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Abstract

The differential Riccati equations (DREs) arises in several applications, espe-
cially in control theory. Partial Differential Equations constraint optimization
problems often lead to formulations as abstract Cauchy problems. Imposing
a quadratic cost functional we obtain a linear quadratic regulator problem for
an infinite-dimensional system. The optimal control is then given as the feed-
back control in terms of the operator differential Riccati equation. In order
to solve such problems numerically we need to solve the large-scale DREs re-
sulting from the semi-discretization. Typically the coefficient matrices of the
resulting DRE have a given structure (e.g. sparse, symmetric, or low rank). We
derive numerical methods capable of exploiting this structure. Moreover, we
expect to treat stiff DREs, so we will focus on methods that can deal stiffness
efficiently. Backward differentiation formulae (BDF) methods and Rosenbrock
type methods are commonly used to solve stiff systems among linear multistep
and one step ordinary differential equation (ODE) methods respectively. In this
research we develop efficient matrix valued algorithms of these ODE methods
suitable for large-scale DREs. The task of solving large-scale DREs appears
also in nonlinear optimal control problems of tracking and stabilization type in
the context of receding horizon techniques and model predictive control, i.e.,
we solve linearized problems on small time frames. We discuss the numerical
solution of optimal control problems for instationary heat, convection-diffusion
and diffusion-reaction equations formulating the problem as an abstract LQR
problem.
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Resumen

Las ecuaciones diferenciales de Riccati (EDRs) aparecen en muchas aplica-
ciones de ciencia e ingenieŕıa, en especial en la teoŕıa de control. Problemas
de optimización gobernados por ecuaciones diferenciales parciales con frecuen-
cia pueden formularse como problemas de Cauchy abstractos; si además se im-
pone un funcional de costo cuadrático se obtiene un problema linear quadratic
regulator para un sistema de dimensión infinita. La solución de este problema
esta dada via feedback en términos de la ecuación diferencial de Riccati para
operadores. De la semidiscretización de este problema resulta una ecuación
matricial de Riccati a gran escala. T́ıpicamente los coeficientes de la ecuación
matricial resultante tienen una estructura definida (e.g., dispersión, simetŕıa ó
rango bajo). En este trabajo derivamos métodos numéricos capaces de explotar
eficientemente esta estructura. Se espera que las EDRs sean ŕıgidas (stiff ),
por lo que nos enfocaremos en métodos que puedan tratar el fenómeno de la
rigidez eficientemente. Los métodos BDF (backward differentiation formulae) y
los métodos de tipo Rosenbrock son comúnmente usados para tratar sistemas de
ecuaciones diferenciales ordinarias (EDO) ŕıgidos entre los métodos de multipaso
y un paso, respectivamente. Por lo tanto derivamos versiones matriciales de es-
tos algoritmos aplicables a EDRs a gran escala. El problema de resolver EDRs
a gran escala es también de gran importancia en problemas de control óptimo
no lineal de tipo tracking o stabilization en el contexto de receding horizon y
model predictive control, i.e., se resuelven problemas lineales en intervalos de
tiempo pequeños. En este marco estudiamos la resolución numérica de proble-
mas de control óptimo para ecuaciones no estacionarias tales como: la ecuación
del calor, convección-difusión formuladas previamente como problemas LQR
abstractos.
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Notation

R: set of real numbers
C: set of complex numbers

Rn×m: space of n×m real matrices
Cn×m: space of n×m complex matrices

C−: the open left half plane of C
I : identity matrix

AT : transpose of matrix A
AH : hermitian of matrix A

rank(A): rank of matrix A
A−1: inverse of A

A > 0: positive definite
A ≥ 0: positive semidefinite
σ(A): spectrum of A
ρ(A): spectral radius of A

PCm[a,b]: set of piecewise continuous functions u(t) ∈ Rm, t ∈ [a, b]
R(z): stability function of a numerical method for ordinary

differential equations
E[.]: the expected value of a random variable
ΦJJ : the autocovariance of a stochastic process J(t)

cov(.) : covariance matrix of a random variable
L(X,Y ): space of linear, bounded operators from a Banach space X

to a Banach space Y , in case Y = X we use L(X)
H: state space
U : control space
Y : output space

‖·‖X : norm on space X
〈·, ·〉X : the duality product, or the inner product on X

Lp(a, b;U): the Banach space of strongly measurable U-valued functions

u(.) for which
∫ b

a ‖u(t)‖
p
dt <∞†, L2(a, b;U) is a Hilbert space

with the inner product 〈u1(·), u2(·)〉L2 =
∫ b

a
〈u1(t), u2(t)〉Udt

T (t): one parameter semigroup, t ≥ 0

1
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U(t, s): strongly continuous evolution family, t, s ∈ R, t ≥ s
A: we use bold letters for infinite-dimensional operators and

regular letters for the finite-dimensional ones
A∗: the Hilbert space adjoint of A

dom(A): domain of A

∇: nabla operator, ∇f = ( ∂f∂x1
, . . . , ∂f∂xn

)

∆: Laplace operator, ∆f = ∇.(∇f) =
∑n
i=1

∂2f
∂x2

i

† for the definition of Lp(a, b;U), as well as for the setting of optimal control
problems in Hilbert spaces, the integral involved is the Bochner integral, see for
instance [61].
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ONE

Introduction

The differential Riccati equation (DRE) is one of the most deeply studied non-
linear matrix differential equations arising in optimal control, optimal filter-
ing, H∞ control of linear-time varying systems, differential games, etc.(see e.g.
[2, 63, 69, 95]). In the literature there is a large variety of approaches to compute
the solution of the DRE (see e.g. [38, 45, 46, 70]), however none of these meth-
ods seem to be suitable for large-scale control problems, since the computational
effort grows at best like n3, where n is the dimension of the state of the control
system. In this thesis we consider the numerical solution of large-scale DREs
arising in optimal control problems for parabolic partial differential equations.
Hence, let us consider nonlinear parabolic diffusion-convection and diffusion-
reaction systems of the form

∂x

∂t
+∇ · (c(x) − k(∇x)) + q(x) = Bu(t), t ∈ [0, Tf ], (1.1)

in Ω ⊂ Rd, d = 1, 2, 3, with appropriate initial and boundary conditions. The
equation can be split into the convective term c, the diffusive part k and the
uncontrolled reaction given by q. The state x of the system depends on ξ ∈ Ω
and the time t ∈ [0, Tf ] and is denoted by x(ξ, t). For instance, in the problem
of optimal cooling of steel profiles [24, 25, 49, 103, 112], x(ξ, t) denotes the
temperature in ξ at time t, the convective term c as well as the uncontrolled
reaction term q are equal to zero, and the diffusive part k depends on the
material parameters: heat conductivity, heat capacity and density.

Moreover, we consider applications where the control u(t) is assumed to
depend only on the time t ∈ [0, Tf ] while the linear operator B may depend on

ξ ∈ Ω. Let Ĵ(x,u) be a given performance index, then the control problem is
given as:

min
u
Ĵ(x,u) subject to (1.1). (1.2)

If (1.1) is in fact linear, then a variational formulation leads to an abstract

3
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Cauchy problem for a linear evolution equation of the form

ẋ = Ax + Bu, x(0) = x0 ∈ H, (1.3)

for linear operators

A : dom(A) ⊂ H → H,
B : U → H, (1.4)

C : H → Y ,

where the state space H, the observation space Y , and the control space U are
assumed to be separable Hilbert spaces. Additionally, U is assumed to be finite-
dimensional, i.e. there are only a finite number of independent control inputs
to (1.1). Here C maps the states of the system to its outputs, such that

y = Cx. (1.5)

If (1.1) is nonlinear, model predictive control technics can be applied [18, 67, 68].
There the equation is linearized at certain working points or around reference
trajectories and linear problems for equations as in (1.3) have to be solved on
subintervals of [0, Tf ]. We review this technique in Chapter 6, Section 6.2.

In many applications in engineering the performance index Ĵ(x,u) is given
in quadratic form. We assume (1.3) to have a unique solution for each input u

so that x = x(u). Thus we can write the cost functional as J(u) := Ĵ(x(u),u).
Then

J(u) =
1

2

Tf∫

0

〈x,Qx〉H + 〈u,Ru〉U dt+ 〈xTf
,GxTf

〉H, (1.6)

where Q, G are self-adjoint operators on the state space H, R is a self-adjoint
operator on the control space U and xTf

denotes x(., Tf ). To guarantee unique
solvability of the control problem R is assumed positive definite. Since often
only a few measurements of the state are available as the outputs of the system,
the operator Q := C∗Q̃C generally is only positive semidefinite as well as G.
In many applications one simply has Q̃ = I.

If the standard assumptions that

• A is the infinitesimal generator of a strongly continuous semigroup T (t),

• B,C are linear bounded operators and

• for every initial value there exists an admissible control u ∈ L2(0,∞;U)

hold, then the solution of the abstract LQR problem can be obtained analogously
to the finite-dimensional case (see [40, 52, 76, 118]). We then have to consider
the operator Riccati equations

0 = <(X) := C∗QC + A∗X + XA−XBR−1B∗X (1.7)
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and
Ẋ = −<(X) (1.8)

depending on whether Tf < ∞ (1.8) or not (1.7). If Tf = ∞, then G = 0 and
the linear operator X is the solution of (1.7), i.e. X : domA → domA∗ and
〈x̂,<(X)x〉 = 0 for all x, x̂ ∈ dom(A). The optimal control is then given as the
feedback control

u∗(t) = −R−1B∗X∞x∗(t), (1.9)

which has the form of a regulator or closed-loop control. Here, X∞ is the
minimal nonnegative self-adjoint solution of (1.7), x∗(t) = S(t)x0(t), and S(t) is
the strongly continuous semigroup generated by A−BR−1B∗X∞. In problems
where Tf < ∞, the optimal control is defined similarly to (1.9 ), but then X∞

represents the unique nonnegative solution of the differential Riccati equation
(1.8) with terminal condition XTf

= G and therefore depends on time, i.e., it has
to be replaced by X∞(t) in (1.9). Most of the required conditions, particularly
the restrictive assumption that B is bounded, can be weakened [75, 76, 99]. In
this thesis we will focus on the finite-time horizon case, Tf <∞.

In order to solve the infinite-dimensional LQR problem numerically we use
a Galerkin projection of the variational formulation of the PDE (1.1) onto a
finite-dimensional space HN spanned by a finite set of basis functions (e.g.,
finite element ansatz functions).

If we now choose the space of test functions as the space generated by finite
element (fem) ansatz functions for a finite element semi-discretization in space,
then the operators above have matrix representations in the fem basis. So we
have to solve the discrete problem

min
u∈L2(0,Tf ;U)

1

2

Tf∫

0

〈x,Qx〉HN + 〈u,Ru〉U dt+ 〈xTf
, GxTf

〉HN , (1.10)

with respect to

ẋ = Ax+Bu,

x(0) = PNx0, (1.11)

y = Cx.

Here PN is the projection operator from the space discretization method (here
fem). Approximation results in terms of the Riccati solution operator X and
the solution semigroup S(t) for the closed loop system, validating this technique
have been considered, e.g., in [12, 24, 65, 76, 87, 88]. Note that the control space
is considered finite-dimensional and therefore does not change under spatial
semi-discretization, i.e., we can directly apply the control computed for the
discretized systems (1.11) to the infinite-dimensional system (1.3), although
it might be suboptimal there. The estimation of the sub-optimality of that
approach will be considered elsewhere.
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To apply such a feedback control strategy to PDE control, in the finite-time
horizon case, we need to solve the large-scale DREs resulting from the semi-
discretization. Typically the coefficient matrices of the resulting DRE have a
given structure (e.g. sparse, symmetric, or low rank). We derive numerical
methods capable of exploiting this structure. Moreover, we expect to treat
stiff DREs, so we will focus on methods that can deal with stiffness efficiently.
Backward differentiation formula (BDF) methods and Rosenbrock methods are
commonly used to solve stiff systems among linear multistep and one step or-
dinary differential equation (ODE) methods, respectively. In this research we
develop efficient matrix valued algorithms of these ODE methods suitable for
large-scale DREs.

Besides the vast variety of linear-quadratic problems that can be solved if an
efficient DRE solver is available, the task of solving large-scale DREs appears
also to become an increasingly important issue in nonlinear optimal control
problems of tracking type and stabilization problems for classes of nonlinear
instationary PDEs. Linear-quadratic Gaussian (LQG) design on short time
intervals is the main computational ingredient in recently proposed receding
horizon (RHC) and model predictive control (MPC) approaches, e.g. [18, 67,
68].

We discuss the numerical solution of optimal control problems governed by
systems of the form (1.1), formulating the problem as an abstract LQR problem.
Solving this problem, on a finite-time horizon, immediately leads to the problem
of solving large-scale DREs, which we solve using our approach. Finally, we
study the nonlinear case applying MPC, i.e. we solve linearized problems on
small time frames using LQG design.

The outline of this thesis is now described, see Figure 1.1. In Chapter 2, we
briefly summarize the basic concepts for finite and infinite-dimensional optimal
control and the numerical solution of ordinary differential equations. Then, in
Chapter 3, for the finite-time horizon case, we present an approximation frame-
work for computation of Riccati operators than can be guaranteed to converge to
the Riccati operator in feedback control. After that, we will review the existing
methods to solve DREs and investigate whether they are suitable for large-scale
problems arising in LQR and LQG design for semi-discretized parabolic partial
differential equations. Based on this review in Chapter 4, we present efficient
matrix valued algorithms of the BDF and Rosenbrock methods for ODEs. The
crucial question of suitable stepsize and order selection strategies is also ad-
dressed. Solving the DRE using BDF methods requires the solution of an ARE
in every step. The Newton-ADI iteration is an efficient numerical method for
this task. It includes the solution of a Lyapunov equation by a low rank version
of the alternating direction implicit (ADI) algorithm in each iteration step. The
application of an s stage Rosenbrock method to the DRE requires the solution
of one Lyapunov equation in each stage, as for the BDF methods, we solve the
Lyapunov equation by the low rank version of the ADI algorithm. The con-
vergence of the ADI algorithm strongly depends on the set of shift parameters.
Therefore, a new method for determining sets of shift parameters for the ADI
algorithm is proposed at the end of this chapter. In Chapter 5 numerical ex-
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amples illustrating the efficiency of our algorithms are presented. Applications
to linear control problems as well as nonlinear ones are presented in Chapter 6.
Finally, in Chapter 7, conclusions regarding the results achieved in this thesis
are drawn, as well as some opportunities for future research.
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Figure 1.1: Guide to the thesis.



CHAPTER

TWO

Basic concepts

In this Chapter, we briefly summarize some concepts and results which we hope
facilitates the reading of this thesis. First in section 2.1, basic concepts of the
numerical solution of ordinary differential equations are presented. Then, in sec-
tion 2.2 we review how the differential Riccati equation is involved in the solution
of the finite-dimensional linear-quadratic optimal control problems. Existence
and uniqueness results for the differential Riccati equation are presented also.
Finally, a brief introduction to semigroup theory is given in section 2.3, as well
as some results which are needed in Chapter 3.

2.1 Ordinary differential equations

Let us consider the following (ODE) ordinary differential equations system

ẋ = f(t, x), a ≤ t ≤ b
x(a) = xa.

(2.1)

The system (2.1) is said to be autonomous if f does not depend explicitly on
time t, otherwise it is non-autonomous.
We discuss here stability and stiffness of ODEs, a detailed discussion can be
found, e.g., in [7, 31, 57, 58].
The term stability has been used in a large variety of different concepts. It
is important to be careful differentiating between stability of the system and
stability of a numerical method for the system. We skip the stability of the
system here, the interested reader can refer to specialized literature on the
subject, see for instance [28].

Definition 2.1.1 The function R(z), that can be interpreted as the numerical
solution after one step for the famous Dahlquist test equation

ẋ = λx, x0 = 1, z = hλ,

9
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is called the stability function of the method. The set

S = {z ∈ C : |R(z)| ≤ 1}

is called the stability domain of the method.

Example 2.1.2 :

(a) The stability function of the Euler method is:

R(z) = 1 + z.

(b) The stability function of the Runge-Kutta method of order p is:

R(z) = 1 + z +
z2

2!
+ · · ·+ zp

p!
+O(zp+1).

Definition 2.1.3 A method whose stability domain satisfies

S ⊃ C− = {z : Re(z) ≤ 0}

is called A-stable.

A-stability is a desirable property of a numerical method to handle stiffness.
However, it does not give a complete answer for this phenomenon. The trape-
zoidal rule and the midpoint rule as well (both have the same stability func-
tion) for the integration of first order ordinary differential equations is shown to
posses (for a certain type of problem) an undesirable property, see Figure 2.1.
To overcome this difficulty Ehle (1969) introduced the concept of L-stability.

Definition 2.1.4 A method is called L-stable if it is A-stable and if in addition

lim
z→∞

R(z) = 0.

We affirm that A-stability and specially L-stability are desirable properties to
treat stiff problems. But, what exactly means that a system is stiff? We will
briefly answer this question in the following.

2.1.1 Stiff systems

Stiffness does not have a universally accepted definition. Often it is described
in terms of multiple time scaling. If the problem has widely varying time scales,
and the phenomena that change on fast scales are stable, then the problem is
stiff. In chemical reacting systems, stiffness often arises from the fact that some
chemical reactions occur much more rapidly than others. In qualitative terms,
(see [7] for a detail explanation) it could be defined as follows:
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Figure 2.1: Approximated solution of (2.2).

Definition 2.1.5 A system of the form (2.1) is stiff in some interval [a, b] if
the step size needed to maintain stability of the forward Euler method is much
smaller than the step size required to represent the solution accurately.

Example 2.1.6 Let us consider the stiff ODE system:

ẋ(t) = −100(x(t)− sin(t)),
x(0) = 1 t ≥ 0.

(2.2)

Figure 2.1 show the approximated solution of (2.2) by the implicit Euler method,
the linearly implicit Euler method (Rosenbrock method of order one) and the
implicit trapezoidal rule.

Notice that, in addition to the ODE system, stiffness depends on: the accu-
racy criterion, the length of the interval of integration, and the region of absolute
stability of the method. Stiffness has to do with the ratio of eigenvalues and
therefore, even though the concept of stiffness is best understood in qualitative
terms, we could “define” stiffness as follows:

Remark 2.1.7 A system of the form (2.1) is stiff if

maxiRe(λi)

mini Re(λi)
� 1

where λi are the eigenvalues of the Jacobian of f w.r.t. x and 100 could be
taken as a “fuzzy boundary” between not being stiff and being stiff.
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Remark 2.1.7 can be useful in case the solution leaves a stiff domain and enters
a non stiff domain making feasible the implementation of an integrator that
switches from a method for stiff problems to one for non stiff problems, see [50].

2.2 Finite-dimensional LQR control theory

We will review the standard theory of the finite-dimensional optimal control
theory for the finite-time horizon case. This theory can also be found in many
textbooks, see for instance [5, 8, 35, 106]. We will closely follow the derivation
in [14].
Let us consider the continuous time autonomous linear-quadratic optimal con-
trol problem

Minimize:

J (u(.)) =
1

2

∫ Tf

0

(y(t)TQy(t) + u(t)TRu(t))dt (2.3)

with respect to

ẋ(t) = Ax(t) +Bu(t), t > 0, x(0) = x0,
y(t) = Cx(t), t ≥ 0,

(2.4)

where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, D ∈ Rp×m and Tf <∞.

First of all, we will need some definitions and properties of the dynamical
system (2.4).

Definition 2.2.1 Let A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n.

i) The matrix pair (A,B) is controllable if for all x1 ∈ Rn there exists t1 ≥ 0
and u ∈ PCm[0, t1] such that x(t1) = x1.

ii) The matrix pair (C,A) is observable if the matrix pair (AT , CT ) is con-
trollable.

iii) The matrix pair (A,B) is stabilizable if for all x there exists u such that
limt→∞ x(t) = 0 where x solves ẋ = Ax+ Bu.

iv) The matrix pair (C,A) is detectable if x is the solution of ẋ = Ax and
Cx(t) ≡ 0 then limt→∞ x(t) = 0.

Proposition 2.2.2 Let A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n.

a) The following conditions are equivalent to the controllability of the matrix
pair (A,B):

1. rank([B,AB,A2B, . . . , An−1B]) = n (Hautus-Test).

2. rank([A− λIn, B]) = n for all λ ∈ C.
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b) The following conditions are equivalent to the observability of the matrix
pair (C,A):

1. rank([CT , (CA)T , (CA2)T , . . . , (CAn−1)T ]T ) = n.

2. rank([AT − λI, CT ]T ) = n for all λ ∈ C.

c) The following conditions are equivalent to the stabilizability of the matrix
pair (A,B):

1. rank([A− λI,B]) = n for all λ ∈ C with Re(λ) ≥ 0.

2. There exists K ∈ Rm×n such that A+BK is stable.

d) The following conditions are equivalent to the detectability of the matrix
pair (C,A):

1. The matrix pair (AT , CT ) is stabilizable.

2. rank([AT − λI, CT ]T ) = n for all λ ∈ C with Re(λ) ≥ 0.

3. There exists K ∈ Rn×p such that A+KC is stable.

e) A matrix K ∈ Rm×n is stabilizing for (A,B) iff A+BK is stable.

Note that detectability and observability are dual concepts to controllability
and stabilizability since the adjoint system of (2.4) is given by

ẋ(t) = ATx(t) + CTu(t), (2.5)

with A and C as in (2.4).

2.2.1 Existence of solutions

Consider a cost functional given by

J (u(.)) =

∫ Tf

0

g(t, x, u)dt

and a system described by the set of ordinary differential equations

ẋ(t) = f(t, x, u)

with initial condition x(0) = x0 and no target condition for x(Tf ) is prescribed.
In our case, the function g is given by

g(t, x, u) ≡ g(x, u) ≡ g(x(t), u(t))

=
1

2
(x(t)TCTQCx(t) + u(t)TRu(t))

=
1

2
(y(t)TQy(t) + u(t)TRu(t)),
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while the governing differential equation is defined via the function

f(t, x, u) ≡ f(x, u) ≡ f(x(t), u(t)) = Ax(t) +Bu(t).

Next, we define the Hamilton function by

H(x, u, µ) = −g(x, u) + µ(t)T f(x, u),

where the components of the co-state µ(t) ∈ Rn satisfy µ̇j(t) = − ∂H
∂xj

for j =

1, . . . , n, which is in our case equivalent to

µ̇(t) = CTQCx(t)−ATµ(t). (2.6)

From the Potryagin Maximum Principle for autonomous systems as given, e.g.,
in [98, Theorem 4.3], we obtain:

Proposition 2.2.3 Let u∗(t) ∈ PCm[0, Tf ] and let x∗ be the trajectory deter-
mined by ẋ(t) = Ax(t)+Bu∗(t), x(0) = x0. Then in order for u∗ to be optimal,
i.e, J (u∗) ≤ J (u) for all u ∈ PC[0, Tf ], it is necessary that the following two
conditions hold.

(i) H(x, u∗, µ) ≥ H(x, u, µ) on [0, Tf ] for all u ∈ PCm[o, Tf ];

(ii) µ(Tf ) = 0.

Condition (i) is called the maximum condition while (ii) is a transversality
condition.
As u is not constraint, we obtain from Proposition 2.2.3 (i) that ∂H

∂uj
= 0 for

j = 1, . . . ,m and hence it follows that

−Ru(t) +BTµ(t) = 0 (2.7)

must hold on [0, Tf ] for an optimal control. Moreover, the second derivative test
implies R ≥ 0 as a necessary condition for the existence of an optimal control
minimizing the objective functional J (u).
Collecting all equations, i.e, the state equations together with the initial condi-
tions, (2.6) together with the transversality condition, and (2.7), we obtain

ẋ(t) = Ax(t) +Bu(t), x(0) = x0,

µ̇(t) = CTQCx(t) −ATµ(t), µ(Tf ) = 0,

0 = Ru(t)−BTµ(t).

These equations can be combined to the two-point boundary value problem





In 0 0
0 In 0
0 0 0









ẋ
µ̇
u̇



 =





A 0 B
CTQC −AT 0

0 −BT R









x
µ
u



 ,

x(0) = x0, µ(Tf ) = 0.

(2.8)
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Note that u̇ only appears formally, so that (2.8) does not require additional
smoothness properties for u. Actually, (2.8) is a boundary value problem for a
differential algebraic equation where the co-state µ and the control are related
by a purely algebraic equation. Assuming R nonsingular, u can be removed from
the system, yielding an ordinary boundary value problem; see next section.
Due to the special structure of the autonomous linear-quadratic optimal control
problem, the conditions derived from the Pontryagin Maximum Principle yield
necessary and sufficient conditions for existence of an optimal control. These
are summarized in the following theorem, see e.g [35].

Theorem 2.2.4 a) If u∗ ∈ PCm[0, Tf ] is an optimal control for the linear-
quadratic optimization problem (2.3)-(2.4), then there exists a co-state µ with
µ(t) ∈ Rn such that [(x∗(t))

T , (u∗(t))
T , (µ(t))T ]T satisfies the two-point bound-

ary value problem (2.8).
b) If [(x∗(t))

T , (u∗(t))
T , (µ(t))T ]T satisfies the two-point boundary value prob-

lem (2.8) and Q, R are positive semidefinite, then J (u∗) ≤ J (u) for all u ∈
PCm[0, Tf ] and for all (x, u) satisfying (2.4).

The above theorem yields conditions for the existence of a solution of the optimal
control problem by transforming the constrained optimization problem to a
boundary value problem.

2.2.2 Differential Riccati equations

Assuming that R is nonsingular (i.e, together with R ≥ 0 this implies that R is
positive definite, denoted here by R > 0), (2.7) is equivalent to

u(t) = R−1BTµ(t), (2.9)

such that the state equations can be written as

ẋ(t) = Ax(t) +Bu(t) = Ax(t) +BR−1BTµ(t). (2.10)

Using (2.10) the two point boundary value problem (2.8) can be written as

[
ẋ(t)
µ̇(t)

]

=

[
A BR−1BT

CTQC −AT
] [

x(t)
µ(t)

]

,
x(0) = x0,
µ(Tf ) = 0.

(2.11)

Making the ansatz µ(t) := −X(t)x(t), the terminal condition for the co-state
transforms to µ(Tf ) = X(Tf )x(Tf ) which together with µ(Tf ) = 0, and the fact

that x(Tf ) is unspecified implies X(Tf ) = 0. Employing µ̇(t) = −Ẋ(t)x(t) −
X(t)ẋ(t) we obtain from the first differential equation in (2.11)

ẋ(t) = Ax(t) −BR−1BTX(t)x(t),

while the second yields

CTQCx(t) +ATX(t)x(t) = −Ẋ(t)x(t) −X(t)ẋ(t)

= −Ẋ(t)x(t) −X(t)(Ax(t) −BR−1BTX(t)x(t)).
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The latter is equivalent to

(Ẋ(t) +X(t)A+ATX(t)−X(t)BR−1BTX(t) + CTQC)x(t) = 0

for all t ∈]0, Tf [. Hence, as x(t) is unspecified, we obtain the matrix differential
Riccati equation (DRE)

Ẋ(t) = −(CTQC +X(t)A+ATX(t)−X(t)BR−1BTX(t)), (2.12)

i.e., an autonomous nonlinear matrix-valued differential equation. Together
with X(Tf ) = 0 this yields an initial value problem in reverse time.
The existence and uniqueness of the DRE (2.12) is a direct consequence of [2,
Thm. 4.1.6], which we cite below.

Theorem 2.2.5 If S(t), Q(t) ≥ 0 for t ≤ t0, then the unique solution X of the
Riccati differential equation

Ẋ(t) = −Q(t)−A∗(t)X(t)−X(t)A(t) +X(t)S(t)X(t),
X(t0) = X0 ≥ 0,

where Q(t), A(t), R(t) ∈ Cn×n are piecewise continuous, locally bounded func-
tions, exists for t ≤ t0 with

0 ≤ X(t) ≤ X̃(t) for t ≤ t0;

here X̃ is the solution of

˙̃X = −A∗(t)X̃(t)− X̃(t)A(t) −Q(t), X̃(t0) = X0.

A detailed discussion of the theory of Riccati equations can be found in many
books, e.g., [2, 71, 101].
Transposing equation (2.12) we see that X(t)T has to satisfy the same differ-
ential equation as X(t) on the whole interval [0, Tf ]. From Theorem 2.2.5 it
follows that X∗(t) = X∗(t)

T , i.e., the solution X∗(t) is symmetric.
Under the given assumptions we obtain that the two-point boundary value prob-
lem (2.11) has a unique solution given by

µ∗(t) = X∗(t)x∗(t), t ∈ [0, Tf ],

where x∗(t) is the unique solution of the linear initial value problem

ẋ(t) = (A−BR−1BTX∗(t))x(t), x(0) = x0.

Summarizing all results, we obtain the following theorem.

Theorem 2.2.6 If Q ≥ 0, R > 0, and Tf < ∞, then there exists a unique
solution of the linear-quadratic optimal control problem (2.3)-(2.4). The optimal
control is given by the feedback law

u∗(t) = −R−1BTX∗(t)x(t), (2.13)
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where X∗(t) satisfies the DRE

Ẋ(t) = −(CTQC +X(t)A+ATX(t)−X(t)BR−1BTX(t)),

with the terminal condition X(Tf ) = 0. Moreover, for any initial value X0 the
optimal cost is

J (u∗(.)) =
1

2
(x0)

TX∗(0)x0.

The optimal control is therefore given as a closed-loop control, i.e., the system
state is used to determine the input via the feedback law (2.13). The matrix
K∗(t) := R−1BTX∗(t) is called the optimal gain matrix.

Remark 2.2.7 Let X(t) be the solution of the DRE (2.12). Define X̃(t, Tf ) =

X(Tf − t). Then X̃ satisfies the DRE

˙̃X(t) = CTQC + X̃(t)A+AT X̃(t)− X̃(t)BR−1BT X̃(t),

with the initial condition X̃(0, Tf ) = X(Tf ) = 0. Observing that

lim
Tf→0

˙̃X(t, Tf ) = 0

and denoting X∞(t) := limTf→0 X̃(t, Tf ), then X∞(t) satisfies the algebraic
Riccati equation

0 = CTQC + X̃∞(t)A+AT X̃∞(t)− X̃∞(t)BR−1BT X̃∞(t).

As X∞(t) has to satisfy the same equation for any t ∈ [0,∞[, the solution is
time-invariant, i.e., X∞(t) ≡ X∞.

2.3 Semigroup theory

In the following we will briefly summarize some basic concepts of semigroup
theory as well as some results of the theory applied to the linear-quadratic
control problem for infinite-dimensional systems. The theorems cited here will
be particularly important to prove the convergence result proposed in Chapter
3.

2.3.1 Introduction

The theory of (one-parameter) semigroups of linear operators in Banach spaces
started in the 1950s with the Hille-Yosida generation theorem. The theory is
now a well known subject thanks to the efforts of many people. Particularly,
semigroups have become an important tool for integro-differential equations and
functional equations, in infinite-dimensional control theory, e.g. [44, 48, 53, 89].
Here we follow the book of Engel and Nagel [48], we keep their notation and
skip the proofs of the theorems.
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The idea behind semigroups is strongly related with the solution of an au-
tonomous initial value problem. In 1821 Cauchy asks in his Course d’Analyse:

Determine the function ϕ(x) in such a way that it remains continuous be-
tween two arbitrary real limits of the variable x, and that, for all real values of
the variables x and y, one has

ϕ(x+ y) = ϕ(x)ϕ(y).

The exponential functions solves the problem. In fact they are the only solutions
of Cauchy’s problem. The problem can be reformulated as:

Cauchy’s problem. Find all maps T (.) : R+ → C satisfying the functional
equation

T (t+ s) = T (t)T (s) for all s, t ≥ 0,
T (0) = 1.

(2.14)

The property listed below will show how Cauchy’s problem is related to an
autonomous initial value problem.

Proposition 2.3.1 Let T (t) := eta for some a ∈ C and all t ≥ 0. Then the
function T (.) is differentiable and satisfies the differential equation (or, more
precisely, the initial value problem)

dT
dt (t) = aT (t) for all t ≥ 0,
T (0) = 1.

(2.15)

Conversely, the function T (.) : R+ → C defined by T (t) = eta for some a ∈ C
is the only differentiable function satisfying (2.15). Finally, we observe that
a = dT

dt (t)|t=0.

Hence, the answer to Cauchy’s problem is given by:

Theorem 2.3.2 Let T (.) : R+ → C be a continuous function satisfying (2.14).
Then there exists a unique a ∈ C such that

T (t) = eta for all t ≥ 0. (2.16)

In the following we will see how the extention of this scalar problem to Banach
spaces leads us to the definition of a semigroup.

2.3.2 Definitions and properties

First of all, we define a Banach algebra.

Definition 2.3.3 A Banach algebra is an associative algebra E (i.e. a vector
space which also allows the multiplication of vectors in a distributive and as-
sociative manner) over the real or complex numbers which at the same time is
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also a Banach space. The algebra multiplication and the Banach space norm
are required to be related by the following inequality:

‖x y‖ ≤ ‖x‖ ‖y‖ for all x, y ∈ E

This ensures that the multiplication operation is continuous.

If we take X to be a complex Banach space with norm ‖.‖ and denote by L(X)
the Banach algebra of all bounded linear operators on X endowed with the
operator norm. We can state Cauchy’s problem in this context as:

Cauchy’s problem on Banach spaces. Find all maps T (.) : R+ → L(X)
satisfying the functional equation

T (t+ s) = T (t)T (s) for all s, t ≥ 0,
T (0) = I,

(2.17)

where I represents the identity operator.

Definition 2.3.4 A family (T (t))t≥0 of bounded linear operators on a Banach
space X is called a (one-parameter) semigroup (or linear dynamical system)
on X if it satisfies the functional equation (2.17). If (2.17) holds even for all
t, s ∈ R, we call (T (t))t∈R a (one-parameter) group on X.

Let A ∈ L(X), we define an operator-valued exponential function by

etA :=

∞∑

k=0

tkAk

k!
, (2.18)

where the convergence of the series takes place in the Banach algebra L(X).
Then, similar to Proposition 2.3.1 the next result can be stated.

Proposition 2.3.5 For A ∈ L(X) define (etA)t≥0 by (2.18). Then, the fol-
lowing properties hold.

(i) (etA)t≥0 is a semigroup on X such that the map

R+ 3 t 7→ etA ∈ (L(X), ‖.‖)

is continuous.

(ii) The map R+ 3 t→ T (t) := etA ∈ (L(X), ‖.‖) is differentiable and satisfies
the differential equation

dT
dt (t) = AT (t) for all t ≥ 0,
T (0) = I.

(2.19)

Conversely, every differential function T (.) : R+ → (L(X), ‖.‖) satisfying
(2.19) is already of the form T (t) = etA for some A ∈ L(X).
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Finally we observe that A = Ṫ (0).

Before giving a satisfactory answer to Cauchy’s problem in Banach spaces, the
concept of uniformly continuous semigroups is introduced.

Definition 2.3.6 A one-parameter semigroup (T (t))t≥0 on a Banach space X
is called uniformly continuous (or norm continuous) if

R+ 3 t 7→ T (t) ∈ L(X)

is continuous with respect to the uniform operator topology on L(X).

With this terminology an answer to Cauchy’s problem can be stated as the
following theorem.

Theorem 2.3.7 Every uniformly continuous semigroup (T (t))t≥0 on a Banach
space X is of the form

T (t) = etA, t ≥ 0,

for some bounded operator A ∈ L(X).

However, uniform continuity is in general too strong as a requirement for many
semigroups defined on concrete function spaces. For instance, for a function
f : R→ C and t ≥ 0, the operators Tl(t) such that

(Tl(t)f)(s) := f(s+ t), s ∈ R

are called the left translation (of f by t), while

(Tr(t)f)(s) := f(s− t), s ∈ R

are called the right translation (of f by t). The operators Tl(t) define a one-
parameter (semi)group the so called translation (semi)groups which are not
uniformly continuous.
Instead strong continuity holds in most applications. Let us define a class of
semigroups satisfying strong continuity.

Definition 2.3.8 A family (T (t))t≥0 of bounded linear operators on a Ba-
nach space X is called strongly continuous (one-parameter) semigroup (or C0-
semigroup1) if (2.17) holds and the maps

ξx : t 7→ ξx(t) := T (t)x (2.20)

are continuous from R+ into X for every x ∈ X.

The following result can be very useful to prove a semigroup to be strongly
continuous.

Proposition 2.3.9 For a semigroup (T (t))t≥0 on a Banach space X, the fol-
lowing assertions are equivalent.

1C0 abbreviates “Cesàro” summable of order 0,
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(a) (T (t))t≥0 is strongly continuous.

(b) limt↓0 T (t)x = x for all x ∈ X.

(c) There exists δ > 0, M ≥ 1, and a dense subset D ⊂ X such that

(i) ‖T (t)‖ ≤M for all t ∈ [0, δ],

(ii) limt↓0 T (t)x = x for all x ∈ D.

Proposition 2.3.10 For a strongly continuous semigroup (T (t))t≥0, there exist
constants ω ∈ R and M ≥ 1 such that

‖T (t)‖ ≤Meωt

for all t ≥ 0.

Definition 2.3.11 The (infinitesimal) generator A : D(A) ⊂ X → X of a
strongly continuous semigroup (T (t))t≥0 on a Banach space X is the operator

Ax := ξ̇x(0) = lim
h↓0

1

h
(T (h)x− x)

defined for every x in its domain

D(A) := {x ∈ X : ξx is differentiable}.

In order to retrieve the semigroup (T (t))t≥0 from its generator (A, D(A)), a
third object is needed the resolvent.

Definition 2.3.12 Let (T (t))t≥0 be a semigroup and A its generator (D(A) ⊂
X), the resolvent operator

R(λ,A) := (λ −A)−1 ∈ L(X)

is defined for all complex numbers in the resolvent ρ(A), where

ρ(A) := {λ ∈ C : λ−A : D(A)→ X is bijective}

(its complement σ(A) := C\ρ(A) is the spectrum of A).

Theorem 2.3.13 The generator of a strongly continuous semigroup is a closed
and densely defined linear operator that determines the semigroup uniquely.

A satisfactory answer to Cauchy’s problem in terms of strongly continuous semi-
groups require much more effort than in case of uniformly continuous semi-
groups. For example, the characterization of linear operators that are the gen-
erators of strongly continuous semigroups requires the Hille-Yosida generation
theorems. The interested reader is refered to [48] and references therein for a
detailed explanation.
We finish this review defining a special class of semigroups, the analytic semi-
groups.
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Definition 2.3.14 A closed linear operator (A, D(A)) with dense domain D(A)
in a Banach space X is called sectorial (of angle δ) if there exists 0 ≤ δ ≤ π

2
such that the sector

Σπ
2
+δ :=

{
λ ∈ C : | argλ| < π

2
+ δ

}
\{0}

is contained in the resolvent set ρ(A), and if for each ε ∈ (0, δ) there exists
Mε ≥ 1 such that

‖R(λ,A)‖ ≤ Mε

|λ| for all 0 6= λ ∈ Σ̄π
2
+δ−ε

Proposition 2.3.15 Let (A, D(A)) be a sectorial operator of angle δ. Then
for all z ∈ Σ π

2
+δ, the maps T (z) are bounded linear operators on X satisfying

the following properties.

(i) ‖T (z)‖ is uniformly bounded for z ∈ Σ π
2
+δ′ if 0 < δ′ < δ.

(ii) The map z 7→ T (z) is analytic in Σ π
2
+δ.

(iii) T (z1 + z2) = T (z1)T (z2) for all z1, z2 ∈ Σπ
2
+δ.

(iv) The map z 7→ T (z) is strongly continuous in Σ π
2
+δ′ ∪ {0} if 0 < δ′ < δ.

Definition 2.3.16 A family of operators (T (z))z∈Σδ∪{0} ⊂ L(X) is called an
analytic semigroup (of angle δ ∈ (0, π2 ]) if

(i) T (0) = I and T (z1 + z2) = T (z1)T (z2) for all z1, z2 ∈ Σδ.

(ii) The map z 7→ T (z) is analytic in Σδ.

(iii) limΣδ′3z→0 T (z)x = x for all x ∈ X and 0 < δ′ < δ.

If, in addition,

(iv) ‖T (z)‖ is bounded in Σδ′ for every 0 < δ′ < δ,

we call (T (z))z∈Σδ∪{0} a bounded analytic semigroup.

Semigroups for Non-autonomous Cauchy Problems. For partial differ-
ential equations in which the coefficients are time-variant, the operators are
time dependent. Therefore, we replace the fixed operator A by operators A(t)
depending on a (time) parameter t ∈ R. Similar to the time-invariant case the
differential equation that has to be satisfied can be stated as

du
dt (t) = A(t)u(t) for all t, s ∈ R, t ≥ s,
u(s) = x.

(2.21)

on a Banach space X. The problem becomes much more complicated. Let us
first interpret what a solution of (2.21) means.
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Definition 2.3.17 Let (A(t), D(A(t))), t ∈ R, be linear operators on the Ba-
nach space X and take s ∈ R and x ∈ D(A(s)). Then a (classical) solution of
(2.21) is a function u(.; s, x) = u ∈ C1([s,∞), X) such that u(t) ∈ D(A(t)) and
u satisfies (2.21) for t ≥ s.
The Cauchy problem (2.21) is called well-posed (on spaces Yt) if there are dense
subspaces Ys ⊂ D(A(s)), s ∈ R, of X such that for s ∈ R and x ∈ Ys there is
a unique solution t 7→ u(t; s, x) ∈ Yt of (2.21). In addition, for sn → s and
Ysn
3 xn → x ∈ Ys we have ũ(t; sn, Xn)→ ũ(t; s, x) uniformly for t in compact

intervals in R, where we set ũ(t; s, x) := u(t; s, x) for t ≥ s and ũ(t; s, x) := x
for t < s.

The solution of the autonomous Cauchy problem is given by a strongly continu-
ous semigroup. For the non-autonomous case this concept is generalized in the
following definition.

Definition 2.3.18 A family of bounded operators (U(t, s))t,s∈R,t≥s on a Ba-
nach space X is called a (strongly continuous) evolution family if

(i) U(t, s) = U(t, r)U(r, s) and U(s,s)=I for t ≥ r ≥ s and t, r, s ∈ R

and

(ii) the mapping {(τ, σ) ∈ R2 : τ ≥ σ} 3 (t, s) 7→ U(s, t) is strongly continu-
ous.

We say that (U(t, s))t,s∈R,t≥s solves the Cauchy problem (2.21) (on spaces Ys)
if there are dense subspaces Ys, s ∈ R, of X such that U(t, s)Ys ⊂ Yt ⊂ D(A(t))
for t ≥ s and the function t 7→ U(t, s)x is a solution of (2.21) for s ∈ R and
x ∈ Ys.

Evolution families are also called evolution systems, evolution operators, evo-
lution processes, propagators, or fundamental solutions. Notice that a strongly
continuous semigroup (T (t))t≥0 gives rise to the evolution family U(t, s) :=
T (t− s).
For partial differential equations in which the coefficients are time-invariant, the
evolution operator is just the semigroup generated by the differential operator
and the corresponding boundary conditions.

2.3.3 Infinite-dimensional control theory

Before we list some results from semigroup theory applied to infinite-dimensional
control theory, we first give some definitions and some standard results, see e.g.
[61].
In the following, let H and U be Hilbert spaces.

Definition 2.3.19 A function x(.) : [t0, tf ] → H is strongly measurable if x(.)
is the limit almost everywhere of a sequence of countably valued functions. x(.)
is weakly measurable if 〈y, x(.)〉H is Lebesgue measurable for each y ∈ H.
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Definition 2.3.20 An operator-valued function B(.) : [t0, tf ] → L(U ,H) is
called strongly measurable if B(.)x is strongly measurable for each x ∈ H. The
set of all such functions B(.) for which ‖B(.)‖ is essentially bounded on [t0, tf ]
is denoted by B∞(t0, tf ;U ,H)

Proposition 2.3.21 B∞(t0, tf ;U ,H) is a Banach space together with the norm
‖B(.)‖B∞

:= ess sup ‖B(.)‖ and B∞(t0, tf ;H,H) is a Banach algebra.

In [39] Curtain and Pritchard consider the linear-quadratic control problem
for systems defined by integral equations given in terms of evolution families.
They consider a more general class of evolution families than the ones we have
reviewed here. They are called the mild evolution families. Unlike a strong
evolution family, here just weak continuity is assumed. They show that if U(t, s)
is a mild evolution family, then the optimal control problem leads to an integral
Riccati equation. Then, in order to obtain a differential version of the Riccati
equation another type of evolution family is introduced: the quasi evolution
family. However, to ensure uniqueness it is necessary to suppose that U(t, s)
is a strongly continuous evolution family. In the following we cite here the
definitions of mild and quasi evolution families as well as the theorems which
ensure existence and uniqueness of the differential operator Riccati equation.

Definition 2.3.22 Let H be a real Hilbert space and [0, T ] an interval of the
real line and

∆(T ) = {(t, s) : 0 ≤ s < t ≤ T}.
U(., .) : ∆(T )→ L(H) is a mild evolution family if

U(t, r)U(r, s) = U(t, s) for 0 ≤ s ≤ r ≤ t ≤ T,
U(t, s) is weakly continuous in s on [0, t] and in t on [s, T ].

Theorem 2.3.23 If U(., .) is a mild evolution family on ∆(T ) further let D ∈
B∞(0, T ;H,H), then the following operator integral equation has a unique solu-
tion UD(., .),

UD(t, s)x = U(t, s)x+

∫ t

s

U(t, r)D(r)UD(r, s)xdr (2.22)

in the class of weakly continuous bounded linear operators on H. UD(., .) is a
mild evolution family and we call it the perturbed mild evolution family corre-
sponding to the perturbation D. Furthermore, if

ess sup
t∈[0,T ]

‖D(t)‖ ≤M1, ess sup
∆(T )

‖U(t, s)‖ ≤M2,

we have
‖UD(t, s)‖ ≤M1 expM1M2(t− s).

The integral in (2.22), as well as the ones in the following, are Bochner integrals.
The Bochner integral is an extension of the Lebesgue integral to vector-valued
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functions.
We recall that a function u(.) : [a, b] → U is Bochner integrable if and only if

u(.) is strongly measurable and
∫ b

a ‖u(t)‖ dt < ∞. For details of the Bochner
integral, see for instance [61].

Definition 2.3.24 A quasi evolution family is a mild evolution family U :
∆(T )→ H such that there exists a nonzero x ∈ H and a closed linear operator
A(s) on H for almost all s ∈ [0, T ] satisfying

〈y, U(t, s)x− x〉 =

∫ t

s

〈y, U(t, ρ)A(ρ)x〉dρ ∀y ∈ H. (2.23)

The set of x ∈ H for which (2.23) is valid is denoted by DA, and A(.) is called
the generator of U(., .).
An immediate consequence of the definition is

∂

∂s
〈y, U(t, s)x〉 = −〈y, U(t, s)A(s)x〉 for x ∈ DA, y ∈ H, t > s.

The infinite-dimensional control system considered is:

x(t) = U(t, s)x(s) +

∫ t

t0

U(t, ν)B(ν)u(ν)dν, 0 ≤ t0 ≤ s ≤ t ≤ T <∞, (2.24)

where U(., .) is a mild evolution family on the real Hilbert space H, u ∈
L2(0, T ;U), where U is a real Hilbert space, x0 ∈ H, and B ∈ B∞(0, T ;H,H).
With the cost functional

J (u; t0, x0) =

∫ T

t0

(〈x(s),Q(s)x(s)〉 + 〈u(s),Ru(s)〉)ds+ 〈x(T ),Gx(T )〉,

where x(t) is given by (2.24), G ∈ L(H) is self-adjoint and nonnegative, Q ∈
B∞(0, T ;H,H)), R ∈ B∞(0, T ;U ,U)) and for each t, Q(t), R(t) are nonnegative
and self-adjoint and R(t) satisfies

〈y,R(t)y〉 ≥ µ ‖y‖2 a.e. for some µ > 0.

Then the quadratic cost problem is:

Find the optimal control u∗ ∈ L2(0, T ;U)
which minimizes J (u; t0, z0).

(CP)

The solution to (CP) is given by the following result.

Theorem 2.3.25 The optimal control which minimizes J (u; t0, z0) is the feed-
back control

u∗(t) = −R−1(t)B∗(t)Π(t)x(t), (2.25)
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where Π(t) ∈ B∞(0, T ;H,H)) is a self-adjoint operator which satisfies the inte-
gral equation

Π(t)y = U∗
∞(T, t)GU∞(T, t)y

+
∫ T

t
U∞(s, t)[Q(s) + Π(s)B(s)R−1(s)B∗(s)Π(s)]U∞(s, t)yds,

(2.26)
where U∞(t, s) is the perturbed mild family corresponding to the perturbation of
U(t, s) by −B(t)R−1(t)B∗(t)Π(t).

In Chapter 3 we refer to (2.26) as the Riccati integral equation of Curtain and
Pritchard.

Remark 2.3.26 An analogous result to Theorem 2.3.25 was shown by Gib-
son, [52, Thm 3.2]. There the optimal control is defined as (2.25) and Π(t) ∈
B∞(0, T ;H,H)) is a self-adjoint operator which satisfies

Π(t)y = U∗(T, t)GU(T, t)y

+
∫ T

t U(s, t)[Q(s)−Π(s)B(s)R−1(s)B∗(s)Π(s)]U(s, t)yds,
(2.27)

where U(s, t) is a strong evolution family. Gibson showed that if Π(t) is the
unique solution of (2.27), then it is also the unique solution of (2.26). He called
(2.27) as the first Riccati integral equation.

Theorem 2.3.27 Let U(t, s) be a quasi evolution family on H. Then the solu-
tion of the integral equation (2.26) satisfies the following inner product differ-
entiated Riccati equation:

d
dt 〈Π(t)z, y〉+ 〈Π(t)z,A(t)y〉+ 〈A(t)z,Π(t)y〉
−〈Π(t)B(t)R−1(t)B∗(t)Π(t)z, y〉+ 〈Q(t)z, y〉 = 0 a.e. on [t0, T ],

Π(T ) = G for z, y ∈ DA.
(2.28)

If B, Q and R are strongly continuous on [0, T ], then (2.28) is satisfied every-
where on [t0, T ].

Theorem 2.3.28 Let U(t, s) be a strong evolution family with generator A(t)
such that 〈U(t, r)A(r)z, y〉 is integrable with respect to r on (s, t) for all y ∈ H
and z ∈ DA. If D̄A = H, then (2.28) has a unique solution in the class of
self-adjoint weakly continuous operators Π(.), such that 〈z,Π(.)y〉 is absolutely
continuous for all z, y ∈ DA.

Gibson [52], considers a strongly continuous evolution family. However, the re-
sults concerning optimal control and the Riccati integral equations hold if weak
continuity is assumed (i.e., if a mild evolution family is assumed) and H is sep-
arable. Basically strong continuity or weak continuity and separability of H are
needed to guarantee strong measurability of U(., .) in either argument. Since
strong measurability of U(., .) implies only weak measurability of U ∗(., .), strong
measurability of U∗(., .) in either argument is required also.
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Referring to the optimal control problem (CP), suppose that {Ui(., .)} is a se-
quence of evolution operators on H and that {Bi(.)}, {Qi(.)}, {Ri(.)}, and
{Gi} are sequences of operators in B∞(t0, T ;U ,H), B∞(t0, T ;H,H), B∞(t0, T ;
U ,U) and L(H), respectively, with Qi(.), Ri(.), and Gi nonnegative and self-
adjoint. We consider the sequences of optimal control problems corresponding
to these sequences of operators. Suppose that, for each x ∈ H and u ∈ U ,

(i) Ui(t, s)x→ U(t, s)x strongly, t0 ≤ s ≤ t ≤ T,
(ii) U∗

i (t, s)x→ U∗(t, s)x strongly, t0 ≤ s ≤ t ≤ T,
(iii) Bi(t)u→ B(t)u strongly a.e.,
(iv) B∗

i (t)x→ B∗(t)x strongly a.e.,
(v) Qi(t)x→ Q(t)x strongly a.e.,
(vi) Ri(t)u→ R(t)u strongly a.e.,
(vii) Gix→ Gx strongly,

(G)

as i → ∞. We require ‖Ui(t, s)‖, ‖Bi‖B∞

, ‖Qi‖B∞

, ‖Ri‖B∞

and ‖Gi‖ to be
uniformly bounded in i, t, and s and require a constant m such that for each i,
Qi(t) ≥ m > 0 for almost all t.

Theorem 2.3.29 Let (G) hold, along with the uniform bounds. For our se-
quence of control problems, denote the initial states by xi(t0), and let xi(t0) →
x(t0); denote the optimal controls by ui(.), the optimal trajectories by xi(.), and
the solutions of the Riccati integral equations by Πi(.). For the problem (CP),
denote the corresponding quantities by x(t0), u(.), x(.), and Π(.). Then we have

ui(t)→ u(t) strongly a.e. and inL2(t0, T ;U),
xi(t)→ x(t) strongly pointwise and inL2(t0, T ;H)

(2.29)

and for x ∈ H,

Πi(t)x→ Π(t)x strongly pointwise and inL2(t0, T ;H). (2.30)

If U(., .) is strongly continuous and B(.), B∗(.), Q(.), and R(.) are piecewise
strongly continuous, uniform convergence in (G) implies uniform convergence
in (2.29)–(2.30).
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THREE

Convergence theory

If we semi-discretize an infinite-dimensional linear-quadratic regulator (LQR)
problem in space, then we obtain a finite-dimensional LQR problem. In this
chapter, for the finite-time horizon case, we study the convergence of the finite-
dimensional Riccati operators (i.e., the operators related to a matrix DRE) to
the infinite-dimensional ones. First, we will give a brief survey about the theoret-
ical background of LQR problems in Section 3.1. Then, in Section 3.2 we state
the infinite-dimensional LQR problem for which an existence and uniqueness
theorem is presented. After that, in Section 3.3 we consider a family of finite-
dimensional LQR problems defined on subsets of the original state space. Then,
in section 3.4 we show an approximation theorem which gives us a theoretical
justification for the numerical method used for the linear problems described in
this thesis. Finally, in Section 3.5 we extend our result for the non-autonomous
case, i.e., the case in which the system dynamics is modeled by partial differen-
tial equations with time-varying coefficients.

3.1 Introduction

The linear-quadratic control problem for finite-dimensional systems is a well un-
derstood subject, its theory can be found in many textbooks see e.g. [5, 8, 35,
106, 117]. A generalization of the finite-dimensional theory has been developed
for infinite-dimensional systems, see e.g. [26, 27, 41, 75, 76, 77]. Many con-
trol, stabilization and parameter identification problems can be reduced to the
linear-quadratic regulator (LQR) problem. Particularly, the LQR problem for
parabolic systems has been studied in detail in the past 30 years. The classical
reference is the book of Lions [82], there he presented a complete solution for
evolution equations of parabolic type on both finite and infinite-time intervals.
His variational approach leads to a Hamiltonian system of equations, which is
then synthesized to obtain Riccati equations. This allows, relatively easy, to
extend the problem to hyperbolic and other classes of partial differential equa-

28
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tions as well as boundary control and point observations [83].
In the literature, many authors have considered the linear-quadratic control
problem for infinite-dimensional systems in the context of semigroup theory.
The first attempt to develop a general semigroup framework for solving quadra-
tic control problems with unbounded input and output operators was done by
Pritchard and Salamon [99]. This can be seen as an abstract version of Lions’s
work because the results applies both to parabolic and hyperbolic systems as
well as retarded and neutral functional differential equations. Depending on
the conditions imposed on the semigroups related to the dynamics, the solu-
tions of control problems lead to infinite-dimensional integral Riccati equations
or differential Riccati equations for the finite-time horizon case and to infinite-
dimensional algebraic Riccati equations for the infinite-time horizon case. An-
other approach was adopted by Datko who solved the problem on finite and
infinite-time interval without introducing a Riccati equation, see [42, 43]. The
theory of quadratic cost optimal control for infinite-dimensional systems can
be found in many books, e.g [41, 81], in particular the books of Bensoussan et
al. [26, 27] cover the subject in detail. An excellent survey of the most recent
results, as well as numerical aspects, can be found in the books by Lasiecka and
Triggiani [76, 77].
Approximation schemes for Riccati equations in infinite-dimensional spaces have
been proposed in the recent years. Chronologically, the first reference is Gib-
son [52], who presented an approximation technique to reduce the inherently
infinite-dimensional problems to finite-dimensional analogues in terms of the
Riccati integral equations. However, in order to make comparisons with finite-
dimensional theory and for computational applications (which is one objective
of this thesis), infinite-dimensional differential Riccati equations have to be con-
sidered. The result proposed by Gibson requires the approximating problems to
be defined on the entire original state space, this leads to tedious technical con-
siderations. Assuming that the dynamics is modeled by an analytic semigroup,
Banks and Kunisch [12] avoid these technical considerations for the infinite-
time horizon case. An extension of this result for boundary control problems
was given by Benner and Saak in [24]. For the infinite-time horizon case con-
vergence rates for some type of problems have been proved by Lasiecka and
Triggiani [76, 77].
For the finite-time horizon case, we propose an approximation scheme in terms
of differential Riccati equations. The finite-dimensional approximating prob-
lems are each defined on a subspace of the state space of the original problem.
The proofs here follow mostly from the abstract theory develop by Gibson [52],
and from the ideas for the infinite-time horizon case presented in [12, 24].

3.2 Infinite-dimensional systems

For simplicity we consider first the autonomous case, i.e., the case in which the
coefficients of the partial differential equation are time-invariant.
Let H and U be Hilbert spaces, A: dom(A)⊂ H → H is the infinitesimal
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generator of a strongly continuous semigroup T (t) on H, B ∈ L(U ,H).
We consider a control system in H given by

ẋ(t) = Ax(t) + Bu(t), t > 0,
y(t) = Cx(t), t > 0,
x(0) = x0,

(3.1)

and a cost functional

J(u) :=

∫ Tf

0

〈x,Qx〉H + 〈u,Ru〉U dt+ 〈xTf
,GxTf

〉H, (3.2)

where we assume that (3.1) has a unique solution. Here Q := C∗Q̃C, G ∈ L(H),
R ∈ L(U) are self-adjoint with Q̃ ≥ 0, R > 0, G ≥ 0 and xTf

denotes x(., Tf ).
The abstract linear optimal regulator problem can then be stated as

Minimize J(u) over L2(0, Tf ;U)
subject to x = x(.;u) satisfying (3.1).

(R)

We will say that a function u ∈ L2(0, Tf ;U) is an admissible control for the
initial state x0 ∈ H if J(x0,u) is finite. We now have to consider the operator
differential Riccati equation:

Π̇(t) = −(Q + A∗Π(t) + Π(t)A−Π(t)BR−1B∗Π(t)),
Π(Tf ) = G.

(3.3)

We define a solution of (3.3) in the interval [0, Tf ] as an operator Π(t) such that
Π(Tf ) = G and for all ϕ, ψ ∈ dom(A), 〈ϕ,Π(.)ψ〉 is differentiable in [0, Tf ] and
satisfies the equation,

d
dt〈ϕ,Π(t)ψ〉 = −(〈ϕ,Qψ〉+ 〈Aϕ,Π(t)ψ〉 + 〈Π(t)ϕ,Aψ〉

−〈Π(t)BR−1B∗Π(t)ϕ, ψ〉) (3.4)

as is defined in [26, Def. 2.1, pp. 142].

Theorem 3.2.1 The unique control which minimizes (3.2) is the linear feed-
back control,

u∗(t) = −R−1B∗Π(t)x∗(t),

where Π(t) is the unique nonnegative self-adjoint solution of (3.3). The corre-
sponding optimal trajectory is given by

x∗ = S(t)x0,

where S(t) is the strongly continuous semigroup generated by A−BR−1B∗Π(t).
The minimum value of the cost functional is (Π(0),x0).

Proof. The proof of this theorem is given, e.g., in [76, 41].

�

Remark 3.2.2 Note that any solution of (3.3) is self-adjoint, and that Π(.) is
nonnegative if G is.
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3.3 Approximation by finite-dimensional

systems

In order to solve (R) for practical problems, we have to find suitable finite-
dimension approximations to the solutions given in Theorem 3.2.1.
Therefore, let HN , N = 1, 2 . . . , be a sequence of finite-dimensional linear sub-
spaces of H and PN : H → HN be the canonical orthogonal projections. As-
sume that TN(t) is a sequence of strongly continuous semigroups on HN with
infinitesimal generator AN ∈ L(HN ). Given operators BN ∈ L(U,HN ), GN ,
QN ∈ L(HN ), GN ≥ 0.
We consider the family of linear-quadratic regulator problems on HN :

Minimize:

J(xN0 ,u) :=
∫ Tf

0
〈xN , QNxN 〉HN + 〈u,Ru〉Udt

+〈xNTf
, GNxNTf

〉NH .
with respect to

ẋN (t) = ANxN (t) +BNu(t), t > 0,
xN (0) = xN0 := PNx0.

(RN )

(RN ) is a linear regulator problem in the finite-dimensional state space HN . If
QN ≥ 0, R > 0 then, by Theorem 2.2.6, the optimal control for (RN ) is given
in feedback form by

u∗(t)
N = −R−1BN∗ΠN (t)xN∗ (t)

where ΠN (t) ∈ L(HN ) is the unique nonnegative self-adjoint solution of the
differential Riccati equation:

Π̇N (t) = −(QN +AN∗ΠN (t) + ΠN (t)AN −ΠN (t)BNR−1BN∗ΠN (t)),
ΠN (tf ) = GN ,

(3.5)
and xN∗ (t) is the corresponding solution of the state equation with u(t) = u∗(t)

N .
Let us now consider a related family of regulator problems, in which the oper-
ators are defined in the whole space,

Minimize:

J(xN0 ,u) :=
∫ Tf

0
〈xN , Q̄NxN 〉H + 〈u,Ru〉Udt

+〈xNTf
, ḠNxNTf

〉H
with respect to

ẋN (t) = ĀNxN (t) +BNu(t), t > 0,
xN (0) = xN0 := PNx0,

(R̄N )

where ḠN := GNPN , Q̄N := QNPN , ĀN := ANPN on H. The problem (R̄N )
is considered as a problem in H even though we note that xN (t) ∈ HN for each
t, so that Q̄NxN (t) = QNxN (t) and ḠNxN (tf ) = GNxN (tf ).
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Applying Theorem 3.2.1 the optimal control is given in terms of the solution of

˙̄Π
N

(t) = −(Q̄N + ĀN∗Π̄N(t) + Π̄N (t)ĀN − Π̄N (t)BNR−1BN∗Π̄N(t)),
Π̄N(tf ) = ḠN .

(3.6)
Note that

Π̄N (t) = ΠN (t)PN . (3.7)

In fact, if in (3.5) we replace QN , AN , GN by QNPN , ANPN , GNPN , respec-
tively, then it can be considered as an equation on H. Moreover, (3.6) and (3.5)
are the same equation and ΠN (t)PN is an extension of ΠN (t) ∈ L(HN ) to the
whole space H, so (3.7) holds.

3.4 Convergence statement

The main result of this chapter, Theorem 3.4.1, is essentially contained in [52].
The difference here, similar to [12, 25], is that each of the finite-dimensional
approximation problems are defined in a subspace of the state space, whereas
in [52], the approximation problems have to be defined in the entire state space.
That is, the result is formulated using (RN ) rather than (R̄N ). This avoids
some technical difficulties, see [12].
We will assume, similar to [12, (H2)],

(i) For all ϕ ∈ H it holds that TN(t)PNϕ→ T (t)ϕ uniformly
on any bounded subinterval of [0, Tf ].

(ii) For all φ ∈ H it holds that TN(t)∗PNφ→ T (t)∗φ uniformly
on any bounded subinterval of [0, Tf ].

(iii) For all v ∈ U it holds BNv → Bv and for all ϕ ∈ H it holds
that BN∗PNϕ→ B∗ϕ.

(iv) For all ϕ ∈ H it holds that QNPNϕ→ Qϕ.
(v) For all ϕ ∈ H it holds that GNPNϕ→ Gϕ.

(H)

Assumption (ii) implies that PNϕ→ ϕ for all ϕ ∈ H, in this sense the subspaces
HN approximate H.

Theorem 3.4.1 Let (H) hold, then

uN → u uniformly on [0, Tf ],

xN → x uniformly on [0, Tf ],

and for ϕ ∈ H,

ΠN (t)PNϕ→ Π(t)ϕ uniformly in t ∈ [0, Tf ]. (3.8)

Here uN , u, xN , x denote optimal controls and trajectories of the problems
(RN) and (R), respectively.
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Proof. Let Π(t) be the unique element of B∞(0,Tf ;H,H), see Definition 2.3.20,
which satisfies the first Riccati integral equation (see Remark 2.3.26). By cal-
culations in [52, pp. 544-546], Π(t) is also the unique solution of the Riccati
integral equation of Curtain and Pritchard [39], equation (2.26). Theorems
2.3.28 and 2.3.27 ensure that Π(t) uniquely satisfies the infinite-dimensional
differential Riccati equation (3.4). Let Π̄N (t) be the Riccati operator related
to the problem (R̄N ). By (3.7) the theorem holds as a direct consequence of
Theorem 2.3.29.

�

We point out that is it possible to prove an analogue to Theorem 3.4.1 without
the requirement HN ⊆ H.
If we assume that (H, ‖.‖), (HN , ‖.‖N ) are Hilbert spaces (in general HN * H),
with T (t), TN(t) strongly continuous semigroups on H and HN , respectively,
and modifying hypotheses (H) like,

(0) There exist bounded linear operators PN : H → HN
satisfying

∥
∥PNφ

∥
∥
N
→ ‖φ‖ for all φ ∈ H.

(i) There exist constants M, ω such that
∥
∥TN(t)

∥
∥
N
≤Meωt

for all N and for each φ ∈ H,
∥
∥TN(t)PNφ− PNT (t)φ

∥
∥
N
→ 0

as N →∞, uniformly on any bounded subinterval of [0, Tf ].
(ii) For all φ ∈ H it holds

∥
∥TN∗(t)PNφ− PNT ∗(t)φ

∥
∥
N
→ 0 as

N →∞, uniformly on any bounded subinterval of [0, Tf ].
(iii) For all v ∈ U , the operators B ∈ L(U ,H), BN ∈ L(U ,HN )

satisfy
∥
∥BNv − PNBv

∥
∥
N
→ 0 and for all ϕ ∈ H it holds

that
∥
∥BN∗PNϕ−B∗ϕ

∥
∥
U
→ 0.

(iv) There exist operators QN ∈ L(HN ) with
∥
∥QN

∥
∥
N
,

N = 1, 2, . . . , bounded and for all ϕ ∈ H it holds that
∥
∥QNPNϕ− PNQϕ

∥
∥
N
→ 0.

(v) There exist operators GN ∈ L(HN ) with
∥
∥GN

∥
∥
N
,

N = 1, 2, . . . , bounded and for all ϕ ∈ H it holds that
∥
∥GNPNϕ− PNGϕ

∥
∥
N
→ 0.

(vi) For all N, the operators QN , GN are nonnegative self-adjoint.

(H’)

we can state, similar to Theorem 3.4.1,

Theorem 3.4.2 Let (H′) hold, then

uN → u uniformly on [0, Tf ],

xN → x uniformly on [0, Tf ],

and for ϕ ∈ H,

∥
∥ΠN (t)PNϕ− PNΠ(t)ϕ

∥
∥
N
→ 0 uniformly in t ∈ [0, Tf ]. (3.9)

Here uN , u, xN , x denote optimal controls and trajectories of the problems
(RN) and (R), respectively.
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Proof. The proof follows very close to the one of Theorem 3.4.1 once an analogue
to Theorem 2.3.29, which permits HN * H, has been proven.

�

Note that the lemma which the proof of Theorem 2.3.29 relies, [52, Lemma 5.1,
p. 560], can be modified as:

Lemma 3.4.3 Let X be a Banach space, let {XN}N≥2 be a sequence of Banach
spaces and let PN : H → HN bounded linear operators satisfying (H′)(0). Let
Ω be a compact subset of Rn and let A(·) : Ω → L(X), and for N ≥ 2, let
AN (·) : Ω → L(XN , X). Suppose that ‖AN (ξ)‖ is uniformly bounded in N
and ξ, and that, for each x ∈ X, AN (ξ)PNx converges to PNA(ξ)x uniformly
in ξ. Let g(·) : Ω → X be continuous and suppose there is a sequence of
functions gN (·) which converge uniformly to g(·). Then, AN (·)PNgN(·) converge
uniformly to PNA(·)g(·).

Proof. Let ξ ∈ Ω, note that

∥
∥AN (ξ)PNgN (ξ)− PNA(ξ)g(ξ)

∥
∥
N
≤

∥
∥AN (ξ)PNgN(ξ)−AN (ξ)PNg(ξ)

∥
∥
N

+
∥
∥AN (ξ)PNg(ξ)− PNA(ξ)g(ξ)

∥
∥
N

≤ ‖AN (ξ)‖
∥
∥PN

∥
∥ ‖gN (ξ)− g(ξ)‖X

+
∥
∥AN (ξ)PNg(ξ)− PNA(ξ)g(ξ)

∥
∥
N
,

then, by the hypotheses assumed the lemma holds.

�

The repeated application of Lemma 3.4.3, and Lemma 5.1 [52, p. 560] let us
prove an analogue to Theorem 2.3.29 (Theorem 3.5.2, next section ), which per-
mits HN * H.

This version of the theorem could be very useful for developing certain types
of approximation schemes, e.g., finite differences or spectral methods. In Chap-
ter 6, Section 6.1, we use a finite element Galerkin approximation which fits the
requirements of Theorem 3.4.1.

Remark 3.4.4 The theoretical results proved in this chapter give us an approx-
imation framework for computation of Riccati operators that can be guaranteed
to converge to the Riccati operator required in feedback control problems.
A similar result for nonlinear problems is an open problem. However, in this
case model predictive control technics can be applied [18, 68]. There the equation
is linearized and linear problems have to be solved on subintervals of [0, Tf ]. In
Chapter 6, Section 6.2, we present numerical examples using this technique.
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3.5 The non-autonomous case

We consider now partial differential equations in which the coefficients are time-
varying. Then, the system dynamics is modeled by an evolution operator. In the
following we will see that the approximation results presented in the previous
section (Theorems 3.4.1, 3.4.2) can be extended to this case.
Let H and U be real Hilbert spaces and consider an evolution process defined
by

x(t) = U(t, s)x(s) +

∫ t

0

U(t, ν)B(ν)u(ν)dν, (3.10)

where 0 ≤ s ≤ t ≤ Tf < ∞, U(., .) is a strong evolution operator on H,
u ∈ L2(0, Tf ;U), x0 ∈ H, and B ∈ B∞(0, Tf ;H,H).
Note that (3.10) can be differentiated using

∂

∂t
〈y, U(t, s)x〉 = 〈y,A(s)U(t, s)x〉 for x ∈ DA, y ∈ H, t > s,

where A(.) is the generator of U(., .) and DA is as in Definition 2.3.24. We use
the integral form of (3.10) in our presentation to closely follow [39, 52].
With the cost functional

J (u, x0) =

∫ Tf

0

(〈x(s),Q(s)x(s)〉 + 〈u(s),Ru(s)〉)ds + 〈x(Tf ),Gx(Tf )〉,

where x(t) is given by (3.10), G ∈ L(H) is self-adjoint and nonnegative, Q ∈
B∞(0, Tf ;H,H), R ∈ B∞(0, Tf ;U ,U) and for each t, Q(t), R(t) are nonnegative
and self-adjoint and R(t) satisfies

〈y,R(t)y〉 ≥ µ ‖y‖2 a.e. for someµ > 0.

Then, the quadratic cost problem is:

Find the optimal controlu0 ∈ L2(T ;U) which
minimizes J (u; t0, x0).

(NAR)

Let HN , N = 1, 2 . . . , be a sequence of finite-dimensional linear subspaces of
H and PN : H → HN be the canonical orthogonal projection. Assume that
{UN(·, ·)} is a sequence of evolution operators on HN with generator AN (·) ∈
L(HN ) and that {BN(·)}, {QN(·)}, {RN(·)}, and {GN} are sequences of op-
erators in B∞(t0, T ;U ,HN), B∞(t0, T ;HN ,HN ), B∞(t0, T ; U ,U) and L(HN ),
respectively, with QN(·), RN (·), and GN semidefinite and self-adjoint. As in
the last section we consider the sequences of optimal control problems corre-
sponding to these sequences of operators. Suppose that, for each ϕ ∈ H and
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v ∈ U ,

(i) UN (t, s)PNϕ→ U(t, s)ϕ strongly, t0 ≤ s ≤ t ≤ T,
(ii) UN∗(t, s)PNϕ→ U∗(t, s)ϕ strongly, t0 ≤ s ≤ t ≤ T,
(iii) BN (t)v → B(t)v strongly a.e.,
(iv) BN∗(t)PNϕ→ B∗(t)ϕ strongly a.e.,
(v) QN (t)PNϕ→ Q(t)ϕ strongly a.e.,
(vi) RN (t)v → R(t)v strongly a.e.,
(vii) GNPNϕ→ Gϕ strongly,

as N →∞.

(G’)

In addition we require

∥
∥UN (t, s)

∥
∥ ,

∥
∥BN

∥
∥
B∞

,
∥
∥QN

∥
∥
B∞

,
∥
∥RN

∥
∥
B∞

,
∥
∥GN

∥
∥ (G”)

to be uniformly bounded in N , t, and s and require a constant m such that for
each N , QN (t) ≥ m > 0 for almost all t.
We call the previous assumptions (G’) and (G”) because they are a slight modi-
fication of the hypothesis formulated by Gibson in [52]. Specifically, in (G’) the
evolution operators corresponding to the approximating problems are defined
on a subspace of the original state space of the original problem, whereas in [52]
they are defined in the whole space.
As before the subspaces HN approximate H in the sense that PNϕ→ ϕ for all
ϕ ∈ H.

Theorem 3.5.1 Let (G′) and (G′′) hold. For our sequence of control problems,
denote the initial states by xN (0), and let xN (0) → x(0); denote the optimal
controls by uN(·), the optimal trajectories by xN (·), and the solutions of the
differential Riccati equations by ΠN (·). For the problem (NAR), denote the
corresponding quantities by x(0), u(·), x(·), and Π(·). Then we have

uN(t)→ u(t) strongly a.e. and inL2(0, Tf ;U),
xN (t)→ x(t) strongly pointwise and inL2(0, Tf ;H),

(3.11)

and for ϕ ∈ H,

ΠN (t)PNϕ→ Π(t)ϕ strongly pointwise and inL2(0, Tf ;H). (3.12)

If U(·, ·) is strongly continuous and B(·), B∗(·), Q(·), and R(·) are piecewise
strongly continuous, uniform convergence in (G′) implies uniform convergence
in (3.11)–(3.12).

Proof. As for the autonomous case the sequence of control problems are defined
on a subspaces of the original state space similar to (RN ), let us denote these
problems as (NARN ). If we consider a related family of control problems

(NARN ) which are defined in the whole space analogous to (R̄N ). Thus,
assuming similar arguments, on Π(t), to the ones in the proof of Theorem
3.4.1, the proof of Theorem 3.5.1 follows directly from Theorem 2.3.29.
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�

Like in the autonomous case (Theorem 3.4.2), it is possible to prove an analogue
to Theorem 3.5.1 without the requirement HN ⊆ H.

Let us assume that (H, ‖.‖), (HN , ‖.‖N ) are Hilbert spaces (in generalHN *
H), with U(t, s), UN (t, s) strongly continuous evolution operators onH andHN ,
respectively. If we modify (G’) like,

(0) There exist bounded linear operators PN : H → HN
satisfying

∥
∥PNφ

∥
∥
N
→ ‖φ‖ for all φ ∈ H.

(i) There exist constants M, ω such that
∥
∥UN (t, s)

∥
∥
N
≤Meω(t−s), t ≥ s,

for all N and for each φ ∈ H,
∥
∥U(t, s)NPNφ− PNU(t, s)φ

∥
∥
N
→ 0

as N →∞, uniformly on any bounded subinterval of [0, Tf ].
(ii) For all φ ∈ H it holds

∥
∥UN∗(t, s)PNφ− PNU∗(t, s)φ

∥
∥
N
→ 0 as

N →∞, uniformly on any bounded subinterval of [0, Tf ].
(iii) For all v ∈ U , the operators B ∈ L(U ,H), BN ∈ L(U ,HN )

satisfy
∥
∥BNv − PNBv

∥
∥
N
→ 0 and for all ϕ ∈ H it holds

that
∥
∥BN∗PNϕ−B∗ϕ

∥
∥
U
→ 0.

(iv) There exist operators QN ∈ L(HN ) with
∥
∥QN

∥
∥
N
,

N = 1, 2, . . . , bounded and for all ϕ ∈ H it holds that
∥
∥QNPNϕ− PNQϕ

∥
∥
N
→ 0.

(v) There exist operators GN ∈ L(HN ) with
∥
∥GN

∥
∥
N
,

N = 1, 2, . . . , bounded and for all ϕ ∈ H it holds that
∥
∥GNPNϕ− PNGϕ

∥
∥
N
→ 0.

(vi) For all N, the operators QN , GN are nonnegative self-adjoint.
(GN’)

We can state, similar to Theorem 3.4.2.

Theorem 3.5.2 Under the hypotheses of Theorem 3.5.1 with (GN ′) instead of
(G′), we have

uN (t)→ u(t) uniformly on [0, Tf ],
xN (t)→ x(t) uniformly on [0, Tf ],

and for ϕ ∈ H,

ΠN (t)PNϕ→ Π(t)ϕ uniformly on [0, Tf ]. (3.13)

Here uN , xN , denote the optimal control and trajectories, respectively, for our
sequence of control problems, and u and x for the (NAR).

Proof. As we point out in last section, the proof follows as a consequence of the
repeated application of Lemma 3.4.3 and Lemma 5.1 [52, p. 560].

�

Remark 3.5.3 The results proposed in this section will be particularly use-
ful solving nonlinear problems in model predictive control and receding horizon
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context in Chapter 6 Section 6.3. There the LQG approach is applied to a lin-
earization around a reference trajectory. This requires the solution of DREs in
which the coefficient matrices are time dependent.



CHAPTER

FOUR

Numerical methods for DREs

In this chapter we study the numerical solution of DREs arising in optimal con-
trol problems for parabolic PDEs. First, in Section 4.1 we review the existing
methods for solving DREs and discuss whether these methods are suitable for
large-scale computations. In Section 4.2 we suggest an efficient implementation
for the backward differentiation formulae (BDF) methods based on a low rank
version of the alternating direction implicit (ADI) iteration. After that, in Sec-
tion 4.3, we study the Rosenbrock methods and propose an efficient algorithm
for solving large-scale DREs based also on the ADI iteration. Finally, in Section
4.4 a new method for determining sets of shift parameters for the ADI iteration
is described which improves its efficiency.
As we point out in Chapter 3, solving nonlinear control problems in model pre-
dictive control context will lead us to solve DREs with time-varying coefficients.
Hence, throughout this chapter we consider time-varying symmetric DREs of
the form

Ẋ(t) = Q(t) +X(t)A(t) +AT (t)X(t)−X(t)S(t)X(t),
X(t0) = X0,

(4.1)

where t ∈ [t0, tf ] and Q(t), A(t), S(t), ∈ Rn×n are piecewise continuous locally
bounded matrix-valued functions. Moreover, in most control problems, fast and
slow modes are present. This implies that the associated DRE will be fairly stiff
which in turn demands for implicit methods to solve such DREs numerically.
Therefore, we will focus here on the stiff case.

4.1 Known methods

The numerical methods for DREs of the form (4.1) can essentially be distin-
guished into five classes. Note that the solution matrix of the DRE is a sym-
metric n× n matrix. Even in case symmetry is exploited, the storage needed is
of size n(n + 1)/2. For example, for a semi-discretized 2D PDE problem with

39
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say, 11, 000 degrees of freedom, this would require about 500 MB of storage for
each time step if double precision is to be used! Therefore, we will examine the
available methods regarding their potential to circumvent the storage of X(t)
as a square matrix. This section is essentially contained in [21].

The naive approach. The first idea is to vectorize the DRE, i.e., to unroll the
matrices into vectors and to integrate the resulting system of n2 differential
equations using any kind of numerical integration scheme. This approach
is not suitable for large-scale problems, as for implicit methods, nonlinear
systems of equations with n2 unknowns have to be solved in each time
step. This can be reduced exploiting symmetry to n(n + 1)/2, but still
this would require O(n2) workspace, [72, 86].

Linearization. The second type of methods is based on transforming the qua-
dratic DRE into the system of linear first-order matrix differential equa-
tions

d

dt

[
U(t)
V (t)

]

=

[
−A(t) S(t)
Q(t) A(t)T

]

︸ ︷︷ ︸

:=H(t)

[
U(t)
V (t)

]

, t ∈ (t0, T ],

[
U(t0)
V (t0)

]

=

[
U0

V0

]

,

(4.2)

where U(t) ∈ Rn×n, V (t) ∈ Rn×n and V0U
−1
0 = X(t0) for some U0 ∈ Rn×n

invertible and some V0 ∈ Rn×n. If the solution of (4.1) exists on the
interval [t0, T ], then the solution of (4.2) exists, U(t) is invertible on [t0, T ],
and

X(t) = V (t)U−1(t). (4.3)

Conversely, if the solution of (4.2) exists and U(t) is nonsingular for all
t ∈ [t0, T ], then the solution of (4.1) exists in the same interval and is given
by (4.3). The linear differential equation (4.2) is a Hamiltonian differential
equation. In the time-invariant case, this allows an efficient integration
for dense problems, [78], using numerical methods for the Hamiltonian
eigenproblem.

Another approach which is applicable to time-varying systems uses the
fundamental solution of the linear first-order ordinary differential equa-
tion. This method, called now the Davison-Maki method, is proposed in
[45]. A modified variant, avoiding some numerical instabilities due to the
inversion of possibly ill-conditioned matrices, is proposed in [70]. The ex-
ponential of the 2n× 2n-matrix H(t0) is required. The application of this
method for large-scale problems might be investigated further by approx-
imating eH ≈ V eHk V T , range(V ) = span{x,Hx, . . . , Hk−1x}, k � n.

Chandrasekhar’s method. The third type of algorithms is applicable to sym-
metric time-invariant DREs and is based on the transformation of (4.1)
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into two coupled systems of nonlinear differential equations, the so-called
Chandrasekhar system

L̇ = (KTGT −AT )L, L(0) = C ∈ Rn×l,

K̇ = −GTLLT , K(0) = GTX0 ∈ Rm×n,
(4.4)

where Q(t) ≡ CCT , S(t) ≡ GGT .
The relationship between L, K, and X is given by

K(t) = GTX(t),

L(t)LT (t) = −Ẋ(t),
X(t)A+ATX(t) = KT (t)K(t) + L(t)LT (t)− CCT ,

(4.5)

and therefore, the solution of the DRE can be recovered from that of (4.4).
The method can be adapted to the time-varying case, see [73], but there
are several numerical difficulties involved in integrating (4.4), see [102]. In
general, the method is unstable and is therefore not considered here any
further although it is suitable for large-scale problems [11].

Superposition methods. This type of methods is based on the superposition
property of Riccati solutions, see [59]. The general solution of a DRE can
be expressed as a nonlinear combination of at most five independent solu-
tions. This class of methods requires integration of the DRE several times
with different initial conditions before applying the complex superposition
formulae and the computational complexity therefore is too high to apply
these formulae to the large-scale problems considered here.

Matrix-versions of standard ODE methods. These methods solve the
DRE using matrix-valued algorithms based on standard numerical algo-
rithms (see [37, 46]) for solving ordinary differential equations (ODEs). As
we are concerned with stiffness, we only consider implicit methods here.
In order to use the given structure as much as possible, we are interested
in methods which, written in matrix form, yield an algebraic Riccati equa-
tion (ARE) as the nonlinear system of equations to be solved in each time
step. It turns out that there is a vast variety of methods that are applica-
ble here, e.g., the backward differentiation formulae (BDF), the midpoint
and trapezoidal rules.

The BDF schemes allow an efficient implementation for the large-scale
problems considered here. Moreover, BDF schemes are particularly suit-
able for stiff ODEs. Therefore, we will concentrate on this class of methods
in Section 4.2.
Diagonally implicit Runge-Kutta (DIRK) methods or collocation methods
offer an alternative to the BDF methods for stiff problems. In particular,
linearly implicit one-step methods (better known as Rosenbrock methods)
give satisfactory results see, e.g., [31, 58]. We focus on the Rosenbrock
methods in Section 4.3. The application of these methods to the DRE im-
plies the solution of one Lyapunov equation in each stage of the method.
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We solve the resulting Lyapunov equation exploiting the given structure
of the coefficient matrices and show that a suitable implementation for
large-scale problems is also feasible for these methods.

In the next section, we describe the matrix-valued implementation of BDF meth-
ods for DREs.

4.2 The backward differentiation formulae

4.2.1 Linear multistep methods

Linear multistep methods (LMM) use information from previous integration
steps to construct higher-order approximations in a simple fashion. They typ-
ically come in families. The most popular family for nonstiff problems is the
Adams family and the most popular for stiff problems is the backward differen-
tiation formula (BDF) family. These families generalize the explicit and implicit
Euler method, respectively. For an introduction to LMM see [57, 58].
These methods form the basis for a wide variety of ordinary differential equa-
tions (ODE) integrators, see [32, 62, 104]. Whereas they are very efficient in
advancing the integration, the implementation of suitable step size selection
strategies can be non-trivial.
In the following we consider the ODE system

ẋ(t) = f(t, x(t)), x(t0) = x0, (4.6)

across a step ti = ti−1+hi, we denote xi ≈ x(ti) and fi := f(ti, xi). The general
form of a p-step linear multistep method is given by

p
∑

i=0

αixk−i = h

p
∑

i=0

βifk−j , (4.7)

where αi, βi are the coefficients of the method and h is the step size, which in
general is assumed constant. Moreover it is assumed that α0 6= 0, |αi|+ |βi| 6= 0,
and α0 = 1, the latter just to eliminate arbitrary scaling. The method is called
linear because (4.7) is linear in f . It is explicit if β0 = 0 and implicit otherwise.
For the general LMM (4.7) we assume the past values, (xk−j , fk−j), j = 1, . . . , p,
known in an equally spaced mesh. If at time tk−1 we want to take a step of size
hk, hk 6= hk−1, then we need the solution values at past times

tk−1 − jhk, 1 ≤ j ≤ p− 1. (4.8)

To approximate these values there are three main options:

1. Compute the missing values using polynomial interpolation at the nodes
from (4.8).

2. Derive a formula based on unequally spaced data.
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3. Construct the polynomial interpolating xk−i at the last p+1 values on the
unequally spaced mesh. Then construct a new polynomial ψ interpolating
the first polynomial at the nodes from (4.8), satisfying

ψ′(tk) = f(tk, ψ(tk)).

Finally, approximate the values using this new polynomial.

For a detailed explanation see, e.g., [7].
Once that the current step has been accepted the next task is to choose the step
size and order for the next step. We briefly summarize BDF methods as well as
one strategy for adaptative control of order and step size for these methods in
the following.

4.2.2 BDF methods

In this section we will derive fixed and variable coefficients formulae for the
BDF methods. These methods are usually implemented together with a Newton
iteration to solve the nonlinear algebraic equations involved at each step, see
e.g., [7, 31, 58, 57]. Here, we mostly follow the book of Ascher and Petzold, [7].
Let φ(t) be the p-th degree polynomial interpolating {xi ≈ x(ti)} at points
{tk, tk−1, . . . , tk−p}, then φ(t) can be expressed as using the Newton form as

φ(t) =

p
∑

j=0

j−1
∏

i=0

(t− tk−i)[xk , xk−1, . . . , xk−j ],

where the divided differences are defined recursively by

[xk] = xk,

[xk, xk−1, . . . , xk−i] =
[xk, xk−1, . . . , xk−i+1]− [xk−1, xk−2, . . . , xk−i]

tk − tk−i
.

The BDF methods are defined by solving an equation of the form

φ̇(tk) = f(tk, xk).

Note that the mesh does not need to be equidistant here. Now differentiating
φ(t) yields

φ̇(t) =

p
∑

j=1

( j−1
∑

i=0

j−1
∏

6̀=i
`=0

(t− tk−`)
)

[xk, xk−1, . . . , xk−j ],

and evaluating φ(t) at tk we obtain

p
∑

j=1

j−1
∏

i=1

(tk − tk−i)[xk, xk−1, . . . , xk−j ] = f(tk, xk). (4.9)
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p β α0 α1 α2 α3 α4 α5 α6

1 1 1 -1

2 2
3 1 - 4

3
1
3

3 6
11 1 - 18

11
9
11 - 2

11

4 12
25 1 - 48

25
36
25 - 16

25
3
25

5 60
137 1 - 300

137
300
137 - 200

137
75
137 - 12

137

6 60
147 1 - 360

147
450
147 - 400

147
225
147 - 72

147
10
147

Table 4.1: Coefficients of the BDF k-step methods up to order 6.

On an equally spaced mesh, i.e., using a constant step size h, (4.9) yields the
p-step fixed-coefficient BDF methods

p
∑

i=1

1

i
∇ixk = hf(tk, xk),

where the backward differences1 are defined recursively by,

∇0xj = xj ,

∇ixj = ∇i−1xj −∇i−1xj−1.

This can be written as a general p-step method of the form,

p
∑

i=0

αixk−i = hβf(tk, xk), (4.10)

where αi, β are the coefficient of the method. The first six members of this
family are listed in Table 4.1. These methods become unstable for p > 6.
Working on unequally spaced meshes, we can derive the variable-coefficient BDF
by rewriting (4.9) as a general multistep method similar to (4.10),

p
∑

i=0

α̃ixk−i = hkβ̃f(tk, xk), (4.11)

where the coefficients α̃i, β̃ depend on the p− 1 past steps, i.e.

α̃i = α̃i(hk, hk−1, . . . , hk−p+1),

β̃ = β̃(hk, hk−1, . . . , hk−p+1).

Better stability properties are obtained with these methods. They are specially
well suited for problems which require frequent or drastic changes of step size,
however the Jacobian matrix of the Newton’s iteration depends not only on the

1Note that ∇pf ≈ hpf(p).
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current step but also on the sequence of the p−1 past steps; so it is not possible
to save and reuse this matrix as is done by other methods.
To derive the variable-coefficient form of the second order BDF method from
(4.9) we get

f(tk, xk) =
xk − xk−1

hk
+

hk
hk + hk−1

(
xk − xk−1

hk
− xk−1 − xk−2

hk−1

)

,

where hk, hk−1, are the step sizes. Re-arranging terms we can write the last
equation as a general multistep method,

α̃0xk + α̃1xk−1 + α̃2xk−2 = hkβ̃0f(tk, xk),

where

β̃0 =
hk + hk−1

2hk + hk−1
,

α̃0 = 1,

α̃1 = −
(
hk + hk−1

2hk + hk−1

)(

1 +
hk

hk + hk−1

(

1 +
hk
hk−1

))

,

α̃2 =

(
hk + hk−1

2hk + hk−1

)(
hk
hk−1

)(
hk

hk + hk−1

)

.

For a third order BDF method, from (4.9) we get

α̃0xk + α̃1xk−1 + α̃2xk−2 + α̃3xk−3 = hkβ̃0f(tk, xk),

where

β̃0 =
1

α̃
,

α̃0 = 1,

α̃1 = − 1

α̃

[

1 +

(
hk

hk + hk−1
+

hk
hk + hk−1 + hk−2

)(

1 +
hk
hk−1

)

+

(
hk

hk + hk−1 + hk2

)(
hk
hk−1

)(
hk + hk−1

hk−1 + hk−2

)]

,

α̃2 =
1

α̃

[
hk
hk−1

(
hk

hk + hk−1
+

hk
hk + hk−1 + hk−2

)

+

(
hk + hk−1

hk−1 + hk−2

)(
hk

hk + hk−1 + hk−2

)(
hk
hk−1

+
hk
hk−2

)]

α̃3 = − 1

α̃

(
hk + hk−1

hk−1 + hk−2

)(
hk

hk + hk−1 + hk−2

)(
hk
hk−2

)

,

with

α̃ = 1 +
hk

hk + hk−1
+

hk
hk + hk−1 + hk−2

. (4.12)

Here, hk, hk−1, hk−2 are the step sizes.
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4.2.3 Error estimator

General purpose multistep codes usually estimate the local truncation error to
control the step size and the order of the method. In general this error can
be estimated by approximating x(p+1) using divided differences, where p is the
order of the method.
For the BDF methods the local truncation error can be written as in [47]:

hkω̇k(tk)[xk, xk−1, . . . , xk−p], (4.13)

where

ωk(t) =

p
∏

i=0

(t− tk−i),

and

ω̇k(tk) =

p
∏

i=1

(tk − tk−i) =

p
∏

i=1

(h+ ψi−1(k)),

for ψj(k) := tk − tk−j .
Having the local truncation error for the BDF methods expressed as (4.13) will
allow us to compute it directly for low rank factors approximating the solution
of DREs see Section 4.2.7.

4.2.4 Adaptive control

In most applications, varying the step size is crucial for the efficient performance
of a discretization method. We start forming estimates of the error which we
expect would be incurred on the next step and choosing the next order so that
the step size at that order is the largest possible.
Algorithm 4.2.1 is similar to the one which underlies the program DASSL of
L.R. Petzold [97], the difference here is that error estimators, which we used to
decide whether to accept the current step or to redo this with a smaller step
size, will be computed using (4.13) instead of using the predictor polynomials
involving the steps p− 1, p, p+ 1; see [31, Algorithm on p. 373].

In Algorithm 4.2.1 Tol represents the desired integration error and ρ < 1 is
a safety factor, usually chosen as 0.9.
As is noted in [31] the prediction of the next step size is based on consistency
error estimates for equidistant meshes and hence works, in some sense with the
fiction that the current step size belongs to an equidistant mesh. Several au-
thors proposed changes to improve the robustness of the method [47, 116]. The
robustness of the method presented here can be improved taking into account
the past two steps in the framework of the control theoretic interpretation of
the step size [31].

4.2.5 Application to large-scale DREs

In this section we will show how to apply the step and order selection strategy
described before to large-scale differential Riccati equations of the form (4.1)
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Algorithm 4.2.1 Step and order control for BDF methods

Require: We are at time tj , step size hj and order p.
1: Compute predictor values xν(tj+1), ν = p− 1, p, p+ 1.
2: Compute local error estimates εν(tj+1), ν = p−1, p, p+1, based on (4.13).
3: Compute the predicted step sizes

h
(ν)
j+1 = ν+1

√

ρ · Tol
|εν(tj+1)|

hj , ν = p− 1, p, p+ 1.

4: If at least one of the error estimators satisfies |εν(tj+1)| ≤ Tol then choose
the index ν ∈ { p− 1, p, p+ 1} belonging to the smallest error estimate and
set

xj+1 = xν(tj+1), p = ν,

and the new step size hj+1 is determined by

hj+1 = h
(new)
j+1 = max(h

(p−1)
j+1 , h

(p)
j+1, h

(p+1)
j+1 ).

5: If none of the error estimates satisfies |εν(tj+1)| ≤ Tol, repeat the process
with the corrected step size and order

h
(p)
j+1 < hj ,
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arising in LQR for semi-discretized partial differential equations. This section
is essentially contained in [21].

We briefly describe the BDF method for DREs in matrix-valued form similar
to [38]. We will then discuss how this scheme can be implemented for large-scale
problems. Let us consider

F (t,X(t)) ≡ Q(t) +X(t)A(t) +AT (t)X(t)−X(t)S(t)X(t), (4.14)

where t ∈ [t0, tf ] and Q(t), A(t), S(t) ∈ Rn×n, as before, are piecewise con-
tinuous locally bounded matrix-valued functions. The fixed-coefficients BDF
methods (4.10) applied to the DRE (4.1) yield

Xk+1 =

p
∑

j=1

−αj+1Xk−j + hβF (tk+1, Xk+1),

where h is the step size, tk+1 = h + tk, Xk+1 ≈ X(tk+1) and αj , β are the
coefficients for the p-step BDF formula, given in Table 4.1.
Hence, noting Qk+1 ≈ Q(tk+1), Ak+1 ≈ A(tk+1), Sk+1 ≈ S(tk+1), we obtain
the Riccati-BDF difference equation

−Xk+1 + hβ(Qk+1 + ATk+1Xk+1 +Xk+1Ak+1 −Xk+1Sk+1Xk+1)

−
p

∑

j=1

αj+1Xk−j = 0.

Re-arranging terms, we see that this is an ARE for Xk+1,

(hβQk+1 − ∑p−1
j=0 αjXk−j) + (hβAk+1 − 1

2I)
TXk+1+

+ Xk+1(hβAk+1 − 1
2I) − Xk+1(hβSk+1)Xk+1 = 0,

(4.15)

that can be solved via any method for AREs. Assuming that

Qk = CTk Ck , Ck ∈ Rp×n,

Sk = BkB
T
k , Bk ∈ Rn×m, (4.16)

Xk = ZkZ
T
k , Zk ∈ Rn×zk ,

the ARE (4.15) can be written as

ĈTk+1Ĉk+1 + ÂTk+1Zk+1Z
T
k+1 + Zk+1Z

T
k+1Âk+1

− Zk+1Z
T
k+1B̂k+1B̂

T
k+1Zk+1Z

T
k+1 = 0,

(4.17)

where

Âk+1 = hβAk+1 −
1

2
I,

B̂k+1 =
√

hβBk+1,

ĈTk+1 = [
√

hβCTk+1,
√−α1Zk, . . . ,

√
−αpZk+1−p ].
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In large scale applications it is not possible to construct explicitly the matrices
Xk, because they are in general dense. However, Xk is usually of low numerical
rank, see [6, 93], i.e., it can be well approximated by a low rank factor (LRF)
Zk with zk � n for all times. If zk � n for all times, and (4.17) can be solved
efficiently by exploiting sparsity in Ak+1 as well as the low rank nature of the
constant and quadratic terms, this can serve as the basis for a DRE solver
for large-scale problems. It should be noted that for p ≥ 2, some of the αj
are negative. This can be treated using complex arithmetic and replacing all
transposes in (4.17) by conjugate complex transposes, but in general it will be
more efficient to split the constant term into

ĈTk+1Ĉk+1 − C̃Tk+1C̃k+1

where Ĉk+1 only contains the factors corresponding to positive αj and C̃k+1 the
factors corresponding to negative αj . We will show how this can be exploited
in the ARE solver below.

In our numerical implementation, we benefit from recent algorithmic pro-
gress in solving large-scale AREs resulting from semi-discretized control prob-
lems for AREs [15, 16, 19]. We will discuss the details of this approach in the
next section, which is essentially contained in [21].

4.2.6 Numerical solution of AREs

Since the ARE (4.15) is a nonlinear system of equations, it is quite natural to
apply Newton’s method to find its solutions. This approach has been investi-
gated; details and further references can be found in [14, 74, 86, 96, 105]. To
make the derivation more concise, we will use in this section the generic form
of an ARE as it arises in LQR and LQG problems, given by

0 = F(P ) := CTC +ATP + PA− PBBTP. (4.18)

The case important here, i.e., constant terms of the form ĈĈT − C̃T C̃, will be
explained in Remark 4.2.2 below.

Observing that the (Frechét) derivative of F at P is given by the Lyapunov
operator

F ′

P : Q→ (A−BBTP )TQ+Q(A−BBTP ),

Newton’s method for AREs can be written as

N` := −
(

F ′

P`

)−1

F(P`),

X`+1 := X` +N`.

Then one step of the Newton iteration for a given starting matrix P0 can be
implemented as in Algorithm 4.2.2.

We assume exits P0 such that A − BBTP0 is stable. (In the applications
considered here, we can use the fact that for a small time step, the approxi-
mate solution Xk ≈ X(tk) will in general be a good stabilizing starting value.)
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Algorithm 4.2.2 One step of Newton’s method for AREs

Require: P`, such that A` is stable.
1: A` ← A−BBTP`
2: Solve the Lyapunov equation AT` N` +N`A` = −F(P`).
3: P`+1 ← P` +N`

Then all A` are stable and the iterates P` converge to P∗ quadratically. (Here:
P∗ = Xk+1 ≈ X(tk+1).) In order to make this iteration work for large-scale
problems, we need a Lyapunov equation solver that employs the structure of
A` as “sparse + low rank perturbation” by avoiding to form A` explicitly, and
which computes a low rank approximation to the solution of the Lyapunov equa-
tion.
For the problems under consideration the spectrum of the positive semidefinite
matrix P` = Z`Z

T
` often decays to zero rapidly. A typical situation is given

in Figure 4.1, where the eigenvalues of P` for an LQR problem arising from a
finite-element discretization of a one-dimensional heat control problem are plot-
ted.
For an eigenvalue decay as in Figure 4.1, we expect that P` can be approx-
imated accurately by a factorization ZZT for some Z ∈ Rn×r with r � n.
Such an approximation is obtained by truncating the spectral decomposition
P` =

∑n
j=1 λjzjz

T
j after the first r terms. Here, the eigenvalues λj are ordered

by decreasing magnitude and zj is an eigenvector of P` corresponding to λj .
There are partial results explaining the decay of the eigenvalues of Lyapunov
and Riccati solutions; bounds and estimates for the decay are given in [6, 93].
Structural information of the underlying physical problem has not yet been in-
corporated into the analysis. Such information might shed more light on the
existence of accurate low rank approximations.

A relevant method, based on this observation, is derived in detail in [19, 91]
and is described in the following.

First, we re-write Newton’s method for AREs such that the next iterate is
computed directly from the Lyapunov equation in Step 2,

AT` P`+1 + P`+1A` = −CTC − P`BBTP` =: −W`W
T
` . (4.19)

Assuming P` = Z`Z
T
` for rank (Z`) � n and observing that rank (W`) ≤ m +

p � n, we need only a numerical method to solve Lyapunov equations having
a low rank right hand side which returns a low rank approximation to the
(Cholesky) factor of its solution. For this purpose, we can use a modified version
of the alternating directions implicit (ADI) method for Lyapunov equations of
the form

F TY + Y F = −WW T

with F stable, and W ∈ Rn×nw , then the ADI iteration can be written as [114]

(F T + pjI)Y(j−1)/2 = −WW T − Yj−1(F − pjI),
(F T + pjI)Y

T
j = −WW T − Y(j−1)/2(F − pjI), (4.20)
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Figure 4.1: Decay of eigenvalues of Ph in the stabilizing Riccati solution. The
eigenvalues below the eps-line can be set to zero without introducing any signif-
icant error in the spectral decomposition of Ph. With increased dimension, the
number of eigenvalues larger than machine precision (almost) does not increase.

where p denotes the complex conjugate of p ∈ C. If the shift parameters pj
are chosen appropriately, then limj→∞ Yj = Y with a superlinear convergence
rate. Starting this iteration with Y0 = 0 and observing that for stable F , Y is
positive semidefinite, it follows that Yj = ZjZ

T
j for some Zj ∈ Rn×rj . Inserting

this factorization into the above iteration, re-arranging terms and combining
two iteration steps, we obtain a factored ADI iteration that in each iteration
step yields nw new columns of a full rank factor of Y (see [19, 80, 91] for several
variants of this method). The method is described in Algorithm 4.2.3.

Algorithm 4.2.3 LRCF ADI iteration

Require: F , W and set of ADI parameters {p1, . . . , pk}
Ensure: Z = Zimax

∈ Cn,imaxnω such that ZZT ≈ Y .
1: V1 =

√

−2Re (p1)(F
T + p1I)

−1W
2: Z1 = V1

3: for j = 2, 3, . . . do

4: Vj =

√

Re(pj)
√

Re(pj−1)

(
I − (pj + pj−1)(F

T + pjI)
−1

)
Vj−1

5: Zj =
[
Zj−1 Vj

]

6: end for

It should be noted that all Vj ’s have the same number of columns as W ∈
Rn×nw , i.e., at each iteration j, we have to solve w linear systems of equations
with the same coefficient matrix F T + pjI . If convergence of the factored ADI
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iteration with respect to a suitable stopping criterion is achieved after imax

steps, then Zimax
= [V1, . . . , Vimax

] ∈ Rn×imaxnw , where Vj ∈ Rn×nw . For large
n and small nw we therefore expect that ri := imaxnw � n. In that case, we
have computed a low rank approximation Zimax

to a factor Z of the solution,
that is Y = ZZT ≈ Zimax

ZTimax
. In case, nw · imax becomes large, a column

compression technique [29, 56] can be applied to reduce the number of columns
in Zimax

without adding significant error.

Remark 4.2.1 Note that if the tolerance of the rank-revealing QR factorization
is chosen according to the order of the method and the current step size, [29]
we can apply a colum compression technique without adding significant error.
This is not the case if QR factorization with normal pivoting strategy is applied.
There the error that we are introducing can not be controlled.

For an implementation of this method, we need a strategy to select the shift
parameters pj . We discuss this problem in detail in Section 4.4.
Since A` is stable for all ` we can apply the modified ADI iteration to (4.19).
Then, W` =

[
CT P`B

]
and hence, nw = m+ p, so that usually nw � n.

Remark 4.2.2 The solution of the AREs (4.17) arising for BDF methods with
p > 1, where the constant term is replaced by

ĈTk+1Ĉk+1 − C̃Tk+1C̃k+1

as described in the last section, one can to split the Lyapunov equation (4.19)
into the two equations

AT` P̂`+1 + P̂`+1A` = −ĈT Ĉ − P`BBTP`,
AT` P̃`+1 + P̃`+1A` = −C̃T C̃.

Then P`+1 = P̂`+1 − P̃`+1. The two Lyapunov equations can be solved simul-
taneously by the factored ADI iteration as the linear systems of equations to be
solved in each step have the same coefficient matrices.

Note that Algorithm 4.2.3 can be implemented in real arithmetic by com-
bining two steps, even if complex shifts need to be used, which may be the case
if A` is nonsymmetric. A complexity analysis of the factored ADI method de-
pends on the method used for solving the linear systems in each iteration step.
If applied to F = AT` from (4.19), we have to deal with the situation that A`
is a shifted sparse matrix plus a low rank perturbation. If we can solve the
shifted linear system of equations in (4.20) efficiently, the low rank perturbation
can be dealt with using the Sherman-Morrison-Woodbury formula [54] in the
following way: let ` be the index of the Newton iterates and let j be the index
of the ADI iterates used to solve the `th Lyapunov equation, respectively, and
set K` := BTP`. Then

(

F T + p
(`)
j In

)−1

=
(

A+ p
(`)
j In −BK`

)−1

=
(
In + L`B(Im −K`L`B)−1K`

)
L`,
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where L` := (A+ p
(`)
j In)−1. Hence, all linear systems of equations to be solved

in one iteration step have the same coefficient matrix A+p
(`)
j In. If A+p

(`)
j In is a

banded matrix or can be re-ordered to become banded, then a direct solver can
be employed. If workspace permits, it is desirable to compute a factorization of

A + p
(`)
j In for each different shift parameter beforehand (usually, very few pa-

rameters are used). These factorizations can then be used in each iteration step
of the ADI iteration. In particular, if A is symmetric positive definite, as will be
the case in many applications from PDE constrained optimal control problems,
and can be re-ordered in a narrow band matrix, then each factorization requires
O(n) flops, and the total cost O(`max max(jmax)n) scales with n as desired. If
iterative solvers are employed for the linear systems, it should be noted that
only one Krylov space needs to be computed (see [80] for details) and hence we
obtain an efficient variant of the factored ADI iteration.

Stopping criteria for the modified ADI iteration can be based either on the
fact that ‖Vj‖ → 0 very rapidly or on the residual norm ‖FZjZTj +ZjZ

T
j F

T +

WW T ‖; see [93] for an efficient way to compute the Frobenius norms of the
residuals. On the other hand, the Newton iteration inside Algorithm 4.2.4
(steps 7–12), is usually stopped when

∥
∥Zj+1Z

T
j+1 − ZjZTj

∥
∥

∥
∥ZjZTj

∥
∥

< τ

for a given tolerance threshold τ . However, this criterion is difficult to evaluate
as it requires the explicit formation of iteratesXj . To overcome this difficulty we
use a modified stopping criterion proposed in [9]. This criterion can be efficiently
evaluated in case we use the Frobenious norm and the number of columns of
the factors is much smaller than n. Moreover, the stopping criteria should be
based on the tolerance for the accuracy provided by the BDF method.
The standard implementation of the BDF methods for DREs is sketched in
Algorithm 4.2.4.
In the next section we will apply step size and order control for the DRE in
terms of the low rank factors (LRF) of the approximated solution.

4.2.7 Step size and order control

If we want to vary the step and order of a LMM method, the solution values
at past times on an equidistant mesh are needed. Using the variable-coefficient
BDF methods (4.11) we avoid to compute these values. Note that this method
applied to (4.1) yields an equation similar to (4.17) in which Âk+1, B̂k+1 and
Ĉk+1 depend on α̃i(hn, hn−1, . . . , hn−k+1), β̃(hn, hn−1, . . . , hn−k+1). The com-
putation of these coefficients is cheap and does not outweigh the iteration be-
cause we are working on large-scale problems. On the other hand, for fixed-
coefficient BDF methods we can approximate these values using an interpolat-
ing polynomial described by Neville’s algorithm, which in matrix value form can
be expressed as:
Assuming that
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Algorithm 4.2.4 LRF BDF method of order p

Require: A(t), S(t), Q(t), ∈ Rn×n smooth matrix-valued functions satisfying
(4.16), t ∈ [a, b], and h step size.

Ensure: (Zi, ti) such that Xi ≈ ZiZTi .
1: t0 = a.
2: for k = 0 to d b−ah e do

3: tk+1 = tk + h.
4: Âk+1 = hβAk+1 − 1

2I .

5: B̂k+1 =
√
hβBk+1.

6: Ĉk+1 = [
√
hβCk+1;

√
α0Z

T
k ; . . . ;

√
αp−1Z

T
k+1−p ].

7: for j = 1 to jmax do

8: Determine (sub)optimal ADI shift parameters pJ1 , p
J
2 , . . . with respect

to the matrix F j = Âk+1 −KjB̂Tk+1.

9: Gj = [ĈTk+1 K
j−1].

10: Compute Zj by Algorithm 4.2.3 such that the low rank factor product
ZjZjT approximates the solution of F jTXj +XjF j = −GjGjT .

11: Kj = Zj(ZjTB).
12: end for

13: Zk+1 = Zjmax .
14: end for

Algorithm 4.2.5 Neville’s Algorithm

Require: {(ti, Xi)}0≤i≤n, ti ∈ I ⊂ R, Xi ≈ X(ti) ∈ Rn×n.
1: Ti,o := Xi 0 ≤ i ≤ n.

2: Ti,k :=
(t−ti−k)Ti,k−1−(t−ti)Ti−1,k−1

ti−ti−k
0 ≤ i < k ≤ n.

Algorithm 4.2.6 LRF Neville’s Algorithm

Require: {(ti, Zi)}0≤i≤n, ti ∈ I ⊂ R and Zi ≈ Z(ti) ∈ Rn×zi .
1: Zi,o := Zi 0 ≤ i ≤ n.

2: Zi,k :=

[√
t−ti−k

ti−ti−k
Zi,k−1

√
t−ti

ti−k−ti
Zi−1,k−1

]

0 ≤ i < k ≤ n.
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Xi = ZiZ
T
i , Zi ∈ Rn×zi ,

we get

Zi,kZ
T
i,k :=

(t− ti−k)Zi,k−1Z
T
i,k−1 − (t− ti)Zi−1,k−1Z

T
i−1,k−1

ti − ti−k

=

[√
t− ti−k
ti − ti−k

Zi,k−1

√
t− ti

ti−k − ti
Zi−1,k−1

]

×
[√

t− ti−k
ti − ti−k

Zi,k−1

√
t− ti

ti−k − ti
Zi−1,k−1

]T

so that

Zi,k =

[√
t− ti−k
ti − ti−k

Zi,k−1

√
t− ti

ti−k − ti
Zi−1,k−1

]

.

Hence Algorithm 4.2.5 can be written in terms of the LRFs as in Section 4.2.5,
see Algorithm 4.2.6.
Since the size of Zi,k increases in every step, the computation becomes expensive.
We can avoid the recursion formula expressing the final value given by the
algorithm like

Zk,k = [
√

λ0Z0,0

√

λ1Z1,0 . . .
√

λkZk,0].

For instance, if we consider {(ti, Zi)}1≤i≤2, then

Z2,2 = [
√
α220α110Z0,0

√

−(α020α221 + α220α010)Z1,0
√
α020α121Z2,0]

where

αijk =
t− ti
tj − tk

i, j, k = 0, 1, 2.

Algorithm 4.2.6 will in general generate complex factors. However, we can still
get real factor as solutions of the DRE in every step rewriting

Zk,k = [Zp ıZn]

where Zp, Zn are formed grouping the positive and negative λ′s respectively,
and computing the operations involving Zk,k separately for Zp and Zn, i.e. never
forming Zk,k explicitly.
Once that the solution values at past times are approximated we are ready to
apply Algorithm 4.2.1. In step one we need to compute local error estimators,
this can be done using (4.13) and computing the divided differences directly for
the factors, see Algorithm 4.2.7.

Analogous to Algorithm 4.2.6, Algorithm 4.2.7 can be implemented avoiding
the recursive formula. Moreover, it generates in general complex factors which
is not a problem here because we are interested in the norm of the resulting
factor to estimate the local truncation error using (4.13).
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Algorithm 4.2.7 LRF Divided differences

Require: {(ti, Zi)}0≤i≤n, ti ∈ I ⊂ R and Zi ≈ Z(ti) ∈ Rn×zi .
1: Zi,o := Zi 0 ≤ i ≤ 0.

2: Zi,k :=

[
√

1
ti−ti−k

Zi,k−1

√
1

ti−k−ti
Zi−1,k−1

]

0 ≤ i < k ≤ 0.

4.3 Rosenbrock methods

4.3.1 Introduction

Linear multistep methods require fewer function evaluation per step than one
step methods, and they allow a simpler, more streamlined method design from
the point of view of order and error estimation. However, the associated over-
head is higher, e.g., for changing the step size.
Runge-Kutta, methods work well for the numerical solution of ODEs that are
non-stiff. When stiffness becomes an issue: diagonally implicit Runge-Kutta
(DIRK) methods or collocation methods offer an alternative to the BDF meth-
ods. In particular, linearly implicit one-step methods (better known as Rosen-
brock methods) give satisfactory results see,e.g., [31, 58]. We focus here on the
Rosenbrock methods, which are DIRK type methods. The idea of these meth-
ods can be interpreted as the application of one Newton iteration to each stage
of an implicit Runge-Kutta method and the derivation of stable formulae by
working with the Jacobian matrix directly within the integration formulae.
In the literature, variants of the Rosenrock method are discussed in which the
Jacobian matrix is retained over several steps or even replaced by an approxima-
tion which renders the linear system cheaper. Methods constructed in this way
were first studied by T. Steihaug and A. Wolfbrand in 1979. Since they denoted
the inexact Jacobi matrix by “W”, these methods are often called W -methods.
Rosenbrock methods are very attractive for several reasons, among the most
popular ones we cite:

• Like implicit methods, Rosenbrock methods require the solution of a linear
system of equations; however, unlike implicit methods, they do not require
the added burden of iteration to accomplish the task of solving the system
and therefore they are more easy to implement.

• They are suitable for parallelization [33, 113].

• They possess excellent stability properties, as they can be made A-stable
or L-stable.

• They are computationally efficient while preserving positivity of the solu-
tions.

• They are of one-step type which allows a rapid change of step size.

• They are also applicable to implicit systems of the form Mẏ = f(y).
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These methods have already proven to be very effective in some applications
like chemical kinetics [30, 50, 113], and several variants of these methods have
been proposed, e.g., in [50] the coefficients of the Rosenbrock method are cho-
sen common to an explicit Runge-Kutta method of order 4. The result is an
embedded Rosenbrock integrator of order 4, i.e., a Rosenbrock integrator that
contains an explicit Runge-Kutta method embedded, that switches from one to
the other solver when the solution leaves a stiff domain and enters a nonstiff
domain or vice versa.

4.3.2 Rosenbrock schemes

In the following we describe some Rosenbrock schemes which we will apply to
DREs in the next section. First of all, let us define a general s-stage Rosenbrock
method for an autonomous ODE system:

ki = hf
(
xn +

∑i−1
j=1 αijkj

)
+ hJ

∑i
j=1 γijkj , i = 1, . . . , s,

xn+1 = xn +
∑s

j=1 bjkj ,
(4.21)

where αij , γij , bj are the determining coefficients, J is the Jacobian matrix
f ′(xn), and h is the step size. Each stage of this method consists of a system of
linear equations with unknowns ki. Of special interest are methods for which
γ11 = · · · = γss = γ, so that only one LU-decomposition per step is needed.
Note that for J = 0 an explicit Runge-Kutta method is recovered.
The non-autonomous ODE system

ẋ = f(t, x) (4.22)

can be converted to autonomous form by adding ẋ = 1. If the method (4.21)
is applied to the augmented system, the components corresponding to the x-
variable can be computed explicitly and we arrive at

ki = hf
(
tn + αih, xn +

∑i−1
j=1 αijkj

)
+ γih

2 ∂f
∂t (tn, xn)

+h∂f∂x (tn, xn)
∑i
j=1 γijkj ,

xn+1 = xn +
∑s

j=1 bjkj ,

(4.23)

where the additional coefficients are given by

αi =

i−1∑

j=1

αij , γi =

i∑

j=1

γij .

This definition was taken from [58], refer to it and references therein for a
detailed explanation.
Note that for an autonomous system and s = 1, the linearly implicit Euler
method is recovered:

xn+1 = xn + hk1,
(I − hJ)k1 = f(xn),

(4.24)
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where J is the Jacobian and the coefficients are chosen as

b1 = 1, γ = 1, α11 = 0.

The method is of order p = 1 and the stability function is the same as the for
implicit Euler method.
In [30] a second order method (for autonomous ODE systems) is described
for application to atmospheric dispersion problems describing photochemistry,
advective, and turbulent diffusive transport. The scheme is written in the form

xn+1 = xn +
3

2
hk1 +

1

2
hk2,

(I − γhJ)k1 = f(xn), (4.25)

(I − γhJ)k2 = f(xn + hk1)− 2k1,

where J is the Jacobian matrix f ′(xn) or an approximation thereof. The pa-
rameter γ appears in the stability function of the method,

R(z) =
1 + (1− 2γ)z + ( 1

2 − 2γ + γ2)z2

(1− γz)2 .

If γ ≥ 1/4, the method is A-stable. L-stability is achieved using γ = 1 + 1/
√

2.
It is pointed out by the authors that the method is capable of integrating with
large a priori described step sizes.

Non-autonomous systems. According to (4.23) the scheme (4.25), for the
non-autonomous case, can be written as

xn+1 = xn +
3

2
hk1 +

1

2
hk2,

(I − γhJ)k1 = f(tn, xn) + γhft, (4.26)

(I − γhJ)k2 = f(tn + h, xn + hk1)− 2k1 − γhft,

where

J =
∂f

∂x
(tn, xn), ft =

∂f

∂t
(tn, xn). (4.27)

The linearly implicit Euler method (4.24) for non-autonomous systems becomes

xn+1 = xn + hk1,
(I − hJ)k1 = f(xn) + hft

(4.28)

with J and ft as in (4.27).

4.3.3 Application to DREs

As before we consider symmetric DREs of the form (4.1) and F (t,X(t)) as in
(4.14). Let us denote F (t,X(t)) ≡ F (X(t)) := F(X).



CHAPTER 4. NUMERICAL METHODS FOR DRES 59

The Jacobian J = F ′

(Xk) in (4.26) is given by the (Frechét) derivative of F at
Xk represented by the Lyapunov operator

F ′

(Xk) : U → (Ak − SkXk)
TU + U(Ak − SkXk),

where Xk ≈ X(tk), Ak = A(tk), Sk = S(tk) and U ∈ Rn×n.
Let us denote Ftk = ∂F

∂t (tk, X(tk)), which is given by

Ftk = Q̇k +ATk Ẋk + ȦTkX + ẊkAk +XkȦk − ẊkSkXk

−XkṠkXk −XkSkẊk,
(4.29)

where Q̇k = dQ
dt (tk), Ȧk = dA

dt (tk), Ẋk = dX
dt (tk), and Ṡk = dS

dt (tk). Later we
explain how these derivatives can be approximated.
The application of the linear implicit Euler method (4.28), as a matrix-valued
algorithm, to the DRE (4.1) yields

Xk+1 = Xk + hK1,

K1 − h(F
′

(Xk))(K1) = F (Xk) + hFtk . (4.30)

We use Ki instead of ki, i = 1, 2 because now they represent n× n matrices.
Replacing F ′

(Xk) in (4.30) we obtain

K1 − h(Ak − SkXk)
TK1 − hK1(Ak − SkXk) = F (Xk) + hFtk ,

and re-arranging terms yields

(h(Ak−SkXk)−
1

2
I)TK1 +K1(h(Ak−SkXk)−

1

2
I) = −F (Xk)−hFtk . (4.31)

Denoting Āk = h(Ak − SkXk)− 1
2I , we can write the method as:

Xk+1 = Xk + hK1, (4.32)

ĀTkK1 +K1Āk = −F (Xk)− hFtk . (4.33)

Hence, one Lyapunov equation (4.33) has to be solved in every step.
If we write F (Xk) as

(
Ak − SkXk − 1

2hI
)T
Xk +Xk

(
Ak − SkXk − 1

2hI
)

+Qk +XkSkXk + 1
hXk,

and denoting Ãk = Ak − SkXk − 1
2hI , then we can re-write the linear implicit

Euler method (4.32)–(4.33) such that the next iterate is computed directly from
the Lyapunov equation (4.33),

ÃTkXk+1 +Xk+1Ãk = −Qk −XkSkXk −
1

h
Xk − hFtk . (4.34)
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The application of the Rosenbrock method (4.26), as a matrix-valued algorithm,
to the DRE (4.1) yields

Xk+1 = Xk +
3

2
hK1 +

1

2
hK2,

K1 − γh(F
′

(Xk))(K1) = F (Xk) + γhFtk , (4.35)

K2 − γh(F
′

(Xk))(K2) = F (tk + h,Xk + hK1)− 2K1 − γhFtk . (4.36)

Denoting Âk = γh(Ak −SkXk)− 1
2I , tk+1 = tk +h and rewriting (4.35), (4.36)

similar to (4.33), we can write the method as:

Xk+1 = Xk +
3

2
hK1 +

1

2
hK2, (4.37)

ÂTkK1 +K1Âk = −F (Xk)− γhFtk , (4.38)

ÂTkK2 +K2Âk = −F (tt+1, Xk + hK1) + 2K1 + γhFtk . (4.39)

Hence, two Lyapunov equations (4.38), (4.39) have to be solved in every step.
Our analysis can be extended to a general s-stage Rosenbrock method which
will require the solution of s Lyapunov equations in every step. For the case
in which the coefficient matrices of Lyapunov equations are dense, the Bartels-
Stewart method [13] can be applied for solving the equations. Note that only
one Schur decomposition is needed therefore, the cost is almost that of solving
one Lyapunov equation.
Rewriting the right hand side of (4.39) as

−F (tk+1, Xk) + γhFtk − h2K1Sk+1K1

−(h(Ak+1 − Sk+1Xk)− I)TK1 −K1(h(Ak+1 − Sk+1Xk)− I), (4.40)

and noting that it is more efficient to solve an additional Lyapunov equation
(with the same coefficient matrix Âk) in which the right hand side is chosen
as the common factor of the right hand sides of (4.38)–(4.39) and afterwards
recover the original solution, than solve (4.38)–(4.39) separately. The standard
implementation of the method (4.37)–(4.39) can then be sketched as in Algo-
rithm 4.3.1.

Remark 4.3.1 We point out that the intermediate approximation Xk + hK1

corresponds to the application of the linearly implicit Euler method at tk+1.
This first order approximation can be used to estimate the local error for step
size control as outlined in Algorithm 4.3.2. We follow [31, Alg. 5.2, p. 194],
as is explained there a bound on the step increase has to be introduced. Hence,
the growth of the step is limited by a factor q > 1 or by the maximum step size
allowed hmax.

Autonomous DRE. Note that for autonomous DREs, i.e., DREs in which
matrices Q(t), A(t), R(t) are constant, the second order Rosenbrock method
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Algorithm 4.3.1 Rosenbrock method of order two

Require: Q(t), A(t), S(t), ∈ Rn×n are piecewise continuous locally bounded
matrix-valued functions t ∈ [a, b], X0, and h step size.

Ensure: (Xi, ti) such that Xi ≈ X(ti).
1: t0 = a.
2: for k = 0 to d b−ah e do

3: tk+1 = tk + h.
4: Âk = γh(A−RXk)− 1

2I .

5: Solve Lyapunov equation ÂTkK11 +K11Âk = −F (Xk).

6: Solve Lyapunov equation ÂTkK12 +K12Âk = −Ftk .
7: K1 = K11 + γhK12.
8: Solve Lyapunov equation

ÂTkK21 + K21Âk = −(h(Ak+1 − Sk+1Xk)− I)TK1

− K1(h(Ak+1 − Sk+1Xk)− I)− h2K1Sk+1K1 − F (tk+1, Xk).

9: K2 = K21 − γhK12.
10: Xk+1 = Xk + 3

2hK1 + 1
2hK2.

11: end for

Algorithm 4.3.2 Step size control for Rosenbrock method of order two

Require: Let h0 be the initial step size, [a, b] the integration interval, X0 the
initial condition, ρ < 1 and q > 1 safety parameters, Tol desired integration
error, and hmax maximum step size allowed.

1: k = 0.
2: t0 = a.
3: while tk < b do

4: t = tk + hk.
5: Compute K1 by (4.38).
6: Ŷk+1 = Xk + hK1.
7: Compute K2 by (4.39).
8: Yk+1 = 3

2hK1 + 1
2hK2.

9: εk =
∥
∥
∥Yk+1 − Ŷk+1

∥
∥
∥.

10: h = min(qhk, hmax,
3

√
ρ·Tol
εk

hk).

11: if εk < Tol then

12: tk+1 = t.
13: Xk+1 = Yk+1.
14: hk+1 = min(h, b− tk+1).
15: k = k + 1.
16: else

17: hk = h.
18: end if

19: end while
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can be written as

Xk+1 = Xk +
3

2
hK1 +

1

2
hK2, (4.41)

ÂTkK1 +K1Âk = −F (Xk), (4.42)

ÂTkK21 +K21Âk = −(h(A− SXk)− I)TK1

−K1(h(A− SXk)− I)− h2K1SK1, (4.43)

K2 = K1 +K21. (4.44)

where Âk = γh(A − SXk) − 1
2I . If in addition we chose γ = 1 (A-stability is

achieved for γ ≥ 1
4 ), then the method results in

Xk+1 = Xk +
3

2
hK1 +

1

2
hK2, (4.45)

ÂTkK1 +K1Âk = −F (Xk), (4.46)

ÂTkK2 +K2Âk = −h2K1SK1 −K1. (4.47)

The linearly implicit Euler method becomes

ÃTkXk+1 +Xk+1Ãk = −Q−XkSXk −
1

h
Xk, (4.48)

where Ãk = A− SXk − 1
2hI .

4.3.4 Low rank Rosenbrock method

We focus on solving DREs arising in optimal control for parabolic partial dif-
ferential equations. Typically the coefficient matrices of the DRE arising from
these control problems have a certain structure (e.g. sparse, symmetric or low
rank). Thus, the solution of the resulting Lyapunov equation with the Bartels-
Stewart method is not feasible. In this section we show that it is possible to
efficiently implement Rosenbrock methods for large-scale DREs based on a low
rank version of the alternating direction implicit (ADI) iteration for Lyapunov
equations [19, 80, 92].

Linearly implicit Euler method. Let us first consider the linearly implicit
Euler method for autonomous DREs (4.48) and assume,

Q = CTC, C ∈ Rp×n,

S = BBT , B ∈ Rn×m, (4.49)

Xk = ZkZ
T
k , Zk ∈ Rn×zk .

with p, m, zk � n. If we denote Nk = [CT Zk(Z
T
k B)

√
h−1Zk ], then the

Lyapunov equation (4.48) results in

ÃTkXk+1 +Xk+1Ãk = −NkNT
k , (4.50)
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where Ãk = A−B(Zk(Z
T
k B))T − 1

2hI . Observing that rank(Nk) ≤ p+m+zk �
n, we can use the modified version of the alternating directions implicit (ADI)
iteration (Algorithm 4.2.3, in Section 4.2.6) to solve (4.50).
The application of Algorithm 4.2.3 to (4.50) will ensure low rank factors Zk+1,
of Xk+1, such that Xk+1 = Zk+1Z

T
k+1, where Zk+1 ∈ Rn×zk+1 with zk+1 � n.

This is described in Algorithm 4.3.3.

Algorithm 4.3.3 LRF linearly implicit Euler method

Require: A ∈ Rn×n, B, C, Z0 satisfying (4.49), t ∈ [a, b], and h step size.
Ensure: (Zi, ti) such that Xi ≈ ZiZTi , Zi ∈ Rn×zi with zi � n.
1: t0 = a.
2: for k = 0 to d b−ah e do

3: Ãk = A−B(Zk(Z
T
k B))T − 1

2hI .

4: Nk = [CT Zk(Z
T
k B)

√
h−1Zk ].

5: Determine (sub)optimal ADI shift parameters p1, p2, . . . with respect to
the matrix Ãk.

6: Compute Zk+1 by Algorithm 4.2.3 such that the low rank factor product
Zk+1Z

T
k+1 approximates the solution of ÃTkXk+1 +Xk+1Ãk = −NkNT

k .
7: tk+1 = tk + h.
8: end for

Rosenbrock method of second order. Let us now turn our attention to
the method (4.41)-(4.44). As for the linearly implicit Euler method we want to
apply the ADI iteration to solve the Lyapunov equations (4.42) and (4.43).
First of all, note that K1 and K21 are computed in every step, so we denote by
K1 := K1(k) and K21 := K21(k) the solution, at step k, of (4.42) and (4.43)
respectively.
Hence, (4.41) can be written as

Xk = X0 + h

(

2
k−1∑

j=0

K1(j) +
1

2

k−1∑

j=0

K21(j)

)

.

Moreover, for every k the following equation holds

2
∑k−1
j=0 K1(j) + 1

2

∑k−1
j=0 K21(j) = K̂k − K̃k

= T̂kT̂
T
k − T̃kT̃ Tk .

(4.51)

In fact, for k = 0 let us assume (4.49) and note that,

ATZ0Z
T
0 + Z0Z

T
0 A = ATZ0(Z

T
0 A+ ZT0 ) + Z0(Z

T
0 A+ ZT0 )

−ATZ0Z
T
0 A− Z0Z

T
0 ,

= (ATZ0 + Z0)(Z
T
0 A+ ZT0 )−ATZ0Z

T
0 A

−Z0Z
T
0 ,

= (ATZ0 + Z0)(A
TZ0 + Z0)

T

−[ATZ0 Z0 ][ATZ0 Z0 ]T .
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Denoting L0 := ATZ0 + Z0, M0 := [ATZ0 Z0 ], and W0 := Z0(Z
T
0 B), then the

right hand side of (4.42), at k = 0, can be written as

− CTC − L0L
T
0 +M0M

T
0 +W0W

T
0 . (4.52)

Then, if we denote N0 := [CT L0 ], U0 := [M0 W0 ], we can split the Lyapunov
equation (4.42), at k = 0, into

ÂT0 K̃1 + K̃1Â0 = −U0U
T
0 , (4.53)

ÂT0 K̂1 + K̂1Â0 = −N0N
T
0 , (4.54)

where K1(0) := K̂1 − K̃1.
Hence, assuming rank (Z0) ≤ z0 � n and observing then rank (N0) ≤ p+ z0 �
n, and rank (U0) ≤ 2z0 +m � n, we can use the modified version of the ADI
iteration (Algorithm 4.2.3, in Section 4.2.6) to solve (4.53) and (4.54).
The application of Algorithm 4.2.3 to (4.53) and (4.54) will ensure low rank
factors T̃ 0

1 , and T̂ 0
1 of K̃1 and K̂1 respectively, such thatK1(0) = T̂ 0

1 T̂
0T
1 −T̃ 0

1 T̃
0T
1

where T̂ 0
1 ∈ Rn×t̂0 , T̃ 0

1 ∈ Rn×t̃0 with t̂0, t̃0 � n. We do not compute explicitly
K1(0), or a low rank factor of it because it will be complex as we want to keep
the computation in real arithmetics. Instead, we use the split representation of
K1(0) in the right hand side of (4.43), which can be expressed as

−h(ATK1(0) +K1(0)A) + h2K1(0)SK1(0)− 2K1(0)
+h(K1(0)SX0 +X0SK1(0)).

Notice that, denoting K̂1(0) = T̂ 0
1 (T̂ 0

1 )T , then

X0SK̂1(0) + K̂1(0)SX0 = Z0Z
T
0 BB

T (Z0Z
T
0 + T̂ 0

1 (T̂ 0
1 )T )

+T̂ 0
1 (T̂ 0

1 )TBBT (Z0Z
T
0 + T̂ 0

1 (T̂ 0
1 )T )

−Z0Z
T
0 BB

TZ0Z
T
0 − T̂ 0

1 (T̂ 0
1 )TBBT T̂ 0

1 (T̂ 0
1 )T ,

= (Z0Z
T
0 + T̂ 0

1 (T̂ 0
1 )T )BBT (Z0Z

T
0 + T̂ 0

1 (T̂ 0
1 )T )

−Z0Z
T
0 BB

TZ0Z
T
0 − T̂ 0

1 (T̂ 0
1 )TBBT T̂ 0

1 (T̂ 0
1 )T ,

thus X0SK̂1(0) + K̂1(0)SX0 can be expressed as

[Z0(Z
T
0 B) + T̂ 0

1 ((T̂ 0
1 )TB)][Z0(Z

T
0 B) + T̂ 0

1 ((T̂ 0
1 )TB)]T

−[Z0(Z
T
0 B)][Z0(Z

T
0 B)]T − [T̂ 0

1 ((T̂ 0
1 )TB)][T̂ 0

1 ((T̂ 0
1 )TB)]T .

(4.55)

Therefore, denoting

L̂1
0 := AT T̂ 0

1 + T̂ 0
1 , L̃1

0 := AT T̃ 0
1 + T̃ 0

1 ,

M̂1
0 := [AT T̂ 0

1 T̂ 0
1 ], M̃1

0 := [AT T̃ 0
1 T̃ 0

1 ],

Ŵ 1
0 := T̂ 0

1 ((T̂ 0
1 )TB), W̃0 := T̃ 0

1 ((T̃ 0
1 )TB),

W0 := Z0(Z
T
0 B),

(4.56)



CHAPTER 4. NUMERICAL METHODS FOR DRES 65

and re-arranging terms we get

U2
0 (U2

0 )T −N2
0 (N2

0 )T ,

where

U2
0 := [

√
hL̃1

0

√
hM̂1

0

√
2T̃ 0

1

√
2h2 + hW̃ 1

0

√
2hŴ 1

0

√
h(W0 + Ŵ 1

0 ) ],

N2
0 := [

√
hL̂1

0

√
hM̃1

0

√
2T̂ 0

1 h(Ŵ 1
0 + W̃ 1

0 )
√
hŴ 1

0

√
h(W0 + W̃ 1

0 ) ].

Assuming that rank(T̂ 0
1 ) ≤ r̂0 and rank(T̃ 0

1 ) ≤ r̃0, we observe that rank(U 2
0 ),

rank(N2
0 ) ≤ 2r̃0 +2r̂0 +3m, which in general we expect to be much smaller than

n. In case rank(U2
0 ) (rank(N2

0 )) becomes large a column compression technique
can be applied to reduce the number of columns of U 2

k (N2
k ) without adding a

significant error, see Remark 4.2.1. Therefore, we can apply the ADI iteration
to solve the Lyapunov equations resulting from splitting (4.43). Let us denote
by T̃ 0

2 and T̂ 0
2 the low rank factors given by the ADI iteration. Then, setting

T̂k :=

[√
2T̂ 0

1

√

1

2
T̂ 0

2

]

, T̃k :=

[√
2T̃ 0

1

√

1

2
T̃ 0

2

]

(4.51) holds for k = 0.
Let us now assume that (4.51) holds for a given k. We prove that it holds for
k + 1. If we re-write the right hand side of (4.42) as

−F (Xk) = −F (X0 + h(K̂k − K̃k))

= −F (X0)− F (hK̂k) + F (hK̃k) + 2h2K̃kSK̃k

+hX0SK̂k − hX0SK̃k + hK̂kSX0 − h2K̂kSK̃k

−hK̃kSX0 − h2K̃kSK̂k.

then, F (hK̂k) and F (hK̃k) can be expressed as a sum of low rank matrix prod-
ucts similar to F (X0) in (4.52). On the other hand, a low rank representation
of X0SK̃k + K̃kSX0, X0SK̂k + K̂kSX0 and K̂kRK̃k + K̃kRK̂k can be found
similar to (4.55). Denoting

L̂k := AT T̂k + T̂k, L̃k := AT T̃k + T̃k,

M̂k := [AT T̂k T̂k ], M̃k := [AT T̃k T̃k ],

Ŵk := T̂k(T̂
T
k B), W̃k := T̃k(T̃

T
k B),

(4.57)

and re-arranging terms the right hand side of (4.42) can be written as

UkU
T
k −NkNT

k (4.58)

where

Uk :=
[
M0 W0

√
hM̂k

√
2hŴk

√
hL̃k (

√
2h2 + h)W̃k

√
h(W0 + Ŵk)

]
,

Nk :=
[
CT L0

√
hL̂k

√
hM̃k

√
hŴk

√
h(W0 + W̃k)

√
h(Ŵk + W̃k)

]
.

So, for every step k, we can split the Lyapunov equation (4.42) into two Lya-
punov equations, similar to (4.53) and (4.54). If we assume that rank(T̂k) ≤
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t̃k � n and rank(T̃k) ≤ t̂k � n, then rank(Uk) ≤ 2z0 + 2t̂k + 4m+ t̃k � n and
rank(Nk) ≤ p+ 2z0 + 2t̃k + 3m+ t̂k � n (in case rank(Uk) (rank(Nk)) becomes
large, a column compression technique can be applied to reduce the number of
columns of Uk (Nk), see Remark 4.2.1). Therefore, we are able now to apply the
ADI iteration for the resulting equations after splitting (4.42) in every step. Let
us denote by T̃ k1 and T̂ k1 the low rank factors computed by the ADI iteration,
at step k.
The right hand side of (4.43) can be written as

h(ATK1(k − 1)−K1(k − 1)A)− h2K1(k − 1)SK1(k − 1) + 2K1(k − 1)

−h(K1(k − 1)SX0 −X0SK1(k − 1))− h2(K1(k − 1)SK̂k − K̂kSK1(k − 1))

+h2(K1(k − 1)SK̃k − K̃kSK1(k − 1)).

Denoting
L̂1
k := AT T̂ k1 + T̂ k1 , L̃1

k := AT T̃ k1 + T̃ k1 ,

M̂1
k := [AT T̂ k1 T̂ k1 ], M̃1

k := [AT T̃ k1 T̃ k1 ],

Ŵ 1
k := T̂ k1 ((T̂ k1 )TB), W̃ 1

k := T̃ k1 ((T̃ k1 )TB),

(4.59)

and re-arranging this becomes

U2
k (U2

k )T −N2
k (N2

k )T ,

where
U2
k := [

√
hL̃1

k

√
hM̂1

k

√
2T̃ k1

√
2h2 + hW̃ 1

k

√
2hŴ 1

k√
h(W0 + Ŵ 1

k ) h(W̃k + W̃ 1
k ) h(Ŵk + Ŵ 1

k ) ],

N2
k := [

√
hL̂1

k

√
hM̃1

k

√
2T̂ k1 h(Ŵ 1

k + W̃ 1
k )
√
hŴ 1

k√
h(W0 + W̃ 1

k ) h(Ŵk + W̃ 1
k ) h(W̃k + Ŵ 1

k ) ].

As before, let us assume that rank(T̂ k1 ) ≤ r̂k � n and rank(T̃ k1 ) ≤ r̃k � n, then
rank(U2

k ), rank(N2
k ) ≤ 2r̃k +2r̂k+5m� n (again, in case rank(U 2

k ) (rank(N2
k ))

becomes large a column compression technique can be applied) . Hence, we can
apply the ADI iteration to solve the Lyapunov equations resulting from splitting
(4.43) in every step . Let us denote by T̃ k2 and T̂ k2 the low rank factors given by
the ADI iteration at step k, then

Zk+1Z
T
k+1 = Z0Z

T
0 +

3

2
h

k∑

j=0

(T̂ j1 (T̂ j1 )T − T̃ j1 (T̃ j1 )T )

+
1

2
h

k∑

j=0

(T̂ j2 (T̂ j2 )T − T̃ j2 (T̃ j2 )T ),

= Z0Z
T
0 + h(T̂k+1T̂

T
k+1 − T̃k+1T̃

T
k+1),

where

T̂k :=

[√
2[T̂ 0

1 T̂
1
1 . . . T̂ k1 ]

√

1

2
[T̂ 0

2 T̂
1
2 . . . T̂ k2 ]

]

,

T̃k :=

[√
2[T̃ 0

1 T̃
1
1 . . . T̃ k1 ]

√

1

2
[T̃ 0

2 T̃
1
2 . . . T̃ k2 ]

]

,
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i.e., (4.51) holds for k + 1 and therefore the whole iteration can be performed
in terms of the low rank factors. The method is sketched in Algorithm 4.3.4.

Algorithm 4.3.4 LRF Rosenbrock of second order

Require: A ∈ Rn×n, B, C, Z0 satisfying (4.49), t ∈ [a, b], and step size h.
Ensure: (T̂i, T̃i, ti) such that Xi ≈ Z0Z

T
0 + h(T̂iT̂

T
i − T̃iT̃ Ti ).

1: t0 = a.
2: T̃0 = 0.
3: T̂0 = 0.
4: for k = 0 to d b−ah e do

5: Fk =
[
(Z0(Z

T
0 B))T , h(T̂k(T̂

T
k B))T , (T̃k(T̃

T
k B))T

]
.

6: Âk = γh(A−BFk) + 1
2I .

7: Determine (sub)optimal ADI shift parameters p1, p2, . . . with respect to
the matrix Âk.

8: Uk =
[
M0, W0,

√
hM̂k,

√
2hŴk,

√
hL̃k, (

√
2h2 + h)W̃k ,

√
h(W0 + Ŵk)

]
.

9: Compute T̃ k1 by Algorithm 4.2.3 such that the low rank factor product
T̃ k1 (T̃ k1 )T approximates the solution of ÂTk K̃1 + K̃1Âk = −UkUTk .

10: Nk =
[
CT , L0,

√
hL̂k,

√
hM̃k,

√
hŴk,

√
h(W0 + W̃k),

√
h(Ŵk + W̃k)

]
.

11: Compute T̂ k1 by Algorithm 4.2.3 such that the low rank factor product
T̂ k1 (T̂ k1 )T approximates the solution of ÂTk K̂1 + K̂1Âk = −NkNT

k .

12: U2
k =

[√
hL̃1

k,
√
hM̂1

k ,
√

2T̃ k1 ,
√

2h2 + hW̃ 1
k ,
√

2hŴ 1
k ,
√
h(W0 + Ŵ 1

k ),

h(W̃k + W̃ 1
k ), h(Ŵk + Ŵ 1

k )
]
.

13: Compute T̃ k2 by Algorithm 4.2.3 such that the low rank factor product
T̃ k2 (T̃ k2 )T approximates the solution of ÂTk K̃21 + K̃21Âk = −U2

k (U2
k )T .

14: N2
k =

[√
hL̂1

k,
√
hM̃1

k ,
√

2T̂ k1 , h(Ŵ
1
k + W̃ 1

k ),
√
hŴ 1

k ,
√
h(W0 + W̃ 1

k ),

h(Ŵk + W̃ 1
k ), h(W̃k + Ŵ 1

k )
]
.

15: Compute T̂ k2 by Algorithm 4.2.3 such that the low rank factor product
T̂ k2 (T̂ k2 )T approximates the solution of ÂTk K̂21 + K̂21Âk = −N2

k (N2
k )T .

16: T̃k+1 =
[√

2T̃ k1 , T̃k,
√

1
2 T̃

k
2

]
.

17: T̂k+1 =
[√

2T̂ k1 , T̂k,
√

1
2 T̃

k
2

]
.

18: tk+1 = tk + h.
19: end for

Remark 4.3.2 Steps 10. and 12. as well as 14. and 16. of Algorithm 4.3.4 can
be computed simultaneously by the factored ADI iteration as the linear systems
of equations to be solved in each step have the same coefficient matrices.

Remark 4.3.3 In the special case of the Rosenbrock method of order two, for
autonomous DREs, in which the parameter γ is chosen as 1 ((4.45)–(4.47)), the
iteration simplifies considerably solving the second Lyapunov equation (4.47).
This results in Algorithm 4.3.5.
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Algorithm 4.3.5 LRF Rosenbrock of second order for γ = 1

Require: A ∈ Rn×n, B, C, Z0 satisfying (4.49), t ∈ [a, b], and step size h.
Ensure: (T̂i, T̃i, ti) such that Xi ≈ Z0Z

T
0 + h(T̂iT̂

T
i − T̃iT̃ Ti ).

1: t0 = a.
2: T̃0 = 0.
3: T̂0 = 0.
4: for k = 0 to d b−ah e do

5: Fk =
[
(Z0(Z

T
0 B))T , h(T̂k(T̂

T
k B))T , (T̃k(T̃

T
k B))T

]
.

6: Âk = h(A−BFk) + 1
2I .

7: Determine (sub)optimal ADI shift parameters p1, p2, . . . with respect to
the matrix Âk.

8: Uk =
[
M0, W0,

√
hM̂k,

√
2hŴk,

√
hL̃k, (

√
2h2 + h)W̃k ,

√
h(W0 + Ŵk)

]
.

9: Compute T̃ k1 by Algorithm 4.2.3 such that the low rank factor product
T̃ k1 (T̃ k1 )T approximates the solution of ÂTk K̃1 + K̃1Âk = −UkUTk .

10: Nk =
[
CT , L0,

√
hL̂k,

√
hM̃k,

√
hŴk,

√
h(W0 + W̃k),

√
h(Ŵk + W̃k)

]
.

11: Compute T̂ k1 by Algorithm 4.2.3 such that the low rank factor product
T̂ k1 (T̂ k1 )T approximates the solution of ÂTk K̂1 + K̂1Âk = −NkNT

k .

12: U2
k =

[√
2hŴ 1

k ,
√

2hW̃ 1
k , T̃

k
1

]
.

13: Compute T̃ k2 by Algorithm 4.2.3 such that the low rank factor product
T̃ k2 (T̃ k2 )T approximates the solution of ÂTk K̃2 + K̃2Âk = −U2

k (U
2
k )T .

14: N2
k =

[
h(Ŵ 1

k + W̃ 1
k ), T̂ k1

]
.

15: Compute T̂ k2 by Algorithm 4.2.3 such that the low rank factor product
T̂ k2 (T̂ k2 )T approximates the solution of ÂTk K̂2 + K̂2Âk = −N2

k (N
2
k )T .

16: T̃k+1 =
[
√

3
2 T̃

k
1 , T̃k,

√
1
2 T̃

k
2

]
.

17: T̂k+1 =
[
√

3
2 T̂

k
1 , T̂k,

√
1
2 T̃

k
2

]
.

18: tk+1 = tk + h.
19: end for
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The non-autonomous case. So far we have presented low rank versions of
the Rosenbrock methods for autonomous DREs. We will now see that they can
easily be extended to the non-autonomous case by proving that the right hand
side of (4.33) and (4.39) respectively, can be expressed as a low rank matrix
product. In fact, we just need to prove that Ftk can be represented as a low
rank matrix product combination.
If we approximate the derivatives involved in Ftk using central differences as:

Q̇k :=
Qk+1 −Qk−1

h
, Ȧk :=

Ak+1 −Ak−1

h
, Ṡk :=

Sk+1 − Sk−1

h
,

(note that, in the context of DREs arising in optimal control the matrix Q(t) is
generally constant, it represents the output matrix), then Ftk can be approxi-
mated by

Ftk ≈ 1
h

[

(Qk −Qk−1) + hATk F (Xk) + (ATk −ATk−1)Xk

+hF (Xk)Ak +Xk(Ak −Ak−1)− hF (Xk)SkXk

−Xk(Sk − Sk−1)Xk − hXkSkF (Xk)

]

.

(4.60)

By (4.58) we know that F (Xk) can be expressed as a combination of low rank
factor matrix products, then by several computations similar to (4.55) and re-
arranging terms we can obtain a low rank matrix representation of (4.60). There-
fore the Rosenbrock methods for non-autonomous DREs reviewed in Section
4.3.3 can be formulated using low rank factors.

4.4 The ADI parameter selection problem

The alternating direction implicit (ADI) iteration was introduced in [90] as a
method for solving elliptic and parabolic difference equations.
Let A ∈ Rn×n be a real symmetric positive definite (SPD) and let s ∈ Rn be
known. We can apply ADI iteration to solve

Au = s,

when A can be expressed as the sum of matrices H and V for which the linear
systems

(H + pI)v = r,
(V + pI)w = t

admit an efficient solution. Here p is a suitable chosen parameter and r, t are
known.
If H and V are SPD, then there exist positive parameters pj for which the
two-sweep iteration defined by

(H + pjI)u(j−1)/2 = (pjI − V )uj−1 + s,
(V + pjI)uj = (pjI −H)uj−1/2 + s

(4.61)
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for j = 1, 2, . . . converges. If the shift parameters pj are chosen appropriately,
then the convergence rate is superlinear, but convergence rates can be ensured
only when matrices H and V commute. In the noncommutative case the ADI
iteration is not competitive with other methods. This section is essentially
contained in [22].

4.4.1 Introduction

We consider a Lyapunov equation of the form

F TY + Y F = −WW T (4.62)

with stable F , (4.62) is a model ADI problem. The model condition that the
component matrices commute is retained. It can be seen when one recognizes
that this is equivalent to a linear operator M mapping Y into −WW T where
M is the sum of commuting operators: premultiplication of Y by F T and
posmultiplication by F .
Applying the ADI iteration (4.61) to (4.62) yields,

(F T + pjI)Y(j−1)/2 = −WW T − Yj−1(F − pjI),
(F T + pjI)Y

T
j = −WW T − Y(j−1)/2(F − pjI),

(4.63)

where p denotes the complex conjugate of p ∈ C. The matrix Y(j−1)/2 is in
general not symmetric after the first sweep of each iteration, but the result of
the double sweep is symmetric.
Practical experience shows that it is crucial to have good shift parameters to
get fast convergence in the ADI process. The error in iterate j is given by
ej = Rjej−1, where

Rj := (F + pjI)
−1(F T − pjI)(F T + pjI)

−1(F − pjI).

Thus the error after J iterations satisfies

eJ = GJe0, GJ :=

J∏

j=1

Rj .

Due to the fact that GJ is symmetric,

||eJ || ≤ ρ(GJ )||e0||, ρ(GJ ) = k(p)2,

where p = {p1, p2, . . . , pJ} and

k(p) = max
λ∈σ(F )

∣
∣
∣
∣
∣
∣

J∏

j=1

(pj − λ)
(pj + λ)

∣
∣
∣
∣
∣
∣

. (4.64)

By this the ADI parameters are chosen in order to minimize ρ(GJ ) which leads
to the rational minimax problem

min
{pj∈R:j=1,...,J}

k(p) (4.65)
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for the shift parameters pj , see e.g. [115]. This minimization problem is also
known as the rational Zolotarev problem since, in the real case ( i.e. σ(F ) ⊂ R)
it is equivalent to the third of four approximation problems solved by Zolotarev
in the 19th century, see [79]. For a complete historical overview see [111].

4.4.2 Review of existing parameter selection methods

Many procedures for constructing optimal or suboptimal shift parameters have
been proposed in the literature [64, 92, 108, 115]. Most of the approaches cover
the spectrum of F by a domain Ω ⊂ C− and solve (4.65) with respect to Ω
instead of σ(F ). In general one must choose among the various approaches to
find effective ADI iteration parameters for specific problems. One could even
consider sophisticated algorithms like the one proposed by Istace and Thiran
[64] in which the authors use numerical techniques for nonlinear optimization
problems to determine optimal parameters. However, it is important to take care
that the time spent in computing parameters does not outweigh the convergence
improvement derived therefrom.

Wachspress et al. [115] compute the optimum parameters when the spectrum
of the matrix F is real or, in the complex case, if the spectrum of F can be
embedded in an elliptic functions region, which often occurs in practice. These
parameters may be chosen real even if the spectrum is complex as long as the
imaginary parts of the eigenvalues are small compared to their real parts (see
[85, 115] for details). The method applied by Wachspress in the complex case
is similar to the technique of embedding the spectrum into an ellipse and then
using Chebyshev polynomials. In case that the spectrum is not well represented
by the elliptic functions region a more general development by Starke [108]
describes how generalized Leja points yield asymptotically optimal iteration
parameters. Finally, an inexpensive heuristic procedure for determining ADI
shift parameters, which often works well in practice, was proposed by Penzl
[92]. We will summarize these approaches here.

Leja Points. Gonchar [55] characterizes the general minimax problem and
shows how asymptotically optimal parameters can be obtained with generalized
Leja or Fejér points. Starke [107] applies this theory to the ADI minimax
problem (4.65). The generalized Leja points are defined as follows. Given
ϕj ∈ E and ψj ∈ F arbitrarily, E,F subsets of C, for j = 1, 2, . . . , the new
points ϕj+1 ∈ E and ψj+1 ∈ F are chosen recursively in such a way that, with

rj(z) =

j
∏

i=1

z − ϕj
z − ψj

(4.66)

the two conditions

max
x∈E
|rj(z)| = |rj(ϕj+1)|, max

x∈F
|rj(z)| = |rj(ψj+1)|, (4.67)

are fullfilled. Bagby [10] shows that the rational functions rj obtained by
this procedure are asymptotically minimal for the rational Zolotarev problem.
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Starke considers a general ADI iteration, so for ADI applied to the Lyapunov
equation (4.63) the generalized Leja points will be defined as follows:

Given p0 ∈ E, E is a complex subset such that σ(F ) ⊂ E, for j = 1, 2, . . . ,
the new points pj ∈ E are chosen recursively in such a way that, with

rj(z) =

j
∏

i=1

z − pj
z + pj

(4.68)

the condition
max
x∈E
|rj(z)| = |rj(pj+1)| (4.69)

holds. The generalized Leja points can be determined numerically for a large
class of boundary curves ∂E. When relatively few iterations are needed to
attain the prescribed accuracy, the Leja points may be poor. Moreover their
computation can be quite time consuming when the number of Leja points
generated is large, since the computation gets more and more expensive the
more prior Leja points are already calculated.

Optimal parameters. In this section we will briefly summarize the param-
eter selection procedure given in [115].

Define the spectral bounds a, b and a sector angle α for the matrix F as

a = min
i

(Re{λi}), b = max
i

(Re{λi}), α = tan−1 max
i

∣
∣
∣
∣

Im{λi}
Re{λi}

∣
∣
∣
∣
, (4.70)

where λ1, . . . , λn are eigenvalues of −F . It is assumed that the spectrum of
−F lies inside the elliptic functions region determined by a, b, α, as defined in
[115]. Let

cos2 β =
2

1 + 1
2

(
a
b + b

a

) , m =
2 cos2 α

cos2 β
− 1. (4.71)

If α < β, then m ≥ 1 and the parameters are real. We define

k1 =
1

m+
√
m2 − 1

, k =

√

1− k1
2. (4.72)

Define the elliptic integrals K and v via

F [ψ, k] =

∫ ψ

0

dx
√

1− k2 sin2 x
, (4.73)

as

K = K(k) = F

[
π

2
, k

]

, v = F

[

sin−1

√
a

bk1
, k1

]

, (4.74)

where F is the incomplete elliptic integral of the first kind, k is its modulus and
ψ is its amplitude.
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The number of the ADI iterations required to achieve k(p)2 ≤ ε is J =
d K2vπ log 4

ε e, and the ADI parameters are given by

pj = −
√

ab

k1
dn

[
(2j − 1)K

2J
, k

]

, j = 1, 2, . . . , J, (4.75)

where dn(u, k) is the elliptic function (see [3]).
If m < 1, the parameters are complex. We define the dual elliptic spectrum,

a′ = tan

(
π

4
− α

2

)

, b′ =
1

a′
, α′ = β.

Substituting a′ in (4.71), we find that

β′ = α, m′ =
2 cos2 β

cos2 α
− 1.

By construction, m′ must now be greater than 1. Therefore we may compute the
optimum real parameters p′j for the dual problem. The corresponding complex
parameters for the actual spectrum can then be computed from:

cosαj =
2

p′j + 1
p′j

, (4.76)

and for j = 1, 2, . . . , d 1+J2 e

p2j−1 =
√
ab exp[ıαj ], p2j =

√
ab exp[−ıαj ]. (4.77)

Heuristic parameters. The bounds needed to compute optimal parameters
are too expensive to be computed exactly in case of large scale systems because
they need the knowledge of the whole spectrum of F . In fact, this computation
would be more expensive than the application of the ADI method itself.

An alternative was proposed by Penzl in [92]. He presents a heuristic pro-
cedure which determines suboptimal parameters based on the idea of replacing
σ(F ) by an approximation R of the spectrum in (4.65). Specifically, σ(F ) is ap-
proximated using the Ritz values computed by the Arnoldi process (or any other
large scale eigensolver). Due to the fact that the Ritz values tend to be located
near the largest magnitude eigenvalues, the inverses of the Ritz values related
to F−1 are also computed to get an approximation of the smallest magnitude
eigenvalues of F yielding a better approximation of σ(F ). The suboptimal pa-
rameters P = {p1, . . . , pk} are chosen among the elements of this approximation
because the function

sP(t) =
|(t− p1) . . . (t− pk)|
|(t+ p1) . . . (t+ pk)|

becomes small over σ(F ) if there is one of the shifts pj in the neighborhood of
each eigenvalue. The procedure determines the parameters as follows. First,
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the element pj ∈ R which minimizes the function s{pj} over R is chosen. The
set P is initialized by either {pj} or the pair of complex conjugates {pj , p̄j}.
Now P is successively enlarged by the elements or pairs of elements of R, for
which the maximum of the current sP is attained. Doing this the elements of
R giving the largest contributions to the value of sP are successively canceled
out. Therefore the resulting sP is nonzero only in the elements of R where its
value is comparably small anyway. In this sense (4.65) is solved heuristicly.

Discussion. We are searching for a parameter set for the ADI method ap-
plied to a control problem, where in the PDE constraint (1.1) the diffusive part
is dominating the reaction or convection terms, respectively. Thus the result-
ing operator has a spectrum with only moderately large imaginary components
compared to the real parts. In these problems the Wachspress approach should
always be applicable and lead to real shift parameters in many cases. In prob-
lems, where the reactive and convective terms are absent, i.e. we are considering
a plain heat equation and therefore the spectrum is part of the real axis, the
Wachspress parameters are proven to be optimal. The heuristics proposed by
Penzl is more expensive to compute there and Starke notes in [107], that the
generalized Leja approach will not be competitive here since it is only asymp-
totically optimal. For the complex spectra case common strategies to determine
the generalized Leja points generalize the idea of enclosing the spectrum by a
polygonal domain, where the starting roots are placed in the corners. So one
needs quite exact information about the shape of the spectrum there. In practice
this would require to be able to compute the eigenvalues with largest imaginary
parts already for a simple rectangular enclosure of the spectrum. Since this still
does not work reliably, we decided to avoid the comparison with that approach
in this publication, although it might proof useful in cases where the Wachspress
parameters are no longer applicable or one knows some a-priori information on
the spectrum.

4.4.3 Suboptimal parameter computation

In this section we discuss our new contribution to the parameter selection prob-
lem. The idea is to avoid the problems of the methods reviewed in the previous
section and on the other hand combine their advantages.

Since the important information that we need to know for the Wachspress
approach is the outer shape of the spectrum of the matrix F , we will describe
an algorithm approximating the outer spectrum. With this approximation the
input parameters a, b and α for the Wachspress method are determined and the
optimal parameters for the approximated spectrum are computed. Obviously,
these parameters have to be considered suboptimal for the original problem, but
if we can approximate the outer spectrum at a similar cost to that of the heuristic
parameter choice we end up with a method giving nearly optimal parameters at
a drastically reduced computational cost compared to the optimal parameters.

In the following we discuss the main computational steps in Algorithm 4.4.1.
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Algorithm 4.4.1 approximate optimal ADI parameter computation

Require: F Hurwitz stable
1: if σ(F ) ⊂ R then

2: Compute the spectral bounds and set a = minσ(−F ) and b =
maxσ(−F ),

3: k1 = a
b , k =

√

1− k2
1 ,

4: K = F (π2 , k) , v = F (π2 , k1).
5: Compute J and the parameters according to (4.75).
6: else

7: Compute ã = min Re (σ(−F )), b̃ = max Re (σ(−F )) and c = ã+b̃
2 .

8: Compute l largest magnitude eigenvalues λ̂i for the shifted matrix−F+cI
by an Arnoldi process or alike.

9: Shift these Eigenvalues back, i.e. λ̃i = λ̂i + c.
10: Compute a, b and α from the λ̃i like in (4.70).
11: if m ≥ 1 in (4.71) then

12: Compute the parameters by (4.71)–(4.75).
13: else {The ADI parameters are complex in this case}
14: Compute the dual variables.
15: Compute the parameters for the dual variables by (4.71)–(4.75).
16: Use (4.76) and (4.77) to get the complex shifts.
17: end if

18: end if

Real spectra In the case where the spectrum is real we can simply compute
the upper and lower bounds of the spectrum by an Arnoldi or Lanczos process
and enter the Wachspress computation with these values for a and b, and set
α = 0, i.e., we only have to compute two complete elliptic integrals by an
arithmetic geometric mean process. This is very cheap since it is a quadratically
converging scalar computation (see below).

Complex spectra For complex spectra we introduce an additional shifting
step to be able to apply the Arnoldi process more efficiently. Since we are
dealing with stable systems2, we compute the largest magnitude and smallest
magnitude eigenvalues and use the arithmetic mean of their real parts as a
horizontal shift, such that the spectrum is centered around the origin. Now
Arnoldi’s method is applied to the shifted spectrum, to compute a number
of largest magnitude eigenvalues. These will now automatically include the
smallest magnitude eigenvalues of the original system after shifting back. So we
can avoid extensive application of the Arnoldi method to the inverse of F . We
only need it to get a rough approximation of the smallest magnitude eigenvalue
to determine ã and b̃ for the shifting step.

The number of eigenvalues we compute can be seen as a tuning parameter

2Note that the Newton-ADI-iteration assumes that we know a stabilizing initial feedback,
or the system is stable itself
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here. The more eigenvalues we compute, the better the approximation of the
shape of the spectrum is and the closer we get to the exact a, b and α, but
obviously the computation becomes more and more expensive. Especially the
dimension of the Krylov subspaces is rising with the number of parameters
requested and with it the memory consumption in the Arnoldi process. But
in cases where the spectrum is filling a rectangle or an egg-like shape, a few
eigenvalues are sufficient here (compare Section 4.4.4).

A drawback of this method can be that in case of small (compared to the
real parts) imaginary parts of the eigenvalues, one may need a large number
of eigenvalue approximations to find the ones with largest imaginary parts,
which are crucial to determine α accurately. On the other hand in that case
the spectrum is almost real and therefore it will be sufficient to compute the
parameters for the approximate real spectrum in most applications.

Computation of the elliptic integrals The new as well as the Wachspress
parameter algorithms require the computation of certain elliptic integrals pre-
sented in (4.73). These are equivalent to the integral

F [ψ, k] =

∫ ψ

0

dx
√

(1− k2) sin2 x+ cos2 x
=

∫ ψ

0

dx
√

(k2
1) sin2 x+ cos2 x

. (4.78)

In the case of real spectra, ψ = π
2 and F [π2 , k] is a complete elliptic integral of

the form

I(a, b) =

∫ π
2

0

dx
√

a2 cos2 x+ b2 sin2 x

and I(a, b) = π
2M(a,b) , where M(a, b) is the arithmetic geometric mean of a and

b. The proof for the quadratic convergence of the arithmetic geometric mean
process is given in many textbooks (e.g., [110]).

For incomplete elliptic integrals, i.e., the case ψ < π
2 , an additional Landen’s

transformation has to be performed. Here, first the arithmetic geometric mean
is computed as above, then a descending Landen’s transformation is applied
(see [3, Chapter 17]), which comes in at the cost of a number of scalar tangent
computations equal to the number of iteration steps taken in the arithmetic
geometric mean process above.

The value of the elliptic function dn from equation (4.75) is also computed
by an arithmetic geometric mean process (see [3, Chapter 16]).

To summarize the advantages of the proposed method we can say:

• We compute real shift parameters even in case of many complex spectra,
where the heuristic method would compute complex ones. This results
in a significantly cheaper ADI iteration considering memory consumption
and computational effort, since complex computations are avoided.

• We have to compute less Ritz values compared to the heuristic method,
reducing the time spent in the computational overhead for the acceleration
of the ADI method.
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• We compute a good approximation of the Wachspress parameters at a
drastically reduced computational cost compared to their exact computa-
tion.

4.4.4 Numerical results

For the numerical tests we used the LyaPack3 software package [94]. A test pro-
gram similar to demo r1 from the LyaPack examples is used for the computation,
where the ADI parameter selection is switched between the methods described
in the previous sections. We are here concentrating on the case where the ADI
shift parameters can be chosen real.

FDM semi-discretized diffusion-convection-reaction equation. Here
we consider the finite difference semi-discretized partial differential equation

∂x

∂t
−∆x−

[
20
0

]

.∇x + 180x = f(ξ)u(t), (4.79)

where x is a function of time t, vertical position ξ1 and horizontal position ξ2
on the square with opposite corners (0, 0) and (1, 1). The example is taken from
the SLICOT collection of benchmark examples for model reduction of linear
time-invariant dynamical systems (see [36, Section 2.7] for details). It is given
in semi-discretized state space model representation:

ẋ = Ax+Bu, y = Cx. (4.80)

The matrices A, B, C for this system can be found on the NICONET web site4.
Figure 4.2 (a),(b) show the spectrum and sparsity pattern of the system

matrix A. The iteration history, i.e., the numbers of ADI steps in each step of
Newton’s method are plotted in Figure 4.2 (c). There we can see that in fact the
semi-optimal parameters work exactly like the optimal ones by the Wachspress
approach. This is what we would expect since the rectangular spectrum is
an optimal case for our idea, because the parameters a, b and α are exactly
(to the accuracy of Arnoldi’s method) met here. Note especially that for the
heuristic parameters even more outer Newton iterations than for our parameters
are required.

FDM semi-discretized heat equation. In this example we tested the pa-
rameters for the finite difference semi-discretized heat equation on the unit
square (0, 1)× (0, 1).

∂x

∂t
−∆x = f(ξ)u(t). (4.81)

The data is generated by the routines fdm 2d matrix and fdm 2d vector from
the examples of the LyaPack package. Details on the generation of test problems

3available from: http://www.netlib.org/lyapack/ or http://www.tu-chemnitz.de/

sfb393/lyapack/
4http://www.icm.tu-bs.de/NICONET/benchmodred.html
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can be found in the documentation of these routines (comments and Matlab

help). Since the differential operator is symmetric here, the matrix A is sym-
metric and its spectrum is real in this case. Hence α = 0 and for the Wachspress
parameters only the largest magnitude and smallest magnitude eigenvalues have
to be found to determine a and b. That means we only need to compute two
Ritz values by the Arnoldi (which here is in fact a Lanczos process because
of symmetry) process compared to about 30 (which seems to be an adequate
number of shifts) for the heuristic approach. We used a test example with 400
unknowns here to still be able to compute the complete spectrum using eig for
comparison.

In Figure 4.3 we plotted the sparsity pattern of A and the iteration history
for the solution of the corresponding ARE. We can see (Figure 4.3 (b)) that
iteration numbers only differ very slightly. Hence we can choose quite indepen-
dently which parameters to use. Since the Wachspress approach needs a good
approximation of the smallest magnitude eigenvalue it might be a good idea to
choose the heuristic parameters here (even though they are much more expen-
sive to compute) if the smallest magnitude eigenvalue is known to be close to
the origin (e.g. in case of finite element discretizations with fine meshes).

FEM semi-discretized convection-diffusion equation. The last example
is a system appearing in the optimal heating/cooling of a fluid flow in a tube. An
application is the temperature regulation of certain reagent inflows in chemical
reactors. The model equations are:

∂x
∂t − α∆x + v · ∇x = 0 in Ω

x = x0 on Γin
∂x
∂n = σ(u − x) on Γheat1 ∪ Γheat2
∂x
∂n = 0 on Γout.

(4.82)

Here Ω is the rectangular domain shown in Figure 4.4 (a). The inflow Γin is at
the left part of the boundary and the outflow Γout the right one. The control is
applied via the upper and lower boundaries. We can restrict ourselves to this 2d-
domain assuming rotational symmetry, i.e., non-turbulent diffusion dominated
flows. The test matrices have been created using the COMSOL Multiphysics
software and α = 0.06, resulting in the Eigenvalue and shift distributions shown
in Figure 4.4 (b).

Since a finite element discretization in space has been applied here, the semi-
discrete model is of the form

Mẋ = Ãx+ B̃u

y = C̃x.
(4.83)

This is transformed into a standard system (4.80) by decomposing M into M =
MLMU where ML = MT

U since M is symmetric. Then defining x̃ := MUx,
A := M−1

L ÃM−1
U , B := M−1

L and C := C̃M−1
U (without computing any of the

inverses explicitly in the code) we end up with a standard system for x̃ having
the same inputs u as (4.83).
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Note, that the heuristic parameters do not appear in the results bar graphics
here. This is due to the fact, that the LyaPacksoftware crashed while applying
the complex shift computed by the heuristics. Numerical tests where only the
real ones of the heuristic parameters where used lead to very poor convergence
in the inner loop, which is generally stopped by the maximum iteration num-
ber stopping criterion. This resulted in breaking the convergence in the outer
Newton loop.
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Figure 4.2: (a) sparsity pattern of the FDM semi-discretized operator for equa-
tion (4.79) and (b) its spectrum (c) Iteration history for the Newton ADI method
applied to (4.79)
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Figure 4.3: (a) sparsity pattern of the FDM semi-discretized operator for equa-
tion (4.81) and (b) Iteration history for the Newton ADI
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Figure 4.5: (a) sparsity pattern of A and M in (4.83) , (b) sparsity pattern of A
and M in (4.83) after reordering for bandwidth reduction, (c) sparsity pattern
of the Cholesky factor of reordered M and (d) Iteration history for the Newton
ADI.
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FIVE

Numerical examples for DREs

In this chapter we present numerical experiments for solving DREs by the BDF
and the Rosenbrock methods proposed in Chapter 4. In Section 5.1 we describe
the examples in which we tested the efficiency of our algorithms. Then, in
Section 5.2 we discuss the behavior of our methods and analyze the accuracy
of the solutions computed by the different methods. The performance of the
fixed step size methods is shown in Section 5.2.1. Finally, in Section 5.2.2 we
discuss the suitability of the variable step size methods for large-scale problems.
A general comparison among the methods is presented also. We implemented
our codes in Matlab7.0.4.

5.1 Examples

Let us first consider an example of small dimension to be able to analyze the
performance of our methods in every component of the solution. For this exam-
ple, we vectorize the DRE and compare the efficiency of our methods with the
standard stiff ODE Matlab solver ode23s. In Example 2, a DRE is considered
whose analytic solution is known and its size can be chosen arbitrarily. These
allow us to analyze the error of the methods. Then, as a first approach to the
application to control problems, we have considered a DRE where the data come
from a linear-quadratic control problem of one-dimensional heat flow. This is
a parameter dependent and variable size problem. Finally in Example 4, we
modify Example 3 in such a way that it results in a time-varying DRE.
By Remark 2.2.7, the solution of the DRE must converge to the solution of
the ARE when the interval of integration increases. As a measure of the good
performance of our code, we have plotted this convergence for Examples 1, 2
and 3.

84
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Example 1. Let us consider the DRE

Ẋ(t) = Q+ATX(t) +X(t)A−X(t)SX(t), (5.1)

X(0) = X0,

where

Q =

[
9 6
6 4

]

, A =

[
4 3
− 9

2 − 7
2

]

, S =

[
1 −1
−1 1

]

,

and

X(0) =

[
0.5625 −0.5625
−0.5625 0.5625

]

.

If we do note X(t) = [xij(t)] i, j = 1, 2 and vectorize the DRE this yields the
ODE system

ẋ11(t) = 9 + 8x11(t)− 9x12(t)− x2
11(t) + 2x11(t)x12(t)− x2

12(t),

ẋ12(t) = 6 + 3x11(t)− 4.5x22(t) + 0.5x12(t)− x12(t)x11(t) + x11(t)x22(t)

−x12(t)x22(t) + x2
12(t),

ẋ22(t) = 4 + 6x12(t)− 7x22(t)− x2
12(t) + 2x12(t)x22(t)− x2

22(t),

due to the symmetry of X(t), x21 = x12.
Notice that the solution of the associate ARE is

X∗ =

[
9(1 +

√
2) 6(1 +

√
2)

6(1 +
√

2) 4(1 +
√

2)

]

.

In Figure 5.2, we plot the approximation of each solution component of (5.1)
by the BDF methods as well as by the Rosenbrock methods using fixed step
size. Methods of the same order are compared in Figure 5.3(a) and 5.3(b). The
convergence of the DRE to the associated ARE is plotted (for each solution
component) in Figure 5.3(c), 5.3(d), and 5.3(e). We use here a relatively large
step size to be able to visualize the behavior of each method.

Example 2. Let us now consider the following symmetric DRE of size n,

Ẋ(t) = −X2(t) + k2In,
X(t0) = X0 t0 ≤ t ≤ T. (5.2)

If X0 is diagonalizable, i.e, X0 = SΛS−1 with Λ=diag[λi], then the analytic
solution of (5.2) is:

X(t) = Sdiag

[
k sinh kt+ λi cosh kt

cosh kt+ λi

k sinh kt

]

S−1,

refer to [37] for a detailed explanation. Here, we choose

X0 = In, k = 3, n = 60.
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In Figure 5.4 (a), we plot the exact solution component X11 and its approxima-
tion, by the BDF methods, (b) and by the Rosenbrock methods. The conver-
gence of the DRE to the associated ARE for this solution component is plotted
in Figures (c) and (d). Finally, the number of Newton iterations per step for
the second order BDF method (BDF2) is shown in (e), and for the third order
BDF method (BDF3) in (f).
The error for the BDF and the Rosenbrock methods is shown in Figure 5.5.
In Figure 5.6 (a), we plot the approximate solution component X11 by vari-
able step size and order BDF methods up to order 3 (BDF123) and by variable
step size Rosenbrock method of order two (Ros12) in (b). The behavior of the
step sizes is shown in (c) and (d). Finally, the error vs. step size is plotted in
(e) and (f). The tolerance to accept or redo the current step was choosen as
Tol = 1e− 4.

Example 3. The data of this example arises in a linear-quadratic control
problem of a one-dimensional heat flow. This problem is described in terms
of infinite-dimensional operators on a Hilbert space. Using a standard finite
element approach based on linear B-splines, a finite-dimensional approximation
to the problem may be obtained by the solution of AREs. This example was
taken from the SLICOT collection of benchmark examples for continuous-time
algebraic Riccati equations (see [1] for details).
By Remark 2.2.7, we consider here the associated DRE

Ẋ(t) = (CT Q̃)(CT Q̃)T +ATX(t) +X(t)A

−X(t)(BR−1R̃)(BR−1R̃)TX(t),
(5.3)

where the matrices C, Q̃, A, B and R̃ come from the ARE arising in the
discretized problem. The initial condition for (5.3) is equal to zero.
If N denotes the number of sampling nodes, then with this approach a system
of order n = N − 1 is obtained.
The system matrices are given by

A = M−1
N KN , B = M−1

N bN , R = 1, C = cTN , Q̃ = 1,

where KN ∈ Rn×n is defined as

KN = −aN












2 −1 0 . . . 0
−1 2 −1

. . .
. . .

. . .
...

−1 2 −1
0 . . . −1 2












,
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Test n a b = c [β1, β2] [γ1, γ2]

1 20 0.05 0.1 [0.1,0.5] [0.1,0.5]
2 100 0.01 1.0 [0.2,0.3] [0.2,0.3]
3 200 0.01 1.0 [0.2,0.3] [0.2,0.3]

Table 5.1: Problem parameters for one-dimensional heat flow.

MN ∈ Rn×n as

MN =
1

6N












4 1 0 . . . 0
1 4 1

. . .
. . .

. . .
...

1 4 1
0 . . . 1 4












,

and bN , cN ∈ Rn×1 are given by

(bN )i =

∫ 1

0

β(s)ϕNi (s)ds, i = 1, . . . , n,

(cN )i =

∫ 1

0

γ(s)ϕNi (s)ds, i = 1, . . . , n,

Here {ϕNi }ni=1 is the B-spline basis for the chosen finite-dimensional subspace
of the underlying Hilbert space. The functions β, γ ∈ L2(0, 1) are defined by

β(s) =

{
b, s ∈ [β1, β2]
0, otherwise

,

γ(s) =

{
c, s ∈ [γ1, γ2]
0, otherwise

.

Besides the system dimension n, the problem has the parameters a, b, c, β1, β2,
γ1, and γ2. The problem parameters chosen here are shown in Table 5.1. Test
2 corresponds to the default values of this benchmark example. Test 3 results
in a finer grid for this approximation example.
In Figure 5.7 (a), for Test 1 we plotted the approximation of the solution compo-
nent X11, corresponding to (5.3), by the BDF methods and by the Rosenbrock
methods in (b). The convergence of the DRE to the associated ARE for this
solution component is plotted in Figures (c) and (d). Finally, the number of
Newton iterations per step for BDF2 (e) and for BDF3 (f) are also plotted.
In Figure 5.8 (a), for Test 2 we plotted the approximation of the solution compo-
nent X11 by the BDF methods, and for Test 3 the approximation of the solution
component X13 in (b). The same pictures are plotted for the Rosenbrock meth-
ods in Figures (c) and (d), respectively. Finally, for Test 2 the number of Newton
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Test n b = c [β1, β2] [γ1, γ2]

1 100 1.0 [0.2,0.3] [0.2,0.3]

Table 5.2: Problem parameters for nonlinear one-dimensional heat flow.

iterations per step by BDF3 is shown in (e) and for Test 3 in (f).
In Figure 5.9 (a), we plotted an approximation of the solution component X11
by BDF123 and by Ros12 for Test 1, and for Test 2 in (b). For Test 1, the error
vs. step size by BDF123 is shown in (c) and for Test 2 in (b). The same are
plotted for Ros12 in (e) and (f), respectively. The tolerance for accept or redo
the current step was choosen as Tol = 1e− 7.

Example 4. Let us consider the problem of optimal cooling of steel profiles
[49, 103, 112]. There, the diffusive part is nonlinear. The linearization is derived
by taking means of the material parameters: heat conductivity λ, heat capacity
c and density %. It is pointed out in [103] that these parameters are modeled in
terms of the temperature by

%(θ) = −0.4553θ+ 7988,

λ(θ) = 0.0127θ+ 14.6,

c(θ) = 0.1756θ+ 454.4,

where θ ∈ [700, 1000], and the nonlinear term (analogous to parameter a in
Example 3) is defined as

ã(θ) =
λ(θ)

c(θ)%(θ)
.

We can see in Figure 5.1 that ã(t) is strictly increasing. Based on this, as a
first approach to solve nonlinear problems (and therefore time-varying DREs),
we analyze Example 3 in the time interval [0, 15], redefining the parameter a as
a piecewise constant function of the form

a(t) =







0.008 if t ∈ [0, 3[,
0.0085 if t ∈ [3, 6[,
0.009 if t ∈ [6, 9[,
0.0095 if t ∈ [9, 12[,
0.01 if t ∈ [12, 15].

(5.4)

The problem parameters chosen are shown in Table 5.2. In Figure 5.10 (a), we
plot the approximate solution component X11 by the BDF methods, including
BDF123, and by the Rosenbrock methods, including Ros12, in (b). The step
sizes over time for BDF123 is shown in (c) and for Ros12 in (d). Finally, the
error vs. step size for BDF123 is plotted in (e) and for Ros12 in (f). The
tolerance for accept or redo the current step was choosen as Tol = 1e− 8.



CHAPTER 5. NUMERICAL EXAMPLES FOR DRES 89

700 750 800 850 900 950 1000
5.3

5.4

5.5

5.6

5.7

5.8

5.9
x 10−6

temperature

no
nl

in
ea

r t
er

m

Figure 5.1: Temperature distribution of the nonlinear term ã(t).

5.2 Discussion

For the numerical experiments of the methods proposed in Chapter 4 we have
considered DREs of moderate size. We restrict ourselves to methods up to
order three. Besides the fact that the accuracy demand in the problems we
expect to deal with is not high (if the accuracy demand is modest, low order
methods are the natural choice), we are interested in large-scale applications
where higher order methods are not feasible to apply due to the computational
cost and memory requirements.
For Example 1, even though, the DRE seems to be not stiff (at least for the
component we plotted, as we can see in Figure 5.2) we compare our methods
with the stiff code ode23s to make a fair comparison.
In Example 2, the accuracy of the computed solutions of the BDF and the
Rosenbrock methods was verified. As we can see in Figure 5.5 the order of the
methods are attained for the BDF and the Rosenbrock methods as well.
The convergence of the solution of the DRE to the associated ARE solution
is achieved for all approximated solution components that have been analyzed
using the different methods we tested.

5.2.1 Fixed step size

As we expected the behavior of the methods of the same order is quite similar for
all these examples, the error analysis (Figure 5.5) confirms this fact. From the
computational cost point of view, the cost of applying the implicit Euler method
(BDF1) is that of solving one ARE per step, and even though we expect to have
just a few Newton iterations per step (as we can see form Figure 5.4 (e) and
(f), Figure 5.7 (e) and (f), Figure 5.8(e) and (f)) it is more expensive than
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the cost of applying the linearly implicit Euler method (Ros1) which a cost of
solving one Lyapunov equation per step. We point out that the computational
cost of solving the Lyapunov equation involved in every step applying Ros1
is quite similar to the one involved solving the ARE by Newton iteration in
BDF1, in fact they can be solved almost at the same cost (remember that the
Rosenbrock methods can be interpreted as the application of one Newton step
to each stage). So roughly speaking, the application of the Ros1 method is M
times cheaper than the application of BDF1, where M is the average number
of Newton iterations per step solving the ARE involved in BDF1. On the other
hand, for some stiff ODE problems BDF1 behaves better than Ros1 which could
occur solving DREs with our approach as well.
This pattern holds for a general comparison between the BDF methods and
Rosenbrock methods for small-scale DREs, i.e., in general the Rosenbrock me-
thod of order p will be cheaper to compute than the BDF method of order p.
This relies on the fact that Rosenbrock methods do not require the added burden
of iteration to accomplish the task of solving the implicit equation resulting
from the application of the method. However, the more expensive computation
resulting from the application of the BDF methods may be rewarded with a
better behavior. So, we can not give a general criterion for choosing among these
methods. It really depends on the specific application that we are dealing with.
In large-scale problems the situation changes. The cost of solving the Lyapunov
equation in each stage of the Rosenbrock method of order p (p ≥ 2) increase
because the low rank factor of the approximating solution is not computed
directly to keep working in real arithmetics (instead two low rank factors are
computed which approximate this low rank factor, see Section 4.3.4). This
makes the algorithm more expensive. However, the L-stable Rosenbrock method
of order two which we have been dealing with is capable of integrating with large
a priori described step sizes with satisfactory results using moderate accuracies
for large-scale ODEs arising from atmospheric dispersion problems, [30]. Thus,
this method still could be an option for large-scale problems.
We conclude that in general fixed step size solvers are an option to be considered
for large-scale problems.

5.2.2 Variable step size

In the design of effective solvers for differential equations varying the step size
is crucial for their performance. Here, we implement a variable step size code
for the BDF and Rosenbrock methods. As we can see in Figures 5.6, 5.9 and
5.10 their behavior is quite satisfactory, the step sizes are getting bigger when
the solution is more smooth (5.6(c),(d) and 5.10(c),(d)) and the error vs. step
size tend to be constant. The latter is more evident for Example 3 ( 5.9(c), (d),
(e), (f)) and Example 4 (5.10(e) and (f)). We were particularly interested in
the behavior of the variable step size Rosenbrock solver because it is cheaper to
compute than a variable step size BDF solver of order two, mainly for being of
one-step type. Therefore, we allowed bigger step sizes for this method. However,
we can see that our variable step size solvers are sensitive to initial transients
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and therefore require rather small step sizes to start up the integrator. We
can clearly visualize this phenomenon in Figures 5.10(c) and (d). There, every
time that the function (5.4) goes through a discontinuity point the step size is
drastically reduced. In fact, the sensitivity to initial transients is a quite popular
phenomenon among variable step size solvers. Hence, a priori described step
sizes seem to be more practical, and cheap to compute, than variable step sizes
especially for large-scale applications where we have to be concern more about
computational cost and memory requirements.
If a variable step size solver has to be applied, then the Rosenbrock method of
order two with variable step size is a reasonable option for the autonomous case.
Note that for the non-autonomous case, the computational cost of applying the
Rosenbrock methods increases considerably due to the approximation of the
derivative involved. Therefore, the BDF methods are the better option there.
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Figure 5.2: Example 1, comparison between ode23s, interval of integration
[0,2] (a) approximate solution component X11 by the BDF methods, (b) and
by the Rosenbrock methods, (c) approximate solution component X12 by the
BDF methods, (d) and by the Rosenbrock methods, (e) approximate solution
component X22 by the BDF methods, (f) and by the Rosenbrock methods
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Figure 5.3: Example 1 (a) BDF1 vs linearly implict Euler method (Ros1), (b)
BDF2 vs Rosenbrock method of order two (Ros2), (c) convergence to the so-
lution of the associated ARE, component X11, (d) component X12, (e) and
component X22.
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Figure 5.4: Example 2 (a) exact solution component X11 and approximated
by the BDF methods, (b) and by the Rosenbrock methods, (c) convergence to
the solution of the associated ARE, component X11, by the BDF methods, (d)
and by the Rosenbrock methods, (e) number of Newton iterations per step for
BDF2, (f) number of Newton iterations per step for BDF3.
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Figure 5.5: Example 2, interval of integration [0, 3] (a) error per step using fixed
step sizes h = 0.1, h = 0.01, and h = 0.001 by the BDF1, (b) by linearly implicit
Euler method (Ros1), (c) by the BDF2, (d) by the Rosenbrock method of order
two (Ros2), (e) and by the BDF3.
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Figure 5.6: Example 2, interval of integration [0, 1], Tol = 1e−4 (a) approximate
solution component X11 by the variable step size and order BDF method up to
order 3 (BDF123), (b) and by the variable step size Rosenbrock method of order
two (Ros12), (c) step sizes over time for BDF123, (d) and step sizes over time
for ROS12, (e) error vs. step size BDF123, (f) and error vs. step size ROS12.
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Figure 5.7: Example 3, Test 1 (a) the solution component X11 approximated
by the BDF methods, (b) and by the Rosenbrock methods, (c) convergence
to the solution of the associated ARE by the BDF methods, (d) and by the
Rosenbrock methods, (e) number of Newton iterations per step for BDF2, (f)
number of Newton iterations per step for BDF3.
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Figure 5.8: Example 3, interval of integration [0,5] (a) the solution component
X11 approximated by the BDF methods, Test 2, (b) and approximated solu-
tion component X13, Test 3, (c) approximated solution component X11 by the
Rosenbrock methods, Test 2, (d) and approximated solution component X13,
Test 3, (e) number of Newton iterations per step for BDF3, Test2, (f) and
number of Newton iterations per step for BDF3, Test 3.
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Figure 5.9: Example 3, interval of integration [0, 1], Tol = 1e−7 (a) approximate
solution component X11 by the variable step size and order BDF method up to
order 3 (BDF123) and the Rosenbrock method of order two (Ros12) for Test 1,
(b) and for Test 2, (c) error vs. step size BDF123 for Test 1, (d) and for Test
2, (e) error vs. step size Ros12 for Test 1, (f) and for Test 2.
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Figure 5.10: Example 4, interval of integration [0, 15], Tol = 1e−8 (a) approxi-
mate solution component X11 by the BDF methods, (b) and by the Rosenbrock
methods, (c) step sizes for the variable step size and order BDF methods up to
order 3 (BDF123), (d) and for the Rosenbrock method of order two (Ros12),
(e) error vs step size BDF123, (f) and Ros12.



CHAPTER

SIX

Application of DRE solvers to control problems

In this chapter we present the application of the DRE solvers discussed in this
thesis to control problems. First of all, in Section 6.1, we briefly state the
finite-dimensional linear-quadratic control problem and show some numerical
experiments for the heat equation. Particularly, we consider the linearized ver-
sion of the optimal cooling of steel profiles problem. Then, in Section 6.2, we
consider the nonlinear case and summarize the idea of receding horizon tech-
niques and its usage in a model predictive control scheme. Finally, in Section
6.3 the LQG approach for a linearization around a reference trajectory is shown
as well as a numerical experiment for the Burgers equation.

6.1 The LQR problem

We consider the LQR problem:

Minimize:

J(x0, u) :=
∫ Tf

0
〈x,Qx〉+ 〈u,Ru〉dt

+〈xTf
, GxTf

〉
with respect to

ẋ(t) = Ax(t) +Bu(t), t > 0, x(0) = x0.
y(t) = Cx(t) t ≥ 0.

(6.1)

If Q ≥ 0, R > 0 then, by Theorem 2.2.6 the optimal control for (6.1) is given in
feedback form by,

u∗(t) = −K(t)Tx(t),

where K(t) is the feedback matrix-valued function defined as,

K(t) = −X∗(t)BR
−1,

101
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and X∗(t) is the unique nonnegative self-adjoint solution of the differential Ric-
cati equation:

Ẋ(t) = −(CTQC +ATX(t) +X(t)A−X(t)BR−1BTX(t)),
X(Tf ) = G.

(6.2)

In Chapter 4, we proposed efficient methods to compute (6.2) based on a low
rank version of the ADI iteration. The low rank factors delivered by these
methods in general contain more columns than the feedback matrix K(t). The
computation of feedback matrices directly (i.e., without explicitly computing
the low rank factors approximating the solution of (6.2)) unfortunately is not
possible for our methods. This is due to the fact that, in the right hand side
of the Lyapunov equation involved in the solution of the DRE, using the BDF
or the Rosenbrock methods, the previous computed step(s) appear(s) explicitly,
i.e. Xk, Xk−1, . . . Therefore the low rank factor of it(them) is(are) needed to
compute the next step.
First of all, notice that due to the symmetry and definiteness assumptions, the
matrices Q and R can be factorized as

Q = Q̃Q̃T , R = R̃T R̃, (6.3)

where Q̃ ∈ Rp×q (q ≤ p) and R̃ ∈ Rm×m. If we denote C̃ = Q̃TC and B̃ =
BR−1R̃, then (6.2) can be expressed in the form

Ẋ(t) = −C̃T C̃ −ATX(t)−X(t)A+X(t)B̃B̃TX(t),
X(Tf ) = G.

By Remark 2.2.7, we can solve (forward) in time the DRE

˙̃X(t) = C̃T C̃ +AT X̃(t) + X̃(t)A− X̃(t)B̃B̃T X̃(t),

X̃(0) = G,

and afterwards recover the solution of (6.2). The latter equation has the form of
(4.1), which was the one considered in Chapter 4. Hence, we are able to directly
apply our methods to solve (6.2).

6.1.1 Numerical experiments

We now present numerical experiments for the linear-quadratic regulator prob-
lem. The Lyapunov equation involved in the solution of the DRE by the BDF,
or the Rosenbrock, methods is solved using the LyaPack software package [94]
using the ADI parameter selection method proposed in Section 4.4. In our im-
plementation we keep the concept of user-supplied functions introduced in
LyaPack meanwhile the matrix operations with A (multiplications, solution of
systems of (shifted) linear equations) are realized implicitly. The data related
to matrix A is stored in global variables making the routines efficient for both
memory and computation, see [94] for details. We performed preprocessing (and
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Test n n0 Q R G

1 400 20 I I 0
2 625 25 10I I 0
3 900 30 10I I 0

Table 6.1: Parameters for FDM semi-discretized heat equation.

post-processing as well) of the dynamical system reordering the nonzero pattern
of A for bandwidth reduction. The efficiency of our methods strongly depends
on the way how these operations are computed, e.g., if A is sparse and sym-
metric, linear systems are solved by sparse Cholesky factorization. For memory
efficient storage the feedback matrix is stored in every step instead of the low
rank factor of the approximate solution.
We solve the DRE as well as the closed-loop system using fixed step size. The
latter was computed by the implicit Euler method using the Sherman-Morrison-
Woodbury formula to efficiently solve the linear system involved.

FDM semi-discretized heat equation. We consider the finite difference
semi-discretized heat equation on the unit square (0, 1)× (0, 1).

∂x

∂t
−∆x = f(ξ)u(t). (6.4)

In Figure 4.3(a) we plot the sparsity pattern of A. The data is generated by the
routines fdm 2d matrix and fdm 2d vector from the examples of the LyaPack

software package. Details on the generation of test problems can be found in
the documentation of these routines (comments and Matlab help).
The problem parameters chosen here are shown in Table 6.1, there n is the
problem dimension, n0 is the number of grid points in either space direction,
and Q, R, G are the operators from the LQR problem.
The convergence history, after fifty iterations, for the Lyapunov equation (left)
and ARE (right) involved in the solution of the DRE using the BDF method of
order one are shown in Figure 6.1 for the different tests. As a test example we
use here the following stopping criterion: stagnation of the normalized residual
norm. Note that the computation of the normalized residual norm is expensive
and can even exceed the computational cost of the iteration itself, [94]. Hence,
we avoid this stopping criterion in the following.

Optimal cooling of steel profiles. Let us consider the problem of optimal
cooling of steel profiles, [20, 23, 24, 49, 103, 112]. This problem arises in a
rolling mill when different steps in the production process require different tem-
peratures of the raw material. To achieve a high production rate, economical
interests suggest to reduce the temperature as fast as possible to the required
level before entering the next production phase. At the same time, the cooling
process, which is realized by spraying cooling fluids on the surface, has to be
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controlled so that material properties, such as durability or porosity, achieve
given quality standards. Large gradients in the temperature distributions of the
steel profile may lead to unwanted deformations, brittleness, loss of rigidity, and
other undesirable material properties. It is therefore the engineers goal to have
a preferably even temperature distribution.

An infinitely long steel profile is assumed so that a 2-dimensional heat dif-
fusion process is considered. Exploiting the symmetry of the workpiece, an
artificial boundary Γ0 is introduced on the symmetry axis, see Figure 6.2. A
(linearized) version of the model has the form

c%xt(ξ, t) = λ∆x(ξ, t) in Ω× (0, T ),
−λ∂νx(ξ, t) = gi(t, x, u) on Γi where i = 0, . . . , 7,
x(ξ, 0) = x0(ξ) in Ω,

(6.5)

where x(ξ, t) represent the temperature at time t in point ξ, gi includes temper-
ature differences between cooling fluid and profile surface, intensity parameters
for the cooling nozzles and heat transfer coefficients modeling the heat transfer
to cooling fluid.
After discretization in space we get a model of the form

M ˙̃x(t) = Nx̃(t) + B̃u(t),

y(t) = C̃x̃(t),

where M , N ∈ Rn×n, M is invertible and M−1N is stable. The inverse matrix
of M is computed by LU factorization, i.e., M = MLMU . Then the standard
form of the system is recovered by

A = M−1
L NM−1

U , B = M−1
L B̃, C = C̃M−1

U .

We point out that matrixA is not computed explicitly and the operations related
to the matrix are done implicitly. The initial condition and computational mesh
of the numerical test is shown in Figure 6.3.
We applied the BDF method of order one with fixed step size for n = 1357. For
the refined mesh, case n = 5177, the linearly implicit Euler method (Rosenbrock
method of order one) was applied. The problem parameters chosen can be
found in Table 6.2. There n is the dimension, Q, R, G are the operators from
the finite-dimensional LQR problem and h is the step size. We can see the
behavior of six control parameters over time in Figure 6.4 for n = 1357, and
for n = 5177 in Figure 6.5. They converge to zero because G = 0 and therefore
the final feedback matrix as well as the control are equal zero. In Table 6.3 the
cost functional values are shown. The values from the finite-time horizon case
(DRE) are smaller than for the infinite-time horizon case (ARE).
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Test n Q R G Tf h

1 1357 I I 0 20 0.01
2 5177 I I 0 20 0.01

Table 6.2: Parameters for cooling of steel profiles problem.

n DRE ARE

1357 2.1601 e+06 5.0823 e+07
5177 1.9834 e+06 4.0613 e+07

Table 6.3: Cost functional values for finite-time horizon (DRE) and infinite-
time horizon (ARE).

6.2 Usage of LQR design in MPC scheme

We briefly summarize now the usage in a MPC scheme similar to [17, 68].
Let us consider the optimal control problem

Minimize:

min
∫ Tf

0
f0(y(t), u(t))dt

with respect to
ẋ(t) = f(x(t)) +Bu(t), t > 0, x(0) = x0,
y(t) = Cx(t) t ≥ 0.

(6.6)

where Tf ∈ [0,∞[, x0 ∈ Rn, and f is a nonlinear function. We assume here that
the state space is finite-dimensional to avoid difficulties associated to infinite-
dimensional control systems, see [67]. The solution of (6.6) can be found solving
the system resulting from the application of the minimum principle or construct-
ing the feedback solution based on Bellman’s dynamic programming. In both
cases, the numerical solution represents a computational challenge.
An alternative is to apply receding horizon techniques, based on model predic-
tive control which we briefly explain in the following.
Let 0 = T0 < T1 · · · < Tf describe a grid on [0, Tf ] and let T ≥ max{Ti+1 − Ti :
i = 0, . . . }. Based on the MPC approach (see, e.g, [4, 51]) we have to solve the
successive finite horizon optimal control problems on [Ti, Ti + T ],

Minimize:

min
∫ Ti+T

Ti
f0(y(t), u(t))dt + G̃(x(Ti + T ))

with respect to
ẋ(t) = f(x(t)) + Bu(t), t > 0,

(6.7)

where x(Ti) = x∗i (Ti) for i ≥ 1 and x(0) = x0 for i = 0. Here x∗i is the solution on
the previous time frame [Ti−1, Ti−1+T ]. The cost functional contains a terminal
cost G̃ to penalize the states at the end of the finite horizon, if G̃ is chosen as a
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control Liapunov function, then the asymptotic stability and the performance
estimate of the receding horizon synthesis are established in [66], for the case in
which the state space is finite-dimensional and in [67], for infinite-dimensional
state spaces. Another possibility to guarantee stability of the closed-loop system
is to add additional constraints to the problem, for example x(Ti+T ) ∈ Ω. This
constraints force the states at the end of the prediction horizon to be in some
neighborhood Ω (terminal region) of the target.
The solution on [0, Tf ] is obtained by concatenation of the solutions on [Ti, Ti+1]
for i = 0, . . . . The optimal control for the problem on [Ti, Ti+1] is computed
via an linear-quadratic Gaussian (LQG) approach. If x(Ti) is observed, this
technique is a feedback method since the control on [Ti, Ti+1] is determined as a
function of the state x∗(Ti). We point out that it is also possible to apply LQR
instead of the LQG approach to compute the optimal control for the problem
on [Ti, Ti+1], however in general small noises will lead to large deviations. This
results in useless solutions or in large jumps of the controller.

6.3 Linear-quadratic Gaussian control desing

The linear-quadratic Gaussian (LQG) approach is an extension of the LQR
approach which allows noise and includes observer, see for instance [84]. It
arises in a large number of areas of engineering, aerospace and economics, as
well as in situations in which the initially nonlinear dynamics are linearized
around a reference trajectory. In the following we review the latter.
Let us consider a nonlinear stochastic control system

ẋ(t) = f(x(t)) +Bu(t) + Fv(t), x(0) = x0, (6.8)

where v(t) is an unknown Gaussian disturbance process.
The observation process

y(t) = Cx(t) + w(t) (6.9)

provides partial observations of the state x(t), where w(t) is a measurement
noise process which will also be assumed to be Gaussian.
Let x∗(t) be a reference trajectory and u∗(t) the associated control. We define
the errors

δx(t) = x(t)− x∗(t), δu(t) = u(t)− u∗(t),
and consider

d

dt
(x∗(t) + δx(t)) = f(x∗(t) + δx(t)) +B(u∗(t) + δu(t)) + Fv(t),

x(0) = x0 + η0.

If we expand f(x∗(t) + δx(t)) up to first order, we can replace it by f(x∗(t)) +
f ′(x∗(t))δx(t). Since x∗ satisfies the equation (6.8) we get

d

dt
(x(t) − x∗(t)) ≈ A(t)(x(t) − x∗(t)) +B(u(t)− u∗(t)) + Fv(t),
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where A(t) = A(x∗(t)) = f ′(x∗(t)).
Let

z(t) = x(t)− x∗(t), ũ(t) = u(t)− u∗(t),
then, we obtain the time-varying system

ż(t) = A(t)z(t) +Bũ(t) + Fv(t), z(0) = η0.

Let Q ∈ Rn×n denote a positive definite matrix and consider the tracking prob-
lem for the pair (x∗, u∗)

Minimize:

J(z0, ũ) := 1
2

∫ Tf

0
z(t)TCTQCz(t) + ũ(t)Rũ(t)dt

+z(Tf)
TGz(Tf )

with respect to
ż(t) = A(t)z(t) +Bũ(t) + Fv(t), z(0) = η0,
y(t) = Cx(t) + w(t), t ≥ 0.

For the feedback law we use an estimated state of the process which is based on
the measured output ỹ, i.e, we use

ũ(t) = −K(t)ẑ(t)

where ẑ(t) denotes the estimated state of the system.
If we use a Kalman filter, see for instance [34], then the estimated state ẑ(t) is
given by

ẑ(t) = A(t)ẑ(t) +Bũ(t) + L(t)(y(t)− Cx̂(t)).
The feedback law can be represented as

u(t) = u∗(t) +K(t)T (x̂(t)− x∗(t)),

where K(t) is the feedback matrix defined as

K(t) = −X∗(t)BR
−1,

and X∗(t) is the unique nonnegative self-adjoint solution of the differential Ric-
cati equation:

Ẋ(t) = −(CTQC +A(t)TX(t) +X(t)A(t) −X(t)BR−1BTX(t)). (6.10)

Theorem 6.3.1 Let the following conditions hold, see the Appendix A:

(i) (A,B,C) is controllable and observable.

(ii) v and w are white noise, zero-mean stochastic processes, that is for all t,s

E[v(t)] = 0,

E[w(t)] = 0,

E[v(t)vT (s)] = V δ(t− s),
E[w(t)wT (s)] = Wδ(t− s),
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where V := cov(v(t)) is symmetric, positive semi-definite, W := cov(w(t))
is symmetric, positive definite and δ is the Dirac function. Furthermore,
it is assumed that V and W are time-independent.

(iii) v and w are uncorrelated, that is E[v(t)wT (s)] = 0, for all t, s.

Then the best estimate x̂(t) of x(t) can be generated by the Kalman filter

˙̂x(t) = A(t)(x̂(t)− x∗(t)) + f(x∗(t)) +Bu(t) + L(t)(C(x(t) − x̂(t)) + w(t)),

where the filter gain matrix L(t) is given by

L(t) = Σ∗(t)CTW−1

and Σ∗(t) is the symmetric solution of the filter differential Riccati equation
(FDRE)

Σ̇(t) = F TV F +A(t)Σ(t) + Σ(t)A(t)T − Σ(t)CTW−1CΣ(t). (6.11)

Proof. The proof of this theorem can be found for instance in [84].

Algorithm 6.3.1 sketches the LQG approach.

Remark 6.3.2 The LQG design (approach) for a linearization around an op-
erating point will lead to an algorithm similar to Algorithm 6.3.1 in which the
AREs:

0 = CTQC +ATX +XA−XBR−1BTX, (6.12)

0 = FV F T +AΣ + ΣAT − ΣCTW−1CΣ, (6.13)

have to be solve instead of the DREs in step 3 (6.12) and step 6 (6.13) respec-
tively, [84, 17, 68].

6.3.1 Numerical experiments

MPC for Burgers equation. The Burgers equation is used as a model for
description of basic phenomena of flow problems like: shock waves, traffic flows,
etc. Here we consider an optimal control problem of the form (6.6), subject to
the Burgers equation

xt(t, ξ) = νxξξ(t, ξ)− x(t, ξ)xξ(t, ξ) +B(ξ)u(t) + F (ξ)v(t),
x(t, 0) = x(t, 1) = 0, t > 0,
x(0, ξ) = x0(ξ) + η0(ξ), ξ ∈]0, 1[

(6.14)

where t is the variable in time, ξ the variable in space, and ν is a viscosity
parameter, and the observation process

y(t, ξ) = Cx(t, ξ) + w(t, ξ).
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Algorithm 6.3.1 LQG for a linearization around the reference trajectory

Require: A(t), B, C, Q, R, V , W and T .
Ensure: the optimal control uopt(t), in the interval [0, Tf ].
1: while Ti ≤ Tf do

2: Determine A(t) := f ′(x∗(t)).
3: Solve the DRE

Ẋ(t) = −(CTQC +A(t)TX(t) +X(t)A(t)−X(t)BR−1BTX(t))

satisfying X(Ti + T ) = G.
4: Let X∗ be the solution of the DRE.
5: Compute the feedback matrix K(t) = −X∗(t)BR

−1

6: Solve the FDRE

Σ̇(t) = FV F T +A(t)Σ(t) + Σ(t)A(t)T − Σ(t)CTW−1CΣ(t).

satisfying Σ(Ti) = Σi.
7: Let Σ∗ be the solution of the FDRE.
8: Compute the filter gain matrix L(t) = Σ∗(t)CTW−1.
9: Calculate x̂(t) from the compensator equation

˙̂x(t) = ẋ∗(t) +A(t)(x̂(t)− x∗(t))−BKT (x̂(t)− x∗(t))
+L(t)(y(t)− Cx̂(t)),

x̂(Ti) = x∗i ,

using (6.8) and (6.9) for simulating the measurements y(t).
10: Determine the optimal control on [Ti, Ti + T ],

u∗Ti
(t) = u∗(t) +KT (x̂(t)− x∗(t)).

11: Add u∗Ti
(t) to the optimal control on the whole interval

uopt(t) = u∗Ti
(t), t ∈ [Ti, Ti + T [.

12: Update Ti := Ti + T .
13: end while
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Test n Q R G B C F V W Tf h

1 31 0.1I 0.001I 0 I I I 4I 0.01I 3 0.03
2 201 0.1I 0.001I 0 I I I 4I 0.01I 3 0.005

Table 6.4: Parameters for MPC for Burgers equation.

n Noise in initial condition DRE ARE

31 0 0.0098 0.0115
1 0.0114 0.0131

201 0 0.0080 0.097
1 0.0128 0.0146

Table 6.5: Cost functional values with(out) noise in the initial condition.

The aim is to control the state to 0. The uncontrolled solution is plotted in
Figure 6.6(a) and the reference trajectory in (b).
After discretizing (6.14) in space by using finite elements a system of the form
(6.8) is obtained. The problem parameters can be found in Table 6.4. In
addition we chose

E[v] = E[w] = E[η0] = 0,
σv = 2, σw = 0.1, ση0 = 0.3

and the initial condition as

x0(ξ) =

{
0.3sin(2πt− π) in ]0, 1

2 ]
0 in ] 12 , 1]

.

We applied the BDF method of order one with fixed step size for solving
DREs and compare our results with an LQG design approach for a linearization
around an operating point, i.e, the case in which AREs are solved instead of
DREs. For a discussion on LQG design approach for a linearization around an
operating point we refer the reader to [17, 68].
The cost functional values are shown in Table 6.5. As for the cooling of steel
profiles problem, the values using the DRE are smaller than for the ARE.
The control and the state without considering noise in the initial condition is
shown in Figure 6.7 and Figure 6.8, respectively. The same pictures for a refined
mesh are plotted in Figures 6.11 and 6.12. For the case in which noise in the
initial condition is considered, they are plotted in Figures 6.9 and 6.10. Again,
the same pictures for a refined mesh are plotted in Figures 6.13 and 6.14.
The control (the state) for the ARE and DRE look quite similar in both cases.
However, a smaller cost is obtained for the case in which DREs are used.
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Figure 6.1: FDM semi-discretized heat equation (convergence history) (a) Low
rank ADI iteration and (b) Newton iteration for Test 1, (c) low rank ADI
iteration and (d) Newton iteration for Test 2, (e) low rank ADI iteration and
(f) Newton iteration for Test 3.
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Figure 6.2: initial mesh with points of minimization (left) and partition of the
boundary (right).

  0.0000

4436.332
1.0001.000 

 0.8750

  0.5000  

0.6250

0.5000

 

0.7500 

Figure 6.3: initial condition and computational mesh of the numerical test.
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Figure 6.4: Cooling of steel profiles control parameters plotted over time for
n=1357.
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Figure 6.5: Cooling of steel profiles control parameters plotted over time for
n=5177.
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Figure 6.6: Burgers equation (a) uncontrolled solution and (b) reference state.
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Figure 6.7: Burgers equation (a) optimal control (DRE) and (b) (ARE) for
initial mesh.
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Figure 6.8: Burgers equation (a) state (DRE) and (b) (ARE) for initial mesh.
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Figure 6.9: Burgers equation (a) optimal control with noise in the initial con-
dition (DRE) and (b) (ARE) for initial mesh.
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Figure 6.10: Burgers equation (a) state with noise in the initial condition (DRE)
and (b) (ARE) for initial mesh.
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Figure 6.11: Burgers equation (a) optimal control (DRE) and (b) (ARE) for
refined mesh.
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Figure 6.12: Burgers equation (a) state (DRE) and (b) (ARE) for refined mesh.
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Figure 6.13: Burgers equation (a) optimal control with noise in the initial con-
dition (DRE) and (b) (ARE) for refined mesh.
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Figure 6.14: Burgers equation (a) state with noise in the initial condition (DRE)
and (b) (ARE) for refined mesh.



CHAPTER

SEVEN

Conclusions and outlook

7.1 Conclusions

The numerical solution of differential Riccati equations (DREs) arising in op-
timal control problems for parabolic partial differential equations has been the
main topic of this thesis. As we have seen the linear-quadratic optimal con-
trol problems for partial differential equations on a finite-time horizon immedi-
ately leads to the problem of solving large-scale DREs resulting from the semi-
discretization using spatial finite element Galerkin scheme. In order to give us
an approximation framework for the computation of the infinite-dimensional
Riccati equations, in Chapter 3 we have shown the convergence of the finite-
dimensional Riccati operators (i.e. the operators related to a matrix DRE) to
the infinite-dimensional ones for the autonomous and the non-autonomous case,
i.e., the case in which the system is modeled by partial differential equations
with time-invariant coefficients and time-varying ones. We also have shown
that our result could be extended to other approximation schemes, e.g., spec-
tral methods.

In Chapter 4, we have reviewed the existing methods to solve DREs and
investigate whether they are suitable for large-scale problems. We focused on
the matrix versions of standard stiff ODE methods. First, in Section 4.2 we
concentrated on the BDF methods which are the most popular linear multistep
methods for stiff problems. Solving the DRE using BDF methods requires the
solution of one ARE in every step. The Newton-ADI iteration is an efficient
numerical method for this task. It includes the solution of a Lyapunov equation
by a low rank version of the alternating direction implicit (ADI) algorithm in
each iteration step. We proposed an efficient implementation for the BDF meth-
ods which exploits the given structure of the coefficients matrices. The crucial
question of suitable stepsize and order selection strategies is also addressed in
terms of the low rank factors of the solution.

Implicit Runge-Kutta methods, or collocation methods, offer an alternative
to the BDF methods for stiff problems. Among the implicit Runge-Kutta type
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methods which give satisfactory results for stiff problems, e.g. Radau methods,
or Gauss and Lobatto methods which extend midpoint and trapezoid rules, the
linearly implicit methods (better known as Rosenbrock methods) are the easiest
to implement. In fact, as for the BDF methods solving the DRE using midpoint
or trapezoid rules requires the solution of an ARE in every step, however there
are some technical difficulties which increase the computational cost of solv-
ing the ARE by Newton’s method in every step, like for instance writing the
constant term as a low rank factor product. Instead, an s stage Rosenbrock
methods requires only the solution of one Lyapunov equation per stage in ev-
ery step. Moreover, they posses excellent stability properties (as they can be
made A-stable and L-stable). Therefore, we focus on the Rosenbrock methods
in Section 4.3. For the case in which the coefficient matrices of the Lyapunov
equation are dense, the Bartels-Stewart method can be applied for solving the
equations. If the coefficient matrices of the DRE have a certain structure (e.g.
sparse, symmetric or low rank, as is the case for DREs arising in optimal control
problems which we are interested to solve), the solution of the resulting Lya-
punov equation with the Bartels-Stewart method is not feasible. Instead, a low
rank version of the ADI algorithm can be applied. We show that it is possible
to efficiently implement Rosenbrock methods for large-scale DREs based on this
approach.

Due to the fact that, the convergence of the ADI algorithm strongly depends
on the set of shift parameters chosen, a new method for determining sets of
shift parameters for the ADI algorithm is proposed in Section 4.4. We reviewed
existing methods for determining sets of ADI parameters and based on this
review we suggest a new procedure which combines the best features of two
of those. For the real case, the parameters computed by the new method are
optimal and in general their performance is quite satisfactory as one can see in
the numerical examples. The computational cost depends only on an Arnoldi
process for the matrix involved and on the computation of elliptic integrals.
Since the latter is a quadratically converging scalar iteration, the Arnoldi process
is the dominant computation here, which makes this method suitable for the
large-scale systems arising from finite element discretizations of PDEs. The
main advantages of the new method are, that it is cheaper to compute than the
existing ones and that it avoids complex computations in the ADI iteration for
many cases where the others would result in complex iterations. The efficiency
of our method have been shown in Section 4.4.4.

The utility of the Rosenbrock as well as the BDF methods has been demon-
strated by numerical experiments in Chapter 5. We want to apply our method to
large-scale problems where higher order methods are not feasible to apply due
to the computational cost and memory requirements. Furthermore, in large
applications fixed step size solvers seem to be more practical, and cheaper to
compute, than variable step size ones. This relies on the fact that variable step
size solvers are quite sensitive to initial transients and therefore can require
rather small step sizes to start up the integrator. Therefore, even though we
have controlled the step size directly for the low rank factors for BDF and Rosen-
brock methods the computational cost for large-scale problems is still high. If a
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variable step size solver has to be applied, then the Rosenbrock method of order
two is a reasonable option for the autonomous case. Note that for the non-
autonomous case, the computational cost of the Rosenbrock method increases
considerably due to the approximation of the derivative involved, here the BDF
methods are the better option.

The computational cost and memory requirements for solving the optimal
control problems considered in this thesis are high, particularly for nonlinear
problems in which several DREs have to be solved. Therefore, the solution
of the DREs by higher order methods, or by a variable step size method is
still not suitable. For the autonomous case the linearly implicit Euler method
(Rosenbrock method of order one) currently appears to be the best option.
However, the derivative involved for the non-autonomous case makes the method
computationally more expensive. Thus, the implicit Euler method is the better
option here.

7.2 Opportunities for future research

Regarding the numerical solution of DREs arising in optimal control problems
for parabolic PDEs there remain a number of open questions. The high compu-
tational cost of solving control problems suggest to use the resources of proces-
sors to deal with large-scale applications, hence parallelization of the methods
proposed here is the next step in our research. A parallel solution of large-
scale generalized AREs based on the Newton-ADI iteration has been proposed
recently, [9]. On the other hand, the memory requirement can be drastically
reduce storing the data just in selected points. The selection procedure may
be performed applying checkpoint techniques. An memory efficient numerical
solution of the control problems we have considered should apply this reduction
of storage technique. The method has already proved to be effective for ODE
constrained optimal control problems, [109].

In the context of numerical methods to solve DREs, the application of the
linearization method to solve DREs has to be investigated further. As we re-
viewed in Section 4.1, it requires the computation of eH , where H is the Hamil-
tonian matrix associated to the DRE. If we approximate eH by V eHk V

T , where
range(V ) = span{x,Hx, . . . , Hn−1x}, k � n, then the method could be applied
to large-scale DREs.

The solution of the DREs by the BDF methods requires the solution of one
ARE in every step. In case the matrix A is stable the initial stabilizing point for
solving the first ARE by Newton-ADI iteration can be chose equal zero. If not,
choosing the initial stabilizing point for solving the first ARE by Newton-ADI
iteration can be computed following [60, 100].

We study here an L-stable second order Rosenbrock method which gives
satisfactory results. Higher order Rosenbrock methods for solving DREs have
to be investigated further.

Throughout this thesis we have worked in real arithmetics. That is why
we skip a comparison of the shift parameters for the ADI iteration in case



CHAPTER 7. CONCLUSIONS AND OUTLOOK 127

they are complex. Particularly, it will be interesting to analyze the behavior of
generalized Leja points (which are asymptotically optimal) for the case in which
the Wachspress approach is no longer applicable or a-priori information on the
spectrum is known.

Finally, we point out that an error estimator from the finite element dis-
cretization which controls the whole approach, has to be investigated. That
will provide a complete mathematical framework to solve the linear problems.
Besides this error estimator, for nonlinear problems a criterion to chose the size
of the time frames have to be found.



APPENDIX

A

Stochastic processes

Basic concepts

Let us consider a random variable J(t) depending on the parameter t, then J(t)
is called a stochastic process.
The autocovariance for this process is given by

ΦJJ(t1, t2) = E[(J(t1)− E[J(t1)])(J(t2)− E[J(t2)])].

If the stochastic properties are invariant with respect to time shifts, that is
J(t) = J(t+ c) for all t and the expected value E[J(t)] = ηJ is constant. Then
we have,

ΦJJ (τ) = E[(J(t)− ηJ )(J(t+ τ) − ηJ)].

Definition A.0.1 A stochastic process is called white noise if J(t1) and J(t2)
are stochastic independent for all t1 6= t2 and the expected value is 0, i.e.
E[J(t)] = 0.

Then, for a white noise, we have

ΦJJ(τ) = Φ0δ(τ),

where

Φ0 > 0, and δ(τ) =

{
1 for τ = 0,
0 otherwise.

In case of a vectorial stochastic process J(t) = [ J1(t), . . . , Jm(t) ] we obtain a
time-dependent covariance matrix

Φ0(t) = cov(J(t)) = E[J(t)J(t)T ] =






E[J1(t)J1(t)] . . . E[J1(t)Jm(t)]
...

. . .
...

E[Jm(t)J1(t)] . . . E[Jm(t)Jm(t)]





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If we assume that Ji(t) and Jj(t) are uncorrelated, then all non-diagonal ele-
ments are zero. After time discretization we obtain a diagonal covariance matrix
for every ti. Using the same model and measurement-tool over the time horizon,
we can assume that the covariance matrices are time-independent.
In Section 6.3, we denote by V and W the covariance matrices for the noise
processes v(t) and w(t).



BIBLIOGRAPHY

[1] J. Abels and P. Benner. CAREX - a collection of benchmark examples
for continuous-time algebraic Riccati equations. Technical report, 1999.
SLICOT working note 1999-14. Available from http://www.slicot.org.

[2] H. Abou-Kandil, G. Freiling, V. Ionescu, and G. Jank. Matrix Riccati
Equations in Control and Systems Theory. Birkhäuser, Basel, Switzerland,
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