psi_1(\theta) + 1)\}d\theta}$   
) Para m =  $\infty$  (Descargas verticales).

 $g(\Psi) = \delta(\Psi)$  (Función de Dirac).

y: 
$$X = \gamma_{sc} \int_{\theta_2}^{\theta_1} \sin \theta \, d\theta$$

у:

c)

integrando se tiene:

$$X = \gamma_{sc} (\cos \theta_2 - \cos \theta_1)$$

A N E X O 2

SALIDAS DE RESULTADOS Y LISTADO DE LOS PROGRAMAS.\_\_

.



\*\*\* 86 FECHA: 21/07/77 Résultados versióh 2. SF GUNDOS DE GIONAL 50,55 DNN AV TPANSMISION LINFA =0.850 LIFRFA GUARDA =1.000 WHITFICEAD 見い国家 ŝų 1.860DESCARGAS/KM 0 = 1200.KV . PFL COMDUCTOR DT FASE = 480.00HMIDS 100.002 DE LA LINEA 4 Ш. FALL لنا د ۲. ٩ ANALITICO PEL FUMERO PE SALIDAS DE UNA LIMEA A Fallas pe apantallamiento. LA UTILIZACION DEL MODELO ELECTROGFOMETRICO s S S Ę, 2 NOUFO EL PROGRAMA LINFA DF DRUTRA DFF。 (12) 卡本弗米尔中在本法的来方公式学家非常在学校的法法来来的法法法的法法的法法和法律并非非非非非非 С Ц C. PONETROS 00 CABLE SAL INA 2100 ADVIS 000 1.10225 1 AT SLAWTENTO = 1,1022F DE INGENIEPIA ELECTPICA - PUTENCIA GPAND CARLOS E. PIDEFIO REVES II N > ¢ ∢ FSCAPGA PRCOUZCA a \*\* FPN MSJ5 TIEMPO DF UCP UTILIZADO POR CTORE ŝ ĸ ANDZ DISTRIBUCION ANGULAR UTILIZADA SAL LOAS/KW/ANND = 1.1022E-02 A DISTANCIA CPI. NUWERC TOTAL DE SALIDAS DE LA LINEA Fepidas a Fallas del apantallamiento 4 NUWFRD TE SALIDAS DEL TRAMC 7 ANNO 00 00 NUN RADOS EN L 11 X X 004VD9 JHC DUNCULNU AV IENTO DE DESCARGAS FN. 1 00 - 00 T ANSITORIA DFL CONDUCTOR APANTALL CONSTD li NTF FACTOP OUF RFLACIONA LINEA 0 00 00 TRAMO = ЧО ОС CON LA CORPESSIONDIE 250 PODRAUI IDAD DF UW Val-ہ. اب VPLTAJE CRITIC C WEDIA ANGULO MEDIO VIVIN UNGITUP PEL Lنا C I WFFDANCIA 50 TIPO DE D MEDIANTE FACULTAD CONCI IUC DEPTONS ALTUPA DABAUN lį いいすい 2 2 2 2 2 2 2 8 2 2 2 2 2 2 2 5 4 5 . . ŝ **g**. 5 ÷ \$ 2 2 36 5 38 \$ 3 \$ Ð ۴, 2 .7 1 9

| Ċ   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | · · · · · · · · · · · · · · · · · · · |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       |
|     | CALCULD ANALITICD DEL NUMERO DE SALÍDAS DE UNA LINEA DE TRANSMISION<br>Deridas à Fallas de Apantallamiento.<br>Mediante la utilización del modelo flectrogeometrico de Mitehead                                                                                                                                                                                                                                                                                                                         |                                       |
|     | CASC = 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
|     | , FACULTAP DF INGENIERIA FLFCTRICA - POTENCIA -<br>7 FSIS DE GRADO - CARLOS F. PICFPIO REYES                                                                                                                                                                                                                                                                                                                                                                                                            |                                       |
| • • | LINEA DE PRUGRA REF. (12)<br>2 24***********************************                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |
|     | TINGTTUD DE LA LINEA = 100.00 KM<br>PPOBAGILIDAD DE OUE LA DESCARGA PRODUZCA SALIDA DE LA LINEA =0.850<br>FACTOP OUF RELACIONA LA DISTANCIA CRITICA DE AROUFO A TIERRA<br>CON LA CORRESPONDIENTE A LOS CONDUCTORES Y CABLES DE GUARDA =1.000<br>TIPO DE DISTRIBUCION ANGULAR UTILIZADA = 1.                                                                                                                                                                                                             |                                       |
| : . |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (a) TI                                |
|     | <pre>ALTUPA WEDIA DEL CONDUCTOR DE FASE = 19.200METROS<br/>ALTUPA WEDIA DEL CONDUCTOR DE FASE = 19.200METROS<br/>ANGULF MEDIO DE APANTALLAMIENTO = 37.2106RADOS<br/>ANGULF MEDIA DE DESCARGAS FN LA ZONA = 3.660DESCARGAS/KM 2 /ANNO<br/>FNSIDAD WEDIA DE DESCARGAS FN LA ZONA = 3.660DESCARGAS/KM 2 /ANNO<br/>VCLTAJE CRITICO DE CONTORNEO DEL AISLAMIENTO = 1200.KV<br/>INPEDANCIA TRANSITORIA PEL CONDUCTOR DE FASE = 480.000HMIDS<br/>LONGITUD DEL TRAMO = 100.002 DE LA LONGITUD DE LA LINEA</pre> |                                       |
| ••• | NUMERO DE SALIDAS/KM/ANNO = 1.3185E-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                       |
| •   | S"NUMERO DE SALIDAS DEL TRAMO ∕ ANNO = 1.31856 00                                                                                                                                                                                                                                                                                                                                                                                                                                                       | - 87                                  |
|     | 、 · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | *                                     |
|     | NUWFRO TOTAL DE SALIDAS DF LA LINFA<br><sup>5</sup> deridas a falias del apantallamiento = 1.3185E 00                                                                                                                                                                                                                                                                                                                                                                                                   |                                       |
|     | ° ┿╪┿╪┿╪┿┿┿┿┿┿┿┿┿┿┿┿┿┿┿┿┿┿┿┿┿┿┿┿┿┿┿┿┿┿┿                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | *<br>EGUNDOS FECHA: 20/07/77 ##*      |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       |

88 BBBBBBBBB CALCULD. ALEATOPTO. DEL-NUMEPO. DE SALIDAS DE UNA LINEA) DE TRANSMISION DEPIDAS A FALLAS DE APANTALLAMIENTO. LINEA =0.850 TIEPFA GUARDA =1:000 2.00 DE LA LINEA = 100.00 KW NAD DE QUE LA DESCAPGA PRONUZCA SALIDA DE LA PAD DE QUE LA DESCAPGA PRONUZCA SALIDA DE LA RESEDONDIENTE A LOS CONDUCTORES Y CAMLES DE G TRAMOS CONSTRERADOS EN LA LINEA = 1 ANNOS DE SIMULACION = 10 ANGULAR =0.63662(COS(PS1))\*\* LINEA DE PRUMBA RFF。(12) XA=900、MFTRUS 2.444555555444554544545454545554 MEDIANTE FL METODO DE SIMULACIÓN DE MONTE-CARLO Aflicado-Almandelectrogeometrico de Whitehead. 1 14 如間 EACULTAR DE-INGENTERIA FLECTRICA - POTENCIA TESIS DE GRADO CARLOS E. RIDERIO REYES FUNCION DE DISTRIEUCION LFNGTUD DE LA LINEA = PROFAULINAD DF QUF LA FACTOR CUE RELACIONA LA CON LA CORRESPONDIENTE WUMEPO DE TRAMOS CONSID NUMERO DE CASO -; ; 53 ŝ 2 52 :5 3 5 3 5 20 23 2.2 3 2 2 2 R Ē \$ 3 2 3 52 ŝ 50 50 2 2 3 5 5 . . . . . . . . . Ξ. ۰. .



| С     |                                                                                                                                                                                                                                                                                                                                     |                                                                                                                |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| C 1   |                                                                                                                                                                                                                                                                                                                                     |                                                                                                                |
| C C   | 21<br>13<br>25<br>25                                                                                                                                                                                                                                                                                                                |                                                                                                                |
| · . ( |                                                                                                                                                                                                                                                                                                                                     |                                                                                                                |
| ć :   |                                                                                                                                                                                                                                                                                                                                     |                                                                                                                |
| i ( ) | " CALCULO ALEATORID DEL NUVERO DE SALIDAS DE UNA LINEA DE TRANSMISICHE                                                                                                                                                                                                                                                              |                                                                                                                |
|       | 2 VEDIANTE FL. METRDO DE SIMULACIÓN DE MONTE-CAPLO <sup>N</sup><br>2 MEDIANTE FL. METRDO DE SIMULACIÓN DE MONTE-CAPLO <sup>N</sup><br>24 APLICADO AL MODELO FLECTROGEOMETRICO DE WHITFHEAD.                                                                                                                                         |                                                                                                                |
| ;     |                                                                                                                                                                                                                                                                                                                                     | -                                                                                                              |
|       | 2 FACULTAD DE INGENTERIA ELECTRICA - POTENCIA -                                                                                                                                                                                                                                                                                     |                                                                                                                |
|       | ai TESIS DF GRADD - CARLOS E. PIGFAIO REYFS.<br><sup>31</sup> LINFA DE PRUFRA - REF. (12) - XA=ROO. METROS<br><sup>31</sup> *±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±                                                                                                                                                                   |                                                                                                                |
|       | LUNGITUD DE LA LINFA = 100.00 KM<br>BERFAPILIDAD DF OUF LA DESCAPGA PROUZCA SALINA DF LA LINFA =0.050<br>FACTOR OUE RELACIONA LA DISTANCIA CRITICA DF ARQUEO A TIERRA<br>CON LA COPPESPONDIENTE A LOS CONDUCTORES Y CARLES DE GUARDA =1.000<br>NUMERO DE TRAMOS CONSTOFRADOS EN LA LINFA = 1<br>NUMERO DE TRAMOS DE SIMULACION = 10 |                                                                                                                |
| ) )   | EUNCION DE DISTRIAUCION ANGULAR =0.50000(FOS(PSI))** 1.00                                                                                                                                                                                                                                                                           | - 90                                                                                                           |
|       |                                                                                                                                                                                                                                                                                                                                     | -                                                                                                              |
| )     |                                                                                                                                                                                                                                                                                                                                     |                                                                                                                |
| )     | <sup>35</sup><br>41<br>50                                                                                                                                                                                                                                                                                                           |                                                                                                                |
| )     | 2<br>23                                                                                                                                                                                                                                                                                                                             |                                                                                                                |
| ;     |                                                                                                                                                                                                                                                                                                                                     | The second s |
|       |                                                                                                                                                                                                                                                                                                                                     |                                                                                                                |



Ć

| Versión 1                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | - 92<br>- 92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| T A D C + +++++++++++++++++++++++++++++++                                                                                                                                                                                                                                                                                                                                                                                                      | O DE SALIDAS DE UNA LINEA DE<br>As de Afantallamiento.<br>Modelo flectrogeometrico de                                                                     | LOS Y DATOS GENERALES<br>ITICO DEL NUWERD DE SALIDAS DE UNA LTNE<br>AS A FALLAS DE APANTALLAMTENTO//2X, M<br>MODELO ELECTROGEOMETRICO DE WHITEHEAD'/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | WM<br>MM<br>INEA = .F7.2. KW./2X. PRCBABILIDAD DE<br>LTDA DE LA LINEA = .F5.3/2X. FACTOR GUE<br>TICA DE AROUED A TIERRA./2X. CDN LA COR<br>RES Y CAPLES DE GUARDA = .FE.3/2X. NUWE<br>N LA LINEA = .J3/2X. TIPO DE DISTRIBUCI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <pre>cf0.zL.DRS.PTR.NINT<br/>CF0.zL.DRS.PTR.NINT<br/>.CFD.zL.PTR<br/>.CFD.zL.PTR<br/>.CFD.zL.PTR<br/>.CFD.zL.PTR<br/>.CFD.zL.PTR<br/>.CFD.zL.PTR<br/>.CFD.zL.PTR<br/>.CFD.zL.PTR<br/>.CFD.zL.PTR<br/>.CFD.zL.PTR<br/>.CFD.zL.PTR<br/>.CFD.zL.PTR<br/>.CFD.zL.PTR<br/>.CFD.zL.PTR<br/>.CFD.zL.PTR<br/>.CFD.ZL.PTR<br/>.CFD.ZL.PTR<br/>.CFD.ZL.PTR<br/>.CFD.ZL.PTR<br/>.CFD.ZL.PTR<br/>.CFD.ZL.PTR<br/>.CFD.ZL.PTR<br/>.CFD.ZL.PTR<br/>.CFD.ZL.PTR<br/>.CFD.ZL.PTR<br/>.CFD.ZL.PTR<br/>.CFD.ZL.PTR<br/>.CFD.ZL.PTR<br/>.CFD.ZL.PTR<br/>.CFD.ZL.PTR<br/>.CFD.ZL.PTR<br/>.CFD.ZL.PTR<br/>.CFD.ZL.PTR<br/>.CFD.ZL.PTR<br/>.CFD.ZL.PTR<br/>.CFD.ZL.PTR<br/>.CFD.ZL.PTR<br/>.CFD.ZL.PTR<br/>.CFD.ZL.PTR<br/>.CFD.ZL.PTR<br/>.CFD.ZL.PTR<br/>.CFD.ZL.PTR<br/>.CFD.ZL.PTR<br/>.CFD.ZL.PTR<br/>.CFD.ZL.PTR<br/>.CFD.ZL.PTR<br/>.CFD.ZL.PTR<br/>.CFD.ZL.PTR<br/>.CFD.ZL.PTR<br/>.CFD.ZL.PTR<br/>.CFD.ZL.PTR<br/>.CFD.ZL.PTR<br/>.CFD.ZL.PTR<br/>.CFD.ZL.PTR<br/>.CFD.ZL.PTR<br/>.CFD.ZL.PTR<br/>.CFD.ZL.PTR<br/>.CFD.ZL.PTR<br/>.CFD.ZL.PTR<br/>.CFD.ZL.PTR<br/>.CFD.ZL.PTR<br/>.CFD.ZL.PTR<br/>.CFD.ZL.PTR<br/>.CFD.ZL.PTR<br/>.CFD.ZL.PTR<br/>.CFD.ZL.PTR<br/>.CFD.ZL.TZ.C.ZL.PTR<br/>.CFD.ZL.TZ.TZNOLLD.CFD.ZZ.<br/>.TTD.ZL.TZ.TZTMPFDAD.FTD.CTA<br/>.CFD.ZL.TZ.TZ.TI.<br/>.CFD.ZL.TZ.TZTMPFDAD.FTD.CTA<br/>.CFD.ZL.TZ.TZ.TI.<br/>.CFD.ZL.TZ.TZ.TZTMPFDAT.CTA<br/>.CFD.ZL.TZ.TZ.TZ.TZTMPFDAT.CTA<br/>.CFD.ZL.TZ.TZ.TZ.TZ.TZ.<br/>.CFD.ZZ.TZ.TZ.TZ.TZ.TZ.TZ.TZ.TZ.TZ.TZ.TZ.TZ.</pre> |
| 2 I J S I J                                                                                                                                                                                                                                                                                                                                                                                                                                    | CALCULO ANALITICO DEL NUMERI<br>C TRANSMISION, DEBIDAS A FALL<br>C MEDIANTE LA UTILIZACION DEL<br>C WHITEHEAD<br>C EXTERNAL F1,F2<br>COMMON PS.TFTS.CF.P1 | REAL LONG     TIT(100)       DIMENSION TIT(100)     C       LECTURA Y ESCPITURA DE TITU       C     ICASO=1       600     PRINT 1, ICASO       600     PRINT 1, ICASO       8     ADE TRANSMISION' 2X, 'DEHIO       8     XATCLA UTIL IZACION DEL       8     XATCLASO       8     XATCLASO       9     1       600     PRINT 1, ICASO       8     XATCLASO       8     XATCLASO </th <th>JI=NLIN*20         JI=NLIN*20         BRINT 4: (TIT(I), I=1, JI)         PRINT 4: (TIT(I), I=1, JI)         PRINT 4: (TIT(I), I=L, JI)         FORWAT(S(2x, 20A4/))         PRINT 5: (LONG/CK, CASG, NTRAM         FORWAT(S(2x, 20A4/))         PRINT 5: LONG/CK, CASG, NTRAM         FORWAT(S(2x, 20A4/))         FORWAT(S(2x, 20A4/))         PRINT 5: LONG/CK, CASG, NTRAM         FORMAT(S)         FORMAT(S)      <tr td=""> <t< th=""><th>C LEER DATOS DE CADA TRAMO<br/>C C LEER DATOS DE CADA TRAMO<br/>12 FORWAT (?X. TTRAM.NTRAM.NTRAM<br/>12 FERA 6. ORDF.GFDC.TFTS.CNC.<br/>6 FFCRMAT(?Y. 10.0)NINT=10<br/>700 PRINT 8. ORDF.GFDG.TFTS.CNC.<br/>7 FF10.00)NINT=10<br/>7 FF10.00 NINT=10<br/>7 FF10.00 FF10.00 FF15.CNC.<br/>7 * ALTURA MEDIA DEL<br/>7 * ALTURA MEDIA DEL ANTENTO = * F7.3<br/>* STORIA SE N LA ZCNA = * F7.3<br/>* STORIA DEL CONDUCTOR DE FA<br/>* STORIA DEL CONDUCTOR DE FA</th></t<></tr></th> | JI=NLIN*20         JI=NLIN*20         BRINT 4: (TIT(I), I=1, JI)         PRINT 4: (TIT(I), I=1, JI)         PRINT 4: (TIT(I), I=L, JI)         FORWAT(S(2x, 20A4/))         PRINT 5: (LONG/CK, CASG, NTRAM         FORWAT(S(2x, 20A4/))         PRINT 5: LONG/CK, CASG, NTRAM         FORWAT(S(2x, 20A4/))         FORWAT(S(2x, 20A4/))         PRINT 5: LONG/CK, CASG, NTRAM         FORMAT(S)         FORMAT(S) <tr td=""> <t< th=""><th>C LEER DATOS DE CADA TRAMO<br/>C C LEER DATOS DE CADA TRAMO<br/>12 FORWAT (?X. TTRAM.NTRAM.NTRAM<br/>12 FERA 6. ORDF.GFDC.TFTS.CNC.<br/>6 FFCRMAT(?Y. 10.0)NINT=10<br/>700 PRINT 8. ORDF.GFDG.TFTS.CNC.<br/>7 FF10.00)NINT=10<br/>7 FF10.00 NINT=10<br/>7 FF10.00 FF10.00 FF15.CNC.<br/>7 * ALTURA MEDIA DEL<br/>7 * ALTURA MEDIA DEL ANTENTO = * F7.3<br/>* STORIA SE N LA ZCNA = * F7.3<br/>* STORIA DEL CONDUCTOR DE FA<br/>* STORIA DEL CONDUCTOR DE FA</th></t<></tr> | C LEER DATOS DE CADA TRAMO<br>C C LEER DATOS DE CADA TRAMO<br>12 FORWAT (?X. TTRAM.NTRAM.NTRAM<br>12 FERA 6. ORDF.GFDC.TFTS.CNC.<br>6 FFCRMAT(?Y. 10.0)NINT=10<br>700 PRINT 8. ORDF.GFDG.TFTS.CNC.<br>7 FF10.00)NINT=10<br>7 FF10.00 NINT=10<br>7 FF10.00 FF10.00 FF15.CNC.<br>7 * ALTURA MEDIA DEL<br>7 * ALTURA MEDIA DEL ANTENTO = * F7.3<br>* STORIA SE N LA ZCNA = * F7.3<br>* STORIA DEL CONDUCTOR DE FA<br>* STORIA DEL CONDUCTOR DE FA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| C LEER DATOS DE CADA TRAMO<br>C C LEER DATOS DE CADA TRAMO<br>12 FORWAT (?X. TTRAM.NTRAM.NTRAM<br>12 FERA 6. ORDF.GFDC.TFTS.CNC.<br>6 FFCRMAT(?Y. 10.0)NINT=10<br>700 PRINT 8. ORDF.GFDG.TFTS.CNC.<br>7 FF10.00)NINT=10<br>7 FF10.00 NINT=10<br>7 FF10.00 FF10.00 FF15.CNC.<br>7 * ALTURA MEDIA DEL<br>7 * ALTURA MEDIA DEL ANTENTO = * F7.3<br>* STORIA SE N LA ZCNA = * F7.3<br>* STORIA DEL CONDUCTOR DE FA<br>* STORIA DEL CONDUCTOR DE FA |                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

•

.

د

•. .

.

•

••• • • •

.

. \_

·~.

| FORVAT('!'//)<br>TTRAVETTPAM+1<br>Otro Trand ?<br>If(ITRAM-LE.NTRAM)GD TO 700<br>IMPPIMIR PESULTACOS FINALES<br>PRINT 11.ENET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                              |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DIFG TRAMO ?<br>[F(ITRAM.LE.NTRAM)GD TO 700<br>[WPPIMIR PESULTADGS FINALES<br>PRINT 11.ENET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                              |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| F(ITRAM.LE.NTRAM)GD TO 700<br>Impdimir Pesultacos finales<br>Print 11.enet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                              |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| PRINT 11, ENET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                              |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| FCGWAT(2X,00(:*:)//2X,"NUMERO TOTAL DE SAL)<br>*RIDAS A FALLAS DFL APANTALLAMIENTO = "JFE1<br>TCASOFAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10AS DE LA LINEA'/2X,'DE<br>0.4//2X,80!'*')) |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                              |                                       | <br> <br> -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 0 TF(ICDD)500.500.600<br>Continue<br>Stop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                              |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                              | · · · · · · · · · · · · · · · · · · · |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| FDR4ULACTON DE F(TETA) PARA N= 2 Y KH= 2/P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | · ///                                        |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| FUNCTION F2(TFTA)<br>CC446N R5,TET5,CF,PT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                              |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| XT#CF+SIN(TFT5)+PS+CDS(TETA)<br>YT#PS+SIN(TFTA)-CF8CDS(TETS)<br>C#XT#XT+YT#YT-PS+PS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                              |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| IF(C)5.5.7<br>A=0.0<br>G0170 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                            | -                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| * 4=5877(C)<br>====================================                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ).<br>[1]                                    |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| AFF(3)70,10,20<br>AFF(2)70<br>60 TC 30<br>F2(F4554)70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                              |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ALF=XTAN(F)<br>FF(= VAN(F)<br>517=ALF+P1/2<br>531=ALF+P1/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                              |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 56 TC 20<br>55 TALF-P1<br>55 TALF-P1<br>50 TALF<br>51 ATTANS 51 MEPSI )4 FC 54 D51 )4 F51 + 51 / 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                                            | a a suma co o                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| FC2=C05(TFTA)+C05(PST)+C05(PST)<br>FETERC1+FC2<br>FETERC1+FC2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                              | :                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                              |                                       | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                              |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| FORVULACION DF F(TETA) PARA M= 1 Y KM= 1/2<br>FUNCTION FI(TETA)<br>COVVON RS.TETS.CF.PI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                              |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| XT=CF*SIN(TFTS)+FS4CDS(TFTA)<br>XT=PS4SIN(TFD+CFTA)<br>XT=PS4SIN(TFD+CFTCDS(TFTS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                              | •                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <pre>Extisting for the second second</pre> |                                              |                                       | and share with the state with the state of t |
| R=XT*YT<br>D=RS#S=XT*XT<br>F(0)20.10.20<br>ALF=P1/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | · · ·                                        |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                              | •                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | :                                            |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

:

· · · ·

-

| )+1.)<br>-F(A)+F(B))+H/3-<br>-F(A)+F(B))+H/3-<br>-F(A)+F(B))+H/3-<br>-F(A)+F(B))+H/3-<br>-F(A)+F(B))+H/3-<br>-F(A)+F(B))+H/3-<br>-F(A)+F(B))+H/3-<br>-F(A)+F(B))+H/3-<br>-F(A)+F(B))+H/3-<br>-F(A)+F(B))+H/3-<br>-F(A)+F(B))+H/3-<br>-F(A)+F(B))+H/3-<br>-F(A)+F(B))+H/3-<br>-F(A)+F(B))+H/3-<br>-F(A)+F(B))+H/3-<br>-F(A)+F(B))+H/3-<br>-F(A)+F(B))+H/3-<br>-F(A)+F(B))+H/3-<br>-F(A)+F(B))+H/3-<br>-F(A)+F(B))+H/3-<br>-F(A)+F(B))+H/3-<br>-F(A)+F(B))+H/3-<br>-F(A)+F(B))+H/3-<br>-F(A)+F(B))+H/3-<br>-F(A)+F(B))+H/3-<br>-F(A)+F(B))+H/3-<br>-F(A)+F(B))+H/3-<br>-F(A)+F(B))+H/3-<br>-F(A)+F(B))+H/3-<br>-F(A)+F(B))+H/3-<br>-F(A)+F(B))+H/3-<br>-F(A)+F(B))+H/3-<br>-F(A)+F(B))+H/3-<br>-F(A)+F(B))+H/3-<br>-F(A)+F(B))+H/3-<br>-F(A)+F(B))+H/3-<br>-F(A)+F(B))+H/3-<br>-F(A)+F(B))+H/3-<br>-F(A)+F(B))+H/3-<br>-F(A)+F(B))+H/3-<br>-F(A)+F(B))+H/3-<br>-F(A)+F(B))+H/3-<br>-F(A)+F(B))+H/3-<br>-F(A)+F(B))+H/3-<br>-F(A)+F(B))+H/3-<br>-F(A)+F(B))+H/3-<br>-F(A)+F(B))+H/3-<br>-F(A)+F(B))+H/3-<br>-F(A)+F(B))+H/3-<br>-F(A)+F(B))+H/3-<br>-F(A)+F(B))+H/3-<br>-F(A)+F(B))+H/3-<br>-F(A)+F(B))+H/3-<br>-F(A)+F(B))+H/3-<br>-F(A)+F(B))+H/3-<br>-F(A)+F(B))+H/3-<br>-F(A)+F(B))+H/3-<br>-F(A)+F(B))+H/3-<br>-F(A)+F(B))+H/3-<br>-F(A)+F(B))+H/3-<br>-F(A)+F(B))+H/3-<br>-F(A)+F(B))+H/3-<br>-F(A)+F(B))+H/3-<br>-F(A)+F(B))+H/3-<br>-F(A)+F(B))+H/3-<br>-F(A)+F(B))+H/3-<br>-F(A)+F(B))+H/3-<br>-F(A)+F(B))+H/3-<br>-F(A)+F(B))+H/3-<br>-F(A)+F(B))+H/3-<br>-F(A)+F(B))+H/3-<br>-F(A)+F(B))+H/3-<br>-F(A)+F(B))+H/3-<br>-F(A)+F(B))+H/3-<br>-F(A)+F(B))+H/3-<br>-F(A)+F(B))+H/3-<br>-F(A)+F(B))+H/3-<br>-F(A)+F(B))+H/3-<br>-F(A)+F(B))+H/3-<br>-F(A)+F(B))+H/3-<br>-F(A)+F(B))+H/3-<br>-F(A)+F(B))+H/3-<br>-F(A)+F(B))+H/3-<br>-F(A)+F(B))+H/3-<br>-F(A)+F(B))+H/3-<br>-F(A)+F(B))+H/3-<br>-F(A)+F(B))+H/3-<br>-F(A)+F(B))+H/3-<br>-F(A)+F(B))+H/3-<br>-F(A)+F(B))+H/3-<br>-F(A)+F(B))+H/3-<br>-F(A)+F(B))+H/3-<br>-F(A)+F(B))+H/3-<br>-F(A)+F(B))+H/3-<br>-F(A)+F(B))+H/3-<br>-F(A)+F(B))+H/3-<br>-F(A)+F(B))+H/3-<br>-F(A)+F(B))+H/3-<br>-F(A)+F(B))+H/3-<br>-F(A)+F(B))+H/3-<br>-F(A)+F(B))+H/3-<br>-F(A)+F(B))+H/3-<br>-F(A)+F(B))+H/3-<br>-F(A)+F(B))+H/3-<br>-F(A)+F(B))+H/3-<br>-F(A)+F(B))+H/3-<br>-F(A)+F(B))+H/3-<br>-F(A)+F(B))+H/3-<br>-F(A)+F(B))+H/3-<br>-F(A)+F(B))+H/3-<br>-F(A)+F(B))+H/3-<br>-F(A)+F(B))+H/3-<br>-F(A)+F(B))+H/3-<br>-F(A) |       | VALOS                                                              |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | > 2.33 SEGUNDDS FFCHA: 20/07/77 *** |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------------------------------------------------------------------|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ("I+( | LA INTEGRAL DE F(X) ENTRE LOS L<br>DE SIMPSON. N= NUMERO DE INTERV | -F(A)+F(B))+H/3.<br>D A TO S | 1(CA - POTRCIA - A 1 (CA - A 2 ) (CA - A 2 | ZADD POR EL PROGRAMA FALLA          |

.

-

: •

| <pre>************************************</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | **************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             | rsión 2. |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------|
| FGRNATTFINED<br>JENLINES<br>FCRNATTFINES<br>FCRNATTFINES<br>FCRNATTFINES<br>FCRNATTFINES<br>FCRNATTFINES<br>FCRNATTFINES<br>FCRNATTFINES<br>FCRNATTFINES<br>FCRNATTFINES<br>FCRNATTFINES<br>FCRNATTFINES<br>FCRNATTFINES<br>FCRNATTFINES<br>FCRNATTFINES<br>FCRNATTFINES<br>FCRNATTFINES<br>FCRNATTFINES<br>FCRNATTFINES<br>FCRNATTFINES<br>FCRNATTFINES<br>FCRNATTFINES<br>FCRNATTFINES<br>FCRNATTFINES<br>FCRNATTFINES<br>FCRNATTFINES<br>FCRNATTFINES<br>FCRNATTFINES<br>FCRNATTFINES<br>FCRNATTFINES<br>FCRNATTFINES<br>FCRNATTFINES<br>FCRNATTFINES<br>FCRNATTFINES<br>FCRNATTFINES<br>FCRNATTFINES<br>FCRNATTFINES<br>FCRNATTFINES<br>FCRNATTFINES<br>FCRNATTFINES<br>FCRNATTFINES<br>FCRNATTFINES<br>FCRNATTFINES<br>FCRNATTFINES<br>FCRNATTFINES<br>FCRNATTFINES<br>FCRNATTFINES<br>FCRNATTFINES<br>FCRNATTFINES<br>FCRNATTFINES<br>FCRNATTFINES<br>FCRNATTFINES<br>FCRNATTFINES<br>FCRNATTFINES<br>FCRNATTFINES<br>FCRNATTFINES<br>FCRNATTFINES<br>FCRNATTFINES<br>FCRNATTFINES<br>FCRNATTFINES<br>FCRNATTFINES<br>FCRNATTFINES<br>FCRNATTFINES<br>FCRNATTFINES<br>FCRNATTFINES<br>FCRNATTFINES<br>FCRNATTFINES<br>FCRNATTFINES<br>FCRNATTFINES<br>FCRNATTFINES<br>FCRNATTFINES<br>FCRNATTFINES<br>FCRNATTFINES<br>FCRNATTFINES<br>FCRNATTFINES<br>FCRNATTFINES<br>FCRNATTFINES<br>FCRNATTFINES<br>FCRNATTFINES<br>FCRNATTFINES<br>FCRNATTFINES<br>FCRNATTFINES<br>FCRNATTFINES<br>FCRNATTFINES<br>FCRNATTFINES<br>FCRNATTFINES<br>FCRNATTFINES<br>FCRNATTFINES<br>FCRNATTFINES<br>FCRNATTFINES<br>FCRNATTFINES<br>FCRNATTFINES<br>FCRNATTFINES<br>FCRNATTFINES<br>FCRNATTFINES<br>FCRNATTFINES<br>FCRNATTFINES<br>FCRNATTFINES<br>FCRNATTFINES<br>FCRNATTFINES<br>FCRNATTFINES<br>FCRNATTFINES<br>FCRNATTFINES<br>FCRNATTFINES<br>FCRNATTFINES<br>FCRNATTFINES<br>FCRNATTFINES<br>FCRNATTFINES<br>FCRNATTFINES<br>FCRNATTFINES<br>FCRNATTFINES<br>FCRNATTFINES<br>FCRNATTFINES<br>FCRNATTFINES<br>FCRNATTFINES<br>FCRNATTFINES<br>FCRNATTFINES<br>FCRNATTFINES<br>FCRNATTFINES<br>FCRNATTFINES<br>FCRNATTFINES<br>FCRNATTFINES<br>FCRNATTFINES<br>FCRNATTFINES<br>FCRNATTFINES<br>FCRNATTFINES<br>FCRNATTFINES<br>FCRNATTFINES<br>FCRNATTFINES<br>FCRNATTFINES<br>FCRNATTFINES<br>FCRNATTFINES<br>FCRNATTFINES<br>FCRNATTFINES<br>FCRNATTFINES<br>FCRNATTFINES<br>FCRNATTFINES<br>FCRNATTFINES<br>FCRNATTFINES<br>FCRNATTFINES<br>FCRNATTFINES<br>FCRNATTFINES<br>FCRNATTFINES<br>FCRNATTFINES<br>FCRNATTFINES<br>FCRNAT | KWYZZY, PHOPABILIDAD DE<br>A TIERRYZZY, FONLIAR CUF<br>A TIERRYZZY, FONLIAR CUF<br>GUANUA = F5-372X, NUVF<br>GUANUA = F5-372X, NUVF<br>BJZTRIEUCI<br>BJZZY, TIPO DE DISTRIEUCI<br>MINT<br>NINT<br>ANNT<br>ANNO PECIA CE DF5<br>23 ANNO PECIA CE DF5<br>23 ANNO PECIA CE DF5<br>24 ANNO PECIA CE DF5<br>24 ANNO PECIA CE TUD DEL T<br>ANNO PECIA CE TUD DEL T | CONAL CONAL |          |

.

÷

| υ           | INICIALIZAR EL VALOR DE LA INTEGRAL TOTAL                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| , ,         | RINT=0.0                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 500         | DETERMINAR LIMITES SUPERIOR E INFERIOR PARA EL ANGULO TETA                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 22          | PHI=CE/(2.*RS)<br>TFAI=CFS+APSINPHI)<br>TEA=CASCORAF/RS<br>TET2=ASLN(PYA)                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ر<br>ب<br>ا |                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| , ,         | IF(TET2.GT.TET1)GD TD 20<br>IF(V1)00-200-300                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 0.00        | TE(TFT2LF.0.0)6C TO 50<br>SETEXECONS(TET2)-COS(TET1)<br>COT TE 400                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 50          |                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 200         | CONTINUE<br>VI=FITS-TFT2-COS(TETS)+COS(TET2)<br>Y2=51M5(TETS-TET1.NIN1.F1)                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|             | YT=Y1+Y2<br>X=(12/22.)*YT<br>GG TO 4/2.)*                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|             | CALCULE FL VALOR DE LA INTEGRAL ENTRE TETAS Y TETAS                                                                                                                                   | and and a second se |
| 000         | CONTINCE<br>X1=2.4XIN(TETS)-2.4SIN(TET2)<br>X2=(COS(TFTS))4(TET2+P1/2.)<br>Y1=X1-X2+X3<br>Y1=X1-X2+X3<br>X3=(COS(TT2+Y))4(TET2+P1/2.)                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 000         | CALCULF FL VALCA DE LA INTEGRAL ENTRE TETA·S' Y TETAI POR MEDIO                                                                                                                       | en anna an an anna anna an anna an an an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| י<br>ט ¦ נ  | Y2=SIMDS(TETS,TETI,NINT,F2)                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| υçυ         | VALOR DF LA INTEGRAL ENTRE TETA2 Y TETAL                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 0           | Y1=Y1+Y2                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 000         | CALCULF EL ANCHO FFECTIVO 'X' PARA UN LADO DE LA LINEA Y PARA UN VALJA DE RS ( DISTANCIA DE ARQUEO )                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| , u         | X=(45/D1)+YT<br>G0 TC 400                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|             | SF INCREMENTA EL VALOR DE LA INTEGRAL IDTAL                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 400         | CONTINUE<br>CIT=(RS/7.1) **1.333<br>An=CIT/SO.<br>HI=CIT/SO.<br>HI=C4.75/FXP(AP)+0.10/EXP(BC))/100.                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|             | FRS=H1+44./(].#7.1*41.333))#RS#+0.333<br>FR0.101#tkFR5<br>P141=#1K1+2*CPS<br>R3=R5+CR5<br>GG TO 10                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 000         | CUANCO TERVINE FL PODCESD CALCULE EL NUMERO DE SALIDAS POR KM Y<br>Por annon y totales del trand                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 202         | FNF=2,4CK*CNO#RINT<br>ENEIR=EXFK#PIR*LCNG/100_<br>ENEI=EREI+FNEIR                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| :<br>       | IMPRIMIR RESULTADOS DEL TRAMO                                                                                                                                                         | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0 1         | PRINT 9, ENE,FNETH<br>FORWATIXX,NUVEPO DE SALIDAS/KW/ANNO = "IPEIO.4//2X,'NLHFRO DE SAL<br>Formatixx,Davo / Anno = "IPFI0.4//)<br>F(FLOAT(TTRAW)/3EO.ITRAW/3)PRINT 13<br>FCRMAT(1///) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ų           |                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|             |                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|             |                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

:

| Heat with a first transmission of the second second and the second second and the second second and the second sec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ITTITATATESATIATION TO TO TO TO TATATION TATATESATIATOS FINALES<br>PRINT 11.ENPT<br>PRINT 11.ENPT<br>PRINT 12.2.80(1*1)//2X, NUMERO TOT<br>PRINAT (2X.80(1*1)//2X, NUMERO TOT<br>#BIDAS A FALLAS DFL APANTALLAWIENT<br>(CASO=ICASO+1<br>ICASO=ICASO+1<br>ICASO=ICASO+1<br>ICASO=ICASO+1<br>ICASO=ICASO+1<br>ICASO=ICASO+1<br>ICASO=ICASO+1<br>ICASO=ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>ICASO+1<br>I | L DF SALIDAS DE LA LINFA'/2X, DE<br>= 'IPELO_4//2X, BO('4'))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |                                           | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Provide the second seco                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PRINT 11.ENFT<br>FORMAT(2x.80('*')//2x,'NUMERD TGT<br>#BIDAS A FALLAS DFL APANTALLAWIENT<br>ICASO=ICASO+1<br>ICASO=ICASO+1<br>- DTRQ CASQ-?<br>- DTRQ CASQ-?<br>FF(ICDD)500,500.600<br>FND<br>- STQP<br>FND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | L DF SALIDAS DE LA L'INFA'/2X,'DE<br>= 'IPEI0_4//2X,80('+'')                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| <pre>Inter cs0 7<br/>From cs0 0<br/>From cs0 0</pre> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •            |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| PND<br>PDPPL ACTON DF FIFTN DATA ME 2 Y NWE Z/PT<br>CUNCTION SF 7717713<br>CUNCTION SF 7717723<br>CUNCTION SF 77177723<br>CUNCTION SF 77177723<br>CUNCTION SF 77177723                                                                                                                                                                                                                                                                                                                                  | CNF.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Partu Action de Fiteral para de 2 y kue 2/01<br>UNCTION VETERAS<br>UNCTION VET                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -            |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| CUNCTURE FIFTERAL<br>CUNCTURE FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL<br>FIFTERAL                                                                                                            | FORMULACION DE F(TETA) PARA M= 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | KW= 2/01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | :            |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Processiskirity:<br>Processiskirity:<br>Processiskirity:<br>Processiskirity:<br>Processiskirity:<br>Processiskirity:<br>Processiskirity:<br>Processiskirity:<br>Processiskirity:<br>Processiskirity:<br>Processiskirity:<br>Processiskirity:<br>Processiskirity:<br>Processiskirity:<br>Processiskirity:<br>Processiskirity:<br>Processiskirity:<br>Processiskirity:<br>Processiskirity:<br>Processiskirity:<br>Processiskirity:<br>Processiskirity:<br>Processiskirity:<br>Processiskirity:<br>Processiskirity:<br>Processiskirity:<br>Processiskirity:<br>Processiskirity:<br>Processiskirity:<br>Processiskirity:<br>Processiskirity:<br>Processiskirity:<br>Processiskirity:<br>Processiskirity:<br>Processiskirity:<br>Processiskirity:<br>Processiskirity:<br>Processiskirity:<br>Processiskirity:<br>Processiskirity:<br>Processiskirity:<br>Processiskirity:<br>Processiskirity:<br>Processiskirity:<br>Processiskirity:<br>Processiskirity:<br>Processiskirity:<br>Processiskirity:<br>Processiskirity:<br>Processiskirity:<br>Processiskirity:<br>Processiskirity:<br>Processiskirity:<br>Processiskirity:<br>Processiskirity:<br>Processiskirity:<br>Processiskirity:<br>Processiskirity:<br>Processiskirity:<br>Processiskirity:<br>Processiskirity:<br>Processiskirity:<br>Processiskirity:<br>Processiskirity:<br>Processiskirity:<br>Processiskirity:<br>Processiskirity:<br>Processiskirity:<br>Processiskirity:<br>Processiskirity:<br>Processiskirity:<br>Processiskirity:<br>Processiskirity:<br>Processiskirity:<br>Processiskirity:<br>Processiskirity:<br>Processiskirity:<br>Processiskirity:<br>Processiskirity:<br>Processiskirity:<br>Processiskirity:<br>Processiskirity:<br>Processiskirity:<br>Processiskirity:<br>Processiskirity:<br>Processiskirity:<br>Processiskirity:<br>Processiskirity:<br>Processiskirity:<br>Processiskirity:<br>Processiskirity:<br>Processiskirity:<br>Processiskirity:<br>Processiskirity:<br>Processiskirity:<br>Processiskirity:<br>Processiskirity:<br>Processiskirity:<br>Processiskirity:<br>Processiskirity:<br>Processiskirity:<br>Processiskirity:<br>Processiskirity:<br>Processiskirity:<br>Processiskirity:<br>Processiskirity:<br>Processiskirity:<br>Processiskirity:<br>Processiskirity:<br>Processiskirity:<br>Processiskirity:<br>Processiskirity:<br>Processiskirity:<br>Processiskir                                                                                                                                                                                                                                                                                              | FUNCTION F2(TFTA)<br>COMMON FS.TETS.CE.PI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Constant and a second s |              |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 10       10       10       10         11       10       10       10       10         11       10       10       10       10         11       10       10       10       10       10         11       10       10       10       10       10       10         11       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | XT=CE45[N(TETS)+RS*CDS(TETA)<br>YT=>S4S1N(TETA)-CF4CDS(TETS)<br>C=XT+XT+YT+YT-RS*RS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | :            | •                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Passiva-rivi<br>Passiva-rivi<br>control of the second of the s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | •<br>•                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | E E          |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| GG TO SO<br>HEREADANCE<br>HEREADANCE<br>HEREADANCE<br>SO TO TO<br>SO TO<br>SO<br>SO TO<br>SO<br>SO<br>SO<br>SO<br>SO<br>SO<br>SO<br>SO<br>SO<br>S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | D=XT*YT<br>D=R5*PS-XT*XT<br>TF(D)20,10,20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 61           | -                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENING<br>FIGENI                                                                                                        | GG TG 30<br>F=(-P+P5#A)/0<br>V =-A+V+V1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (i) <u>b</u> |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Continue<br>Continue<br>Continue<br>Francistatistation(Selis)<br>Francistatistatistatistatistatistatistatista                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PSI=ALF1<br>PSI=ALF40,30<br>GD TLF4P1/2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12]          | :                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| FCFECTSTFTALFCG(FSILFCGG(FSILFCGG(FSILFCGG(FSILFCG)<br>FCFECTSTFTALFCG(FSILFCGG(FSILFCG)<br>FDRWLLACION F LITELA<br>FDRWLLACION F LITELA<br>FDRWLLACION F LITELA<br>FUNCTION F FUNCTION F FUNCTION F FUNCTION<br>F F F F F F F F F F F F F F F F F F F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PSI=ALF-P1/2,<br>CONTINUF<br>FCI=SIN(IETA)#(SIN(PSI)#COS(PSI)+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | S[+p1/2.]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 15           | •                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| FORWLACION DE F(TETA) PARA ME 1 Y KWE L/2<br>FUNCTION F1(TETA)<br>TUNCTION F1(TETA)<br>TUNCTION F1(TETA)<br>TUNCTION F1(TETA)<br>TTESTSTEFT<br>TTESTSTEFT<br>TTESTSTEFT<br>TTESTSTEFT<br>TTESTSTEFT<br>TTESTSTEFT<br>TTESTSTEFT<br>TTESTSTEFT<br>TTESTSTEFT<br>TTESTSTEFT<br>TTESTSTEFT<br>TTESTSTEFT<br>TTESTSTEFT<br>TTESTSTEFT<br>TTESTSTEFT<br>TTESTSTEFT<br>TTESTSTEFT<br>TTESTSTEFT<br>TTESTSTEFT<br>TTESTSTEFT<br>TTESTSTEFT<br>TTESTSTEFT<br>TTESTSTEFT<br>TTESTSTEFT<br>TTESTSTEFT<br>TTESTSTEFT<br>TTESTSTEFT<br>TTESTSTEFT<br>TTESTSTEFT<br>TTESTSTEFT<br>TTESTSTEFT<br>TTESTSTEFT<br>TTESTSTEFT<br>TTESTSTEFT<br>TTESTSTEFT<br>TTESTSTEFT<br>TTESTSTEFT<br>TTESTSTEFT<br>TTESTSTEFT<br>TTESTSTEFT<br>TTESTSTEFT<br>TTESTSTEFT<br>TTESTSTEFT<br>TTESTSTEFT<br>TTESTSTEFT<br>TTESTSTEFT<br>TTESTSTEFT<br>TTESTSTEFT<br>TTESTSTEFT<br>TTESTSTEFT<br>TTESTSTEFT<br>TTESTSTEFT<br>TTESTSTEFT<br>TTESTSTEFT<br>TTESTSTEFT<br>TTESTSTEFT<br>TTESTSTEFT<br>TTESTSTEFT<br>TTESTSTEFT<br>TTESTSTEFT<br>TTESTSTEFT<br>TTESTSTEFT<br>TTESTSTEFT<br>TTESTSTEFT<br>TTESTSTEFT<br>TTESTSTEFT<br>TTESTSTEFT<br>TTESTSTEFT<br>TTESTSTEFT<br>TTESTSTEFT<br>TTESTSTEFT<br>TTESTSTEFT<br>TTESTSTEFT<br>TTESTSTEFT<br>TTESTSTEFT<br>TTESTSTEFT<br>TTESTSTEFT<br>TTESTSTEFT<br>TTESTSTEFT<br>TTESTSTEFT<br>TTESTSTEFT<br>TTESTSTEFT<br>TTESTSTEFT<br>TTESTSTEFT<br>TTESTSTEFT<br>TTESTSTEFT<br>TTESTSTEFT<br>TTESTSTEFT<br>TTESTSTEFT<br>TTESTSTEFT<br>TTESTSTEFT<br>TTESTSTEFT<br>TTESTSTEFT<br>TTESTSTEFT<br>TTESTSTEFT<br>TTESTSTEFT<br>TTESTSTEFT<br>TTESTSTEFT<br>TTESTSTEFT<br>TTESTSTEFT<br>TTESTSTEFT<br>TTESTSTEFT<br>TTESTSTEFT<br>TTESTSTEFT<br>TTESTSTEFT<br>TTESTSTEFT<br>TTESTSTEFT<br>TTESTSTEFT<br>TTESTSTEFT<br>TTESTSTEFT<br>TTESTSTEFT<br>TTESTSTEFT<br>TTESTSTEFT<br>TTESTSTEFT<br>TTESTSTEFT<br>TTESTSTEFT<br>TTESTSTEFT<br>TTESTSTEFT<br>TTESTSTEFT<br>TTESTSTEFT<br>TTESTSTEFT<br>TTESTSTEFT<br>TTESTSTEFT<br>TTESTSTEFT<br>TTESTSTEFT<br>TTESTSTEFT<br>TTESTSTEFT<br>TTESTSTEFT<br>TTESTSTEFT<br>TTESTSTEFT<br>TTESTSTEFT<br>TTESTSTEFT<br>TTESTSTEFT<br>TTESTSTEFT<br>TTESTSTEFT<br>TTESTSTEFT<br>TTESTSTEFT<br>TTESTSTEFT<br>TTESTSTEFT<br>TTESTSTEFT<br>TTESTSTEFT<br>TTESTSTEFT<br>TTESTSTEFT<br>TTESTSTEFT<br>TTESTSTEFT<br>TTESTSTEFT<br>TTESTSTEFT<br>TTESTSTEFT<br>TTESTSTEFT<br>TTESTSTEFT<br>TTESTSTEFT<br>TTESTSTEFT<br>TTESTSTEFT<br>TTESTSTEFT<br>TTESTSTEFT<br>TTESTSTEFT<br>TTESTSTEFT<br>TTESTSTEFT<br>TTESTSTEFT<br>TTESTSTEFT<br>TTESTSTEFT<br>TTESTSTEFT<br>TTESTSTEFT<br>TTESTSTEFT<br>TTESTSTEFT<br>TTESTSTEFTSTEF                                                                                                         | FC2=C05(TFTA)*C05(P51)*C05(P51)<br>F2=FC1+FC2<br>KETURN<br>F2N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| FIRWULACION DE F(TETA) PARA ME I Y KUE L/2<br>ENKCTION F1(TFTA)<br>CUWCINS FTTS.CE.PI<br>CUWCN RS.TFTS.CE.PI<br>CUWCN RS.TFTS.CE.PI<br>CUWCN RS.TFTS.CE.PI<br>CUWCN RS.TFTS.CE.PI<br>CUMCN RS.TTTS.CE.PI<br>CUMCN RS.TTTS.CE.PI<br>CUMCN RS.TTTS.CE.PI<br>CUMCN RS.T                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ,            | . <b>Moreover and the set and the set</b> | and a second and more description of the second s |
| FDRULACION DE F(TETA) PARA M= 1 Y KW= 1/2<br>FUNCIION F1(TFTA)<br>FUNCIION F1(TFTA)<br>COWWCN RS.TFTS.CCS(TETA)<br>TESSASIN(TFTA)-TESSCOS(TETA)<br>TESSASIN(TFTA)-TESSCOS(TETA)<br>TESSASINTATA)-TESSCOS(TETA)<br>TESSASINTATA)-TESSCOS(TETA)<br>TESSASINTATATATA)-TESSCOS(TETA)<br>TESSASINTATATATATATA<br>TESSASINTATATATATATATATATA<br>TESSASINTATATATATATATATATATATATATATATA<br>TESSASINTATATATATATATATATATATATATATATATATA<br>TESSASINTATATATATATATATATATATATATATATATATATATA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -            |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| COVYCK PS. TFTS.CE. PI<br>COVYCK PS. TFTS.CE. PI<br>XT=CFFSINTTFT3)-CF=COS(TETA)<br>YT=PS=SINTFT3)-CF=COS(TETA)<br>TF(C)5.3.7<br>TF(C)5.3.7<br>TF(C)5.3.7<br>A=0.0<br>CO<br>CO<br>CO<br>CO<br>CO<br>CO<br>CO<br>CO<br>CO<br>CO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | FORMULACION DE F(TETA) PARA M= 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Ku= 1/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| XT=CF#SIN(TFTS)+RS=COS(TETA)<br>YT=PS=Y1N(TFTA)-CF=COS(TETA)<br>C=XT#XTY(TTA)-CF=COS(TETS)<br>C=XT#XTY(TTA)-CF=COS(TETS)<br>C=XT#YTY<br>A=0010<br>A=0010<br>A=0010<br>A=0010<br>A=0010<br>A=0010<br>A=0010<br>A=0010<br>A=0010<br>A=0010<br>A=0010<br>A=0010<br>A=0010<br>A=0010<br>A=0010<br>A=0010<br>A=0010<br>A=0010<br>A=0010<br>A=0010<br>A=0010<br>A=0010<br>A=0010<br>A=0010<br>A=0010<br>A=0010<br>A=0010<br>A=0010<br>A=0010<br>A=0010<br>A=0010<br>A=0010<br>A=000<br>A=000<br>A=000<br>A=000<br>A=000<br>A=000<br>A=000<br>A=000<br>A=000<br>A=000<br>A=000<br>A=000<br>A=000<br>A=000<br>A=000<br>A=000<br>A=000<br>A=000<br>A=000<br>A=000<br>A=000<br>A=000<br>A=000<br>A=000<br>A=000<br>A=000<br>A=000<br>A=000<br>A=000<br>A=000<br>A=000<br>A=000<br>A=000<br>A=000<br>A=000<br>A=000<br>A=000<br>A=000<br>A=000<br>A=000<br>A=000<br>A=000<br>A=000<br>A=000<br>A=000<br>A=000<br>A=000<br>A=000<br>A=000<br>A=000<br>A=000<br>A=000<br>A=000<br>A=000<br>A=000<br>A=000<br>A=000<br>A=000<br>A=000<br>A=000<br>A=000<br>A=000<br>A=000<br>A=000<br>A=000<br>A=000<br>A=000<br>A=000<br>A=000<br>A=000<br>A=000<br>A=000<br>A=000<br>A=000<br>A=000<br>A=000<br>A=000<br>A=000<br>A=000<br>A=000<br>A=000<br>A=000<br>A=000<br>A=000<br>A=000<br>A=000<br>A=000<br>A=000<br>A=000<br>A=000<br>A=000<br>A=0000<br>A=0000<br>A=0000<br>A=0000<br>A=0000<br>A=0000<br>A=0000<br>A=0000<br>A=0000<br>A=0000<br>A=0000<br>A=0000<br>A=0000<br>A=0000<br>A=0000<br>A=0000<br>A=0000<br>A=0000<br>A=00000<br>A=0000<br>A=00000<br>A=00000<br>A=00000<br>A=00000<br>A=00000<br>A=00000<br>A=00000<br>A=000000<br>A=000000<br>A=000000<br>A=00000000<br>A=0000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | FUNCTION FI(TFIA)<br>CONNCN RS.TFIS.CE.PI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| AFC(1)<br>AFC(1)<br>AFC(1)<br>AFC(1)<br>AFSTRS-XT*XT<br>AFSTRS-XT*XT<br>AFSTRS-XT*XT<br>AFSTRS-XT*XT<br>AFSTRS-XT*XT<br>AFSTRS-XT*XT<br>AFSTRS-XT<br>AFSTRS-XT<br>AFSTRS-XT<br>AFSTRS-XT<br>AFSTRS-XT<br>AFSTRS-XT<br>AFSTRS-XT<br>AFSTRS-XT<br>AFSTRS-XT<br>AFSTRS-XT<br>AFSTRS-XT<br>AFSTRS-XT<br>AFSTRS-XT<br>AFSTRS-XT<br>AFSTRS-XT<br>AFSTRS-XT<br>AFSTRS-XT<br>AFSTRS-XT<br>AFSTRS-XT<br>AFSTRS-XT<br>AFSTRS-XT<br>AFSTRS-XT<br>AFSTRS-XT<br>AFSTRS-XT<br>AFSTRS-XT<br>AFSTRS-XT<br>AFSTRS-XT<br>AFSTRS-XT<br>AFSTRS-XT<br>AFSTRS-XT<br>AFSTRS-XT<br>AFSTRS-XT<br>AFSTRS-XT<br>AFSTRS-XT<br>AFSTRS-XT<br>AFSTRS-XT<br>AFSTRS-XT<br>AFSTRS-XT<br>AFSTRS-XT<br>AFSTRS-XT<br>AFSTRS-XT<br>AFSTRS-XT<br>AFSTRS-XT<br>AFSTRS-XT<br>AFSTRS-XT<br>AFSTRS-XT<br>AFSTRS-XT<br>AFSTRS-XT<br>AFSTRS-XT<br>AFSTRS-XT<br>AFSTRS-XT<br>AFSTRS-XT<br>AFSTRS-XT<br>AFSTRS-XT<br>AFSTRS-XT<br>AFSTRS-XT<br>AFSTRS-XT<br>AFSTRS-XT<br>AFSTRS-XT<br>AFSTRS-XT<br>AFSTRS-XT<br>AFSTRS-XT<br>AFSTRS-XT<br>AFSTRS-XT<br>AFSTRS-XT<br>AFSTRS-XT<br>AFSTRS-XT<br>AFSTRS-XT<br>AFSTRS-XT<br>AFSTRS-XT<br>AFSTRS-XT<br>AFSTRS-XT<br>AFSTRS-XT<br>AFSTRS-XT<br>AFSTRS-XT<br>AFSTRS-XT<br>AFSTRS-XT<br>AFSTRS-XT<br>AFSTRS-XT<br>AFSTRS-XT<br>AFSTRS-XT<br>AFSTRS-XT<br>AFSTRS-XT<br>AFSTRS-XT<br>AFSTRS-XT<br>AFSTRS-XT<br>AFSTRS-XT<br>AFSTRS-XT<br>AFSTRS-XT<br>AFSTRS-XT<br>AFSTRS-XT<br>AFSTRS-XT<br>AFSTRS-XT<br>AFSTRS-XT<br>AFSTRS-XT<br>AFSTRS-XT<br>AFSTRS-XT<br>AFSTRS-XT<br>AFSTRS-XT<br>AFSTRS-XT<br>AFSTRS-XT<br>AFSTRS-XT<br>AFSTRS-XT<br>AFSTRS-XT<br>AFSTRS-XT<br>AFSTRS-XT<br>AFSTRS-XT<br>AFSTRS-XT<br>AFSTRS-XT<br>AFSTRS-XT<br>AFSTRS-XT<br>AFSTRS-XT<br>AFSTRS-XT<br>AFSTRS-XT<br>AFSTRS-XT<br>AFSTRS-XT<br>AFSTRS-XT<br>AFSTRS-XT<br>AFSTRS-XT<br>AFSTRS-XT<br>AFSTRS-XT<br>AFSTRS-XT<br>AFSTRS-XT<br>AFSTRS-XT<br>AFSTRS-XT<br>AFSTRS-XT<br>AFSTRS-XT<br>AFSTRS-XT<br>AFSTRS-XT<br>AFSTRS-XT<br>AFSTRS-XT<br>AFSTRS-XT<br>AFSTRS-XT<br>AFSTRS-XT<br>AFSTRS-XT<br>AFSTRS-XT<br>AFSTRS-XT<br>AFSTRS-XT<br>AFSTRS-XT<br>AFSTRS-XT<br>AFSTRS-XT<br>AFSTRS-XT<br>AFSTRS-XT<br>AFSTRS-XT<br>AFSTRS-XT<br>AFSTRS-XT<br>AFSTRS-XT<br>AFSTRS-XT<br>AFSTRS-XT<br>AFSTRS-XT<br>AFSTRS-XT<br>AFSTRS-XT<br>AFSTRS-XT<br>AFSTRS-XT<br>AFSTRS-XT<br>AFSTRS-XT<br>AFSTRS-XT<br>AFSTRS-XT<br>AFSTRS-XT<br>AFSTRS-XT<br>AFSTRS-XT<br>AFSTRS-XT<br>AFSTRS-XT<br>AFSTRS-XT<br>AFSTRS-XT<br>AFSTRS-XT<br>AFSTRS-XT<br>AFSTRS-XT<br>AFSTRS-XT<br>AFSTRS-XT<br>AFSTRS-XT<br>AFSTRS-XT<br>AFSTRS-XT<br>AFSTRS-XT<br>AFSTRS-XT<br>AFSTR                                                                                                                                              | X1=CF451N(TFT5)+RS4COS(TETA)<br>Y1=PS4S1N(TFTA)-CF4COS(TETS)<br>C=X1+Y1+Y1+Y1+Y2+RS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| B=XT*YT<br>D=RS*RS_XT*XT<br>AFFF_Y2<br>AFFF_Y2<br>G0 10:20<br>AFFF_Y2<br>AFFF_Y2<br>AFFF_Y2<br>F5[=40.40.30<br>F5[=4LF+F1/2<br>G0 TC 50.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | TF(C,Da+2+)<br>A=0,0<br>GC TG C<br>A=50AT(C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| GU TC 50<br>FEICHERSAM)/D<br>A FEATARF)/D<br>FF(E)40,40,30<br>FSIEALFF1/2<br>GC TC 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | B=XT#YT<br>D=RS#RS-XT#XT<br>IF(D)20.10.20<br>^1 F=F1/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| LF=ATAKF)<br>16(E)60.40.30<br>PSI=ALF+F1/2<br>GC TC 50.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 60 T0 30<br>E=(-E+RS#A)/D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | •                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ALF=ATAN(F)<br>TF(E)40,40,30<br>PS1=ALF+F1/2<br>GT TF 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | •<br>•<br>•                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

. .

| 30                                  | PS1=ALF-PL2.<br>PS1=ALF-PL2.<br>F01=S1N(TFTA)*(S1N(PS1)+1.)<br>F03=C05(PS1)+C05(TFTA).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       |     |                    |                                                                                                                 |
|-------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-----|--------------------|-----------------------------------------------------------------------------------------------------------------|
|                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ÷                                     |     |                    |                                                                                                                 |
|                                     | ESTE SURPROGRAMA EVALUA LA INTEGRAL DE F(X) ENTRF L<br>A Y B MEDIANTF LA RFGLA DE SIMPSON, N= NLMERO DE IN<br>FUNCTION SIMPS(A_B,V,F)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | LOS LIMITES<br>NTEPVALCS              |     |                    |                                                                                                                 |
| U                                   | CC4MCN RS.TF1S.CF.PI<br>T=(R−A)/N<br>SUV1=0.<br>SUV1=0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ·<br>·                                |     |                    |                                                                                                                 |
| -                                   | 00 1 K=1.N<br>K=a+ELOAT(K-1)*T<br>5U93=SUU17(K-1)*T<br>SUV3=SUU2+F(X+1)<br>STU2=(2.*SUU1+4.*SUU2-F(A)+F(A))*H/3.<br>RFTUGA<br>RFTUGA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       | :   |                    |                                                                                                                 |
|                                     | S C I I C S C I I C S C I I C S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I S C I | ****                                  |     | -                  | -                                                                                                               |
|                                     | . TAD DE JNGENIEPIA ELFCTRICA - POTLNCIA -<br>. S. DF GRAGO CARLOS E. RÍGFRID REYFS<br>EA DE PRUERA RFF. (12)<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2                                     |     |                    |                                                                                                                 |
|                                     | 1. "朱子子的是是是是有有有有有有有有有有有有有有有有有有有有有有有有有有有有有有有有                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | · · · · · · · · · · · · · · · · · · · | *** |                    |                                                                                                                 |
|                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | •                                     |     |                    | -                                                                                                               |
| 10.000 11<br>10.000 11<br>10.000 11 | NFJETAS IMANSFERIUAS***<br>4 MSJ5 TIFWPO DF UCP UTILIZADO PGR ÉL PROGRAMA FALLA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |     | :CHA: 20/07/77 *** |                                                                                                                 |
| ۰<br>ا<br>۱۹۹۰ ۲۰۱۹                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       | •   |                    |                                                                                                                 |
|                                     | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       | :   |                    |                                                                                                                 |
|                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |     |                    |                                                                                                                 |
|                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |     | *                  | 1 maa 1 m |
|                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |     |                    |                                                                                                                 |

:

•

4

•
|--|

| FRADIL, FD (FXG(J), FYG(J), J=1,NG)<br>FDRWAT (2X, NIVE, TSCFC, ZTR, CKG = , 14,2X, FAUFERD DE CCN<br>FDRWAT (2X, NIVEL TSCFC, ZTR, CG = , 14,2X, FAUFERD DE CCN<br>FDRWAT (2X, NIVEL TSCFC, ZTR, CG = , 14,2X, FAUFERD DE C<br>ADFNED DEL ALS. ANTERTD = , F7,0, KV, 7X, 148EDANCIA TR<br>* CTNODUCTIN DE FASE = , F7,1, 01HVIG: 72X, 1CONSTANTUD DE<br>FTRFA = , 17,15,10, KC, 10, KC, 10, KC, 72X, 10, KC<br>FTRFA = , 17,15,10, KC (1), 11, 10, 10, 10, 10, 10, 10, 10, 10, 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MUCCTDRES = [4<br>RITICD DE CCNT<br>RANSITORIA DEEL<br>L'ARAND = F7.<br>Elaciona el ni<br>e descargas a<br>/4xCond4x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| PRIVE DEL AISLANTENTO -: 'I'A'ZX''''NUTAJE CR<br>CRUNDIN DEL AISLANTENTO -: 'I'A'ZX''''NUTAJE CR<br>*CENNENTO DEL AISLANTENTO -: 'I'A'ZX'''''''''''''''''''''''''''''''''                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ATTICO DE CONT<br>RANSTORIA DEL<br>L'ATAND = F7.<br>ELLCIDNA EL NI<br>E DESCARGAS A<br>4x. COND. · · 4X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |
| *VEL    TEGETAUNICC GE LA REGTON / 2x, 700% LA DENSIGIO DE      FTTERA    = (1, 2, 2) / 1)      FTA    = (1, 2) / 1)      CALCULDS    TALCUL      FTA    = (1, 2) / 1)      FTA    = (1, 2) / 1)      FTA    = (1, 2) / 1)      CALCULD    TALCUL      FTA    = (1, 2) / 1)      FTA    = (1, 2) / 1)      FTA    = (1, 2) / 1)      FTA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | E DESCARGES A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |
| FORMAT(ZX:'COORDENDADS DE LCS CINOUCTORES (METROS)'//<br>PRINT [SK:'CTORDENDADS DE LCS CINOUCTORES (METROS)'//<br>PRINT [SK:'CTORDENDADS DE LCS CANLES DE GUAFDA (METRO<br>#E'+4X';'IOX;'Y'/J][SX:[2,2X,2F]0.22/]//]<br>CALCULDS INCTALFS<br>PT=3.1415926<br>PT=3.1415926<br>PT=3.1415926<br>PT=3.1415926<br>PT=3.1415926<br>PT=3.1415926<br>PT=3.1415926<br>PT=3.1415926<br>PT=3.1415926<br>PT=3.1415926<br>PT=3.1415926<br>PT=3.1415926<br>PT=3.1415926<br>PT=3.1415926<br>PT=3.1415926<br>PT=3.1415926<br>PT=3.1415926<br>PT=3.1415926<br>PT=3.1415926<br>PT=3.1415926<br>PT=3.1415926<br>PT=3.1415926<br>PT=3.1415926<br>PT=3.1415926<br>PT=3.1415926<br>PT=3.1415926<br>PT=3.1415926<br>PT=3.1415926<br>PT=3.1415926<br>PT=3.1415926<br>PT=3.1415926<br>PT=3.1415926<br>PT=3.1415926<br>PT=3.1415926<br>PT=3.1415926<br>PT=3.1415926<br>PT=3.1415926<br>PT=3.1415926<br>PT=3.1415926<br>PT=3.1415926<br>PT=3.1415926<br>PT=3.1415926<br>PT=3.1415926<br>PT=3.1415926<br>PT=3.1415926<br>PT=3.1415926<br>PT=3.1415926<br>PT=3.1415926<br>PT=3.1415926<br>PT=3.1415926<br>PT=3.1415926<br>PT=3.1415926<br>PT=3.1415926<br>PT=3.1415926<br>PT=3.1415926<br>PT=3.1415926<br>PT=3.1415926<br>PT=3.1415926<br>PT=3.1415926<br>PT=3.1415926<br>PT=3.1415926<br>PT=3.1415926<br>PT=3.1415926<br>PT=3.1415926<br>PT=3.1415926<br>PT=3.1415926<br>PT=3.1415926<br>PT=3.1415926<br>PT=3.1415926<br>PT=3.1415926<br>PT=3.1415926<br>PT=3.1415926<br>PT=3.1415926<br>PT=3.1415926<br>PT=3.1415926<br>PT=3.1415926<br>PT=3.1415926<br>PT=3.1415926<br>PT=3.1415926<br>PT=3.1415926<br>PT=3.1415926<br>PT=3.1415926<br>PT=3.1415926<br>PT=3.1415926<br>PT=3.1415926<br>PT=3.1415926<br>PT=3.1415926<br>PT=3.1415926<br>PT=3.1415926<br>PT=3.1415926<br>PT=3.1415926<br>PT=3.1415926<br>PT=3.1415926<br>PT=3.1415926<br>PT=3.1415926<br>PT=3.1415926<br>PT=3.141596<br>PT=3.141596<br>PT=3.141596<br>PT=3.141596<br>PT=3.141596<br>PT=3.141596<br>PT=3.141596<br>PT=3.141596<br>PT=3.141596<br>PT=3.141596<br>PT=3.141596<br>PT=3.141596<br>PT=3.141596<br>PT=3.141596<br>PT=3.141596<br>PT=3.141596<br>PT=3.141596<br>PT=3.141596<br>PT=3.141596<br>PT=3.141596<br>PT=3.141596<br>PT=3.141596<br>PT=3.141596<br>PT=3.141596<br>PT=3.141596<br>PT=3.141596<br>PT=3.141596<br>PT=3.141596<br>PT=3.141596<br>PT=3.141596<br>PT=3.141596<br>PT=3.141596<br>PT=3.141596<br>PT=3.141596<br>PT=3.141596<br>PT=3.141596<br>PT=3.14                                                                                                                                                                                                                                                                                                                                                                                                         | /**'•COND.•.**X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |
| FGRWATIZX, CCORFNADS DE LGS CARLES DE GUARDA (METRO<br>*E.4X, X',10X, Y',J3(5X,12,2X,2F10.2/)//)<br>CALCULDS INICIALFS<br>PI=3.1415926<br>PI=3.1415926<br>CALOLS TNICIALFS<br>PI=3.1415926<br>CALOLS FRICO<br>CALOLS FRICO<br>CALOLS TERVIO<br>CALOLS TERVIO<br>CALOLS TERVIO<br>FISTINGS<br>PIETIAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and second on a state of a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |
| CALCULDS INICIALFS<br>PI=3.114226<br>NPC3A=CK+1006<br>CuIV=2.*CFG/Z<br>CuIV=2.*CFG/Z<br>CUIV=2.*CFG/Z<br>CUIV=2.*CFG/Z<br>CUIV=2.*CFG/Z<br>CUIV=2.*CFG/Z<br>CUIV=2.*CFG/Z<br>CUIV=2.*CFG/Z<br>CUIV=2.*CFG/Z<br>CUIV=2.*CFG/Z<br>CUIV=2.*CFG/Z<br>CUIV=2.*CFG/Z<br>CUIV=2.*CFG/Z<br>CUIV=2.*CFG/Z<br>CUIV=2.*CFG/Z<br>CUIV=2.*CFG/Z<br>CUIV=2.*CFG/Z<br>CUIV=2.*CFG/Z<br>CUIV=2.*CFG/Z<br>CUIV=2.*CFG/Z<br>CUIV=2.*CFG/Z<br>CUIV=2.*CFG/Z<br>CUIV=2.*CFG/Z<br>CUIV=2.*CFG/Z<br>CUIV=2.*CFG/Z<br>CUIV=2.*CFG/Z<br>CUIV=2.*CFG/Z<br>CUIV=2.*CFG/Z<br>CUIV=2.*CFG/Z<br>CUIV=2.*CFG/Z<br>CUIV=2.*CFG/Z<br>CUIV=2.*CFG/Z<br>CUIV=2.*CFG/Z<br>CUIV=2.*CFG/Z<br>CUIV=2.*CFG/Z<br>CUIV=2.*CFG/Z<br>CUIV=2.*CFG/Z<br>CUIV=2.*CFG/Z<br>CUIV=2.*CFG/Z<br>CUIV=2.*CFG/Z<br>CUIV=2.*CFG/Z<br>CUIV=2.*CFG/Z<br>CUIV=2.*CFG/Z<br>CUIV=2.*CFG/Z<br>CUIV=2.*CFG/Z<br>CUIV=2.*CFG/Z<br>CUIV=2.*CFG/Z<br>CUIV=2.*CFG/Z<br>CUIV=2.*CFG/Z<br>CUIV=2.*CFG/Z<br>CUIV=2.*CFG/Z<br>CUIV=2.*CFG/Z<br>CUIV=2.*CFG/Z<br>CUIV=2.*CFG/Z<br>CUIV=2.*CFG/Z<br>CUIV=2.*CFG/Z<br>CUIV=2.*CFG/Z<br>CUIV=2.*CFG/Z<br>CUIV=2.*CFG/Z<br>CUIV=2.*CFG/Z<br>CUIV=2.*CFG/Z<br>CUIV=2.*CFG/Z<br>CUIV=2.*CFG/Z<br>CUIV=2.*CFG/Z<br>CUIV=2.*CFG/Z<br>CUIV=2.*CFG/Z<br>CUIV=2.*CFG/Z<br>CUIV=2.*CFG/Z<br>CUIV=2.*CFG/Z<br>CUIV=2.*CFG/Z<br>CUIV=2.*CFG/Z<br>CUIV=2.*CFG/Z<br>CUIV=2.*CFG/Z<br>CUIV=2.*CFG/Z<br>CUIV=2.*CFG/Z<br>CUIV=2.*CFG/Z<br>CUIV=2.*CFG/Z<br>CUIV=2.*CFG/Z<br>CUIV=2.*CFG/Z<br>CUIV=2.*CFG/Z<br>CUIV=2.*CFG/Z<br>CUIV=2.*CFG/Z<br>CUIV=2.*CFG/Z<br>CUIV=2.*CFG/Z<br>CUIV=2.*CFG/Z<br>CUIV=2.*CFG/Z<br>CUIV=2.*CFG/Z<br>CUIV=2.*CFG/Z<br>CUIV=2.*CFG/Z<br>CUIV=2.*CFG/Z<br>CUIV=2.*CFG/Z<br>CUIV=2.*CFG/Z<br>CUIV=2.*CFG/Z<br>CUIV=2.*CFG/Z<br>CUIV=2.*CFG/Z<br>CUIV=2.*CFG/Z<br>CUIV=2.*CFG/Z<br>CUIV=2.*CFG/Z<br>CUIV=2.*CFG/Z<br>CUIV=2.*CFG/Z<br>CUIV=2.*CFG/Z<br>CUIV=2.*CFG/Z<br>CUIV=2.*CFG/Z<br>CUIV=2.*CFG/Z<br>CUIV=2.*CFG/Z<br>CUIV=2.*CFG/Z<br>CUIV=2.*CFG/Z<br>CUIV=2.*CFG/Z<br>CUIV=2.*CFG/Z<br>CUIV=2.*CFG/Z<br>CUIV=2.*CFG/Z<br>CUIV=2.*CFG/Z<br>CUIV=2.*CFG/Z<br>CUIV=2.*CFG/Z<br>CUIV=2.*CFG/Z<br>CUIV=2.*CFG/Z<br>CUIV=2.*CFG/Z<br>CUIV=2.*CFG/Z<br>CUIV=2.*CFG/Z<br>CUIV=2.*CFG/Z<br>CUIV=2.*CFG/Z<br>CUIV=2.*CFG/Z<br>CUIV=2.*CFG/Z<br>CUIV=2.*CFG/Z<br>CUIV=2.*CFG/Z<br>CUIV=2.*CFG/Z<br>CUIV=2.*CFG/Z<br>CUIV=2.*CFG/Z<br>CUIV=2.*CFG/Z<br>CUIV=2.*CFG/Z<br>CUIV=2.*CFG/Z<br>CUIV=2.*CFG/Z<br>CUIV=2.*CFG/Z<br>CUIV=2.*CFG/Z<br>CUIV=2.*CFG/Z<br>CUIV=2.*CFG/Z<br>CUIV=2.*CFG/Z<br>CUIV=2.*CFG/Z<br>CUIV=2.*CFG/Z<br>CUIV=2.*CFG/Z<br>CUIV=2.*CFG/Z<br>CUIV=2.*CFG/Z<br>CUIV=2.*CFG/Z                                                                                                                                                                                                                                        | DS)'//4X.'CABL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |
| <pre>PI=3.1415926<br/>NPCOR=CK+100.<br/>CALCULC FE NIVELFS DE PROBABILIDAD ACUMULADA DE LA D1<br/>CALCULC FE NIVELFS DE PROBABILIDAD ACUMULADA DE LA D1<br/>FALON<br/>ACONTACTACIÓN<br/>ACONTACIÓN<br/>ACONTACIÓN<br/>ACONTACIÓN<br/>ACONTACIÓN<br/>ACONTACIÓN<br/>ACONTACIÓN<br/>ACONTACIÓN<br/>ACONTACIÓN<br/>ACONTACIÓN<br/>ACONTACIÓN<br/>ACONTACIÓN<br/>ACONTACIÓN<br/>ACONTACIÓN<br/>ACONTACIÓN<br/>ACONTACIÓN<br/>ACONTACIÓN<br/>ACONTACIÓN<br/>ACONTACIÓN<br/>ACONTACIÓN<br/>ACONTACIÓN<br/>ACONTACIÓN<br/>ACONTACIÓN<br/>ACONTACIÓN<br/>ACONTACIÓN<br/>ACONTACIÓN<br/>ACONTACIÓN<br/>ACONTACIÓN<br/>ACONTACIÓN<br/>ACONTACIÓN<br/>ACONTACIÓN<br/>ACONTACIÓN<br/>ACONTACIÓN<br/>ACONTACIÓN<br/>ACONTACIÓN<br/>ACONTACIÓN<br/>ACONTACIÓN<br/>ACONTACIÓN<br/>ACONTACIÓN<br/>ACONTACIÓN<br/>ACONTACIÓN<br/>ACONTACIÓN<br/>ACONTACIÓN<br/>ACONTACIÓN<br/>ACONTACIÓN<br/>ACONTACIÓN<br/>ACONTACIÓN<br/>ACONTACIÓN<br/>ACONTACIÓN<br/>ACONTACIÓN<br/>ACONTACIÓN<br/>ACONTACIÓN<br/>ACONTACIÓN<br/>ACONTACIÓN<br/>ACONTACIÓN<br/>ACONTACIÓN<br/>ACONTACIÓN<br/>ACONTACIÓN<br/>ACONTACIÓN<br/>ACONTACIÓN<br/>ACONTACIÓN<br/>ACONTACIÓN<br/>ACONTACIÓN<br/>ACONTACIÓN<br/>ACONTACIÓN<br/>ACONTACIÓN<br/>ACONTACIÓN<br/>ACONTACIÓN<br/>ACONTACIÓN<br/>ACONTACIÓN<br/>ACONTACIÓN<br/>ACONTACIÓN<br/>ACONTACIÓN<br/>ACONTACIÓN<br/>ACONTACIÓN<br/>ACONTACIÓN<br/>ACONTACIÓN<br/>ACONTACIÓN<br/>ACONTACIÓN<br/>ACONTACIÓN<br/>ACONTACIÓN<br/>ACONTACIÓN<br/>ACONTACIÓN<br/>ACONTACIÓN<br/>ACONTACIÓN<br/>ACONTACIÓN<br/>ACONTACIÓN<br/>ACONTACIÓN<br/>ACONTACIÓN<br/>ACONTACIÓN<br/>ACONTACIÓN<br/>ACONTACIÓN<br/>ACONTACIÓN<br/>ACONTACIÓN<br/>ACONTACIÓN<br/>ACONTACIÓN<br/>ACONTACIÓN<br/>ACONTACIÓN<br/>ACONTACIÓN<br/>ACONTACIÓN<br/>ACONTACIÓN<br/>ACONTACIÓN<br/>ACONTACIÓN<br/>ACONTACIÓN<br/>ACONTACIÓN<br/>ACONTACIÓN<br/>ACONTACIÓN<br/>ACONTACIÓN<br/>ACONTACIÓN<br/>ACONTACIÓN<br/>ACONTACIÓN<br/>ACONTACIÓN<br/>ACONTACIÓN<br/>ACONTACIÓN<br/>ACONTACIÓN<br/>ACONTACIÓN<br/>ACONTACIÓN<br/>ACONTACIÓN<br/>ACONTACIÓN<br/>ACONTACIÓN<br/>ACONTACIÓN<br/>ACONTACIÓN<br/>ACONTACIÓN<br/>ACONTACIÓN<br/>ACONTACIÓN<br/>ACONTACIÓN<br/>ACONTACIÓN<br/>ACONTACIÓN<br/>ACONTACIÓN<br/>ACONTACIÓN<br/>ACONTACIÓN<br/>ACONTACIÓN<br/>ACONTACIÓN<br/>ACONTACIÓN<br/>ACONTACIÓN<br/>ACONTACIÓN<br/>ACONTACIÓN<br/>ACONTACIÓN<br/>ACONTACIÓN<br/>ACONTACIÓN<br/>ACONTACIÓN<br/>ACONTACIÓN<br/>ACONTACIÓN<br/>ACONTACIÓN<br/>ACONTACIÓN<br/>ACONTACIÓN<br/>ACONTACIÓN<br/>ACONTACIÓN<br/>ACONTACIÓN<br/>ACONTACIÓN<br/>ACONTACIÓN<br/>ACONTACIÓN<br/>ACONTACIÓN<br/>ACONTACIÓN<br/>ACONTACIÓN<br/>ACONTACIÓN<br/>ACONTACIÓN<br/>ACONTACI</pre> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |
| CUIN=2.+CFG/Z<br>CUIN=2.+CFG/Z<br>DELCULC FF NIVFLFS DE PRORABILIDAD ACUMULADA DE LA DI<br>DE LOS RAYOS (ANGULOS POSITIVOS)<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A=0.<br>A                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |
| A=0.<br>==F1/36.<br>Pa=0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | IRECCION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |
| PA=0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | in the second se | And the second se |   |
| 00 100 W=1,18<br>04-0445740567 A B 20 67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |
| R=F+F(136.<br>CGNTINUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |
| NUVFROMEDIC CF RAYOS POR DIA TOPMENTA PARA LA<br>Franja consicerada                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |
| PRI=CKO*_1*X4*2.<br>- NUWERD DF RAYOS DOR DIA TORMENTA CE ACUERDO A LA<br>DISTRIPUCION DE POISSON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |
| J1=1<br>CP#0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | - Alexandream - Ale                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |
| <pre>PT1:=PT1:=<br/>PT=(1,/2.71828**PRT1)*(1./2.71828**PRT1)*(1./2.71828*</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | **PRT1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1<br>1<br>2<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |
| GUARCAR NIVELES DE PROBAEILIDAD DE RAYOS POR TORMENTA<br>Nº94(J1)=10P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ٦                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |
| IF(TOD.FC.59)60 TO 52<br>001=001*60T/FLGAT(J1)<br>1.2 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |
| PROBARILIDAD DE TORMENTAS POR ANO<br>Ptaeficativijzee.<br>NPTaeficativijzee.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |
| INICIAR SIMULACICN INICIALIZAR CONTADORES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |
| NY=1<br>NY+1TO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | - |
| PRINT 1112<br>PRINT 1112<br>**********************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | DE DESCARG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |
| +ION SIMULADAS A TIERRA C. GUARDA LA LINEA 1'.9<br>+9X,19X,151.9X,16'.1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | , E', X9, 'S', X9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |
| IFUNT.G.WAJGU TU 50<br>Inicializar contadores para un and<br>Notaet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |
| NAAY=0<br>NIN<br>D=111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |
| N10+10<br>N5AL+0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |

:

|   |                                                                                                                                        |                 |                           | -                                                |     |
|---|----------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------------------------|--------------------------------------------------|-----|
| 1 | NIC(1)=0<br>IF(NL1A(1)55)GO TO 80<br>FC IN Dig CF TODUENTA                                                                             |                 |                           | . •                                              |     |
|   | NX=AANC(X)#1000<br>If (N×-Nat)54.53<br>ND[AanN[A+1                                                                                     | -               |                           |                                                  | ·'  |
|   | - GD TC €0<br>Numero de rayns por dia tormenta<br>Ny=sang(x)#ico.<br>Dd 102 j=1.ji                                                     |                 |                           |                                                  | 1   |
|   | . IF (NX-NPRT (J))55,55,102                                                                                                            |                 |                           |                                                  | 1   |
|   | CONTINUE<br>1F(NR1)53453458                                                                                                            |                 |                           |                                                  | ł   |
|   | TF (K-NRT )61,61,53<br>CGN AR AFCS<br>ND4X-ND4X-ND4X-ND4X-ND4X-ND4X-ND4X-ND4X-                                                         |                 | ripini da e mariat si e e |                                                  |     |
|   | PETERMINAP LA MAGNITUD DE LA CORGIENTE DEL RAYD<br>NX=RAND(7) %100.<br>XY=0 AAGE4440 AAGEAAAE_AAAVAAAAAAAAAAAAAAAAAAAAAAAAAAA          |                 |                           |                                                  |     |
|   | TAPUTCOJOITOLOGOSOTZE-UI+NA-UIBUOGIAE-UG+NA-NA-NA-UJ-UJ-UGEC-UG+LU<br>COG=10.##FX<br>ICCRelTA-CWINIGD TO 59<br>IFCCRelTA-CWINIGD TO 59 |                 |                           |                                                  |     |
|   | XI=FAND(X) +XA<br>NI=FAND(X) +100<br>FF(XX,50)5010 10 40                                                                               |                 | -                         |                                                  | 1   |
|   | XI =                                                                                                |                 |                           |                                                  | ÷ . |
|   | D3 103 M=1.1A<br>1F(N×-N=4(M)162.62.103<br>PSI=(PL/72.)*(L+22.*(FLOAT(M)−1.))                                                          |                 |                           |                                                  |     |
|   | GG TO €3<br>CONTINUE<br>NY==q=ND(x)≠LDO.                                                                                               | <u>1</u> (f)    |                           |                                                  | !   |
|   | PSIE-DSI Verseed<br>Alfeel/2                                                                                                           |                 | -                         | No 2011                                          | !   |
|   | ZS=7.1¢(CDR¢#0.75)<br>DETERMINAR EL ELEMENTO AL CUAL IMPACTO EL RAYO<br>DO 104 f=1.NC                                                  | ·<br>1 <u>月</u> |                           |                                                  |     |
| : | YC(I)=CORTE(HXC(I).HYC(I).ALF.XI.RE)<br>D0 105 J=1.NG<br>YG(J)=CORTE(HXG(J).HYG(J).ALF.XI.RE)                                          |                 |                           | ara 44 47 maara 40 maara 40 maara 40 maara 40 ma |     |
|   | 25   06   =1.NC<br>15 (7(1).€6.0.0)50 TO 106<br>16 (7C(1)-×C)106.€6.66                                                                 |                 |                           |                                                  | -   |
|   |                                                                                                                                        |                 |                           | •                                                | 102 |
|   | DU 107 J=1.NG<br>F(VG(1).FC.0.0)GO TO 107<br>F(VG(J)-KG)107.67.67<br>XG=YG(J)                                                          |                 |                           |                                                  | -   |
|   | CONTINUE<br>DC 10A 1=1.NC<br>IF(XC.EO.YC(1))GD TO 69                                                                                   |                 |                           |                                                  | ;   |
|   | CENTINCE<br>16/103 J=1.NG<br>17/105 TO 69                                                                                              |                 |                           |                                                  |     |
|   | CONTINUE<br>IF(Yc(1)~~Yc(J))70,70,71<br>IF(Yc(1)~CASG#R5)2C0.300<br>IF(Yc(1)~CASG#R5)2C0.200,400                                       |                 |                           | -                                                |     |
|   | NJT=NIT+1<br>G0 T0 59<br>G0 T0 59<br>F0 T0 641                                                                                         |                 |                           |                                                  | -   |
|   | NIC(I)-NIC(I)+1<br>Hay Falla df Corretente de 60 H2<br>NX=Fanc(X)*100.<br>If(XX-NPCOR)500.500.59                                       | ÷ .             |                           |                                                  | 1   |
|   | NSAL=NSAL+1                                                                                                                            |                 |                           |                                                  | 1   |

•

•

:

.

.

•

•

:

.

| FUNCTION RANG                                                              | 0(x)                                          | ÷                                      | ·                                    | !                                 |                                              |                         |           |             |    |        |
|----------------------------------------------------------------------------|-----------------------------------------------|----------------------------------------|--------------------------------------|-----------------------------------|----------------------------------------------|-------------------------|-----------|-------------|----|--------|
| IV=1465533<br>IV=1465533<br>IV=14(IV)5,6,6<br>IV=14+2147483                | 3647+1                                        |                                        |                                      |                                   |                                              |                         |           |             | •  |        |
| X=1Y<br>PAND=X+.46560<br>RETURN<br>END                                     | 613E-9                                        |                                        |                                      | •                                 | :                                            | :                       | :         |             |    |        |
| ESTF SUMPROG                                                               | PAMA EVALU                                    | A LA INTEC                             | GRAL DE FLX<br>Son. N= NUM           | C) ENTRE<br>() ENTRE<br>(ERO DE I | LOS LIMITES                                  |                         |           |             |    |        |
| FUNCTION SIM<br>CONNON CAN,E)<br>I=(9-A)/N<br>H=1/2.<br>SUM1=0.            | F.N.8.A.34                                    | ,                                      | •                                    |                                   |                                              |                         | :         |             |    |        |
| SUN2 = 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 *                                 | 1)*T<br>X)<br>X+H)<br>X+H)<br>X+H)            | -F(A)+F(B                              | -E/H*((                              |                                   | . Sull of                                    |                         |           |             |    |        |
|                                                                            |                                               |                                        | leve.                                |                                   |                                              |                         |           |             |    |        |
|                                                                            |                                               | A d                                    | در<br>م                              |                                   | **                                           | 1913)<br>1              |           | •           |    |        |
| 156789123<br>00.<br>Acultad dë Incenti<br>Fesis de Graco<br>Infa de Prueba | LA FLECT<br>CARLCS F.                         | 1 510<br>RICA - PO<br>RICFRJO 1<br>XA: | TFNCIA -<br>PFYFS<br>= 600 - METRO   | S                                 |                                              | 7                       | •         |             |    | -, 1   |
|                                                                            | ***<br>•00<br>•0.<br>•0.<br>•0.<br>•0.<br>•0. | ********<br>10C+<br>14.<br>8-3         | ******<br>• 1:54<br>• 2:13<br>• 2:03 | . • 0 0 8<br>9 • 8<br>¥ • • •     | E                                            | 19.2                    |           |             |    | 04 - : |
| са на стала стала стала на             | ***                                           | ***                                    | ****                                 | <b>今年本今年</b> 今年                   | <b>* * * * * * * * * * * * *</b> * * * * * * | . * * * * * * * * * * * | *         |             |    |        |
| TAPJETAS TRANSFER<br>FPN NSJS TIENPO DE                                    | LIDAS+**                                      | ZADO POR                               | EL PRCGRAM                           | A FALLA                           |                                              | 2,69 SEGU               | NDOS FECH | 77/70/02 =A | ** |        |
|                                                                            |                                               | :                                      |                                      |                                   |                                              |                         |           |             |    |        |
|                                                                            |                                               |                                        |                                      |                                   | 1                                            |                         |           | ¥           |    |        |

:

Ą.

A N E X O 3

LINEA DE TRANSMISION 220 KV (12).-

Configuración de la torre: Ver figura Cable de guarda: uno, flecha 7,6 metros. Conductores: seis, flecha 9.15 metros Vano medio: 366 metros Aisladores: 15 discos, 254 x 127 mm(10 x 5 pulgadas) Densidad de descarga a tierra: 3.86/Km<sup>2</sup> (NI = 25) Nivel de salidas observadas: 1.02/100Km-año(basado en 1500 km año de experiencia en operación)

 $CF0 = 1200 \ KV$ 

Impedancia característica del conductor de fase = 480  $\Omega$ Probabilidad P<sub>2</sub> = 0.85



Configuración del tope de la estructura de una línea de 220 KV.

105 -

## REFERENCIAS

- (1) ARMSTRONG H.R., WHITEHEAD E.R., "Field and Analytical studies of transmission line shielding". IEEE-T-PAS, Vol. 87, pp. 270-281, Enero 1968.
- (2) BROWN G.W., WHITEHEAD E.R., "Field and analytical studies of transmission line shielding: Part. II", IEEE-T-PAS, Vol 88, pp. 617-626, Mayo 1969.
- YOUNG F.S., CLAYTON J.M., HILEMAN A.R., "Shielding of Transmission lines"., IEEE-T-PAS.(Suplemento), Vol, 83, pp. 132-154, 1963.
- (4) COMISION FEDERAL DE ELECTRICIDAD (MEXICO), Capitulos
  6, 7 y 8, "Nature of lightning", "Lightning performance", "Shielding", Documento de consulta, 1975.
- WAGNER C.F., HILEMAN A.R., "Surge Impedance and Its Application to the lighting Stroke". AIEE-T-PAS, Vol. 81, pp. 1011-1022, 1962.
- (6) ANDERSON J.G., "Monte-Carlo Computer Calculation of Transmission-Line Lightning Performance". AIEE-T-PAS, Vol. 80, pp. 414-420, 1961.
- (7) CURRIE J.R., CHOY L.A., DARVENIZA M., "Monte-Carlo Determination of the Frequecy of lightning strokes and shielding failures on transmission lines". IEEE-T-PAS Vol. 91, pp.2305-2312, 1972.
- (8) MORENO M., VELAZQUEZ R., "Programa digital para deter minar el comportamiento de líneas de transmisión a -

descargas atmosféricas"., Comisión Federal de Electricidad, (MEXICO), Instituto de Investigaciones de la Industria Eléctrica, 1975.

- (9) GOLDE R.H., "Lightning surges on overhead distribution Lines caused by indirect and direct lightning strokes" AIEE-T-PAS, Vol. 73, pp. 437-447, 1954.
- (10) ARMSTRONG H.R., WHITEHEAD E.R., "A Lightning stroke Pathfinder", IEEE-T-PAS, Vol. 83, pp. 1223, 1227, 1964
- (11) WAGNER C.F., "The Relation Between Stroke current and the Velocity of the Return stroke". IEEE-T-PAS, VOL.
   81, pp. 609-617, 1963.
- (12) DIESENDORF W., "Insulation Co-ordination in High-Voltage Electric Power Systems". London, Butterworths, primera publicación, 1974.
- (13) MENA A., "Introducción al estudio de fenómenos tra<u>n</u> sitorios en líneas de transmisión",Escuela Politécnica Nacional, 1972,.
- (14) LIWIS W.W., "The Protection of transmission systems against lightning". Dover Publications, Inc. New York, 1965.
- (15) MOELLER F., "Manual del Electrotécnico". Tomo II, <u>E</u> ditorial Labor, S.A., primera edición, Julio 1967, Barcelona.
- (16) CARNAHAN B., LUTHER H.A., WILKES J.O., "Applied numerical methods". John Wiley and Sons, Inc., New York, 1969.

- (17) ROZANOV Y., "Procesos Aleatorios", Editorial MIR, Moscú, 1973.
- (18) Paquete de Subrutinas científicas del sistema IBM-370, Instituto de Computación, Escuela Politécnica Nacional.