ESCUELA POLITÉCNICA NACIONAL

FACULTAD DE INGENIERÍA EN GEOLOGÍA Y PETRÓLEOS

ESTUDIO PARA OPTIMIZAR LAS FACILIDADES DE SUPERFICIE EN EL SISTEMA DE REINYECCIÓN DE AGUA EN LA ESTACIÓN SUR DEL CAMPO SHUSHUFINDI

PROYECTO PREVIO A LA OBTENCIÓN DEL TÍTULO DE INGENIERO EN PETRÓLEOS

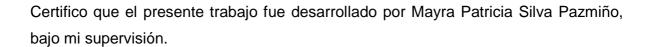
MAYRA PATRICIA SILVA PAZMIÑO

maypaec@yahoo.com

DIRECTOR: ING. VINICIO MELO MSc.

vmelo@server.epn.edu.ec

Quito, Abril 2008


DECLARACIÓN

Yo, Mayra Patricia Silva Pazmiño, declaro bajo juramento que el trabajo aquí descrito es de mi autoría; que no ha sido previamente presentado para ningún grado o calificación profesional; y, que he consultado las referencias bibliográficas que se incluyen en este documento.

A través de la presente declaración cedo mis derechos de propiedad intelectual correspondientes a este trabajo, a la Escuela Politécnica Nacional, según lo establecido por la Ley de Propiedad Intelectual, por su Reglamento y por la normatividad institucional vigente.

Mayra Silva P.

CERTIFICACIÓN

Ing. Vinicio Melo, MSc. DIRECTOR DE PROYECTO

AGRADECIMIENTOS

A la Escuela Politécnica Nacional y de manera especial a la Facultad de Ingeniería en Geología y Petróleos,

Al Ingeniero Vinicio Melo, por haber dirigido de una manera excepcional el presente Proyecto de Titulación y por las enseñanzas impartidas durante el desarrollo del mismo.

A todos los Ingenieros del Departamento de Petróleos, por permitirme participar de sus valiosos conocimientos durante los años de formación.

A todo el personal de Petroproducción en especial al Departamento de Petróleos y Proyectos Especiales en Quito, y al personal que conforma el Campo Shushufindi, por permitir que el presente trabajo se lleve a cabo.

DEDICATORIA

A las generaciones pasadas por darme el ejemplo de lucha continua, para alcanzar las metas propuestas.

A las generaciones futuras, que representan destellos de ilusiones que nacen con el cumplimiento de esta meta.

Pero en especial a un ser que siempre ha creído en mí, quién ha sido el creador de muchos de mis sueños, y que ha hecho que lo más importante se cumpla, con sus sabios consejos, amor y cariño, y a quién sobre todas las cosas admiro y respeto, a usted, Ing. Iván Escobar, Mi Padre.

Mayra Silva P.

CONTENIDO

CAPÍTULO 1: ANÁLISIS DE LAS PROPIEDADES FÍSICO-QUÍMICAS DEL	
AGUA DE REINYECCIÓN	1
1.1. GENERALIDADES	1
1.2. ANÁLISIS CUANTITATIVO DE LAS AGUAS DE FORMACIÓN	1
1.2.1. CONSTITUYENTES Y PROPIEDADES PRINCIPALES	2
1.2.2. SIGNIFICADO DE CONSTITUYENTES Y PROPIEDADES	3
1.2.2.1. Cationes	3
1.2.2.2. Aniones	4
1.2.2.3. Otras propiedades	5
1.3. INCRUSTACIONES EN EL AGUA DE FORMACIÓN	8
1.3.1. INCRUSTACIONES COMUNES	8
1.3.1.1. Carbonato de calcio	8
1.3.1.2. Sulfato de calcio	10
1.3.1.3. Sulfato de bario	10
1.3.1.4. Sulfato de estroncio	11
1.3.1.5. Compuestos de hierro	12
1.4. GENERALIDADES DE LA CORROSIÓN	
1.4.1. CORROSIÓN DE TUBERÍAS	
1.4.1.1. Corrosión por CO ₂	
1.4.1.2. Corrosión por H ₂ S	18
1.4.1.3. Corrosión por microorganismos	
1.4.2. EFECTOS SOBRE LA CORROSIÓN	
1.4.2.1. Efecto de la composición del agua	
1.4.2.2. Ácidos orgánicos	20
1.4.2.3. Variables físicas	
1.5. GENERALIDADES MICROBIOLÓGICAS DEL AGUA DE FORMACIÓN	۷ 21
1.5.1. CLASIFICACIÓN DE LAS BACTERIAS	21
1.5.1.1. Ambiente para el crecimiento de bacterias	
1.5.1.2. Requerimientos de oxígeno	22
1.5.1.3. Bacterias nocivas	22

1.5.1.3.1. Bacterias sulfato reductoras (BSR)	. 22
1.6. DESCRIPCIÓN DE LOS PRODUCTOS QUÍMICOS UTILIZADOS EN EL TRATAMIENTO QUÍMICO DEL AGUA DE FORMACIÓN EN LA ESTACIÓN SUR DEL CAMPO SHUSHUFINDI	23
1.7. CARACTERIZACIÓN DEL AGUA DE FORMACIÓN EN LA ESTACIÓN SUR DEL CAMPO SHUSHUFINDI	. 26
1.8. FORMACIÓN TIYUYACU	. 33
1.8.1. CARACTERÍSTICAS GEOLÓGICAS DE LA FORMACIÓN	. 33
1.8.2. CARACTERÍSTICAS PETROFÍSICAS DE LA FORMACIÓN	. 36
1.8.2.1. Generalidades	. 37
1.8.2.2. Estratigrafía	
1.8.2.3. Datos generales	. 37
1.8.2.4. Perfiles a hueco abierto	. 38
1.8.2.5. Evaluación de Registros Eléctricos	. 38
1.8.2.5.1. Sumario de evaluación petrofísica	
1.8.2.5.2. Resultados	. 39
CAPÍTULO 2: ESTUDIO DE LA SITUACIÓN ACTUAL DE LAS FACILIDADES DE SUPERFICIE DEL SISTEMA DE REINYECCIÓN	. 41
2.1. FACILIDADES DE SUPERFICIE INSTALADAS EN EL SISTEMA DE REINYECCIÓN DE LA ESTACIÓN SUR	. 41
2.1.1. BOMBAS DE TRANSFERENCIA O BOOSTER	
2.1.1.1. Motores	
2.1.1.2. Bombas horizontales de alta presión	. 43
2.2. VOLÚMENES DE AGUA PRODUCIDA Y AGUA REINYECTADA	. 47
2.3. PRESIÓN DE INYECCIÓN, PRESIÓN DE DESCARGA, PRESIÓN DE SUCCIÓN	. 54
2.4. TENDENCIA DEL AGUA DE FORMACIÓN	. 59
2.4.1. MÉTODO DE ODDO-TOMSON	. 63
2.4.1.1. Sistema con fase gaseosa presente o ausente donde el pH es	
conocido	. 63
2.4.1.2. Fase gaseosa ausente	. 64
2.4.1.3. Fase gaseosa presente y pH desconocido	. 65
2.4.1.4. Cálculo de la cantidad de escala de carbonato de calcio	
precipitada	. 66

2.4.1.5. Cálculo de la cantidad de escala de sulfato de calcio precipitada	67
2.4.2. RESULTADOS	69
2.5. TRATAMIENTO QUÍMICO APLICADO EN LA REINYECCIÓN DE AGUA DE LA ESTACIÓN SHUSHUFINDI SUR	. 71
2.6. CAPACIDAD DE CONFINAMIENTO DE LA FORMACIÓN TIYUYACU	91
CAPÍTULO 3: SELECCIÓN DE LA ALTERNATIVA MÁS APROPIADA PARA LA OPTIMIZACIÓN DEL SISTEMA DE REINYECCIÓN DE AGUA	വാ
3.1. ANTECEDENTES	
3.1.1. SISTEMA OPERATIVO DE LA CÍA. SOLIPET	
3.1.2. EVALUACIÓN DE LA OPERACIÓN DE LA PLANTA	
3.1.3. TRATAMIENTO QUÍMICO QUE MANTENÍA LA CÍA. SOLIPET 1	
3.1.4. PROBLEMAS OCASIONADOS EN EL PROCESO DE	100
TRATAMIENTO Y REINYECCIÓN DE AGUA MANEJADO POR	
LA CÍA. SOLIPET1	102
3.2. PROPUESTA DE OPTIMIZACIÓN DEL SISTEMA DE REINYECCIÓN	102
DE AGUA DE LA ESTACIÓN SUR DEL CAMPO SHUSHUFINDI	103
3.2.1. JUSTIFICACIÓN DEL PROYECTO1	104
3.2.2. OBJETIVO GENERAL 1	105
3.2.3. OBJETIVOS ESPECÍFICOS1	105
3.2.4. DIAGNÓSTICO DEL SISTEMA INSTALADO1	
3.2.4.1. Situación operativa actual1	106
3.2.5. ESPECIFICACIONES GENERALES DE INGENIERÍA 1	110
3.2.5.1. Normativa a aplicarse1	110
3.2.5.2. Diseño básico1	110
3.2.5.3. Características especiales de los materiales1	111
3.2.5.4. Trabajo a contratar1	111
3.2.5.5. Equipos a ser instalados en el sistema de Reinyección	
de Agua de la Estación Shushufindi Sur1	112
3.3. TRATAMIENTO QUÍMICO A SER APLICADO1	114
CAPÍTULO 4: ANÁLISIS TÉCNICO-ECONÓMICO DEL PROYECTO1	117
4.1. ANÁLISIS ECONÓMICO1	117
4 1 1 AMORTIZACIÓN DE LOS ACTIVOS	112

4.1.2. COSTOS DIRECTOS	121
4.1.2.1. Costos de la energía	121
4.1.2.2. Costo de los químicos	121
4.1.2.3. Costo de mantenimiento	122
4.1.3. COSTOS INDIRECTOS	123
4.1.4. INGRESOS DEL PROYECTO	123
4.1.5. VALOR ACTUAL NETO (VAN)	124
4.1.6. TASA INTERNA DE RETORNO (TIR)	125
4.1.7. RELACIÓN COSTO-BENEFICIO (RCB)	125
4.1.8. PERÍODO DE RECUPERACIÓN DE LA INVERSIÓN (PRI)	126
4.1.9. RESULTADOS	126
CAPÍTULO 5: CONCLUSIONES Y RECOMENDACIONES	132
5.1. CONCLUSIONES	132
5.2. RECOMENDACIONES	135
REFERENCIAS BIBLIOGRÁFICAS	137
ANEXOS	139

ÍNDICE DE TABLAS

No	DESCRIPCIÓN	PÁGINA
1.1.	Constituyentes y propiedades principales del agua de los Campos	
	Petroleros	2
1.2.	Incrustaciones comunes formadas en el agua de formación	8
1.3.	Caracterización del agua de formación del Wash Tank y los Pozos	
	Reinyectores de la Estación Sur del Campo Shushufindi	26
1.4.	Caracterización del agua de formación de los Pozos Productores	
	de la Estación Sur del Campo Shushufindi	28
1.5.	Caracterización del agua de formación del pozo 02RW de la	
	Estación Sur del Campo Shushufindi	29
1.6.	Caracterización del agua de formación del pozo 21 de la Estación	
	Sur del Campo Shushufindi	29
1.7.	Caracterización del agua de formación del pozo 25 de la Estación	
	Sur del Campo Shushufindi	30
1.8.	Caracterización del agua de formación del pozo 47 de la Estación	
	Sur del Campo Shushufindi	31
1.9.	Caracterización del agua de formación del pozo 93 de la Estación	
	Sur del Campo Shushufindi	31
1.10.	Variación de las características del agua de formación durante el	
	año 2006	32
1.11.	Variación de las características del agua de formación durante el	
	año 2007	32
1.12.	Variación de las características del agua de formación durante el	
	año 2000 al 2007	33
1.13.	Topes y bases de las formaciones	37
1.14.	Perfiles a hueco abierto	38
1.15.	Sumario de la evaluación petrofísica	39

No	DESCRIPCIÓN	PÁGINA
2.1.	Máxima presión de trabajo permitida de acuerdo a la clase ANSI	45
2.2.	Bombas instaladas en el sistema de reinyección de agua en la Estación Shushufindi Sur	46
2.3.	Inicio de la reinyección de agua de formación en la Estación Shushufindi Sur	47
2.4.	Reportes de agua producida y agua reinyectada durante el año 2001	47
2.5.	Reportes de agua producida y agua reinyectada durante el año 2002	48
2.6.	Reportes de agua producida y agua reinyectada durante el año 2003	49
2.7.	Reportes de agua producida y agua reinyectada durante el año 2004	50
2.8.	Reportes de agua producida y agua reinyectada durante el año 2005	51
2.9.	Reportes de agua producida y agua reinyectada durante el año 2006	52
2.10.	Reportes de agua producida y agua reinyectada durante el año 2007	53
2.11.	Datos de presión de inyección, descarga y succión durante el año 2002	55
2.12.	Datos de presión de inyección, descarga y succión durante el año 2003	56
2.13.	Datos de presión de inyección, descarga y succión durante el año 2004	57
2.14.	Datos de presión de inyección, descarga y succión durante el año 2006	58

No	DESCRIPCIÓN	PÁGINA
2.15.	Datos de presión de inyección, descarga y succión durante el año	
	2007	59
2.16.	Factores de conversión mg/L a moles/L	67
2.17.	Tendencia del agua de formación de los Pozos Reinyectores y el	
	Wash Tank	70
2.18.	Tendencia del agua de formación de los Pozos Productores	70
2.19.	Tratamiento químico aplicado en el mes de Enero de 2007	71
2.20.	Tratamiento químico aplicado en el mes de Febrero de 2007	73
2.21.	Tratamiento químico aplicado en el mes de Marzo de 2007	75
2.22.	Tratamiento químico aplicado en el mes de Abril de 2007	77
2.23.	Tratamiento químico aplicado en el mes de Mayo de 2007	79
2.24.	Tratamiento químico aplicado en el mes de Junio de 2007	81
2.25.	Tratamiento químico aplicado en el mes de Julio de 2007	83
2.26.	Tratamiento químico aplicado en el mes de Agosto de 2007	85
2.27.	Tratamiento químico aplicado en el mes de Septiembre de 2007	87
2.28.	Tratamiento químico aplicado en el mes de Octubre de 2007	89
2.29.	Cálculo de la capacidad de confinamiento de la Formación Tiyuyacu	92
3.1.	Barriles de agua producidos por estación	105
3.2.	Capacidad de aceptación de agua de cada pozo reinyector	106
3.3.	Pruebas de ratas múltiples para determinar la capacidad de	
	admisión de los pozos reinyectores	107
4.1.	Sistema sugerido para la optimización del Sistema de Reinyección	
	de Agua	119
4.2.	Costo de los químicos utilizados en la Estación Sur	122
4.3.	Costo de mantenimiento realizado en la Estación Sur	122
4.4.	Costos operativos de producción de petróleo y agua	123
4.5.	Cálculo del valor del TIR	127
4.6.	Resultados del estudio económico	129

No	DESCRIPCIÓN	PÁGINA
4.7.	Resumen de los resultados del estudio económico	130

ÍNDICE DE FIGURAS

No	DESCRIPCIÓN	PÁGINA
1.1.	Tipos de Corrosión	17
1.2.	Corrosión por CO ₂	17
1.3.	Corrosión por CO ₂	17
1.4.	Corrosión por H ₂ S	18
1.5.	Corrosión por H ₂ S	18
1.6.	Corrosión por H₂S	18
1.7.	Corrosión por microorganismos	19
1.8.	Corrosión por microorganismos	19
1.9.	Corrosión por microorganismos	19
1.10.	Variación de las características del agua de formación del pozo	
	SSF-02RW	29
1.11.	Variación de las características del agua de formación del pozo	
	SSF-21	30
1.12.	Variación de las características del agua de formación del pozo	
	SSF-25	30
1.13.	Variación de las características del agua de formación del pozo	
	SSF-47	31
1.14.	Variación de las características del agua de formación del pozo	
	SSF-93	32
1.15.	Variación de las características del agua de formación en los Pozos	
	Reinyectores	33
1.16.	Características geológicas de la Formación Tiyuyacu	34
2.1.	Sistema actual de reinyección de agua de la Estación Sur del	
	Campo Shushufindi	42
2.2.	Agua producida y agua reinyectada durante el año 2001	48
2.3.	Agua producida y agua reinyectada durante el año 2002	49

No	DESCRIPCIÓN	PÁGINA
2.4.	Agua producida y agua reinyectada durante el año 2003	50
2.5.	Agua producida y agua reinyectada durante el año 2004	51
2.6.	Agua producida y agua reinyectada durante el año 2005	52
2.7.	Agua producida y agua reinyectada durante el año 2006	53
2.8.	Agua producida y agua reinyectada durante el año 2007	54
2.9.	Datos de presión de inyección, descarga y succión durante el año 2002	55
2.10.	Datos de presión de inyección, descarga y succión durante el año 2003	56
2.11.	Datos de presión de inyección, descarga y succión durante el año 2004	57
2.12.	Datos de presión de inyección, descarga y succión durante el año 2006	58
2.13.	Datos de presión de inyección, descarga y succión durante el año 2007	59
2.14.	BAIPD vs ppm Antiescala y ppm Biocida durante el mes de Enero de 2007	72
2.15.	BAIPD vs ppm Anticorrosivo y ppm Surfactante durante el mes de Enero de 2007	73
2.16.	BAIPD vs ppm Antiescala y ppm Biocida durante el mes de Febrero de 2007	74
2.17.	BAIPD vs ppm Anticorrosivo y ppm Surfactante durante el mes de Febrero	75
2.18.	BAIPD vs ppm Antiescala y ppm Biocida durante el mes de Marzo de 2007	76
2.19.	BAIPD vs ppm Anticorrosivo y ppm Surfactante durante el mes de Marzo	77

No	DESCRIPCIÓN	PÁGINA
2.20.	BAIPD vs ppm Antiescala y ppm Biocida durante el mes de Abril de 2007	78
2 21	BAIPD vs ppm Anticorrosivo y ppm Surfactante durante el mes de	70
	Abril de 2007	79
2.22.	BAIPD vs ppm Antiescala y ppm Biocida durante el mes de Mayo de	. •
	2007	80
2.23.	BAIPD vs ppm Anticorrosivo y ppm Surfactante durante el mes de	
	Mayo de 2007	81
2.24.	BAIPD vs ppm Antiescala y ppm Biocida durante el mes de Junio de	
	2007	82
2.25.	BAIPD vs ppm Anticorrosivo y ppm Surfactante durante el mes de	
	Junio de 2007	83
2.26.	BAIPD vs ppm Antiescala y ppm Biocida durante el mes de Julio de	
	2007	84
2.27.	BAIPD vs ppm Anticorrosivo y ppm Surfactante durante el mes de	
	Julio de 2007	84
2.28.	BAIPD vs ppm Antiescala y ppm Biocida durante el mes de Agosto	
	de 2007	86
2.29.	BAIPD vs ppm Anticorrosivo y ppm Surfactante durante el mes de	
	Agosto de 2007	87
2.30.	BAIPD vs ppm Antiescala y ppm Biocida durante el mes de	
	Septiembre de 2007	88
2.31.	BAIPD vs ppm Anticorrosivo y ppm Surfactante durante el mes de	
	Septiembre de 2007	89
2.32.	BAIPD vs ppm Antiescala y ppm Biocida durante el mes de Octubre	
	de 20007	90
2.33.		
	Octubre de 2007	91

No	DESCRIPCIÓN	PÁGINA
3.1.	Sistema de reinyección de agua que implantó la CÍA. SOLIPET S.A.	96
3.2.	Sistema de reinyección de agua sugerido	115
3.3.	Sistema para el tratamiento de sólidos	116
4.1.	Variación del precio del petróleo durante el último mes	124
4.2.	SFNC _k actualizado vs Tiempo	128

SIMBOLOGÍA

SÍMBOLO	SIGNIFICADO	DIMENSIONES	
A	Área	L^2	
AC	Anticorrosivo		
AE	Antiescala		
ANSI	American National Standard Institute		
API	American Petroleum Institute		
ASME	American Society of Mechanical Engineers		
ASTM	American Society for Testing and Materials		
	Ión Bario		
4	Sulfato de bario		
bls	Barriles	L^3	
ВА	Barriles de agua	L ³ /t	
BAPD	Barriles de agua por día	L ³ /t	
BAIPD	Barriles de agua inyectados por día	L ³ /t	
BC	Biocida		
BP	Barriles de petróleo	L ³ /t	
BPPD	Barriles de petróleo por día	L ³ /t	
BFPD	Barriles de fluido por día (agua y petróleo)	L ³ /t	
BSR	Bacterias Sulfato Reductoras		
BSW	Porcentaje de agua		
°C	Grados Celsius	Т	
С	Conductividad	T^3I^2/L^3M	
C_Ba	Concentración de Bario medida	M/L ³	
C_Ca	Concentración de Calcio medida	M/L ³	
SO ₄	Concentración de Sulfato medida	M/L ³	
C_Sr	Concentración de Estroncio medida	M/L ³	
++	Ión Calcio		

SÍMBOLO	SIGNIFICADO DIMENSION			
3	Carbonato de Calcio			
4	Sulfato de Calcio			
4⊕ 2	Yeso			
CaSO H C	Anhidrita			
_	Ion Cloruro			
cm	Centímetro	L		
CO ₂	Dióxido de Carbono disuelto			
	Ión Carbonato			
C_wtr	Cantidad de CO ₂ disuelto en agua	M/L ³		
DINAPA	Dirección Nacional de Protección Ambiental			
EMR	Elevación de la mesa rotaria			
FL	Floculante			
. ++	Ión ferroso			
+++	Ión férrico			
3	Carbonato ferroso			
() 2	Hidróxido ferroso			
() 3	Hidróxido férrico			
2 3	Óxido férrico			
FeS	Sulfuro ferroso			
f_g	Coeficiente de fugacidad del CO ₂			
FM	Factory Mutual System			
FNC	Flujo neto de caja			
FNC_k	Flujo neto de caja del año k			
ft	Pies	L		
°F	Grados Fahrenheit	Т		
ft ³ /bbl	Pies cúbicos por barril			

SÍMBOLO	SIGNIFICADO	DIMENSIONES		
gal/día	Galones por día	L ³ /t		
g/cm ³	Gramos masa por centímetro cúbico	M/L ³		
GB	Gigabyte			
GHz	Gigahertzios	1/t		
GLB	Global/Kit			
Н	Altura	L		
	Ión Hidrógeno			
HCO 3	Ión Bicarbonato			
HP	Caballos de fuerza	ML^2/T^3		
HPS	High Power System			
H ₂ S	Sulfuro de hidrógeno			
Hz	Hertzios	1/t		
i	Tasa de actualización de la empresa			
ISA	Sociedad Americana de Instrumentación			
IS	Índice de saturación			
km	Kilómetro	L		
K _c	Constante del producto de solubilidad	M		
K_{st}	Constante de estabilidad de la masa			
MPCD	Miles de pies cúbicos por día	L ³ /t		
MD	Profundidad medida	L		
md	Milidarcys (0.001 darcys)			
meq/L	Miliequivalentes por litro			
mg	Miligramos M			
mg/L	Miligramos por litro M/L ³			
MIN	Minutos T			
MMscf	Millones de pies cúbicos estándar	L ³ /t		
M Mg	Abreviatura utilizada para indicar miles			
++	Ión Magnesio			

SÍMBOLO	SIGNIFICADO	DIMENSIONES
NTU	Unidades de Turbidez	
+	Ión Sodio	
NEMA	National Electric Manufacture Association	
NACE	National Association of Corrosion Engineers	
NaCl	Cloruro de Sodio	
NFPA	National Fire Protection Association	
O_2	Oxígeno	
OFM	Oil Field Manager	
OIW	Contenido de petróleo en agua	M/L^3
Р	Presión	M/Lt ²
PCN	Pies cúbicos normales	L ³ /t
ppb	Libras por barril	M/L ³
рН	Potencial Hidrógeno	
PLC	Controlador lógico programable	
ppm	Partes por millón	M/L ³
plg	Pulgada	L
P_{wf}	Presión de fondo fluyente	M/Lt ²
psi	Libras fuerza por pulgada cuadrada	M/Lt ²
psia	Libras fuerza por pulgada cuadrada absolutas	M/Lt ²
psig	Libras fuerza por pulgada cuadrada manométricas	M/Lt ²
POES	Petróleo original en sitio	L^3
PRI	Período de recuperación de la inversión	
PTB	Libras por cada mil barriles	M/L ³
R	Resistividad	$ML^3/t^3 I^2$
RCB	Relación costo-beneficio	
RPM	Revoluciones por minuto	
RW	Reinyector	
S	Solubilidad	

SÍMBOLO	SIGNIFICADO	DIMENSIONES	
SCADA SF	Supervisory, Control and Data Acquisition Surfactante		
SFNC _k S _{0C} SO =4	Suma acumulada de los flujos netos de caja Saturación crítica de gas Ión Sulfato		
++	Ión Estroncio		
4	Sulfato de estroncio		
SST	Sólidos suspendidos totales		
S_w	Saturación de agua		
S_{wi}	Saturación inicial de agua		
USD	Dólares de Estados Unidos de América		
Т	Temperatura	Т	
TDS	Sólidos Totales Disueltos		
TIR	Tasa interna de retorno		
UL	Underwriters Laboratories Inc (Laboratorios Underwriter)		
V	Voltios	V	
VAN	Valor actual neto		
V_{iw}	Volumen inicial de agua	L^3	
y_g	Fracción molar de CO ₂ en la fase gaseosa		
y _t	Fracción molar de CO ₂ en el gas en la superficie		
WG	Wood Group		
WT	Wash Tank		
μ	Fuerza iónica molar	M/L	
μ_{g}	Viscosidad del gas	M/Lt	
μ_{o}	Viscosidad del petróleo	M/Lt	
μm	Micrómetro	L	
ρ	Densidad	M/L^3	
ф	Porosidad		

SÍMBOLO		SIGNIFICADO	DIMENSIONES
Ω	Ohmios		$L^2 M/t^3 I^2$
°API	Grados API		

RESUMEN

El objetivo principal de este trabajo referente a Ingeniería de Producción, específicamente Producción y Manejo del agua de formación, es estudiar y optimizar las Facilidades de Superficie en el sistema de reinyección de agua en la Estación Sur del Campo Shushufindi, a través del análisis de la situación actual de las Facilidades de Superficie del Sistema de Reinyección en la Estación Sur, determinando los principales problemas que se presentan en el sistema de reinyección en la Estación Sur, realizando una propuesta de optimización que permita una mayor eficiencia del sistema y presentando el análisis técnico-económico que permitirá determinar si el proyecto es realizable o no. Para ello se basa en la hipótesis que dice: Un manejo adecuado del agua mediante la reinyección controla los problemas de contaminación en un 90%.

Como introducción se tiene la ubicación del Campo Shushufindi. Dentro del marco teórico se encuentran: Las características físico-químicas del agua de formación, la descripción de la arena receptora Tiyuyacu, y el sistema actual de manejo de agua. El Marco Metodológico utilizado es: La evaluación del sistema reinyector, la determinación del volumen de confinamiento, la propuesta de una alternativa de optimización del sistema reinyector, y la realización del análisis técnico-económico pertinente. La conclusión general se refiere a la implementación inmediata de un sistema de tratamiento que ayude a la clarificación del agua para su posterior reinyección. Se propone realizar estudios minuciosos del agua de formación para aplicar los químicos necesarios; así como, a las formaciones que podrían ser receptoras de agua de formación.

PRESENTACIÓN

El área Shushufindi está ubicada en el Centro-Norte de la Cuenca Oriental en la Provincia de Sucumbíos, a 250 km al este de la ciudad de Quito, y 35 km al sur de la frontera con Colombia. Teniendo al Norte el Campo Libertador, al Sur el Campo Limoncocha, al Este el Bloque Tarapoa y al Oeste el Campo Sacha. El Campo se subdivide en cinco estaciones de producción que son: Aguarico, Shushufindi Sur, Shushufindi Sur-Oeste, Shushufindi Central y Shushufindi Norte.

El Campo Shushufindi-Aguarico fue descubierto por el Consorcio Texaco-Gulf con la perforación del pozo Shushufindi-01 en el año 1969, pero el desarrollo del campo inició en Febrero de 1972, y paulatinamente permitió que por más de dos décadas su producción promedio sea de 100000 BPPD de las arenas U y T.

La interpretación sísmica al tope Napo y al tope de la arenisca T principal definen que el Campo Shushufindi es un gran anticlinal asimétrico de dirección preferencial Norte-Sur con dimensiones que sobrepasan 30 km de largo por 7 km de ancho, con un cierre vertical de 370 pies, correspondientes a un área de 43200 acres. Tres altos estructurales son evidentes en el Campo Shushufindi-Aguarico cerca del pozo SSF-21, alrededor del SSF-09 y cerca del pozo AG-09. El área Shushufindi se encuentra constituida por tres arenas productoras de la formación Napo de la Edad Cretácica, G2, U y T, que se encuentran a más de 9000 pies bajo el nivel del mar, cuyas profundidades promedias son 9250 pies, 9300 pies y 9600 pies, respectivamente. A Octubre de 2007 se han perforado 134 pozos, de los cuales 73 se encuentran en producción, 62 producen con levantamiento artificial mediante Bombas Electrosumergibles, 5 por Bombeo Hidráulico tipo jet, y 6 por Gas Lift. Los pozos cerrados suman 27, los abandonados 12, mientras que 14 son reinyectores y 8 son invectores.

Este Campo tuvo un promedio de producción de 7.6 MMMPCN de gas de formación, 13.006 MMBA y 23.126 MMBP en el 2006. Por lo cual, el objetivo primordial de PETROPRODUCCIÓN es controlar la producción de agua y dar un buen manejo a la misma, para ello se trata de optimizar las Instalaciones de Superficie del Sistema de Reinyección de Agua, con la finalidad de incrementar la tasa de reinyección de agua de formación para el Campo Shushufindi.

CAPÍTULO 1

ANÁLISIS DE LAS PROPIEDADES FÍSICO-QUÍMICAS DEL AGUA DE REINYECCIÓN

1.1. GENERALIDADES

La expresión "agua de formación" es una clasificación de aguas que pueden producirse en las operaciones petrolíferas o gasíferas. Otra clasificación de uso frecuente, como descripción general del tipo de agua es: agua producida (agua de formación) y agua de inyección. Estas expresiones generales "producida" o de "inyección" usualmente son los únicos adjetivos requeridos en discusiones o informes en la mayoría de operaciones de campo.

Los puntos de interés específico pueden ser: la fuente de agua, contaminantes arrastrados, pH, volúmenes que deben manejarse y las variaciones de todos los factores que pueden anticiparse durante la operación.

Los estudios del agua producida pueden clasificarse en dos categorías: estudios específicos de solución rápida como: incrustaciones, corrosión, problemas causados por bacterias, obstrucción de la formación, etc. Otros estudios requeridos son de detalle para proyectar las operaciones futuras del agua. Con este tipo de estudio puede estimarse el equipo, los procedimientos y los costos que permitan determinar la factibilidad económica de un proyecto.

1.2. ANÁLISIS CUANTITATIVO DE LAS AGUAS DE FORMACIÓN

Los análisis del agua de formación usualmente se llevan a cabo en el laboratorio o en el campo a fin de determinar sus características físicas y químicas, muchas de las

cuales, pueden cambiar rápidamente después del muestreo, entre ellas se encuentran las siguientes: pH, temperatura, contenido de gas disuelto, sólidos suspendidos y población bacterial. Es de gran importancia, entonces, medir las variables en el campo para obtener mayor precisión.

1.2.1. CONSTITUYENTES Y PROPIEDADES PRINCIPALES

En operaciones que requieren el manejo de agua producida, la principal preocupación son los iones y propiedades físicas; los cuales son importantes desde el punto de vista del taponamiento o corrosión. En la tabla 1.1., se presenta la lista de los más importantes.

TABLA 1.1.
CONSTITUYENTES Y PROPIEDADES PRINCIPALES DEL AGUA DE LOS CAMPOS PETROLEROS.

Cationes Na	Aniones	Otras propiedades
Sodio (+)	Cloro (Cl	pH
Calcio(++)	Sulfato (=4)	Población bacterial
Magnesio(^{Mg} ++)	Bicarbonato (HCO CO	Sólidos suspendidos: cantidad, tamaño, forma y composición.
Fe Fe Hierro (Carbonato (Turbidez
Bario (⁺⁺)		Calidad del agua
Estroncio (Sr ++)		Oxígeno disuelto (2)
		Dióxido de carbono disuelto (2)
		Sulfuro total (2) Contenido de petróleo en agua
		Temperatura
		Presión
		Sólidos totales disueltos
		Gravedad específica o densidad
		Resistividad (Conductividad) Sílice

Fuente: Patton C. "Applied Water Technology". Second Edition. Septiembre 1995. Tabla 3.1 Elaborado por: Mayra Silva P.

1.2.2. SIGNIFICADO DE CONSTITUYENTES Y PROPIEDADES

1.2.2.1. Cationes

- a) **Ión Sodio**, es el mayor constituyente en las aguas de formación, pero no causa problemas, excepto por la precipitación de cloruro sódico en aguas extremadamente saladas.
- b) **Ión Calcio**, es el mayor constituyente en formaciones saladas y puede alcanzar valores de hasta 30000 mg/L, aunque su concentración normalmente es más baja. El ión calcio es importante debido a su capacidad de combinación con los iones bicarbonato, carbonato o sulfato y precipita para formar incrustaciones adherentes o sólidos suspendidos.
- c) **Ión Magnesio**, se presenta usualmente en concentraciones inferiores a las de calcio. Tiende a aumentar los problemas de incrustaciones de carbonato de calcio por coprecipitación con el ión calcio. Los iones magnesio disminuyen la cantidad de incrustaciones de ⁴, ⁴ y ⁴. Los iones sulfato que están ligados al magnesio no están disponibles para formar escalas de sulfato.

El ión magnesio tiene la habilidad de formar un compuesto que permanece en solución.

d) **Hierro**, el contenido natural del mismo en aguas de formación normalmente es muy bajo y su presencia es un indicativo de corrosión. Puede estar presente como ión férrico ++++, o ferroso ++++, también se lo puede encontrar en suspensión como un compuesto de hierro precipitado.

Los valores de concentración de hierro se usan para monitorear la corrosión en el sistema, y su presencia es considerada como la principal causa de taponamientos.

- e) **Bario**, es de gran importancia debido a su habilidad para combinarse con el ión sulfato y así formar sulfato de bario, el cual es extremadamente insoluble. Aún la presencia de pequeñas cantidades puede causar daños severos.
- f) **Estroncio**, puede combinarse con el ión sulfato y así formar sulfato de estroncio insoluble que a menudo se encuentra en incrustaciones mezcladas con el propio sulfato de bario.

1.2.2.2. Aniones

- a) **Ión Cloruro**, es el mayor constituyente en aguas de formación producida y su ausencia es notoria en aguas dulces. La mayor fuente del ión cloruro es el NaCl, de modo que la concentración del ión cloruro es usada como una medida de la salinidad del agua. El principal problema que presenta el ión cloruro es la relación del grado de corrosión con el incremento de la salinidad en el agua, es decir, mientras más salada es el agua de formación mayor es la corrosión. Así, la determinación de la concentración de cloruro es una de las formas más fáciles para identificar el tipo de agua.
- b) **Ión Sulfato**, su presencia es un problema debido a su habilidad para reaccionar con el calcio, bario o estroncio y formar incrustaciones insolubles. Sirve además como alimento para las bacterias reductoras de sulfato.
- c) **Ión Bicarbonato**, está presente en casi todas las aguas de formación, puede reaccionar con los iones calcio, magnesio, hierro, bario y estroncio para formar incrustaciones insolubles. La concentración del ión bicarbonato es algunas veces llamada alcalinidad al anaranjado de metilo.
- d) **Ión Carbonato**, puede también reaccionar con los iones calcio, magnesio, hierro, bario y estroncio para formar incrustaciones insolubles.

Los iones carbonato están rara vez presentes en aguas producidas porque el pH es usualmente muy bajo (menor 8.3). La concentración del ión carbonato es a veces llamada alcalinidad a la fenolftaleína.

1.2.2.3. Otras propiedades

a) **pH**, es un indicador semicuantitativo de la acidez o alcalinidad del agua. Su importancia se da debido a que la solubilidad del carbonato de calcio y de los compuestos de hierro depende del pH. De tal forma que un pH alto proporciona una mayor tendencia a la precipitación y cuando el pH es bajo surgen problemas de corrosión. En Shushufindi, el pH del agua de reinyección varía entre 6.5 y 8.5.

El sulfuro de hidrógeno y el dióxido de carbono son gases ácidos que tienden a bajar el pH del agua cuando se disuelven en la misma, se ionizan parcialmente y el grado de ionización se refleja por el pH, el cual sirve para predecir su efecto sobre la corrosión y los sólidos suspendidos.

Dado que los valores de pH varían inmediatamente después de retirada la muestra (por el escape de gases disueltos), su medición debe realizarse de forma rápida.

- b) **Presencia de Bacterias**, la población de bacterias causa corrosión en el sistema y/o el taponamiento, el problema se vuelve aún más severo con la presencia de bacterias sulfato-reductoras.
- c) **Sólidos suspendidos**, la cantidad de sólidos presentes en un volumen de agua que puede pasar a través de un filtro de membrana, es una de las bases para la estimación del taponamiento del sistema. Comúnmente se usa un filtro de diámetro de poro de 0.45 µm.
- d) **Turbidez**, su significado es que el agua no es clara y contiene materia insoluble tal como sólidos suspendidos, petróleo disperso o burbujas de gas.

Mide el grado de oscurecimiento del agua e indica el posible taponamiento en operaciones de reinyección de agua.

- e) **Calidad del agua**, es una medida del grado de taponamiento relativo, el cual se lo puede obtener cuando un volumen de agua pasa a través de un filtro de un tamaño que normalmente es de 0.45 µm.
- f) **Oxígeno disuelto**, la presencia de este elemento contribuye significativamente a la corrosividad del agua. Es así que al encontrar hierro disuelto en el agua, el oxígeno facilita su precipitación en óxidos de hierro insolubles que pueden resultar en taponamientos y facilita el crecimiento de bacterias aeróbicas.
- g) **Dióxido de Carbono disuelto**, genera corrosión al formar ácido carbónico, además de influir en el pH y la tendencia de incrustación de carbonato de calcio presente en el agua.
- h) **Sulfuros totales**, su presencia incrementa la corrosión. Se presenta como una mezcla de iones HS⁻ y sulfuro de hidrógeno gaseoso.

El sulfuro de hidrógeno puede estar presente en forma natural en el agua o puede ser generado por bacterias reductoras de sulfato. Adicionalmente, el sulfuro de hidrógeno será generado como producto de la corrosión y es un agente de taponamiento muy efectivo.

i) **Petróleo y/o aceite**, cuando se tiene presencia de petróleo y/o aceite disperso o emulsionado en agua causa problemas cuando las aguas producidas son reinyectadas, debido a que disminuye el grado de inyección por la formación de bloques de emulsión, los cuales actúan como adherentes para ciertos sólidos como el sulfuro de hierro.

Cuando se inyecta agua dentro de un acuífero sin saturación de petróleo inicial se puede taponar los poros de la formación rocosa en los alrededores del pozo, lo que crea una saturación de petróleo y/o aceite que a su vez reduce la inyectividad.

- j) **Temperatura**, afecta principalmente a la tendencia de incrustación, el pH y la solubilidad de los gases presentes en el agua.
- k) **Sólidos totales disueltos**, simplemente son aquellos que forman la cantidad total de materia disuelta en un volumen dado de agua y se pueden medir sumando las concentraciones de todos los aniones y cationes que se obtienen de los análisis de los reportes, o también haciendo evaporar una muestra de agua hasta el secado y pesando los residuos.
- I) Gravedad específica, es la razón de la densidad de agua de la muestra entre la densidad del agua pura. La gravedad específica viene a ser un indicador directo de la suma total de los sólidos disueltos en el agua de formación. Es así que la comparación de la gravedad específica de varias aguas proporciona rápidamente una cantidad relativa de los sólidos disueltos en el agua. En vista que las aguas de formación contienen sólidos disueltos siempre serán más densas que el agua pura y por lo tanto tendrán una gravedad específica mayor que 1.
- m) **Resistencia**, es una función del número de iones disueltos en el agua. Una baja resistencia indica una alta concentración de iones. La medida de la resistividad en aguas frescas es mucho más sensible a cambios en la cantidad de sólidos totales disueltos que a la variación de la gravedad específica.
- n) **Conductividad**, son valores inversos a la resistividad y se los puede obtener de:

Conductividad
$$\mu$$
mho 10000 ... $e^{-Resistividad \Omega - m}$ ()

1.3. INCRUSTACIONES EN EL AGUA DE FORMACIÓN

1.3.1. INCRUSTACIONES COMUNES

Del gran número de las posibles incrustaciones formadas en el agua, sólo unas pocas son comúnmente encontradas en el agua de los campos petroleros. Estas incrustaciones se listan en la tabla 1.2.

TABLA 1.2. INCRUSTACIONES COMUNES FORMADAS EN EL AGUA DE FORMACIÓN.

Nombre	Fórmula	Variables
Carbonato de calcio	3	Presión parcial de CO ₂ , pH, temperatura, presión total, sólidos totales disueltos
Sulfato de Calcio Teso más común () Hemi - hidrato Anhidrita	CaSO ₄ H ₂ O	Temperatura, sólidos totales disueltos, presión
Sulfato de Bario	4	Temperatura, sólidos totales disueltos, presión
Sulfato de Estroncio	4	Temperatura, sólidos totales disueltos, presión
Compuestos de hierro Carbonato ferroso Sulfuro ferroso Hidróxido ferrico Oxido férrico	() ₂ () ₃ 2 3	Gases disueltos, corrosión, temperatura, presión, pH

Fuente: Patton C. "Applied Water Technology". Second Edition. Septiembre 1995. Tabla 3.1 Elaborado por: Mayra Silva P.

1.3.1.1. Carbonato de calcio

Es afectado por la presión parcial del dióxido de carbono, puesto que su presencia aumenta la solubilidad del carbonato de calcio. Cuando el dióxido de carbono se disuelve en agua se forma ácido carbónico, que se ioniza de acuerdo con la siguiente

serie de ecuaciones. Sólo un pequeño porcentaje de iones bicarbonato se disocia CO para la mayoría de aguas de inyección para formar + y =3.

La solubilidad del carbonato de calcio se incrementa cuando aumenta la presión parcial del dióxido de carbono. El efecto es menos pronunciado cuando se incrementa la temperatura.

La cantidad de dióxido de carbono presente afecta el pH del agua y la solubilidad del carbonato de calcio. Sin embargo, un pH más alto presenta una mayor probabilidad a la precipitación.

La solubilidad del carbonato de calcio en un sistema de dos fases se incrementa con el aumento de la presión por las razones que se indican a continuación:

- El incremento de la presión total aumenta la presión parcial del dióxido de carbono e incrementa la solubilidad del carbonato de calcio en el agua.
- El incremento de la presión hace que la solubilidad aumente debido a consideraciones termodinámicas.
- La caída de presión es una de las causas principales de depositación de incrustaciones en los sistemas de producción. Disminuye la solubilidad del carbonato de calcio debido a las pérdidas de dióxido de carbono y al efecto de la disminución de presión.

Contrario a la mayoría de compuestos el carbonato de calcio se vuelve menos soluble con el incremento de la temperatura.

1.3.1.2. Sulfato de calcio

La precipitación de sulfato de calcio resulta de:

La mayoría de los depósitos de sulfato de calcio son yeso, los cuales se forman en las aguas de formación a temperaturas menores que 176°F (80°C), según Oddo-Tomson. (1)

Entre 176°F (80°C) y 250°F (121°C), cualquiera de los tres tipos de sulfato de calcio pueden formarse (yeso, anhidrita, hemi-hidrato). El pH no presenta casi ningún problema en la solubilidad del sulfato de calcio.

El incremento de la presión aumenta la solubilidad de todas las formas de sulfato de calcio debido a las consideraciones termodinámicas. La caída de presión es una de las principales causas de depositación de las incrustaciones de sulfato de calcio en los sistemas de reinyección.

1.3.1.3. Sulfato de bario

Es la incrustación menos soluble (aproximadamente 2.3 mg/L a 77°F (25°C) en agua destilada) y se obtiene de:

La extrema insolubilidad del sulfato de bario hace poco probable que la incrustación SO ocurra aún si los iones $^{++}$ y $^{=4}$ están presentes. La solubilidad del sulfato de

⁽¹⁾ Patton C. "Applied Water Technology". Second Edition. Septiembre 1995. Página 58.

bario se incrementa con la temperatura hasta cuando se alcanzan los 212ºF, pero muy lentamente, lo que conlleva a que el sulfato de bario sea insoluble aún cuando se tienen altas temperaturas, pero tiene un aumento importante en la solubilidad con la presencia de sales diferentes, tal como el carbonato de calcio, el sulfato de calcio y el cloruro de sodio. Sin embargo, las caídas de presión son la principal causa de los depósitos de incrustación de sulfato de bario en los sistemas de reinyección.

El pH no presenta efecto sobre la solubilidad del sulfato de bario.

1.3.1.4. Sulfato de estroncio

Es considerablemente más soluble que el sulfato de bario, con una solubilidad de aproximadamente 129 mg/L en agua pura a una temperatura de 77°F (25°C), se obtiene de:

La solubilidad del sulfato de estroncio disminuye cuando la temperatura aumenta. Con la presencia de cloruro de sodio (NaCl), la solubilidad se incrementa hasta un máximo de alrededor de 175000 mg/L.

La solubilidad del sulfato de estroncio se incrementa con la presión pero de una forma leve hasta 3000 psig y sólo tiene un ligero incremento por encima de los 3000 psig, las caídas de presión son una causa principal del depósito de incrustaciones de sulfato de estroncio en los sistemas de reinyección.

Al igual que en los otros casos el pH no tiene efecto sobre la solubilidad del sulfato de estroncio.

1.3.1.5. Compuestos de hierro

Los iones de hierro pueden estar presentes en el agua de forma natural o por producto de la corrosión. Las aguas de formación normalmente contienen pocos mg/L de hierro natural y valores altos como 100 mg/L son raros de encontrar.

Sin embargo, estos valores altos son el resultado de la corrosión. Así como los compuestos de hierro precipitado son causas comunes de formación de incrustaciones y del taponamiento de pozos de inyección, también son un indicativo de problemas de corrosión serios. La corrosión es normalmente el resultado del dióxido de carbono, del sulfuro de hidrógeno o del oxígeno, disueltos en el agua. La formación o no de incrustaciones dependerá del pH del sistema y la formación de las mismas es más probable con un valor de pH superior a 7.

El sulfuro de hidrógeno formará sulfuro de hierro como un producto de la corrosión, el cual es bastante insoluble y usualmente forma incrustaciones adherentes delgadas. El oxígeno se combina para formar hidróxido ferroso, hidróxido férrico y óxido férrico que resultan al entrar en contacto con el aire.

1.4. GENERALIDADES DE LA CORROSIÓN

Es un proceso electroquímico a través del cual el metal regresa a un estado más estable, asemejándose al hierro mineral del cual fue producido. Esta acción es similar al proceso metalúrgico de extracción del metal desde el mineral en la naturaleza, pero en reversa.

De allí que los metales siempre están sujetos a corrosión, algunos a mayor tasa que otros; y más aún en la industria petrolera debido a las características agresivas de los fluidos que son manejados (gas natural, agua de formación, petróleo), por lo tanto,

los efectos de desgaste son mucho más complejos y consecuentemente requieren mayor cuidado por las situaciones que traen en sí.

Las instalaciones petroleras requieren protección contra la corrosión para evitar pérdidas directas e indirectas, que incluyen las paradas de equipos, pérdidas de productos a través de las tuberías corroídas, pérdidas de producción durante paro por reparaciones, pérdida de materiales, pérdida de tiempo, costos prohibitivos de reparaciones de emergencia, costo adicional por almacenamiento imprevisto de productos y productos de derrame, costo por precauciones de seguridad adicionales, afectaciones y atentados serios al medio y a las personas involucradas.

La mayoría de las fallas mecánicas son el resultado de la corrosión, pero puede haber otros factores adicionales que pueden destruir los metales e incluyen problemas de manipulación de tuberías y equipos, las presiones, las temperaturas y los gases agresivos que han creado ambientes más adversos para facilitar la corrosión.

La corrosión describe los cambios no deseados en las propiedades físicas de un metal a través de reacciones químicas o electroquímicas. En las facilidades petroleras los puntos de mayor vulnerabilidad a efectos corrosivos son las uniones, codos, Ts y Ys debido a que en los puntos con accesorios se produce la mayor turbulencia de los fluidos que se transportan, desprendiendo el material corroído y dejando una superficie fresca para corrosión, lo que resulta en el debilitamiento y futuros puntos críticos de ruptura del material.

La corrosión puede ocurrir por ataque uniforme, indentación local o por agrietamiento debido a la tensión. Los requisitos básicos para que exista corrosión son:

- Una célula corrosiva consistente en un ánodo y un cátodo
- Un electrolito para completar el circuito

• Flujo de la corriente directa

Tipos de corrosión:

- Corrosión por fluidos no sulfurosos
- Corrosión por fluidos sulfurosos
- Agrietamiento por corrosión y tensión
- Corrosión por oxígeno
- Corrosión por ataque a la célula de concentración
- Corrosión galvánica
- Corrosión por Bacterias Sulfato Reductoras

Para la prevención o control de la corrosión se pueden manejar los siguientes parámetros:

- Cambio en las condiciones ambientales
- Uso de materiales resistentes a la corrosión
- Uso de revestimientos
- Uso de inhibidores
- Protección catódica/anódica

Los inhibidores de corrosión son materiales que cuando están presentes en un sistema en cantidades relativamente pequeñas, reducen la pérdida del metal ya que disminuyen la corrosión. Estos pueden interferir con la reacción anódica o catódica, formar una barrera protectora en la superficie del metal contra los agentes corrosivos o una combinación de las dos acciones.

Para petróleo los más usados son los que contienen compuestos orgánicos (aminas) debido a su efectividad y disponibilidad. Estos contienen un extremo polar que se adhiere al metal y un extremo apolar que atrae los hidrocarburos lo cual incrementa la efectividad de la película del inhibidor.

Usualmente contienen tres elementos: uno o más componentes inhibidores, un disolvente base y ciertos aditivos como: surfactantes, dispersantes, demulsificantes y antiespumantes.

Los factores que se utilizan en la selección de los inhibidores son: identificación del problema a ser resuelto, corrosivos presentes, tipo de sistema, presión y temperatura, velocidad y caracterización del hidrocarburo.

Siendo la corrosión un proceso dinámico al igual que la calidad de los fluidos que se manipulan, varía con el tiempo durante el período de producción del pozo, y por lo tanto, la prevención de la corrosión debe ser tratada de la misma manera, es decir, debe controlarse frecuentemente debido a que la calidad de los fluidos es cambiante, lo que demanda dedicación, trabajo constante y monitoreo permanente.

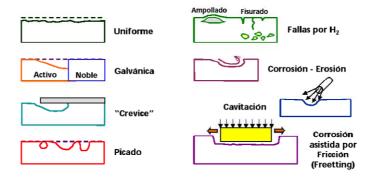
La selección de los métodos de control de la corrosión son dependientes de la calidad del crudo y fluidos asociados (gas y agua de formación) y sobre todo del corte de agua (BSW). Las normas de recepción en oleoducto son: 1% BSW, 0% emulsión, 0.2% sedimentación, máximo 1% de agua libre (considerando como óptimo un valor de 0.5%).

Cuando se manejan volúmenes de agua de formación altos, por ejemplo 45%, a los que hay que tratar con químicos inhibidores, los problemas de corrosión son serios, permanentes y severos; resultando en una mayor vulnerabilidad de las instalaciones con consecuencia de algún tipo de incidentes como derrames, explosiones e incendios, cuyo costo de remediación en muchos casos es imposible de cuantificar.

El tipo de agua de formación también influye en los problemas de corrosión en las instalaciones, debido a que en el agua están los elementos indeseables como son sólidos suspendidos, sólidos disueltos (1500 a 75000 mg/L), areniscas abrasivas de la formación, las que provocan el desgaste de las tuberías, velocidad de transporte y

agresividad *per-sé* y principalmente en los tanques de lavado y almacenamiento de la acción de bacterias.

Los químicos inhibidores de corrosión son generalmente biodegradables, compatibles con otros químicos de inyección, estables térmicamente, son solubles y dispersables y sus dosificaciones son mínimas en relación al volumen de fluidos tratados. De ocurrir incidentes en los tanques dosificadores, sean de proceso continuo o periódico, los problemas asociados no son relevantes.


Un plan de prevención simple contiene los siguientes puntos:

- 1.- Un diagnóstico del problema de corrosión.
- 2.- Selección del tratamiento más eficiente al menor costo.
- 3.- Selección de los puntos estratégicos de inyección de los químicos inhibidores.
- 4.- Evaluación del tratamiento con medidas de:
 - Espesores
 - Cupones de corrosión
 - Determinaciones de químico residual de las fases anteriores del tratamiento químico
- 5.- Remediar el problema de corrosión por:
 - Inyección de químicos adecuados
 - Inyección de las dosis efectivas
 - Inyección en puntos estratégicos

1.4.1. CORROSIÓN DE TUBERÍAS

En las figuras 1.1. a 1.9., se presentan algunos tipos de corrosión:

FIGURA 1.1.



Fuente: QUIMIPAC S.A.

Elaborado por: QUIMIPAC S.A.

1.4.1.1. Corrosión por CO₂

FIGURA 1.2.

Fuente QUIMIPAC S.A. Elaborado por: QUIMIPAC S.A.

FIGURA 1.3.

Fuente QUIMIPAC S.A. Elaborado por: QUIMIPAC S.A.

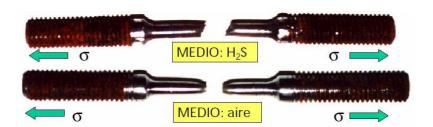

1.4.1.2. Corrosión por H₂S

FIGURA 1.4.

Fuente QUIMIPAC S.A. Elaborado por: QUIMIPAC S.A.

FIGURA 1.5.

Fuente QUIMIPAC S.A. Elaborado por: QUIMIPAC S.A.

FIGURA 1.6.

Fuente QUIMIPAC S.A. Elaborado por: QUIMIPAC S.A.

1.4.1.3. Corrosión por microorganismos

FIGURA 1.7.

Fuente QUIMIPAC S.A. Elaborado por: QUIMIPAC S.A.

FIGURA 1.8.

Fuente QUIMIPAC S.A. Elaborado por: QUIMIPAC S.A.

FIGURA 1.9.

Fuente QUIMIPAC S.A. Elaborado por: QUIMIPAC S.A.

1.4.2. EFECTOS SOBRE LA CORROSIÓN

1.4.2.1. Efecto de la composición del agua

La corrosividad del agua se incrementa con el aumento de la conductividad. También, incrementa cuando el pH decrece. Los valores de pH altos hacen que la corrosión se vuelva más lenta, ya que las incrustaciones de hidróxido de hierro o incrustaciones de carbonato pueden formarse sobre la superficie del acero retardando la corrosión. El oxígeno, dióxido de carbono y el sulfuro de hidrógeno disueltos en agua incrementan la corrosividad.

1.4.2.2. Ácidos orgánicos

Las aguas producidas usualmente contienen ácidos orgánicos, tales como el ácido acético, aún en cantidades bajas este ácido es extremadamente corrosivo, con un comportamiento similar al de los ácidos clorhídrico o sulfúrico.

1.4.2.3. Variables físicas

- Temperatura del agua, la velocidad de corrosión se incrementa con el aumento de la temperatura.
- 2) Presión del sistema, en el caso de los sistemas de agua de dos fases (agua+gas), la presión es importante debido a su efecto sobre la solubilidad de los gases disueltos. La mayoría de los gases entra en solución a medida que la presión se incrementa dando por resultado el incremento de la velocidad de corrosión.
- 3) Velocidad del agua, el agua estancada o de velocidad baja tiene una velocidad de corrosión baja, pero se puede presentar picadura. Al incrementarse la velocidad del fluido se incrementa también la velocidad de corrosión. Si la velocidad es demasiado alta, la erosión o la erosión-corrosión pueden provocar el desgaste por los choques.

Estos problemas se vuelven aún más severos si existen sólidos suspendidos, con cambios en la dirección del flujo.

1.5. GENERALIDADES MICROBIOLÓGICAS DEL AGUA DE FORMACIÓN.

1.5.1. CLASIFICACIÓN DE LAS BACTERIAS

Las bacterias pueden ser clasificadas de varias formas. Una buena descripción se da de acuerdo al tamaño y a la forma. Las bacterias son extremadamente pequeñas (alrededor de 0,5 µm de diámetro) y existen miles de especies. Las más generales se indican a continuación:

- Una sola bacteria esférica: coco
- Varias bacterias esféricas: cocos
- Una cadena de cocos se llama estreptococo mientras que un plano de cocos se llama estafilococo
- Rodillos rectos: bacilos
- Rodillos curvos:
 - o Vibrio: una sola curva en forma de C
 - o Sigmoide: doblado como una S
 - o Espirilo: dos o más curvas en forma de espiral.

1.5.1.1. Ambiente para el crecimiento de bacterias

La causa principal de los problemas originados por las bacterias es su capacidad de reproducirse.

Las bacterias pueden resistir rangos de temperatura muy amplios (de 14 a 210 °F), un pH entre 0 a 10.5 y concentraciones de oxígeno desde 0 hasta casi 100 %. Sin embargo, en los sistemas de agua crecen mejor con un pH de 5 a 9 y a temperaturas menores a los 180°F.

Las bacterias pueden vivir en grupos o colonias adherentes a superficies sólidas o suspendidas al agua. Las primeras se las conoce como bacterias sésiles que, son la mayoría y las segundas planctónicas.

1.5.1.2. Requerimientos de oxígeno

Esta clasificación se basa en si las bacterias requieren o no de oxígeno:

- Aeróbicas, requieren de oxígeno
- Anaeróbicas, no requieren de oxígeno
- Facultativas, crecen sin importar la presencia o ausencia de oxígeno

1.5.1.3. Bacterias nocivas

1.5.1.3.1. Bacterias sulfato reductoras (BSR)

Son aquellas que causan severos problemas a los sistemas reinyectores más que cualquier otro tipo de bacterias. Estas bacterias reducen los iones sulfato o sulfito a iones sulfuros, resultando el sulfuro de hidrógeno.

Los cuatro problemas que son causados por estás bacterias son los siguientes:

- Pueden participar directamente en la reacción de corrosión al desgastar el metal debajo de las colonias bacterianas.
- La generación de sulfuro de hidrógeno puede incrementar la corrosividad del agua, en especial si el agua originalmente era dulce.
- La presencia de bacterias sulfato reductoras en un sistema originalmente libre de sulfuro de hierro crea la posibilidad de agrietar o formar ampollas en el acero.
- La corrosión agria o ácida se da por la formación de sulfuro de hierro insoluble, el cual es un material de taponamiento.

1.6. DESCRIPCIÓN DE LOS PRODUCTOS QUÍMICOS UTILIZADOS EN EL TRATAMIENTO QUÍMICO DEL AGUA DE FORMACIÓN EN LA ESTACIÓN SUR DEL CAMPO SHUSHUFINDI.

El área Shushufindi queda ubicada en el Centro-Norte de la Cuenca Oriental en la Provincia de Sucumbíos. Situándose a 250 km al este de la ciudad de Quito, y 35 km al sur de la frontera con Colombia teniendo al Norte el Campo Libertador, al Sur el Campo Limoncocha, al Este el Bloque Tarapoa y al Oeste el Campo Sacha. El Campo se subdivide en cinco estaciones de producción que son: Aguarico, Shushufindi Sur, Shushufindi Sur-Oeste, Shushufindi Central y Shushufindi Norte. Ver Anexo 1.

A continuación se describen los productos químicos utilizados:

a) Inhibidor de incrustaciones, los depósitos son acumulaciones de sedimentos o sólidos asentados que se fijan en un punto del sistema donde la velocidad del agua disminuye a un nivel tan bajo que no es capaz de arrastrar al material en la corriente. Para el tratamiento de las incrustaciones se han desarrollado productos basados en fosfonatos y poliacrilatos, los cuales actuarán cambiando la estructura del cristal y dispersará los sólidos. Inhiben la formación de incrustaciones de carbonato de calcio y magnesio principalmente. Se inyecta en forma continua a la entrada del Wash Tank a una concentración media de 10.5 ppm.

b) Inhibidor de corrosión, es un inhibidor fílmico que se adhiere a la superficie interna metálica y evita el contacto del agua salina con el metal. Se inyecta a la descarga del Wash Tank en forma continua con una concentración promedia de 3 ppm.

Ocasionalmente se utiliza químico limpiador de carbonatos y diesel para la limpieza de las bombas.

c) Biocidas, se les denomina así a los productos químicos usados en el control del crecimiento de los microorganismos perjudiciales en los sistemas de tratamiento de aguas de formación, evitando que la colonia bacteriana y otros microorganismos sea uno de los factores que vayan a aportar elementos que aumenten la velocidad de corrosión.

Con este antecedente se ha diseñado un químico bactericida para atacar a las Bacterias Sulfato Reductoras, que son las generadoras de corrosión. Para el monitoreo se realiza un cultivo de bacterias con conteo diario. La dosificación del biocida se lo realiza en lotes con 200 ppm.

- d) Surfactante, limpia las paredes de sólidos y ayuda a mantenerlos en suspensión.
 Se lo aplica a la descarga del Wash Tank a una concentración de 3 ppm.
- e) Floculante, reúne partículas floculadas en una red, formando puentes de una superficie a otra y enlazando las partículas individuales en aglomerados. Es útil para mejorar la eficacia en el proceso de filtración agrupando, como se dijo

anteriormente, las partículas en suspensión y formando flóculos. Las sustancias que se usan en la floculación son compuestos de hierro y aluminio, usualmente sulfatos.

- **f) Coagulante**, un producto funciona como coagulante cuando posee las siguientes propiedades:
 - Reacciona como álcali, produciendo compuestos complejos que actúan favorablemente para la formación de flóculos;
 - La superficie de flóculos que se forma debe ser grande, permitiendo la absorción de materiales disueltos como los coloides en suspensión.
 - Producen una solución de iones positivos de gran reducción del potencial zeta.
 Una breve explicación del potencial zeta se presenta en el anexo 2.

Dentro de los coagulantes más comunes se tiene:

- Los coagulantes metálicos (alumbre y sales de hierro), son los más empleados en la clarificación del agua. Estos productos actúan como coagulantes y floculantes a la vez. Aún cuando inicialmente en el agua no haya sólidos suspendidos, los coagulantes metálicos forman flóculos que enredan a los coloides desestabilizados, y;
- Los polímeros que se dividen en coagulantes y floculantes. Los polímeros coagulantes son moléculas positivamente cargadas de peso molecular relativamente bajo. Aunque muestran cierta tendencia a enlazar, no son tan efectivos como los polímeros floculantes, los cuales tienen pesos moleculares más altos, y proporcionan largos puentes entre los flóculos pequeños, para promover el crecimiento de la partícula.

Se adiciona continuamente a la entrada del clarificador y sirve para acumular los sólidos suspendidos totales. A menudo, se lo inyecta diluido en una concentración de 0.3 ppm.

g) Demulsificante, es un producto que se utiliza para separar el aceite presente en el agua, dado que el petróleo o aceite en agua es otro de los mayores contaminantes que causa incremento en la turbidez del agua. Se han tenido valores históricos de 10 a 1000 ppm. Se lo inyecta en el tanque de lavado.

Al momento no se da tratamiento al agua porque la planta de tratamiento está fuera de servicio.

1.7. CARACTERIZACIÓN DEL AGUA DE FORMACIÓN EN LA ESTACIÓN SUR DEL CAMPO SHUSHUFINDI

Los datos del WT, pozo SSF-47 y SSF-93 corresponden al 06 de Diciembre de 2007, los datos del pozo SSF-02RW, SSF-20 y SSF-25 corresponden al 04 de Septiembre de 2007, mientras que el pozo SSF-21 se encuentra reinyectando a la estación Central.

En las tablas 1.3. y 1.4., se presentan las características de agua de formación de los pozos reinyectores y productores respectivamente.

TABLA 1.3.

CARACTERIZACIÓN DEL AGUA DE FORMACIÓN DEL WASH TANK Y LOS POZOS REINYECTORES DE LA ESTACIÓN SUR DEL CAMPO SHUSHUFINDI.

	ESTACIÓN SUR										
Fecha: 06 de Diciembre de 2007 para WT, SSF-47 y SSF-93; y 04 de Septiembre de 2007 para SSF-02RW, SSF-20, SSF-25.											
PARÁMETROS	UNIDADES	WTK	02RW 20A 21 25 47 93								

Dureza Total	ppm	6700	5600	5600	ı	5680	6300	6100
Alcalinidad Total	ppm	725	710	720	ı	760	635	670
Cloruros	ppm	25200	23050	23150	-	23300	25200	25200

TABLA 1.3. CONTINUACIÓN

PARÁMETROS	UNIDADES	WTK	02RW	20A	21	25	47	93
Dureza Cálcica	ppm	5300	4460	4660	-	4650	5400	5200
CO ₂	ppm	100	43	40	-	41	90	80
Temperatura	°F	143.6	152	148	-	150	143.6	132.8
Hierro	ppm	13.15	12.5	10.50	-	10.75	11.60	12.50
Sulfatos	ppm	105	125	100	-	150	125	110
Dureza Magnésica	ppm	1400	1140	940	-	1030	900	900
Magnesio	ppm	336	274	226	-	247	216	216
Calcio	ppm	2120	1784	1864	-	1860	2160	2080
Carbonatos	ppm	885	866	878	-	927	775	817
H ₂ S	ppm	0.1	0.4	0.5	-	0.2	0.2	0.2
Presión	psi	15	1160	1350	-	1540	1500	1200
pH medido	рН	6.62	7.6	7.50	-	7.50	6.55	6.63
Turbidez	NTU	12.60	18.10	7.05	-	5.18	7.20	5.63
Sólidos Totales	ppm	8.80	13.10	10.40	-	8.80	20	26
Índices de Saturación	IS	0.62	0.95	0.95	-	0.99	0.46	0.44
РТВ	lbs/1000 bls	200.10	258.10	261.70	-	283	142.50	144.30

Tendencia del agua	Incrus	Incrus	Incrus	-	Incrus	Incrus	Incrus

Fuente QUIMIPAC S.A.

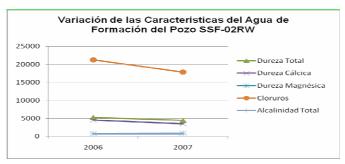
Elaborado por: QUIMIPAC S.A.

El pozo SSF-21 se encuentra reinyectando por la Estación Central, por tal razón no se reportan los datos para este pozo.

Tabla 1.4.
CARACTERIZACIÓN DEL AGUA DE FORMACIÓN DE LOS POZOS PRODUCTORES DE LA ESTACIÓN SUR

						ESTACIÓN	SHUSHUFINI	OI SUR							
								POZ	os						
Fecha:		6/6/2007	7/12/2007	8/10/2007	6/6/2007	21/03/07	29/06/07	22/09/07	22/09/07	21/03/07	18/04/07	7/7/2007	15/10/07	22/01/07	3/1/2008
PARÁMETROS	UNIDADES	2	06B	20B	22B	23	28	45B	67	68	75	79	82	91	92
Dureza total	ppm	13300	21700	16700	5300	1600	26400	1500	1100	15200	1400	16000	15400	18800	1700
Alcalinidad Total	ppm	330	270	310	1140	1200	210	670	750	600	800	700	300	900	1100
Cloruros	ppm	46750	88000	46350	23500	11200	96950	7150	6400	55400	3000	50000	55000	55750	8400
Dureza cálcica	ppm	12100	17200	11000	4000	1400	24800	1200	800	12200	1100	14800	12300	13800	1600
CO ₂	% molar	15	4	10	17	14	4	15	12	8	8	9	2	3	13
Temperatura	°F	180	130	146	185	180	160	158	183	155	185	140	150	160	175
Sulfatos	ppm	300	112.5	150	275	175	20	50	225	175	75	175	300	200	25
Dureza Magnésica	ppm	1200	4500	5700	1300	200	1600	300	300	3000	300	1200	3100	5000	100
Magnesio	ppm	291.6	1093.5	1385.1	315.9	48.6	388.8	72.9	72.9	729	72.9	291.6	753.3	1215	24.3
Calcio	ppm	4840	6880	4400	1600	560	9920	480	320	4880	440	5920	4920	5520	640
Bicarbonato	ppm	402.6	329.4	378.2	1390.8	1464	256.2	817.4	915	732	976	854	366	1098	1342
Presión	psi	70	100	20	100	200	160	35	136	180	80	80	80	63	220
Índices de Saturación	IS	0.3	0.33	0.42	0.91	0.56	0.61	0.56	0.45	0.42	1.31	0.65	0.68	1.73	0.59
РТВ	lbs/1000 bls	106.3	92.9	128.1	615.1	281.6	108.6	205.8	140.4	240.9	336.1	367.1	162.3	615.9	309.1
Tendencia del Agua		Incrus	Incrus	Incrus	Incrus	Incrus	Incrus	Incrus	Incrus	Incrus	Incrus	Incrus	Incrus	Incrus	Incrus

Fuente: QUIMIPAC S.A. Elaborado por: Mayra Silva P. En las tablas 1.5. a 1.9., se presenta la variación de las características del agua de formación de los pozos reinyectores en función del tiempo. La misma que se puede observar en las figuras 1.10. a 1.14.


TABLA 1.5. CARACTERIZACIÓN DEL AGUA DE FORMACIÓN DEL POZO SSF-02RW DE LA ESTACIÓN SUR DEL CAMPO SHUSHUFINDI

Año	2006	2007
PARÁMETROS	POZ	O 02RW
Dureza Total	5300	4400
Dureza Cálcica	4500	3500
Dureza Magnésica	800	900
Cloruros	21250	17850
Alcalinidad Total	650	650

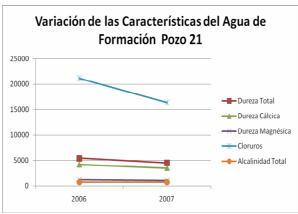
Fuente: Departamento de Reinyección de Agua Shushufindi

Elaborado por: Mayra Silva P.

Figura 1.10.

Fuente: Departamento de Reinyección de Agua Shushufindi

Elaborado por: Mayra Silva P.


TABLA 1.6.

CARACTERIZACIÓN DEL AGUA DE FORMACIÓN DEL POZO SSF-21 DE LA ESTACIÓN SUR DEL CAMPO SHUSHUFINDI

Año	2006	2007					
PARÁMETROS	POZO 21						
Dureza Total	5400	4500					
Dureza Cálcica	4200	3500					
Dureza Magnésica	1200	1000					
Cloruros	21100	16400					
Alcalinidad Total	730	705					

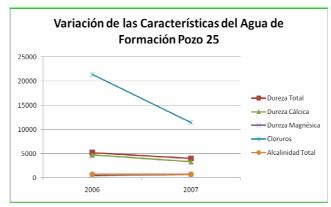
Fuente: Departamento de Reinyección de Agua Shushufindi

Figura 1.11.

Fuente: Departamento de Reinyección de Agua Shushufindi

Elaborado por: Mayra Silva P.

TABLA 1.7.


CARACTERIZACIÓN DEL AGUA DE FORMACIÓN DEL POZO SSF-25 DE LA ESTACIÓN SUR DEL CAMPO SHUSHUFINDI

Año	2006	2007
PARÁMETROS	POZ	O 25
Dureza Total	5200	4000
Dureza Cálcica	4700	3300
Dureza Magnésica	500	700
Cloruros	21350	11400
Alcalinidad Total	690	665

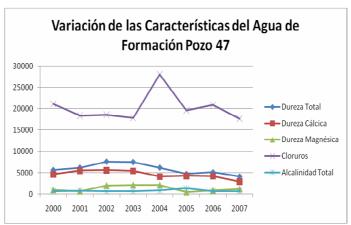
Fuente: Departamento de Reinyección de Agua Shushufindi

Elaborado por: Mayra Silva P.

Figura 1.12.

Fuente: Departamento de Reinyección de Agua Shushufindi

TABLA 1.8.


CARACTERIZACIÓN DEL AGUA DE FORMACIÓN DEL POZO SSF-47 DE LA ESTACIÓN SUR DEL CAMPO SHUSHUFINDI

Año	2000	2001	2002	2003	2004	2005	2006	2007			
PARÁMETROS		POZO 47									
Dureza Total	5625	6200	7600	7500	6200	4700	5100	4100			
Dureza Cálcica	4625	5500	5600	5400	4100	4250	4200	2900			
Dureza Magnésica	1000	700	2000	2100	2100	450	900	1200			
Cloruros	21122	18350	18600	17900	28000	19600	20850	17650			
Alcalinidad Total	723	780	680	700	850	1350	720	725			

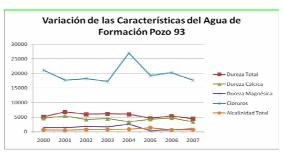
Fuente: Departamento de Reinyección de Agua Shushufindi

Elaborado por: Mayra Silva P.

Figura 1.13

Fuente: Departamento de Reinyección de Agua Shushufindi

Elaborado por: Mayra Silva P.


TABLA 1.9.

CARACTERIZACIÓN DEL AGUA DE FORMACIÓN DEL POZO SSF-93 DE LA ESTACIÓN SUR DEL CAMPO SHUSHUFINDI

	2000	2001	2002	2003	2004	2005	2006	2007
PARÁMETROS				POZ	O 93			
Dureza Total	5150	6800	6000	6200	6000	4700	5400	4500
Dureza Cálcica	4600	5400	4200	4500	3400	4300	4700	3400
Dureza Magnésica	1450	1400	1800	1700	2600	400	700	1100
Cloruros	21125	17700	18250	17250	27000	19300	20250	17650
Alcalinidad Total	728	540	770	770	890	1420	680	760

Fuente: Departamento de Reinyección de Agua Shushufindi

Figura 1.14.

Fuente: Departamento de Reinyección de Agua Shushufindi

Elaborado por: Mayra Silva P.

En el año 2006 y 2007 se incluyen el pozo 05 y pozo 20 respectivamente, por lo que es necesario contar con una referencia de las características del agua de formación en estos pozos, datos que se presentan en la tabla 1.10. y 1.11.

TABLA 1.10. VARIACIÓN DE LAS CARACTERÍSTICAS DEL AGUA DE FORMACIÓN DURANTE EL AÑO 2006

Año			2	006		
PARÁMETROS	POZO 05	POZO 21	POZO 25	POZO 2	POZO 47	POZO 93
Dureza Total	5000	5400	5200	5300	5100	5400
Dureza Cálcica	4100	4200	4700	4500	4200	4700
Dureza Magnésica	900	1200	500	800	900	700
Cloruros	20700	21100	21350	21250	20850	20250
Alcalinidad Total	730	730	690	650	720	680

Fuente: Departamento de Reinyección de Agua Shushufindi

Elaborado por: Mayra Silva P.

TABLA 1.11. VARIACIÓN DE LAS CARACTERÍSTICAS DEL AGUA DE FORMACIÓN DURANTE EL AÑO 2007

Año			;	2007					
PARÁMETROS	POZO 21	ZO 21 POZO 25 POZO 20 POZO 02 POZO 47 F							
Dureza Total	4500	4000	4100	4400	4100	4500			
Dureza Cálcica	3500	3300	3400	3500	2900	3400			
Dureza Magnésica	1000	700	700	900	1200	1100			
Cloruros	16400	11400	17350	17850	17650	17650			
Alcalinidad Total	705	665	720	650	725	760			

Fuente: Departamento de Reinyección de Agua Shushufindi

En la tabla 1.12., se presenta la variación de las características del agua de formación desde el año 2000 a 2007. Variación que se puede observar en la figura 1.15.

TABLA 1.12. VARIACIÓN DE LAS CARACTERÍSTICAS DEL AGUA DE FORMACIÓN DURANTE EL AÑO 2000 AL 2007

	Año							
PARÁMETROS	2000	2001	2002	2003	2004	2005	2006	2007
Dureza Total	5408.33	6633.33	6633.33	6566.67	7466.67	4633.33	5233.33	4266.67
Dureza Cálcica	4566.67	5533.33	4933.33	4816.67	3766.67	4216.67	4400	3333.33
Dureza Magnésica	1141.67	1100	1700	1766.67	3700	416.67	833.33	933.33
Cloruros	21078.33	18050	18416.67	17516.67	27666.67	19366.67	20916.67	16383.33
Alcalinidad Total	723.67	666.67	743.33	756.67	790	1290	700	704.167

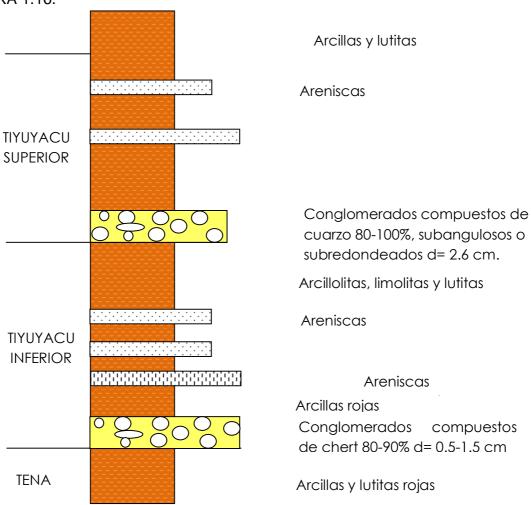
Fuente: Departamento de Reinyección de Agua Shushufindi

Elaborado por: Mayra Silva P.

Figura 1.15.

Fuente: Departamento de Reinyección de Agua Shushufindi

Elaborado por: Mayra Silva P.


1.8. FORMACIÓN TIYUYACU

1.8.1. CARACTERÍSTICAS GEOLÓGICAS DE LA FORMACIÓN.

Los afloramientos de la Formación Tiyuyacu se encuentran principalmente en el hundimiento sur del levantamiento Napo, pero también en el Norte de la zona

subandina en el Campo Petrolero Bermejo, y al Sur en la Cordillera de Shaime (Este de la Cordillera de Cutucú). Su base corresponde a una superficie de erosión regional, identificada tanto en afloramientos como en sísmica. La base del miembro superior es también, una superficie de erosión a tal punto que en ciertos lugares de la cuenca (Cordillera de Shaime), el miembro inferior está completamente erosionado, por lo que el miembro Tiyuyacu superior sobreyace directamente de la formación Tena. En la figura 1.16., se indica las características geológicas de la Formación Tiyuyacu, que ayudan a una mejor comprensión de la descripción de la misma.

FIGURA 1.16.

Fuente: Estudio realizado por Baker Hughes-Dpto de Yacimientos

Miembro Inferior

El miembro inferior de la Formación Tiyuyacu aflora escasamente en la cuenca. Está expuesta en la quebrada Tiyuyacu, en las márgenes del Río Misahualli cerca de la desembocadura del Río Napo, y en la carretera Tena-Puyo, a pocos kilómetros de Puerto Napo en dirección a Puyo.

El miembro Tiyuyacu inferior está compuesto principalmente de conglomerados y en menor proporción de areniscas gruesas y lutitas.

Los conglomerados contienen un 90% de chert rojizo y anguloso y 10% de cuarzos lechosos y rocas metamórficas. Dichos depósitos están organizados en rellenos de canales complejos.

Dentro de estos elementos de todo tipo de facies se encuentra el tipo conglomerado estratificado, que puede ser interpretado como barreras de grava. Hacia arriba se encuentran cuerpos arenosos mostrando facies de areniscas fina o gruesa o conglomerática organizados en elementos de barra de creación longitudinal.

El tope de los canales está conformado por areniscas finas y a veces por lutitas en facies de areniscas, limolitas o arcillolitas y paleosuelos, concreciones carbonatadas y niveles de óxidos de hierro revelan elementos arquitectónicos del tipo de depósitos de crecida. Esos rellenos de canales se repiten mostrando una evolución de grano creciente.

Miembro Superior

Aflora igualmente en la zona subandina. La mejor sección se encuentra en el Norte en el Campo Bermejo. Está conformada en su mayoría por conglomerados y en menor proporción por areniscas y lutitas.

Las litofacies identificadas se encuentran, de la base al tope, las litofacies de conglomerado estratificado, arenisca fina o gruesa o conglomerática, y al tope areniscas, limolitas o arcillolitas, paleosuelos, concreciones carbonatadas y niveles de óxidos de hierro. Esa última asociación sólo se encuentra al tope de la sección y no ha sido preservada en la base. Junto con los datos de paleocorrientes las asociaciones pueden ser agrupadas en elementos arquitectónicos del tipo de barra de acreción longitudinal o barra de acreción lateral para algunas en las que se presentan direcciones de paleocorrientes más dispersas.

De acuerdo a la evaluación petrofísica realizada en el pozo SSF-RW-02, la litología de la formación Tiyuyacu entre (5722-7622'; MD) es:

- Arenisca cuarzosa, translúcida, grano muy fino a fino, cemento silícico.
- Arenisca conglomerática, clastos de cuarzo.
- Arcillolitas grises, café ladrillo, moteado de blanco.
- Conglomerados con clastos de chert, cemento arcilloso.

1.8.2. CARACTERÍSTICAS PETROFÍSICAS DE LA FORMACIÓN

Los parámetros petrofísicos se realizaron en base a la Evaluación Petrofísica del pozo reinyector 02 (SSF-RW-02) efecutada por el área de Geofísica de PETROPRODUCCIÓN el 16 de Enero de 2006, ya que existe escasa información acerca de la Formación Tiyuyacu debido al poco interés petrolífero que ésta representa. La evaluación de los registros eléctricos del pozo SSF-RW-02 se la realizó con el Software Interactive Petrophysics.

Se estimaron los espesores permeables de las formaciones Tiyuyacu Inferior y Orteguaza, en las cuales se planea reinyectar agua de desecho. Los registros a hueco abierto corridos por la Compañía Baker Hughes el 11 de Enero de 2006, con

el set de registros que dispone de las curvas necesarias para realizar una interpretación petrofísica apropiada de las formaciones de interés.

1.8.2.1. Generalidades

El SSF-RW-02 es un pozo de desarrollo que fue perforado por PETROPRODUCCIÓN en Enero de 2006, con el objeto de reinyectar agua de desecho (formación) a las formaciones Tiyuyacu Inferior y Orteguaza. El pozo se encuentra ubicado al Sur del Campo Shushufindi a 0° 14' 36.63" de latitud Sur y 76° 39' 10.46" de longitud Oeste.

1.8.2.2. Estratigrafía

En la tabla 1.13., se encuentran los topes de las formaciones de interés proporcionados por el Departamento de Geología de PETROPRODUCCIÓN

TABLA 1.13.
TOPES Y BASES DE LAS FORMACIONES

TOPES-BASES FORMACIONES SSF-RW-02 EMR 866 ft				
FORMACIONES	TOPE MD (ft)	BASE MD (ft)		
Orteguaza	5168	5722		
Tiyuyacu	5722	7622		
Tena	7622	PT		

Fuente: PETROPRODUCCIÓN Elaborado por: Mayra Silva.

1.8.2.3. Datos generales

Compañía: PETROPRODUCCIÓN

Registros: Baker Hughes

Pozo: SSF-RW-02

LON: 76° 39' 10.46" W

LAT: 0° 14' 36.63" S

Elevación KB: 966 ft

Total Depht: 7878 ft

Rm: 1.71 @ 75 °F

Rmf: 1.65 @ 75 °F

Rmc: 2.29 @ 75 °F

1.8.2.4. Perfiles a hueco abierto

En la tabla 1.14., se indica el detalle de las corridas de los registros a hueco abierto.

TABLA 1.14. PERFILES A HUECO ABIERTO

DIINI	ECCALA	DECISTROS	PROFUI	NDIDAD	PIES	
RUN	ESCALA	REGISTROS	DESDE	HASTA	REGISTRADOS	
1	1/200	High definition log Compensated density log Compensated neutron log	7876	5000	2876	
1/500		Digital Acoustic log Gamma Ray				

Fuente: PETROPRODUCCIÓN Elaborado por: Mayra Silva

1.8.2.5. Evaluación de Registros Eléctricos

Para la evaluación de los perfiles eléctricos se utilizó el Software Interactive Petrophysics con el cual se determinaron los espesores susceptibles de reinyección de agua.

1.8.2.5.1. Sumario de evaluación petrofísica

En la tabla 1.15., se presenta el sumario de la evaluación petrofísica realizado a las formaciones Tiyuyacu y Orteguaza.

TABLA 1.15. SUMARIO DE LA EVALUACIÓN PETROFÍSICA

SSF-RW02						
NET PAY SUMMARY						
ZONA	TOPE	BASE	ESPESOR BRUTO	ESPESOR NETO	$\overline{\phi}$	
Tiyuyacu	5722	7622	1900	322	15	
Orteguaza	5168	5722	554	92	18	
Zona		Intervalo a probar con LWD MD		Prioridad		
Tiyuyacu		7168-7210 (42')		1		
		7222-7260 (38')				
		7268-7396 (128')				
		7400-7514 (114')				
Orteguaza		5490-5534 (44')		2		
		5560-5	5608 (48')	2		

Fuente: Departamento de Ing. de Petróleos Shushufindi

Elaborado por: Mayra Silva P.

1.8.2.5.2. *Resultados*

Tiyuyacu 5722-7622 ft MD

- El miembro Tiyuyacu inferior se presenta como una arenisca conglomerática arcillosa con porosidades efectivas en el orden del 15%.
- Los parámetros petrofísicos en las zonas a punzonar dieron como resultado un espesor de 322 ft, una porosidad efectiva de 15% y una permeabilidad de 300 md, datos que se obtienen del estudio realizado por Baker Hughes el 11 de Enero de 2006.

Orteguaza 5168-5722 ft MD

- Las areniscas de Orteguaza se presentan como una arena arcillosa con porosidades efectivas en el orden de 15 a 21%.
- Los parámetros petrofísicos en las zonas a punzonar dieron como resultado un espesor neto de 92 pies y una porosidad efectiva de 18%.

CAPÍTULO 2

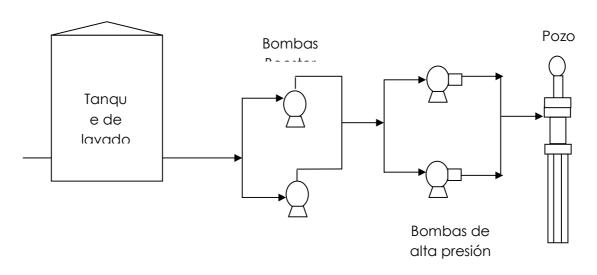
ESTUDIO DE LA SITUACIÓN ACTUAL DE LAS FACILIDADES DE SUPERFICIE DEL SISTEMA DE REINYECCIÓN

En este capítulo se presenta las instalaciones de superficie con las que cuenta el sistema de reinyección, datos de producción de agua, reportes de reinyección, datos de presión tanto de descarga como de inyección, tratamiento químico actual, que ayudarán a determinar las condiciones actuales de las facilidades de superficie y procesos de tratamiento en el sistema de reinyección de la estación Shushufindi Sur.

2.1. FACILIDADES DE SUPERFICIE INSTALADAS EN EL SISTEMA DE REINYECCIÓN DE LA ESTACIÓN SUR.

Los equipos de reinyección en el Oriente Ecuatoriano están compuestos por lo general de bombas boosters y de bombas horizontales de alta presión.

Las bombas boosters utilizadas son bombas centrífugas horizontales de una sola etapa, en las cuales la energía cinética o velocidad de fluido (agua de formación) es al inicio incrementada y entonces convertida en energía potencial o de presión. La energía cinética es impartida al fluido por el impeler generando una fuerza centrifuga.


Estas dos sirven para proporcionar la presión de succión necesaria para que arranquen las bombas horizontales de alta presión.

Las bombas de alta presión más utilizadas en el campo petrolero son de dos tipos: bombas centrifugas horizontales multietapas y bombas horizontales de

desplazamiento positivo tipo pistón, de las cuales, las primeras son las más comúnmente utilizadas en los sistemas de reinyección.

En la figura 2.1., se indica un diagrama del Sistema Actual de Reinyección de Agua en la Estación Sur del Campo Shushufindi.

FIGURA 2.1.

Fuente: Departamento de Reinyección de Agua de Shushufindi

Elaborado por: Mayra Silva P.

2.1.1. BOMBAS DE TRANSFERENCIA O BOOSTER

2.1.1.1. Motores

Cada una de las bombas de alta presión está alimentada por generadores de energía que son movidos por motores Caterpillar. Los motores a su vez son alimentados por una línea de gas que llega desde la refinería localizada en este mismo campo. Las bombas están dispuestas de un Lufkin o incrementador de velocidad que eleva las revoluciones desde 1200 RPM hasta unos 4000 RPM.

2.1.1.2. Bombas horizontales de alta presión

El sistema de bombeo horizontal centrífugo multietapa consta de los siguientes componentes principales:

- 1. Estructura (skid-viga de algún tipo de perfil)
- 2. Motor (eléctrico o de combustión)
- 3. Acople
- 4. Cámara de empuje
- 5. Sección de entrada
- 6. Bomba centrífuga multietapa
- 7. Controles eléctricos (panel-arrancador)
- 8. Switches de presión y de vibración

El rango de unidades en este tipo de sistema de bombeo horizontal es el siguiente:

- 1. Potencia de 25 a 1000 HP.
- 2. Caudales de 400 BFPD a 50000 BFPD
- 3. Presión de descarga de 250 a 4500 psi
- 4. Presión de entrada o succión desde 1 psi hasta 3000 psi

A continuación se hace una breve descripción de los componentes de los sistemas de bombeo horizontal centrífugo multietapa:

1. Skid

El skid está construido por un perfil de viga determinado (perfil "L") y tubería de sección cuadrada, viene con los soportes para la cámara de empuje y switches, y además con grapas para las bombas, que permiten hacer girar a la bomba 360 grados. El montaje del skid requiere una base reforzada de concreto y hierro con un espesor de 4 a 6" y con un borde mínimo de 1 pie alrededor del skid.

2. Motor

Se pueden utilizar dos tipos de motores: motores eléctricos y de combustión a diesel o gas natural. Las especificaciones generales de los motores eléctricos son:

- a. 460 V/ 3 fases/ 60 Hz (disponibles otros voltajes)
- b. 3500 RPM
- c. Tipo de carcasa, TEFC, ODP (entre las más comunes)
- d. Clase de aislante, F
- e. Eficiencia
- f. 1.15 factor de servicio
- g. Torque NEMA A o B
- h. Perfil L o T (viga de soporte del motor)
- i. Eje corto (dirección de rotación)
- j. Cojinetes de bolas

3. Cámara de empuje

La cámara de empuje absorbe el empuje generado por la bomba y es acoplada al motor con un acople de acero (FALK). El eje estándar de la cámara absorbe un empuje de 10000 lbs a 3600 RPM, y puede absorber hasta 25000 lbs en unidades de alto rendimiento. La cámara de empuje está formada interiormente por cojinetes de bolas de empuje radial, totalmente lubricados por aceite e incluye en sus extremos sellos del eje que operan a una misma presión en ambos sentidos, estos sellos mecánicos evitan que ingrese el aceite u otro fluido al motor. La disposición de los cojinetes (tipo contacto en tándem), permite manejar el empuje con baja generación de calor.

4. Cámara de succión

La cámara de succión está montada entre la cámara de empuje y la bomba; ésta puede rotar 360 grados para posicionarse en cualquier dirección de la tubería de succión. Incluye un sello mecánico ya que sus caras están sometidas a un diferencial

de presión. Para altas presiones de succión esta cámara se diseña con aceros 316 SS y bridas de alta presión.

Otros componentes

a. Switch de vibración

Está conectado al circuito del motor, lo que permite cortar la energía al motor en caso de alta vibración en el sistema. Además este switch es ajustable por sensibilidad.

b. Switch de presión Murphy

Tiene puntos de control para alta y baja presión para las presiones de succión y descarga. Son cableados dentro del panel del motor para apagar la unidad en caso de válvulas cerradas, rompimiento de líneas o baja presión de succión.

c. Controlador del motor

Este controlador se compone del controlador propiamente dicho y la pantalla, y permite registrar alrededor de 250 eventos.

d. Mangueras flexibles y juntas de expansión

Son recomendadas para acoplar la brida de unión del intake para evitar la vibración y la expansión térmica que provocan las altas temperaturas de fluidos.

e. Bridas de unión para succión y descarga

Estas bridas pueden ser de tipo RF y RTJ y están disponibles en diámetros diferentes como los que se muestran en la tabla 2.1.

TABLA 2.1. MÁXIMA PRESIÓN DE TRABAJO PERMITIDA DE ACUERDO A LA CLASE ANSI

Clase ANSI	Máxima presión de trabajo permitida		
150	275		

TABLA 2.1. CONTINUACIÓN

Clase ANSI	Máxima presión de trabajo permitida
300	720
600	1440
900	2160
1500	3600
2500	6000

Fuente: Departamento de Proyectos Especiales

Elaborado por: Mayra Silva

En la tabla 2.2., se indican las bombas instaladas en el sistema de reinyección de agua en la estación Shushufindi Sur.

TABLA 2.2.
BOMBAS INSTALADAS EN EL SISTEMA DE REINYECCIÓN DE AGUA EN LA ESTACIÓN SHUSHUFINDI SUR.

BOMBAS HORIZONTALES

CANTIDAD	вомва	MOTOR	OBSERVACIONES
3	WOOD GROUP	500 HP	OPERANDO TODAS
1	REDA	600 HP	OPERANDO TODAS

TOTAL 4

BOMBAS BOOSTER O DE TRANSFERENCIA

CANTIDAD	BOMBA	MOTOR	OBSERVACIONES
1	DURCO 6×4×13	50 HP	PARA BOMBA WOOD GROUP
1	DURCO 6×4×13	50 HP	PARA BOMBA WOOD GROUP
1	6×4 S/M	50 HP	SUCCIONA A B. DE ALTA PRESIÓN
1	6×4×14 S/M	75 HP	SUCCIONA A B. DE ALTA PRESIÓN (FUERA DE SERVICIO
1	MAGNUM 6×5×11	50 HP	DESCARGA AGUA TRATADA
1	MAGNUM 6×5×11	15 HP	DESCARGA ENTRE TANQUES
1	MAGNUM 6×5×11	15 HP	SUCCIÓN /TANQUE DE LAVADO
1	MAGNUM 6x5x11	15 HP	SUCCIÓN /TANQUE DE LAVADO

Fuente: Departamento de Reinyección de Agua-Quito.

Elaborado por: Departamento de Reinyección de Agua-Quito.

2.2. VOLÚMENES DE AGUA PRODUCIDA Y AGUA REINYECTADA

Las fechas de inicio de cada uno de los pozos de reinyección de agua en la estación Shushufindi Sur se detallan en la tabla 2.3.:

TABLA 2.3. INICIO DE LA REINYECCIÓN DE AGUA DE FORMACIÓN EN LA ESTACIÓN SHUSHUFINDI SUR.

POZO	FECHA DE INICIO DE LA REINYECCIÓN	ARENA
02	28 de Enero de 2006	Tiyuyacu
20A	23 de Noviembre de 2006	Tiyuyacu
21	21 de Julio de 2005	Tiyuyacu
25	28 de Mayo de 2004	Tiyuyacu
45A (sellado)	26 de Septiembre de 1992	Tiyuyacu
47	03 de Abril de 2000	Tiyuyacu
93	03 de Abril de 2000	Tiyuyacu

Fuente: Departamento de Reinyección de Agua-Shushufindi

Elaborado por: Mayra Silva

Los datos del agua producida para la Estación Shushufindi Sur, provienen de los siguientes pozos: SFD 02, SSFD 06B, SSFD 20B, SSFD 22B, SSFD 23, SSFD 28, SSFD 45B, SSFD 67, SSFD 68, SSFD 75, SSFD 79, SSF-82, SSFD 91, y SSFD 92, los mismos que se detallan en las tablas 2.4. a 2.10., por años y su correspondiente reinyección. Mientras que en las figuras 2.2. a 2.8., se indica la tendencia que ha tenido la producción y reinyección del agua de formación, la cual es constante, aunque hubo cambio de arenas productoras y el nivel de colchón de agua del tanque de lavado era variable.

TABLA 2.4. REPORTES DE AGUA PRODUCIDA Y AGUA REINYECTADA DURANTE EL AÑO 2001.

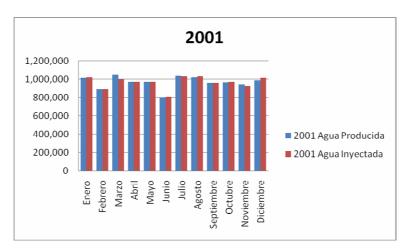

Pozos 45 A 47 02	2001		
Pozos 45A, 47,93	Agua Producida Agua Reinyectada		
Enero	1014790	1019098	
Febrero	893842	893198	

TABLA 2.4. CONTINUACIÓN

Pozos 45 A 47 02	2001		
Pozos 45A, 47,93	Agua Producida Agua Reinyec		
Marzo	1052210	999612	
Abril	970807	973559	
Мауо	973153	973758	
Junio	805815	811754	
Julio	1037097	1034660	
Agosto	1022447	1030908	
Septiembre	962304	962342	
Octubre	965259	972791	
Noviembre	948187	931395	
Diciembre	986572	1015447	

Elaborado por: Mayra Silva P.

FIGURA 2.2.

Fuente: Departamento de Reinyección de Agua-Shushufindi.

TABLA 2.5.
REPORTES DE AGUA PRODUCIDA Y AGUA REINYECTADA DURANTE EL AÑO 2002.

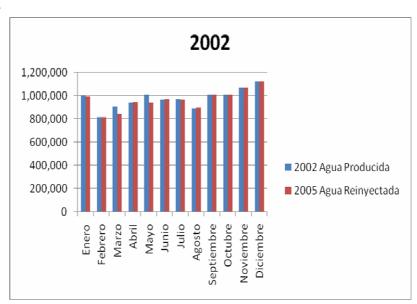

Pozos 45A, 47,93	2002		
	Agua Producida Agua Reinyectada		
Enero	997450	997292	
Febrero	817507	817457	
Marzo	909042	843621	
Abril	941862	944703	

TABLA 2.5. CONTINUACIÓN

Pozos 45A, 47,93	2002	
	Agua Producida	Agua Reinyectada
Мауо	1009187	938797
Junio	965455	974896
Julio	972623	967831
Agosto	894033	896085
Septiembre	1011616	1011616
Octubre	1008174	1010843
Noviembre	1071778	1070850
Diciembre	1121680	1121680

Elaborado por: Mayra Silva P.

FIGURA 2.3.

Fuente: Departamento de Reinyección de Agua-Shushufindi.

TABLA 2.6. REPORTES DE AGUA PRODUCIDA Y AGUA REINYECTADA DURANTE EL AÑO 2003.

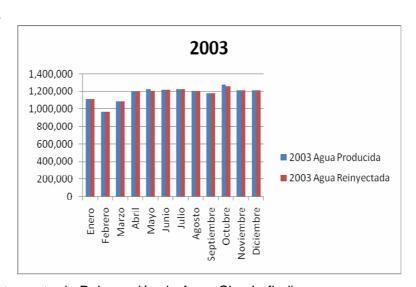

Pozos 45A, 47,93	2003			
	Agua Producida Agua Reinyectada			
Enero	1115218	1115086		
Febrero	971826	971826		
Marzo	1090282	1090282		

TABLA 2.6. CONTINUACIÓN

Pozos 45A, 47,93	2003		
	Agua Producida	Agua Reinyectada	
Abril	1196971	1196243	
Мауо	1229111	1213002	
Junio	1221220	1220377	
Julio	1226967	1232223	
Agosto	1208279	1205869	
Septiembre	1182228	1176359	
Octubre	1282273	1262179	
Noviembre	1220122	1220122	
Diciembre	1220122	1220122	

Elaborado por: Mayra Silva P.

FIGURA 2.4.

Fuente: Departamento de Reinyección de Agua-Shushufindi.

TABLA 2.7.
REPORTES DE AGUA PRODUCIDA Y AGUA REINYECTADA DURANTE EL AÑO 2004.

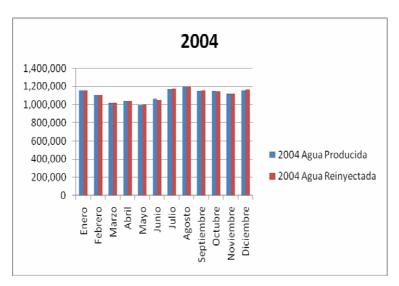

Pozos 45A, 47,93	2004		
	Agua Producida Agua Reinyectada		
Enero	1162611	1162611	
Febrero	1112987	1112937	
Marzo	1022963	1022013	

TABLA 2.7. CONTINUACIÓN

Pozos 45A, 47,93	2004	
	Agua Producida	Agua Reinyectada
Abril	1038218	1042359
Мауо	999365	1002285
Junio	1065761	1055017
Julio	1172821	1176504
Agosto	1201616	1198580
Septiembre	1156873	1157330
Octubre	1153480	1145124
Noviembre	1120214	1123220
Diciembre	1161343	1164949

Elaborado por: Mayra Silva P.

FIGURA 2.5.

Fuente: Departamento de Reinyección de Agua-Shushufindi.

TABLA 2.8.
REPORTES DE AGUA PRODUCIDA Y AGUA REINYECTADA DURANTE EL AÑO 2005.

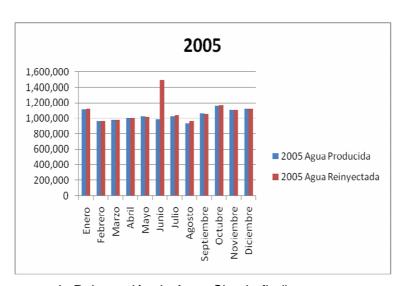

Pozos 45A, 47,93	20	005
P0205 45A, 47,95	Agua Producida	Agua Reinyectada
Enero	1118943	1125287
Febrero	966769	964969
Marzo	977128	978028

TABLA 2.8. CONTINUACIÓN

Pozos 45A, 47,93	2005		
F0205 45A, 47,95	Agua Producida	Agua Reinyectada	
Abril	1008750	1011050	
Mayo	1033533	1024693	
Junio	983965	1502453	
Julio	1030903	1044333	
Agosto	938091 965739		
Septiembre	1067173 1058337		
Octubre	1164318	1175318	
Noviembre	1111987	1109587	
Diciembre	1125325	1127725	

Elaborado por: Mayra Silva P.

FIGURA 2.6.

Fuente: Departamento de Reinyección de Agua-Shushufindi.

TABLA 2.9.
REPORTES DE AGUA PRODUCIDA Y AGUA REINYECTADA DURANTE EL AÑO 2006.

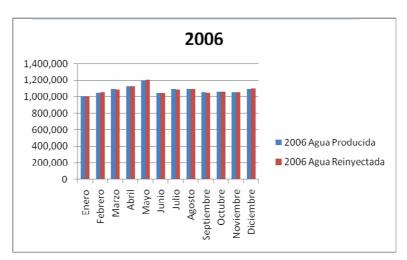

Pozos SSFD 05,02RW,	2006		
21,25,47,93	Agua Producida	Agua Reinyectada	
Enero	1005329	1000957	
Febrero	1053744	1057264	
Marzo	1095527	1092727	

TABLA 2.9. CONTINUACIÓN

Pozos SSFD 05,02RW,	2006		
21,25,47,93	Agua Producida	Agua Reinyectada	
Abril	1129384	1128733	
Мауо	1204966	1209381	
Junio	1047034	1047040	
Julio	1095399	1092298	
Agosto	1096796	1098560	
Septiembre	1056558	1054172	
Octubre	1068858	1068132	
Noviembre	1056430	1060916	
Diciembre	1096292	1100521	

Elaborado por: Mayra Silva P.

FIGURA 2.7.

Fuente: Departamento de Reinyección de Agua-Shushufindi.

TABLA 2.10. REPORTES DE AGUA PRODUCIDA Y AGUA REINYECTADA DURANTE EL AÑO 2007.

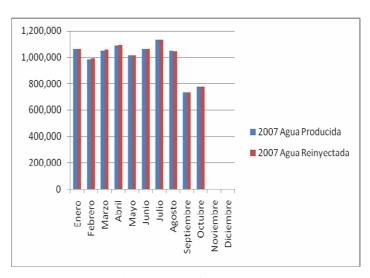

Pozos SSFD 20, 02RW,	2007	
21,25,47,93	Agua Producida	Agua Reinyectada
Enero	1061176	1060715
Febrero	984394	989446
Marzo	1051483	1057219

TABLA 2.10. CONTINUACIÓN

Pozos SSFD 20, 02RW,	2007		
21,25,47,93	Agua Producida	Agua Reinyectada	
Abril	1087766	1090160	
Мауо	1016070	1016946	
Junio	1063045	1063206	
Julio	1133316	1132524	
Agosto	1048273	1043406	
Septiembre	735160	735292	
Octubre	777469	777469	
Noviembre			
Diciembre			

Elaborado por: Mayra Silva P.

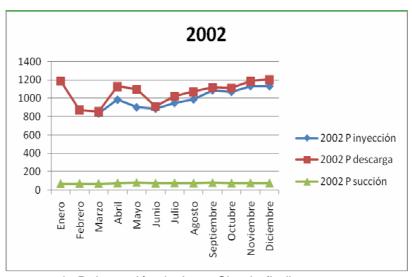
FIGURA 2.8.

Fuente: Departamento de Reinyección de Agua-Shushufindi.

Elaborado por: Mayra Silva P.

2.3. PRESIÓN DE INYECCIÓN, PRESIÓN DE DESCARGA, PRESIÓN DE SUCCIÓN.

En las tablas 2.11. a 2.15., se presentan las variaciones de los datos de presión de inyección, descarga y succión, las cuales se pueden observar en las figuras 2.9. a 2.13.


TABLA 2.11.

DATOS DE PRESIÓN DE INYECCIÓN, DESCARGA Y SUCCIÓN DURANTE EL AÑO 2002.

MEG	2002		
MES	P inyección	P descarga	P succión
Enero		1188.37	69.12
Febrero		874.65	71.44
Marzo	835.29	854.38	71.12
Abril	983.76	1129.29	76.99
Мауо	901.88	1098.62	81.12
Junio	887.33	908.64	73.46
Julio	949.68	1024.35	77.28
Agosto	987.37	1071.47	74.67
Septiembre	1086.83	1119.88	79.36
Octubre	1070.65	1113.89	75.3
Noviembre	1132.22	1186.46	77.3
Diciembre	1131.29	1205.97	75.98

Elaborado por: Mayra Silva P.

FIGURA 2.9

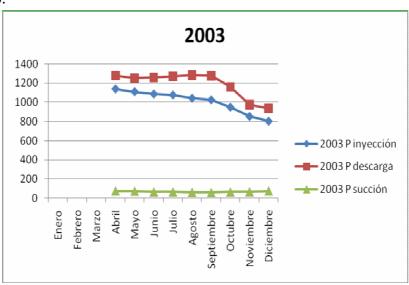

Fuente: Departamento de Reinyección de Agua-Shushufindi.

TABLA 2.12. DATOS DE PRESIÓN DE INYECCIÓN, DESCARGA Y SUCCIÓN DURANTE EL **AÑO 2003**

MES	2003		
	P inyección	P succión	
Enero			
Febrero			
Marzo			
Abril	1141.44	1281.92	75.2
Мауо	1112.26	1253.88	73.25
Junio	1087.78	1259.42	66.31
Julio	1077.42	1272.8	65.13
Agosto	1043.87	1286.12	61.02
Septiembre	1026.22	1277.92	58.32
Octubre	949.25	1162.52	64.89
Noviembre	852.33	974.11	67.38
Diciembre	802.58	935.93	75.48

Elaborado por: Mayra Silva P.

FIGURA 2.10.

Fuente: Departamento de Reinyección de Agua-Shushufindi. Elaborado por: Mayra Silva P.

TABLA 2.13.

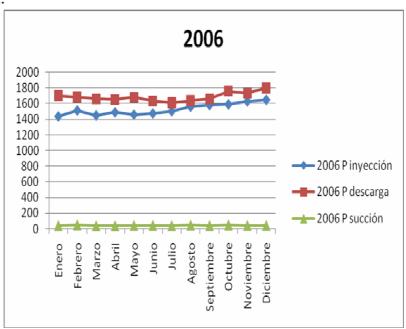
DATOS DE PRESIÓN DE INYECCIÓN, DESCARGA Y SUCCIÓN DURANTE EL AÑO 2004.

MES	2004		
	P inyección	P descarga	P succión
Enero	862.26	1012.82	75.46
Febrero	879.56	1010.42	76.87
Marzo	811.94	977.46	78.18
Abril	794.33	984.68	80.01
Мауо	846.77	1271.08	71.199
Junio	828	1406.92	66.96
Julio	930.86	1385.92	67.29
Agosto	925.81	1536.855	52.05
Septiembre	895.44	1482.34	53.603
Octubre	900.054	1494.53	54.27
Noviembre	1097	1532.68	49.43
Diciembre	1027.31	1549.76	40.19

Elaborado por: Mayra Silva P.

FIGURA 2.11

Fuente: Departamento de Reinyección de Agua-Shushufindi.


TABLA 2.14.

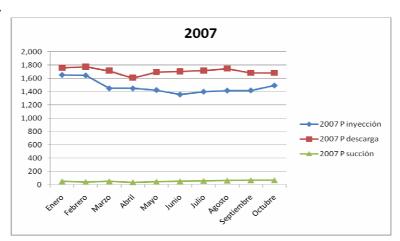
DATOS DE PRESIÓN DE INYECCIÓN, DESCARGA Y SUCCIÓN DURANTE EL AÑO 2006.

MES	2006		
	P inyección	P descarga	P succión
Enero	1437.33	1697.53	45.5
Febrero	1513.27	1680	53.94
Marzo	1450.38	1656.77	41.47
Abril	1489.99	1648.25	42.43
Мауо	1459.46	1675.4	46.18
Junio	1474.61	1630.17	46.83
Julio	1503.6	1606	43.89
Agosto	1561.29	1635.56	51.1
Septiembre	1582.34	1657.56	45.68
Octubre	1590.8	1756.8	52.22
Noviembre	1629.78	1730.89	47.1
Diciembre	1648.29	1799	46.15

Elaborado por: Mayra Silva P.

FIGURA 2.12.

Fuente: Departamento de Reinyección de Agua-Shushufindi.


TABLA 2.15.

DATOS DE PRESIÓN DE INYECCIÓN, DESCARGA Y SUCCIÓN DURANTE EL AÑO 2007.

MES	2007		
	P inyección	P descarga	P succión
Enero	1651	1757	47.93
Febrero	1644	1773	40
Marzo	1451	1712	48.71
Abril	1450.38	1605.56	34.41
Мауо	1425	1692	42.81
Junio	1358	1701	48.78
Julio	1401	1713	56.27
Agosto	1417	1746	60.62
Septiembre	1419.1	1679.75	65
Octubre	1493.32	1680.18	65.37

Elaborado por: Mayra Silva P.

FIGURA 2.13.

Fuente: Departamento de Reinyección de Agua-Shushufindi.

Elaborado por: Mayra Silva P.

2.4. TENDENCIA DEL AGUA DE FORMACIÓN.

En aguas de formación es común expresar el grado de sobresaturación y la posibilidad de precipitación de carbonato de calcio de una solución en términos del

índice de saturación, "IS". Un valor positivo del IS indica la posibilidad de que aparezca escala, pero no predice la cantidad de escala que precipitará.

Existen varios índices de saturación que han tomado el nombre del investigador que los ha desarrollado, así por ejemplo tenemos: Índice de Saturación de Langelier, Índice de Saturación de Ryznar, Índice de Saturación de Stiff&Davis e Índice de Saturación de Oddo-Tomson.

En el anexo 3 se presentan los datos de análisis de agua, datos de titulación y otras determinaciones, también constan las ecuaciones de titulación, el procedimiento utilizado para obtener la concentración de sulfatos, datos que deben ser considerados para realizar este proceso, además de los formatos a seguir para realizar un análisis completo del agua de formación y aplicar el tratamiento químico que más convenga. Dichos formatos utilizan las fórmulas para fase gaseosa ausente y pH conocido.

A continuación se indican los diferentes formatos utilizados en el tratamiento de agua de formación tales como:

- Formato No. 1: Cálculos de titulación, concentración de sulfato, cálculo de sodio por balance iónico
- Formato No. 2: Formato de reporte de análisis de agua
- Formato No. 3: Cálculo del Carbonato de Calcio-Método de Stiff y Davis
- Formato No. 4: Cálculo del pH del agua del sistema de inyección-Método de Oddo y Tomson
- Formato No. 5: Cálculo del IS del agua del sistema de inyección-Método de Oddo y Tomson
- Formato No. 6: Cálculo del IS en pozos de inyección de agua-Tendencia a la formación de escala de carbonato de calcio-Método de Oddo y Tomson-Método de Stiff y Davis

- Formato No. 7: Cálculo de la cantidad de escala de carbonato de calcio precipitada
- Formato No. 8: Cálculo de la solubilidad del sulfato de calcio-Método de Skillman,
 McDonald y Stiff
- Formato No. 9: Cálculo de la solubilidad del sulfato de bario usando datos de Templeton
- Formato No. 10: Cálculo de K_c para el sulfato de estroncio-Método de Jacques y Bourland
- Formato No. 11: Cálculo de la solubilidad del sulfato de estroncio
- Formato No. 12: Cálculo de la calidad de agua-Agua de mar
- Formato No. 13: Cálculo de la calidad de agua-Agua producida
- Formato No. 14: Gráfico de la calidad de agua-Agua de mar
- Formato No. 15: Gráfico de la calidad de agua-Agua producida

Dentro de los ejemplos de cálculo que constan en el Anexo 3, se tiene los siguientes:

- Ejemplo de Cálculo No. 1: Cálculos de titulación, concentración de sulfato, cálculo de sodio por balance iónico
- Ejemplo de Cálculo No. 2: Formato de reporte de análisis de agua
- Ejemplo de Cálculo No. 3: Cálculo de la solubilidad del Carbonato de Calcio-Método de Stiff y Davis
- Ejemplo de Cálculo No. 4: Cálculo de C_{Wtr} (Concentración de CO₂ disuelto)-Método de Oddo y Tomson
- Ejemplo de Cálculo No. 5: Cálculo de la cantidad de escala de carbonato de calcio precipitada
- Ejemplo de Cálculo No. 6: Cálculo de la solubilidad del sulfato de calcio-Método de Skillman, McDonald y Stiff
- Ejemplo de Cálculo No. 7: Cálculo de la solubilidad del sulfato de bario usando datos de Templeton

- Ejemplo de Cálculo No. 8: Cálculo de K_c para el sulfato de estroncio-Método de Jacques y Bourland
- Ejemplo de Cálculo No. 9: Mezcla de dos aguas
- Ejemplo de Cálculo No. 10: Tasa de corrosión
- Ejemplo de Cálculo No. 11: Cálculo del pH del agua del sistema de inyección-Método de Oddo y Tomson
- Ejemplo de Cálculo No. 12: Cálculo del IS del agua del sistema de inyección-Método de Oddo y Tomson
- Ejemplo de Cálculo No. 13: Cálculo del IS en pozos de inyección de agua-Tendencia a la formación de escala de carbonato de calcio-Método de Oddo y Tomson-Método de Stiff y Davis
- Ejemplo de Cálculo No. 14: Cálculo de la cantidad de escala de carbonato de calcio precipitada

En el anexo 4 se presentan los formatos utilizados para el análisis de agua utilizando las fórmulas para fase gaseosa presente y pH desconocido. A continuación se indican los diferentes formatos utilizados en el tratamiento de agua de formación tales como:

- Formato No. 1: Cálculo del IS y pH del agua del sistema de inyección-Método de Oddo y Tomson
- Formato No. 2: Cálculo de K_c
- Formato No. 3: Cálculo de la cantidad de escala de carbonato de calcio precipitada
- Formato No. 4: Cálculo de la K_{st}
- Formato No. 5: Cálculo de la precipitación de sulfato de calcio

Dentro de los ejemplos de cálculo que constan en el Anexo 4, se tiene los siguientes:

- Ejemplo de Cálculo No. 1: Cálculo del IS y pH del agua del sistema de inyección-Método de Oddo y Tomson
- Ejemplo de Cálculo No. 2: Cálculo de K_c
- Ejemplo de Cálculo No. 3: Cálculo de la cantidad de escala de carbonato de calcio precipitada
- Ejemplo de Cálculo No. 4: Cálculo de la K_{st}
- Ejemplo de Cálculo No. 5: Cálculo de la precipitación de sulfato de calcio

Para este estudio se analizó el IS desarrollado por Oddo-Tomson, ya que se considera como un método más exacto para la determinación del IS, dado que este método toma en cuenta el efecto de la presión total, así como también de las presiones parciales del CO₂.

2.4.1. MÉTODO DE ODDO-TOMSON

Las ecuaciones desarrolladas por Oddo y Tomson permiten el cálculo del Índice de Saturación, considerando el efecto de la presión total, así como también de las presiones parciales del CO₂.

Dentro de las ecuaciones desarrolladas por Oddo-Tomson existen ecuaciones específicas para tres casos:

2.4.1.1. Sistema con fase gaseosa presente o ausente donde el pH es conocido.

Donde:

Ca₊

= Concentración del Ion Calcio, moles/L

HCO

= Concentración del Ion Bicarbonato, moles/L

T = Temperatura, °F

P = Presión absoluta total, psia

μ = Fuerza iónica molar, moles/L

2.4.1.2. Fase gaseosa ausente

Estás ecuaciones son aplicables en sistemas de reinyección de agua y en sistemas de producción donde la presión del sistema es más grande que la presión en el punto de burbuja de los fluidos.

a) Determine C_{wtr}, la cantidad de CO₂ disuelto en el agua. Esto puede ser determinado directamente en el sitio de medición, o utilizando la Ecuación 2.2.

b) Calcular el IS ó el pH.

c) Es también posible calcular el cambio en el IS y el pH en un sistema sin fase gaseosa usando las siguientes ecuaciones:

2.4.1.3. Fase gaseosa presente y pH desconocido

a) Calcular fg, el coeficiente de fugacidad del CO2

b) Calcular y_g , la fracción molar de CO_2 en la fase gaseosa a la temperatura y presión especificada. Dado que y_t es la fracción molar del CO_2 en el gas en la superficie se tiene:

Donde:

BPPD = Barriles de petróleo por día.

BAPD = Barriles de agua por día.

MMscf = Millones de pies cúbicos estándar de gas por día.

b) Calcular el esfuerzo iónico molar

Donde la concentración de los iones está en mg/L y se obtiene del análisis del agua.

c) Calcular el IS o el pH

2.4.1.4. Cálculo de la cantidad de escala de carbonato de calcio precipitada

En el caso de Oddo-Tomson, la ecuación 2.12 puede ser utilizada para calcular K_c.

$$\begin{array}{c}
\mathsf{K} \\
^{c} = - - \mathsf{p} \mathsf{K}_{c}
\end{array} \tag{2.12}$$

Donde:

El valor del pH utilizado en la ecuación 2.13 puede ser medido o calculado, y el p K_c que se obtiene permite determinar la máxima cantidad de escala que puede precipitar.

$$PT = 50000 G \times \frac{4}{100}$$

$$= -\sqrt{100} \times \frac{4}{100} \times \frac{4}{100}$$

$$= -\sqrt{100} \times \frac{4}{100} \times \frac{4}{100} \times \frac{4}{100}$$

$$= -\sqrt{100} \times \frac{4}{100} \times \frac{4}{1$$

Expresado en PTB, se tiene:

PTB 17500 G
$$X_2$$
 + 10^{15} (2.15)

2.4.1.5. Cálculo de la cantidad de escala de sulfato de calcio precipitada

1. Calcular el esfuerzo iónico molar

$$\mu \; \text{moles/L} \quad \begin{array}{c} 10 \; {}^{5} \; 2.2 \; \text{ Na} \quad 5.0 \; \text{ Ca} \quad 8.2 \; \text{ Mg} \quad 1.5 \; \text{ Ba} \quad 2.3 \; \text{ Sr} \\ () \; = \; \begin{array}{c} - \\ 1.4 \; \text{ Cl} \quad 2.1 \; \text{ SO} \quad 0.8 \; \text{ HCO} \\ + \; \times \; \begin{array}{c} -4 \; + \; \times \; \end{array} \right. \\ \begin{array}{c} -4 \; + \; \times \; \end{array} \right.$$

Donde las concentraciones de los iones están en mg/L y se obtienen del análisis de agua.

2. Calcular K_{st}

$$\begin{array}{ccc}
K & 10_{\text{og}K_{\text{st}}} & 2.17 \\
& & & & & & & \\
\end{array}$$

Donde:

T = Temperatura (°F)

P = Presión total (psia)

 μ = Fuerza iónica (moles/L)

 Realizar la conversión de la concentración de los iones de mg/L a moles/L, dividiendo las concentraciones de los iones obtenidas del análisis de aguas para el factor de conversión apropiado indicado en la tabla 2.16.

TABLA 2.16. FACTORES DE CONVERSIÓN: mg/L a moles/L

Concentración de lones (mg/L)	Factor de conversión	Concentración de los iones (moles/L)
SO ₄ =	96060	SO ₄
Ca ⁺⁺	40080	Ca

TARLA	2 16	CONTINUA	$CI \triangle NI$
IADLA	\ Z. IO.	CONTINUA	CIUIN

Concentración de lones (mg/L)	Factor de conversión	Concentración de los iones (moles/L)
Mg ⁺⁺	24305	Mg
Sr ⁺⁺	87620	Sr
Ba ⁺⁺	137330	Ва

Fuente: Applied Water Technology. Dr. Charles Patton. Dallas, Texas.

Elaborado por: Mayra Silva P.

4. Calcular CatSum. Este es la suma de las concentraciones de los cationes medidos (moles/L)

$$= {^{Ca}+ ^{Mg}+ ^{Sr}+ ^{Ba}}$$
 (

5. Calcular la concentración de sulfatos libres (moles/L)
$$\begin{bmatrix} SO \\ = 4 \end{bmatrix} = \frac{1}{-\left\{ \begin{array}{ccc} K & CatSum & C \\ - & s(& - & SO_4) \end{array} \right\} + \left\{ \begin{bmatrix} 1 & K & CatSum & C \\ + & s(& - & SO_4) \end{bmatrix} \right\} + \left\{ \begin{bmatrix} 1 & K & CatSum & C \\ + & s(& - & SO_4) \end{bmatrix} \right\} + \left\{ \begin{bmatrix} 1 & K & CatSum & C \\ + & s(& - & SO_4) \end{bmatrix} \right\} + \left\{ \begin{bmatrix} 1 & K & CatSum & C \\ + & s(& - & SO_4) \end{bmatrix} \right\} + \left\{ \begin{bmatrix} 1 & K & CatSum & C \\ + & s(& - & SO_4) \end{bmatrix} \right\} + \left\{ \begin{bmatrix} 1 & K & CatSum & C \\ + & s(& - & SO_4) \end{bmatrix} \right\} + \left\{ \begin{bmatrix} 1 & K & CatSum & C \\ + & s(& - & SO_4) \end{bmatrix} \right\} + \left\{ \begin{bmatrix} 1 & K & CatSum & C \\ + & s(& - & SO_4) \end{bmatrix} \right\} + \left\{ \begin{bmatrix} 1 & K & CatSum & C \\ + & s(& - & SO_4) \end{bmatrix} \right\} + \left\{ \begin{bmatrix} 1 & K & CatSum & C \\ + & s(& - & SO_4) \end{bmatrix} \right\} + \left\{ \begin{bmatrix} 1 & K & CatSum & C \\ + & s(& - & SO_4) \end{bmatrix} \right\} + \left\{ \begin{bmatrix} 1 & K & CatSum & C \\ + & s(& - & SO_4) \end{bmatrix} \right\} + \left\{ \begin{bmatrix} 1 & K & CatSum & C \\ + & s(& - & SO_4) \end{bmatrix} \right\} + \left\{ \begin{bmatrix} 1 & K & CatSum & C \\ + & s(& - & SO_4) \end{bmatrix} \right\} + \left\{ \begin{bmatrix} 1 & K & CatSum & C \\ + & s(& - & SO_4) \end{bmatrix} \right\} + \left\{ \begin{bmatrix} 1 & K & CatSum & C \\ + & s(& - & SO_4) \end{bmatrix} \right\} + \left\{ \begin{bmatrix} 1 & K & CatSum & C \\ + & s(& - & SO_4) \end{bmatrix} \right\} + \left\{ \begin{bmatrix} 1 & K & CatSum & C \\ + & s(& - & SO_4) \end{bmatrix} \right\} + \left\{ \begin{bmatrix} 1 & K & CatSum & C \\ + & s(& - & SO_4) \end{bmatrix} \right\} + \left\{ \begin{bmatrix} 1 & K & CatSum & C \\ + & s(& - & SO_4) \end{bmatrix} \right\} + \left\{ \begin{bmatrix} 1 & K & CatSum & C \\ + & s(& - & SO_4) \end{bmatrix} \right\} + \left\{ \begin{bmatrix} 1 & K & CatSum & C \\ + & s(& - & SO_4) \end{bmatrix} \right\} + \left\{ \begin{bmatrix} 1 & K & CatSum & C \\ + & s(& - & SO_4) \end{bmatrix} \right\} + \left\{ \begin{bmatrix} 1 & K & CatSum & C \\ + & s(& - & SO_4) \end{bmatrix} \right\} + \left\{ \begin{bmatrix} 1 & K & CatSum & C \\ + & s(& - & SO_4) \end{bmatrix} \right\} + \left\{ \begin{bmatrix} 1 & K & CatSum & C \\ + & s(& - & SO_4) \end{bmatrix} \right\} + \left\{ \begin{bmatrix} 1 & K & CatSum & C \\ + & s(& - & SO_4) \end{bmatrix} \right\} + \left\{ \begin{bmatrix} 1 & K & CatSum & C \\ + & s(& - & SO_4) \end{bmatrix} \right\} + \left\{ \begin{bmatrix} 1 & K & CatSum & C \\ + & s(& - & SO_4) \end{bmatrix} \right\} + \left\{ \begin{bmatrix} 1 & K & CatSum & C \\ + & s(& - & SO_4) \end{bmatrix} \right\} + \left\{ \begin{bmatrix} 1 & K & CatSum & C \\ + & s(& - & SO_4) \end{bmatrix} \right\} + \left\{ \begin{bmatrix} 1 & K & CatSum & C \\ + & s(& - & SO_4) \end{bmatrix} \right\} + \left\{ \begin{bmatrix} 1 & K & CatSum & C \\ + & s(& - & SO_4) \end{bmatrix} \right\} + \left\{ \begin{bmatrix} 1 & K & CatSum & C \\ + & s(& - & SO_4) \end{bmatrix} \right\} + \left\{ \begin{bmatrix} 1 & K & CatSum & C \\ + & s(& - & SO_4) \end{bmatrix} \right\} + \left\{ \begin{bmatrix} 1 & K & CatSum & C \\ + & s(& - & SO_4) \end{bmatrix} \right\} + \left\{ \begin{bmatrix} 1 & K & CatSum & C \\ + & s(& - &$$

6. Calcular la concentración de iones libres

$$[Mg^{++}] = \frac{C_{Mg}}{1 + K_{st}[SO_4^-]}$$

$$[Ca^{++}] = \frac{C_{Ca}}{1 + K_{st}[SO_4^-]}$$

$$[Ba^{++}] = \frac{C_{Ba}}{1 + K_{st}[SO_4^-]}$$

7. Calcular los valores del índice de saturación para las escalas de sulfato. Se tiene tres formas de escala de sulfato de calcio: Yeso, Hemi-hidrato y Anhidrita.

Donde:

Yeso

Hemi-hidrato

Anhidrita

2.4.2. RESULTADOS

El proceso de cálculo de los resultados que se muestran a continuación se indican en el Anexo 3, siguiendo el formato No. 1 para determinar la concentración de sodio presente en el agua de formación ya que previamente se han realizado los cálculos de titulación y la determinación de la concentración de sulfato en el Campo, el formato No. 2 indica como calcular los sólidos totales disueltos, el formato No. 3 permite determinar el esfuerzo iónico molar, el formato No. 4 determina el pH del agua del sistema de reinyección utilizando el método de Oddo-Tomson, el formato No. 5 calcula el IS del agua del sistema de reinyección utilizando el método de Oddo-Tomson, el formato No. 6 permite el cálculo del índice de saturación de fondo, este proceso se utiliza para los pozos reinyectores considerando las ecuaciones para la fase gaseosa ausente, datos que se pueden corroborar con la aplicación del programa SiCalc Beta 1.0.

Mientras que para los resultados de los pozos productores se utilizan las ecuaciones para la fase de gas presente y pH desconocido, el proceso también se indica en el anexo 4, siguiendo los formatos del 1 al 5 con su respectivo ejemplo de cálculo.

Las tablas 2.17. y 2.18., resumen la tendencia del agua de formación que se obtuvo al seguir los formatos para el análisis de agua de formación.

Estos resultados se los puede observar de manera más ampliada en el Anexo 5.

TABLA 2.17. TENDENCIA DEL AGUA DE FORMACIÓN DE LOS POZOS REINYECTORES Y EL WASH TANK

Pozos Reinyectores incluido el Wash Tank											
Pozo	Sodio	TDS	IS	PTB	Tendencia						
WT	13701.66	42360.81	0.62	200.1	Incrus						
SSF-02	12812.85	38924.35	0.95	258.1	Incrus						
SSF-20	12869.45	39097.95	0.97	264.9	Incrus						
SSF-25	12977.58	39472.33	0.99	283	Incrus						
SSF-47	13842.2	42329.8	0.46	142.5	Incrus						
SSF-93	13945.58	42381.08	0.44	144.3	Incrus						

Fuente: Departamento de Reinyección de Agua Shushufindi

Elaborado por: Mayra Silva P.

TABLA 2.18.
TENDENCIA DEL AGUA DE FORMACIÓN DE LOS POZOS PRODUCTORES

	Pozos Productores de la Estación Shushufindi Sur													
			ato de Calci			Hemi-hidrate	Anhidrita							
Pozo	IS sup	PTB	Tendencia	IS fondo	IS	IS	IS							
SSF-02	0.3	106.3	Incrus	-0.58	-1	-0.89	-0.56							
SSF-06B	0.33	92.9	Incrus	0.65	-1.34	-1.31	-1.1							
SSF-20B	0.42	128.1	Incrus	-0.69	-1.32	-1.27	-1.09							
SSF-22B	0.91	615.1	Incrus	0.22	-1.3	-1.17	-0.85							
SSF-23	0.56	281.6	Incrus	0.12	-1.7	-1.54	-1.27							
SSF-28	0.61	108.6	Incrus	0.66	-2.01	-1.92	-1.57							
SSF-45B	0.56	205.8	Incrus	-0.19	-2.21	-2.06	-1.95							
SSF-67	0.45	140.4	Incrus	-0.19	-1.72	-1.53	-1.26							
SSF-68	0.42	240.9	Incrus	0.18	-1.26	-1.19	-0.94							
SSF-75	1.31	336.1	Incrus	0.36	-2.03	-1.82	-1.56							
SSF-79	0.65	367.1	Incrus	0.65	-1.13	-1.09	-0.93							
SSF-82	0.68	162.3	Incrus	0.46	-1	-0.95	-0.73							
SSF-91	1.73	615.9	Incrus	1.21	-1.16	-1.09	-0.82							
SSF-92	0.59	309.1	Incrus	0.62	-2.45	-2.29	-2.05							

Fuente: Departamento de Reinyección de Agua, Shushufindi

2.5.TRATAMIENTO QUÍMICO APLICADO EN LA REINYECCIÓN DE AGUA DE LA ESTACIÓN SHUSHUFINDI SUR.

En las tablas 2.19. a 2.27., se presentan las concentraciones del tratamiento químico aplicado desde el mes de Enero a Octubre de 2007, mientras que las figuras 2.14. a 2.33., presentan una tendencia constante de la inyección de los químicos utilizados en el tratamiento de agua durante el período citado anteriormente

TABLA 2.19.
TRATAMIENTO QUÍMICO APLICADO EN EL MES DE ENERO DE 2007

MES				E	nero	-07					
	BAPD	(QUÍMICO	OS (ga	l/día)		(Concen	tración	(ppm)	
FECHA	(bls)	AE	AC	BAC	SF	FL	AE	AC	BAC	SF	FL
1-ene	34843	78	11	0	9	0	53.3	7.5	0.0	6.2	0.0
2-ene	32101	75	6	0	11	0	55.6	4.5	0.0	8.2	0.0
3-ene	34707	65	9	0	7	0	44.6	6.2	0.0	4.8	0.0
4-ene	36325	70	7	0	8	0	45.9	4.6	0.0	5.2	0.0
5-ene	33025	63	8	0	7	0	45.4	5.8	0.0	5.0	0.0
6-ene	37049	68	9	0	9	0	43.7	5.8	0.0	5.8	0.0
7-ene	36523	70	8	0	10	0	45.6	5.2	0.0	6.5	0.0
8-ene	36381	76	10	0	8	0	49.7	6.5	0.0	5.2	0.0
9-ene	32808	65	11	0	8	0	47.2	8.0	0.0	5.8	0.0
10-ene	36696	70	6	0	10	0	45.4	3.9	0.0	6.5	0.0
11-ene	35314	75	12	0	7	0	50.6	8.1	0.0	4.7	0.0
12-ene	35732	67	6	0	6	0	44.6	4.0	0.0	4.0	0.0
13-ene	34487	68	6	0	11	0	46.9	4.1	0.0	7.6	0.0
14-ene	36731	70	6	0	9	0	45.4	3.9	0.0	5.8	0.0
15-ene	32727	71	6	0	7	0	51.7	4.4	0.0	5.1	0.0
16-ene	34087	67	6	0	10	0	46.8	4.2	0.0	7.0	0.0
17-ene	31741	77	10	0	10	0	57.8	7.5	0.0	7.5	0.0
18-ene	31426	79	9	0	8	0	59.9	6.8	0.0	6.1	0.0

TABLA 2.19. CONTINUACIÓN

	BAPD	(QUÍMIC	OS (ga	l/día)		(Concen	tración	(ppm)	
FECHA	(bls)	AE	AC	ВАС	SF	FL	AE	AC	ВАС	SF	FL
19-ene	32645	89	10	0	9	0	64.9	7.3	0.0	6.6	0.0
20-ene	33037	77	15	0	10	0	55.5	10.8	0.0	7.2	0.0
21-ene	31656	74	16	0	6	0	55.7	12.0	0.0	4.5	0.0
22-ene	32494	80	20	0	9	0	58.6	14.7	0.0	6.6	0.0
23-ene	33818	80	29	0	11	0	56.3	20.4	0.0	7.7	0.0
24-ene	34979	69	15	0	10	0	47.0	10.2	0.0	6.8	0.0
25-ene	34964	66	20	0	9	0	44.9	13.6	0.0	6.1	0.0
26-ene	31168	58	18	0	13	0	44.3	13.8	0.0	9.9	0.0
27-ene	34095	28	20	0	12	0	19.6	14.0	0.0	8.4	0.0
28-ene	34524	57	17	0	9	0	39.3	11.7	0.0	6.2	0.0
29-ene	33520	62	20	0	2	0	44.0	14.2	0.0	1.4	0.0
30-ene	34795	64	20	0	10	0	43.8	13.7	0.0	6.8	0.0
31-ene	36317	61	19	0	12	0	40.0	12.5	0.0	7.9	0.0
TOTAL	1060715	1574	317	0	208	0	48.2	8.7	0.0	6.2	0.0

FIGURA 2.14.

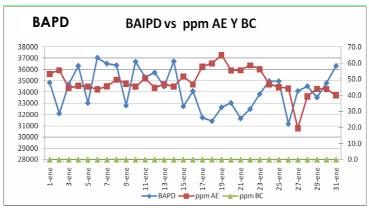


FIGURA 2.15.

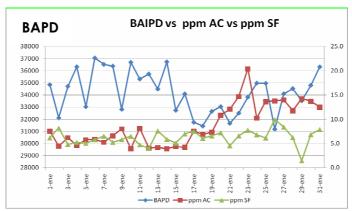
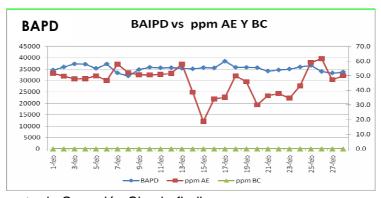


TABLA 2.20. TRATAMIENTO QUÍMICO APLICADO EN EL MES DE FEBRERO DE 2007

MES					Febr	ero-	07				
	BAPD		QUÍM	ICOS (ga	al/día)			Concer	ntración	(ppm)	
FECHA	(bls)	AE	AC	BAC	SF	FL	AE	AC	BAC	SF	FL
1-feb	34597	75	23	0	11	0	51.6	15.8	0.0	7.6	0.0
2-feb	35947	75	23	0	12	0	49.7	15.2	0.0	7.9	0.0
3-feb	37307	75	20	0	12	0	47.9	12.8	0.0	7.7	0.0
4-feb	37155	75	23	0	11	0	48.1	14.7	0.0	7.0	0.0
5-feb	35310	74	17	0	9	0	49.9	11.5	0.0	6.1	0.0
6-feb	37266	73	22	0	13	0	46.6	14.1	0.0	8.3	0.0
7-feb	33323	81	23	0	12	0	57.9	16.4	0.0	8.6	0.0
8-feb	32024	70	23	0	9	0	52.0	17.1	0.0	6.7	0.0
9-feb	34786	74	22	0	10	0	50.6	15.1	0.0	6.8	0.0
10-feb	35807	76	17	0	11	0	50.5	11.3	0.0	7.3	0.0
11-feb	35582	76	18	0	9	0	50.9	12.0	0.0	6.0	0.0
12-feb	35624	77	20	0	9	0	51.5	13.4	0.0	6.0	0.0
13-feb	35373	86	5	0	11	0	57.9	3.4	0.0	7.4	0.0
14-feb	35117	57	0	0	10	0	38.6	0.0	0.0	6.8	0.0


TABLA 2.20. CONTINUACIÓN

	BAPD		QUÍM	ICOS (ga	al/día)			Concer	ntración	(ppm)	
FECHA	(bls)	AE	AC	BAC	SF	FL	AE	AC	BAC	SF	FL
15-feb	35644	28	0	0	10	0	18.7	0.0	0.0	6.7	0.0
16-feb	35519	51	15	0	11	0	34.2	10.1	0.0	7.4	0.0
17-feb	38482	57	32	0	12	0	35.3	19.8	0.0	7.4	0.0
18-feb	35780	75	13	0	6	0	49.9	8.7	0.0	4.0	0.0
19-feb	35772	69	10	0	10	0	45.9	6.7	0.0	6.7	0.0
20-feb	35646	45	25	0	7	0	30.1	16.7	0.0	4.7	0.0
21-feb	34165	52	5	0	10	0	36.2	3.5	0.0	7.0	0.0
22-feb	34633	55	15	0	9	0	37.8	10.3	0.0	6.2	0.0
23-feb	35030	51	19	0	9	0	34.7	12.9	0.0	6.1	0.0
24-feb	35946	65	19	0	10	0	43.1	12.6	0.0	6.6	0.0
25-feb	36634	91	22	0	10	0	59.1	14.3	0.0	6.5	0.0
26-feb	33965	88	20	0	12	0	61.7	14.0	0.0	8.4	0.0
27-feb	33274	66	18	0	13	0	47.2	12.9	0.0	9.3	0.0
28-feb	33738	71	7	0	12	0	50.1	4.9	0.0	8.5	0.0
Total	989446	1310	302	0	201	0	46	11.4	0	7	0

Fuente: Departamento de Corrosión-Shushufindi.

Elaborado por: Departamento de Corrosión.

FIGURA 2.16.

FIGURA 2.17.

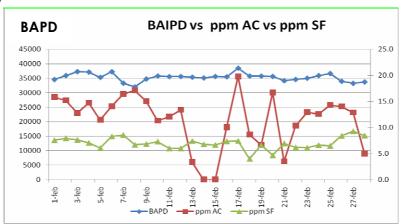


TABLA 2.21.
TRATAMIENTO QUÍMICO APLICADO EN EL MES DE MARZO DE 2007

MES		Marzo-07													
	BAPD	(QUÍMI	COS (ga	l/día)			Concer	ntración (opm)					
FECHA	(bls)	AE	AC	BAC	SF	FL	AE	AC	ВАС	SF	FL				
1-mar	33260	62	8	0	13	0	44.4	5.7	0.0	9.3	0.0				
2-mar	33001	3	9	10	0	0	2.2	6.5	7.2	0.0	0.0				
3-mar	33544	61	18	0	10	0	43.3	12.8	0.0	7.1	0.0				
4-mar	32912	63	5	0	14	0	45.6	3.6	0.0	10.1	0.0				
5-mar	34589	66	2	0	11	0	45.4	1.4	0.0	7.6	0.0				
6-mar	33260	55	6	0	13	0	39.4	4.3	0.0	9.3	0.0				
7-mar	31587	60	12	70	12	0	45.2	9.0	52.8	9.0	0.0				
8-mar	33366	70	9	0	14	0	50.0	6.4	0.0	10.0	0.0				
9-mar	35843	70	11	0	11	0	46.5	7.3	0.0	7.3	0.0				
10-mar	34291	75	12	0	11	0	52.1	8.3	0.0	7.6	0.0				
11-mar	36642	75	20	0	10	0	48.7	13.0	0.0	6.5	0.0				
12-mar	35548	86	10	0	13	0	57.6	6.7	0.0	8.7	0.0				
13-mar	35252	69	20	0	14	0	46.6	13.5	0.0	9.5	0.0				
14-mar	36788	70	17	0	11	0	45.3	11.0	0.0	7.1	0.0				
15-mar	35987	79	7	0	10	0	52.3	4.6	0.0	6.6	0.0				

TABLA 2.21. CONTINUACIÓN

	BAPD	(UMÌUÇ	COS (ga	l/día)			Concer	ntración (p	opm)	
FECHA	(bls)	AE	AC	BAC	SF	FL	AE	AC	BAC	SF	FL
16-mar	36791	71	6	0	7	0	45.9	3.9	0.0	4.5	0.0
17-mar	34223	64	14	0	11	0	44.5	9.7	0.0	7.7	0.0
18-mar	34667	73	10	0	4	0	50.1	6.9	0.0	2.7	0.0
19-mar	35217	81	10	0	10	0	54.8	6.8	0.0	6.8	0.0
20-mar	38922	65	14	0	5	0	39.8	8.6	0.0	3.1	0.0
21-mar	36665	74	10	0	8	0	48.1	6.5	0.0	5.2	0.0
22-mar	36690	74	21	0	8	0	48	13.6	0.0	5.2	0.0
23-mar	36675	76	20	0	9	0	49.3	13.0	0.0	5.8	0.0
24-mar	36680	62	14	0	8	0	40.2	9.1	0.0	5.2	0.0
25-mar	29090	57	16	0	7	0	46.7	13.1	0.0	5.7	0.0
26-mar	30556	74	8	0	10	0	57.7	6.2	0.0	7.8	0.0
27-mar	30017	61	10	0	5	0	48.4	7.9	0.0	4.0	0.0
28-mar	29769	58	8	0	10	0	46.4	6.4	0.0	8.0	0.0
29-mar	29769	76	17	40	6	0	60.8	13.6	32.0	4.8	0.0
30-mar	29783	62	5	0	8	0	49.6	4.0	0.0	6.4	0.0
31-mar	35835	6517	0	6	0	0	4330.0	0.0	4.0	0.0	0.0
TOTAL	1057219	8069	280	46	196	0	184.7	7.9	3.1	6.4	0.0

FIGURA 2.18.

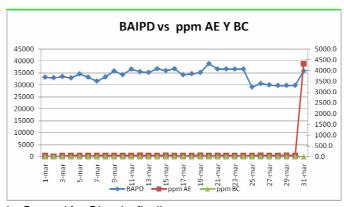


FIGURA 2.19.

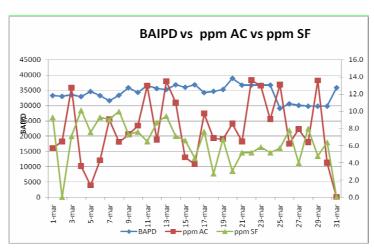


TABLA 2.22. TRATAMIENTO QUÍMICO APLICADO EN EL MES DE ABRIL DE 2007

MES					Ab	ril-07	7				
	BAPD	(QUÍMI	COS (g	al/día)			Conce	ntracióı	n (ppm)	١
FECHA	(bls)	AE	AC	BAC	SF	FL	AE	AC	BAC	SF	FL
1-abr	37947	73	13	0	10	0	45.8	8.2	0.0	6.3	0.0
2-abr	37200	70	15	0	13	0	44.8	9.6	0.0	8.3	0.0
3-abr	37876	70	25	0	8	0	44.0	15.7	0.0	5.0	0.0
4-abr	37696	63	16	0	9	0	39.8	10.1	0.0	5.7	0.0
5-abr	38110	66	24	0	8	0	41.2	15.0	0.0	5.0	0.0
6-abr	37884	74	27	0	7	0	46.5	17.0	0.0	4.4	0.0
7-abr	37647	67	20	0	8	0	42.4	12.6	0.0	5.1	0.0
8-abr	38006	65	16	0	5	0	40.7	10.0	0.0	3.1	0.0
9-abr	37825	78	17	0	5	0	49.1	10.7	0.0	3.1	0.0
10-abr	37269	69	24	0	7	0	44.1	15.3	0.0	4.5	0.0
11-abr	37560	73	25	0	10	0	46.3	15.8	0.0	6.3	0.0
12-abr	37554	79	26	0	10	0	50.1	16.5	0.0	6.3	0.0
13-abr	36816	76	27	0	10	0	49.2	17.5	0.0	6.5	0.0
14-abr	37554	61	24	0	11	0	38.7	15.2	0.0	7.0	0.0

TABLA 2.22. CONTINUACIÓN

	BAPD	(QUÍMIC	COS (gal	/día)			Concent	ración ((ppm)	
FECHA	(bls)	AE	AC	BAC	SF	FL	AE	AC	BAC	SF	FL
15-abr	37560	65	19	0	14	0	41.2	12.0	0.0	8.9	0.0
16-abr	37563	64	18	0	9	0	40.6	11.4	0.0	5.7	0.0
17-abr	37569	79	12	0	11	0	50.1	7.6	0.0	7.0	0.0
18-abr	36230	61	18	0	7	0	40.1	11.8	0.0	4.6	0.0
19-abr	36245	55	22	0	11	0	36.1	14.5	0.0	7.2	0.0
20-abr	36264	74	20	75	10	0	48.6	13.1	49.2	6.6	0.0
21-abr	35880	71	18	0	9	0	47.1	11.9	0.0	6.0	0.0
22-abr	36521	70	20	0	9	0	45.6	13	0.0	5.9	0.0
23-abr	32896	75	22	0	9	0	54.3	15.9	0.0	6.5	0.0
24-abr	38285	65	26	0	8	0	40.4	16.2	0.0	5.0	0.0
25-abr	34216	79	21	0	9	0	55.0	14.6	0.0	6.3	0.0
26-abr	29259	54	13	0	9	0	43.9	10.6	0.0	7.3	0.0
27-abr	33368	58	34	0	9	0	41.4	24.3	0.0	6.4	0.0
28-abr	36032	70	20	0	17	0	46.3	13.2	0.0	11.2	0.0
29-abr	29037	60	16	0	12	0	49.2	13.1	0.0	9.8	0.0
30-abr	36291	68	16	0	8	0	44.6	10.5	0.0	5.2	0.0
TOTAL	1090160	2052	614	75	282	0	45.0	13.4	1.6	6.2	0.0

FIGURA 2.20.

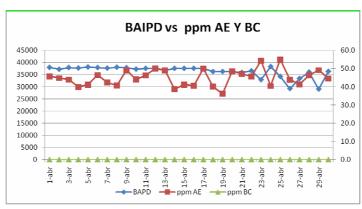


FIGURA 2.21.

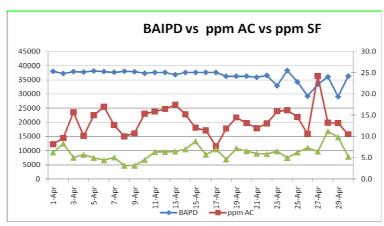
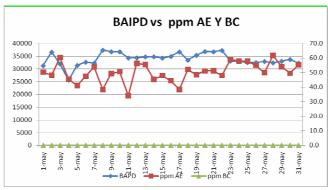


TABLA 2.23.
TRATAMIENTO QUÍMICO APLICADO EN EL MES DE MAYO DE 2007

MES	Mayo-07											
	BAPD	QUÍMICOS (gal/día)					Concentración (ppm)					
FECHA	(bls)	AE	AC	BAC	SF	FL	AE	AC	BAC	SF	FL	
1-may	31278	66	16	0	10	0	50.2	12.2	0.0	7.6	0.0	
2-may	36610	74	22	0	10	0	48.1	14.3	0.0	6.5	0.0	
3-may	31972	81	28	0	9	0	60.3	20.9	0.0	6.7	0.0	
4-may	25642	49	9	0	3	0	45.5	8.4	0.0	2.8	0.0	
5-may	31394	54	19	0	9	0	41.0	14.4	0.0	6.8	0.0	
6-may	32680	65	15	0	9	0	47.4	10.9	0.0	6.6	0.0	
7-may	32332	73	28	0	7	0	53.8	20.6	0.0	5.2	0.0	
8-may	37404	60	33	0	11	0	38.2	21.0	0.0	7.0	0.0	
9-may	36748	76	25	0	12	0	49.2	16.2	0.0	7.8	0.0	
10-may	36748	78	25	0	17	0	50.5	16.2	0.0	11.0	0.0	
11-may	34328	49	14	0	12	0	34.0	9.7	0.0	8.3	0.0	
12-may	34382	81	15	0	5	0	56.1	10.4	0.0	3.5	0.0	
13-may	34755	81	20	0	6	0	55.5	13.7	0.0	4.1	0.0	
14-may	34799	66	21	0	6	0	45.2	14.4	0.0	4.1	0.0	
15-may	34293	69	19	0	9	0	47.9	13.2	0.0	6.2	0.0	


TABLA 2.23. CONTINUACIÓN

	BAPD	QUÍMICOS (gal/día)					Concentración (ppm)					
FECHA	(bls)	AE	AC	BAC	SF	FL	AE	AC	BAC	SF	FL	
16-may	34904	65	20	0	7	0	44.3	13.6	0.0	4.8	0.0	
17-may	36686	59	23	0	10	0	38.3	14.9	0.0	6.5	0.0	
18-may	33459	73	18	0	13	0	51.9	12.8	0.0	9.3	0.0	
19-may	35380	72	24	0	14	0	48.5	16.2	0.0	9.4	0.0	
20-may	36844	79	22	0	13	0	51.1	14.2	0.0	8.4	0.0	
21-may	36728	79	26	0	7	0	51.2	16.9	0.0	4.5	0.0	
22-may	37266	75	22	0	8	0	47.9	14.1	0.0	5.1	0.0	
23-may	33133	82	25	0	8	0	58.9	18.0	0.0	5.7	0.0	
24-may	32940	80	20	0	7	0	57.8	14.5	0.0	5.1	0.0	
25-may	32554	79	20	0	10	0	57.8	14.6	0.0	7.3	0.0	
26-may	32554	75	21	0	9	0	54.9	15.4	0.0	6.6	0.0	
27-may	32955	69	24	0	6	0	49.9	17.3	0.0	4.3	0.0	
28-may	32432	84	25	0	11	0	61.7	18.4	0.0	8.1	0.0	
29-may	33029	75	24	0	10	0	54.1	17.3	0.0	7.2	0.0	
30-may	33751	70	16	0	8	0	49.4	11.3	0.0	5.6	0.0	
31-may	32328	75	20	0	7	0	55.2	14.7	0.0	5.2	0.0	
TOTAL	1052308	2213	659	0	283	0	50.2	14.9	0.0	6.4	0.0	

Fuente: Departamento de Corrosión-Shushufindi.

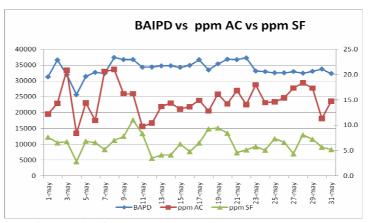
Elaborado por: Departamento de Corrosión.

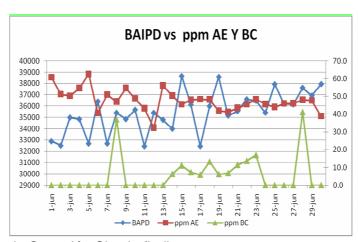
FIGURA 2.22.

Fuente: Departamento de Corrosión-Shushufindi.

Elaborado por: Departamento de Corrosión.

FIGURA 2.23.




TABLA 2.24.
TRATAMIENTO QUÍMICO APLICADO EN EL MES DE JUNIO DE 2007

MES	Junio-07											
	BAPD	QUÍMICOS (gal/día)					Concentración (ppm)					
FECHA	(bls)	AE	AC	BAC	SF	FL	AE	AC	BAC	SF	FL	
1-jun	32885	84	23	0	11	0	60.8	16.7	0.0	8.0	0.0	
2-jun	32510	70	27	0	13	0	51.3	19.8	0.0	9.5	0.0	
3-jun	34987	74	22	0	12	0	50.4	15.0	0.0	8.2	0.0	
4-jun	34842	80	24	0	6	0	54.7	16.4	0.0	4.1	0.0	
5-jun	32684	86	22	0	9	0	62.6	16.0	0.0	6.6	0.0	
6-jun	36399	62	16	0	8	0	40.6	10.5	0.0	5.2	0.0	
7-jun	32687	70	25	0	6	0	51.0	18.2	0.0	4.4	0.0	
8-jun	35403	70	21	55	7	0	47.1	14.1	37.0	4.7	0.0	
9-jun	34839	80	25	0	6	0	54.7	17.1	0.0	4.1	0.0	
10-jun	35667	73	25	0	9	0	48.7	16.7	0.0	6.0	0.0	
11-jun	32453	59	20	0	6	0	43.3	14.7	0.0	4.4	0.0	
12-jun	35403	48	20	0	6	0	32.3	13.5	0.0	4.0	0.0	
13-jun	34780	82	25	0	10	0	56.1	17.1	0.0	6.8	0.0	
14-jun	33993	72	20	9	10	0	50.4	14.0	6.3	7.0	0.0	
15-jun	38639	74	20	18	21	0	45.6	12.3	11.1	12.9	0.0	

TABLA 2.24. CONTINUACIÓN

	BAPD	C	UÍMIC	OS (g	al/día)		Concentración (ppm)				
FECHA	(bls)	AE	AC	BAC	SF	FL	AE	AC	BAC	SF	FL
16-jun	36126	73	25	11	14	0	48.1	16.5	7.2	9.2	0.0
17-jun	32458	66	25	8	10	0	48.4	18.3	5.9	7.3	0.0
18-jun	35994	73	20	20	9	0	48.3	13.2	13.2	6.0	0.0
19-jun	38563	68	19	10	15	0	42.0	11.7	6.2	9.3	0.0
20-jun	35149	61	15	10	14	0	41.3	10.2	6.8	9.5	0.0
21-jun	35544	65	17	17	10	0	43.5	11.4	11.4	6.7	0.0
22-jun	36600	70	22	21	13	0	45.5	14.3	13.7	8.5	0.0
23-jun	36465	74	20	26	8	0	48.3	13.1	17.0	5.2	0.0
24-jun	35413	68	17	0	9	0	45.7	11.4	0.0	6.1	0.0
25-jun	37919	70	25	0	12	0	44.0	15.7	0.0	7.5	0.0
26-jun	36199	70	17	0	8	0	46.0	11.2	0.0	5.3	0.0
27-jun	36139	70	18	0	12	0	46.1	11.9	0.0	7.9	0.0
28-jun	37609	76	17	65	7	0	48.1	10.8	41.2	4.4	0.0
29-jun	36920	74	18	0	9	0	47.7	11.6	0.0	5.8	0.0
30-jun	37937	62	22	0	9	0	38.9	13.8	0.0	5.6	0.0
TOTAL	1063206	2124	632	270	299	0	47.7	14.2	5.9	6.7	0.0

FIGURA 2.24.

FIGURA 2.25.

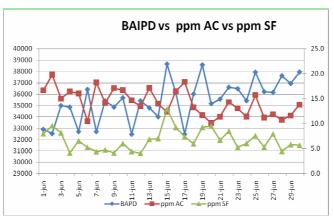


TABLA 2.25.
TRATAMIENTO QUÍMICO APLICADO EN EL MES DE JULIO DE 2007

MES		Julio-07									
	BAPD	(QUÍMICOS (gal/día)					Concentración (ppm)			
FECHA	(bls)	AE	AC	BAC	SF	FL	AE	AC	BAC	SF	FL
1-jul	34585	76	18	0	10	0	52.3	12.4	0.0	6.9	0.0
2-jul	39783	72	15	0	9	0	43.1	9.0	0.0	5.4	0.0
3-jul	36522	81	20	0	6	0	52.8	13.0	0.0	3.9	0.0
4-jul	37693	82	20	0	6	0	51.8	12.6	0.0	3.8	0.0
5-jul	35317	78	20	0	7	0	52.6	13.5	0.0	4.7	0.0
6-jul	34392	79	19	0	6	0	54.7	13.2	0.0	4.2	0.0
7-jul	40464	76	20	60	4	0	44.7	11.8	35.3	2.4	0.0
8-jul	34990	70	21	0	12	0	47.6	14.3	0.0	8.2	0.0
9-jul	40331	67	23	0	14	0	39.6	13.6	0.0	8.3	0.0
10-jul	34859	67	24	0	12	0	45.8	16.4	0.0	8.2	0.0
11-jul	39701	71	21	0	12	0	42.6	12.6	0.0	7.2	0.0
12-jul	37231	67	18	0	13	0	42.8	11.5	0.0	8.3	0.0
13-jul	35223	70	22	58	11	0	47.3	14.9	39.2	7.4	0.0
14-jul	38827	71	18	0	6	0	43.5	11.0	0.0	3.7	0.0
15-jul	31478	72	31	0	29	0	54.5	23.4	0.0	21.9	0.0
16-jul	43031	70	20	0	17	0	38.7	11.1	0.0	9.4	0.0

TABLA 2.25. CONTINUACIÓN

	BAPD	(QUÍMIC	COS (ga	al/día)		Concentración (ppm)				
FECHA	(bls)	AE	AC	BAC	SF	FL	AE	AC	BAC	SF	FL
17-jul	36097	68	18	0	0	0	44.9	11.9	0.0	0.0	0.0
18-jul	38867	70	19	0	0	0	42.9	11.6	0.0	0.0	0.0
19-jul	36210	72	23	0	9	0	47.3	15.1	0.0	5.9	0.0
20-jul	31201	60	25	0	9	0	45.8	19.1	0.0	6.9	0.0
21-jul	34139	65	28	63	6	0	45.3	19.5	43.9	4.2	0.0
22-jul	35275	77	32	0	13	0	52.0	21.6	0.0	8.8	0.0
23-jul	35150	60	33	5	9	0	40.6	22.4	3.4	6.1	0.0
24-jul	35815	84	32	0	12	0	55.8	21.3	0.0	8.0	0.0
25-jul	34612	89	29	0	12	0	61.2	19.9	0.0	8.3	0.0
26-jul	37915	70	31	0	11	0	44.0	19.5	0.0	6.9	0.0
27-jul	36694	79	28	50	7	0	51.3	18.2	32.4	4.5	0.0
28-jul	36960	63	21	0	8	0	40.6	13.5	0.0	5.2	0.0
29-jul	36034	71	22	0	11	0	46.9	14.5	0.0	7.3	0.0
30-jul	37266	76	18	0	9	0	48.6	11.5	0.0	5.8	0.0
31-jul	35862	80	23	0	10	0	53.1	15.3	0.0	6.6	0.0
TOTAL	1132524	2253	712	236	300	0	47.4	15.1	5.1	6.4	0.0

FIGURA 2.26.

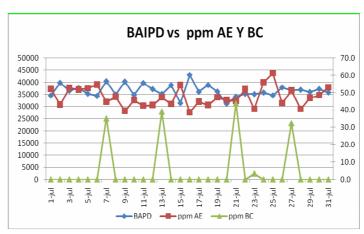


FIGURA 2.27.

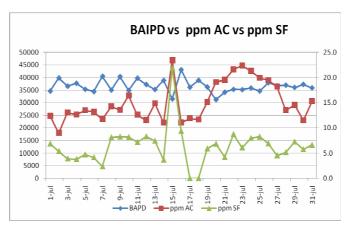


TABLA 2.26. TRATAMIENTO QUÍMICO APLICADO EN EL MES DE AGOSTO DE 2007

MES	Agosto-07										
	BAPD	(QUÍMIC	COS (ga	/día)		Concentración (ppm)				
FECHA	(bls)	AE	AC	BAC	SF	FL	AE	AC	BAC	SF	FL
1-ago	36907	72	21	0	8	0	46.4	13.5	0.0	5.2	0.0
2-ago	36844	72	25	0	10	0	46.5	16.2	0.0	6.5	0.0
3-ago	33767	72	23	50	9	0	50.8	16.2	35.3	6.3	0.0
4-ago	35095	71	24	0	10	0	48.2	16.3	0.0	6.8	0.0
5-ago	36841	64	24	0	13	0	41.4	15.5	0.0	8.4	0.0
6-ago	36647	75	31	0	10	0	48.7	20.1	0.0	6.5	0.0
7-ago	36129	75	20	0	0	0	49.4	13.2	0.0	0.0	0.0
8-ago	36657	85	21	60	0	0	55.2	13.6	39.0	0.0	0.0
9-ago	35766	68	22	25	13	0	45.3	14.6	16.6	8.7	0.0
10-ago	36393	75	22	0	14	0	49.1	14.4	0.0	9.2	0.0
11-ago	36417	72	26	0	15	0	47.1	17.0	0.0	9.8	0.0
12-ago	33252	63	22	0	13	0	45.1	15.8	0.0	9.3	0.0
13-ago	35862	63	28	50	7	0	41.8	18.6	33.2	4.6	0.0
14-ago	34618	72	22	0	13	0	49.5	15.1	0.0	8.9	0.0
15-ago	34925	78	23	0	15	0	53.2	15.7	0.0	10.2	0.0

TABLA 2.26. CONTINUACIÓN

	BAPD	(QUÍMIC	COS (gal	/día)		Concentración (ppm)					
FECHA	(bls)	AE	AC	BAC	SF	FL	AE	AC	BAC	SF	FL	
16-ago	31580	74	22	0	10	0	55.8	16.6	0.0	7.5	0.0	
17-ago	32010	71	19	0	8	0	52.8	14.1	0.0	6.0	0.0	
18-ago	32244	70	21	55	44	0	51.7	15.5	40.6	32.5	0.0	
19-ago	32248	69	22	0	0	0	50.9	16.2	0.0	0.0	0.0	
20-ago	32655	69	23	0	0	0	50.3	16.8	0.0	0.0	0.0	
21-ago	32461	56	24	0	0	0	41.1	17.6	0.0	0.0	0.0	
22-ago	32354	67	26	0	0	0	49.3	19.1	0.0	0.0	0.0	
23-ago	32361	68	18	0	0	0	50.0	13.2	0.0	0.0	0.0	
24-ago	33070	77	19	50	0	0	55.4	13.7	36.0	0.0	0.0	
25-ago	32409	76	18	0	0	0	55.8	13.2	0.0	0.0	0.0	
26-ago	32240	68	18	0	0	0	50.2	13.3	0.0	0.0	0.0	
27-ago	32628	63	30	0	0	0	46.0	21.9	0.0	0.0	0.0	
28-ago	33382	71	20	50	0	0	50.6	14.3	35.7	0.0	0.0	
29-ago	31852	78	20	0	0	0	58.3	15.0	0.0	0.0	0.0	
30-ago	31661	71	17	0	0	0	53.4	12.8	0.0	0.0	0.0	
31-ago	27464	71	20	0	0	0	61.6	17.3	0.0	0.0	0.0	
TOTAL	1048739	2196	691	340	212	0	49.6	15.6	7.9	4.9	0.0	

FIGURA 2.28.

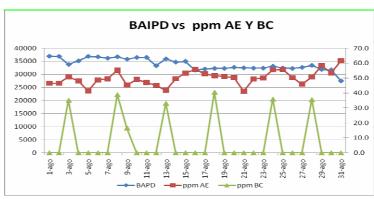


FIGURA 2.29.

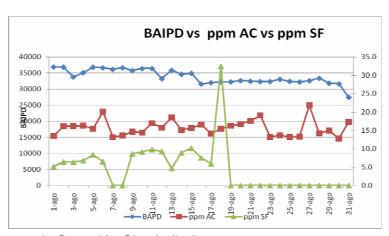


TABLA 2.27.
TRATAMIENTO QUÍMICO APLICADO EN EL MES DE SEPTIEMBRE DE 2007

MES		Septiembre-07									
	BAPD		QUÍM	ICOS (gal/día)			Concentración (ppm)			
FECHA	(bls)	AE	AC	BAC	SF	FL	AE	AC	BAC	SF	FL
1-sep	24907	71	23	0	0	0	67.9	22.0	0.0	0.0	0.0
2-sep	22151	75	22	0	0	0	80.6	23.6	0.0	0.0	0.0
3-sep	21722	64	29	0	0	0	70.2	31.8	0.0	0.0	0.0
4-sep	21971	72	20	0	0	0	78.0	21.7	0.0	0.0	0.0
5-sep	32112	79	21	55	55	0	58.6	15.6	40.8	40.8	0.0
6-sep	29321	60	20	0	0	0	48.7	16.2	0.0	0.0	0.0
7-sep	26124	17	9	0	0	0	15.5	8.2	0.0	0.0	0.0
8-sep	20150	40	16	0	0	0	47.3	18.9	0.0	0.0	0.0
9-sep	26278	44	10	0	0	0	39.9	9.1	0.0	0.0	0.0
10-sep	19715	65	22	55	0	0	78.5	26.6	66.4	0.0	0.0
11-sep	25495	84	30	0	0	0	78.4	28.0	0.0	0.0	0.0
12-sep	21935	90	23	0	0	0	97.7	25.0	0.0	0.0	0.0
13-sep	22838	98	22	0	0	0	102.2	22.9	0.0	0.0	0.0
14-sep	24779	56	23	0	0	0	53.8	22.1	0.0	0.0	0.0
15-sep	25302	60	25	0	0	0	56.5	23.5	0.0	0.0	0.0

TABLA 2.27. CONTINUACIÓN

	BAPD		QUÍMICOS (gal/día) Concentración (ppm)								
FECHA	(bls)	AE	AC	BAC	SF	FL	AE	AC	BAC	SF	FL
16-sep	25315	42	25	40	0	0	39.5	23.5	37.6	0.0	0.0
17-sep	24635	50	23	0	0	0	48.3	22.2	0.0	0.0	0.0
18-sep	25733	65	28	1	0	0	60.1	25.9	0.9	0.0	0.0
19-sep	24003	68	29	9	0	0	67.5	28.8	8.9	0.0	0.0
20-sep	23917	66	22	43	0	0	65.7	21.9	42.8	0.0	0.0
21-sep	24638	53	16	0	0	0	51.2	15.5	0.0	0.0	0.0
22-sep	25197	40	15	0	0	0	37.8	14.2	0.0	0.0	0.0
23-sep	25412	45	17	0	0	0	42.2	15.9	0.0	0.0	0.0
24-sep	24071	35	17	0	0	0	34.6	16.8	0.0	0.0	0.0
25-sep	25357	50	13	42	0	0	46.9	12.2	39.4	0.0	0.0
26-sep	24963	78	10	0	0	0	74.4	9.5	0.0	0.0	0.0
27-sep	24589	16	15	0	0	0	15.5	14.5	0.0	0.0	0.0
28-sep	24012	42	11	0	0	0	41.6	10.9	0.0	0.0	0.0
29-sep	24242	43	14	0	0	0	42.2	13.8	0.0	0.0	0.0
30-sep	24408	42	14	35	13	0	41.0	13.7	34.1	12.7	0.0
TOTAL	735292	1710	584	280	68	0	56.1	19.1	9.0	1.8	0.0

FIGURA 2.30.

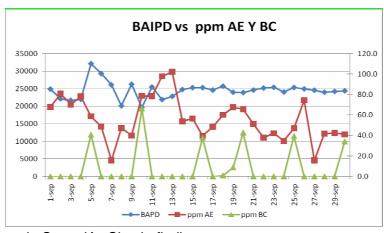
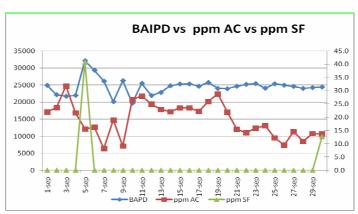
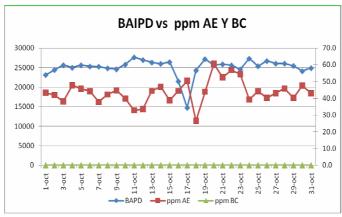


FIGURA 2.31.




TABLA 2.28.
TRATAMIENTO QUÍMICO APLICADO EN EL MES DE OCTUBRE DE 2007

MES		Octubre-07									
	BAPD	(QUÍMICOS (gal/día)					Concen	tración	(ppm)	
FECHA	(bls)	AE	AC	BAC	SF	FL	AE	AC	BAC	SF	FL
1-oct	23103	42	16	0	0	0	43.3	16.5	0.0	0.0	0.0
2-oct	24410	43	16	0	0	0	41.9	15.6	0.0	0.0	0.0
3-oct	25620	41	14	10	0	0	38.1	13.0	9.3	0.0	9.3
4-oct	24952	50	14	0	0	0	47.7	13.4	0.0	0.0	0.0
5-oct	25612	49	12	50	43	0	45.6	11.2	46.5	40.0	0.0
6-oct	25285	47	16	0	0	0	44.3	15.1	0.0	0.0	0.0
7-oct	25246	40	15	0	0	0	37.7	14.1	0.0	0.0	0.0
8-oct	24822	44	15	0	0	0	42.2	14.4	0.0	0.0	0.0
9-oct	24563	46	13	0	0	0	44.6	12.6	0.0	0.0	0.0
10-oct	25777	43	10	0	0	0	39.7	9.2	0.0	0.0	0.0
11-oct	27636	38	12	0	0	0	32.7	10.3	0.0	0.0	0.0
12-oct	26936	38	12	0	0	0	33.6	10.6	0.0	0.0	0.0
13-oct	26298	49	15	0	0	0	44.4	13.6	0.0	0.0	0.0
14-oct	25960	51	15	0	0	0	46.8	13.8	0.0	0.0	0.0
15-oct	26403	43	18	0	0	0	38.8	16.2	0.0	0.0	0.0
16-oct	21468	40	12	0	0	0	44.4	13.3	0.0	0.0	0.0

TABLA 2.28. CONTINUACIÓN

	BAPD	(JUÍMIC	COS (gal	/día)		Concentración (ppm)				
FECHA	(bls)	AE	AC	BAC	SF	FL	AE	AC	BAC	SF	FL
17-oct	14667	31	11	0	0	0	50.3	17.9	0.0	0.0	0.0
18-oct	24264	27	5	0	0	0	26.5	4.9	0.0	0.0	0.0
19-oct	27169	50	16	0	0	0	43.8	14.0	0.0	0.0	0.0
20-oct	25581	65	15	0	0	0	60.5	14.0	0.0	0.0	0.0
21-oct	25847	57	17	40	40	0	52.5	15.7	36.8	36.8	0.0
22-oct	25575	61	16	0	0	0	56.8	14.9	0.0	0.0	0.0
23-oct	24527	56	21	0	0	0	54.4	20.4	0.0	0.0	0.0
24-oct	27299	45	16	0	0	0	39.2	14.0	0.0	0.0	0.0
25-oct	25356	47	18	0	0	0	44.1	16.9	0.0	0.0	0.0
26-oct	26678	45	18	0	0	0	40.2	16.1	0.0	0.0	0.0
27-oct	26019	47	24	0	0	0	43.0	22.0	0.0	0.0	0.0
28-oct	26019	50	26	0	0	0	45.8	23.8	0.0	0.0	0.0
29-oct	25444	43	22	0	0	0	40.2	20.6	0.0	0.0	0.0
30-oct	24073	48	20	40	40	0	47.5	19.8	39.6	39.6	0.0
31-oct	24860	45	12	40	0	0	43.1	11.5	38.3	0.0	0.0
TOTAL	777469	1421	482	180	123	0	43.7	14.9	4.4	3.9	0.0

FIGURA 2.32.

FIGURA 2.33.

Como se puede analizar, el tratamiento químico aplicado es antiescala, anticorrosivo, surfactante y bactericida. No se utiliza floculante ni coagulante porque la planta de tratamiento del agua de formación se encuentra fuera de servicio. Los nombres comerciales de estos químicos son: Antiescala Mx-507, Protequim 1176, Deterquim-274, y BAC-91 ó BAC-96, respectivamente utilizados por la Cía. QUIMIPAC S.A.

2.6.CAPACIDAD DE CONFINAMIENTO DE LA FORMACIÓN TIYUYACU.

Espesor Neto = 322 ft

$$\phi = 15\%$$

Swi =
$$30\%$$

Volumen inicial de agua confinada en el espacio poroso:

$$(Viw) = \bullet \quad \bullet \phi \bullet \quad \bullet \tag{2.24}$$

Debido a que la arena Tiyuyacu presenta poco interés petrolífero no se han realizado los estudios pertinentes que permitan determinar el área de la formación Tiyuyacu en el Campo Shushufindi-Aguarico, es así que, para cuantificar su valor en términos conservadores se ha considerado el 30% del área total del Campo Shushufindi-Aguarico, la cual es 35583.03 acres, siendo el 30% igual a 10675 acres.

En la tabla 2.29., se presenta el cálculo de la capacidad de confinamiento de la formación Tiyuyacu al variar la Sw.

TABLA 2.29.

CÁLCULO DE LA CAPACIDAD DE CONFINAMIENTO DE LA FORMACIÓN
TIYUYACU

Sw %	Sw-Swi (%)	Volumen, bls
40	10	400001010
50	20	800002019
60	30	1200003029
70	40	1600004039
80	50	2000005048
90	60	2400006058
100	70	2800007067

Fuente: Departamento de Yacimientos-Quito.

Elaborado por: Mayra Silva P.

Capacidad de confinamiento real al 100% = 2800007067 bls Barriles confinados = 288710608 bls Capacidad de confinamiento faltante = 2511296459 bls Promedio anual de confinamiento del Campo Shushufindi = 28339516 bls Años = 89

Con lo que se puede concluir que para alcanzar la capacidad de saturación de Tiyuyacu se requiere 89 años.

CAPÍTULO 3

SELECCIÓN DE LA ALTERNATIVA MÁS APROPIADA PARA LA OPTIMIZACIÓN DEL SISTEMA DE REINYECCIÓN DE AGUA.

En la actualidad el sistema de tratamiento está fuera de servicio, por este motivo el agua de formación es reinyectada directamente del tanque de lavado, de donde es transportada por las bombas booster y reinyectada por las bombas de alta presión.

En la estación Sur el tanque de lavado se encuentra con bastantes sedimentos, dando lugar a que el tiempo de residencia disminuya y que por tanto la concentración de petróleo en agua sea elevada, por lo que es necesaria una reformulación del producto demulsificante que mejore la calidad de agua que se drena de los tanques de lavado, y que posteriormente es reinyectada.

Puesto que el sistema de tratamiento está fuera de servicio, hay que poner énfasis en aplicar un sistema que permita controlar los sólidos que son el principal problema en el proceso de reinyección de agua. Para ello recapitularemos el contrato que mantenía la Cía. SOLIPET con PETROPRODUCCIÓN.

3.1. ANTECEDENTES

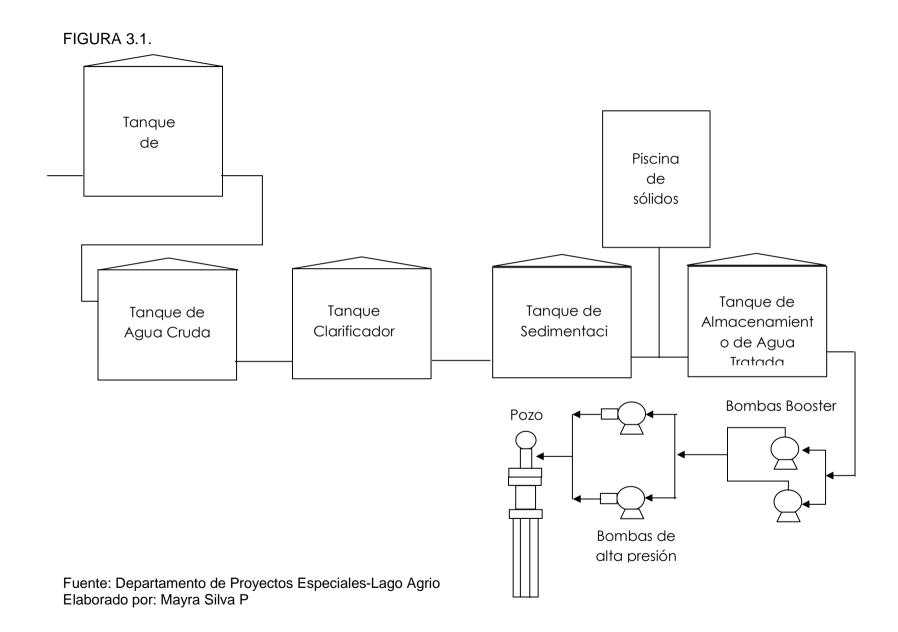
- 1. El tratamiento químico del agua de formación del Campo Shushufindi desde el año 1995 hasta el 09 de marzo de 2002 estuvo a cargo de Petroproducción.
- 2. De acuerdo con los históricos de Petroproducción en lo que tiene relación con la reinyección de agua de formación en el Campo Shushufindi Aguarico, se presentaron problemas críticos en las líneas de reinyección (SSF-58, SSF-93,

SSF-38, SSF-42A, AGU-07), tubing, múltiples de succión y descarga, bombas centrifugas horizontales (cámara de empuje, housing, ejes, impulsores, difusores, sellos), bombas booster.

- **3.** Desde el 09 de Marzo de 2002 SOLIPET S.A., se hizo cargo del tratamiento químico del agua de formación.
- **4.** El 27 de Marzo del 2002, PETROPRODUCCIÓN y la Cía. SOLIPET, suscribieron el contrato Nº 2002-036 para la prestación de servicios asociados con el tratamiento químico, montaje, operación, mantenimiento de equipos y sistemas para la reinyección de agua de formación del campo Shushufindi- Aguarico por el plazo de 4 años contados a partir del 9 de marzo del 2002 que fue la fecha de inicio de las operaciones.
- 5. Existían pérdidas de presión desde la descarga de las bombas horizontales hasta el cabezal del pozo, este diferencial en varios casos era mayor a 700 psi, lo cual permitió determinar que líneas y pozos reinyectores hayan perdido la capacidad de transportar y receptar el agua de formación en condiciones de operación normales.
- 6. El 9 de marzo del 2006 PETROPRODUCCIÓN tomó a cargo las operaciones de reinyección de agua de formación, en las condiciones anotadas en las actas de Entrega-Recepción realizada por los diferentes departamentos.

Dado que el objetivo de la construcción de los tanques por parte de SOLIPET S.A. era mejorar la calidad del agua reteniendo los sólidos para inyectarla sin que cause problemas en las unidades de alta presión, que no se taponen las líneas ni a la formación receptora, dicha compañía, no logró este objetivo, pues se seguía realizando el mismo tipo de tratamiento que mantenía Petroproducción desde que se inicio el proceso de reinyección de agua en el Área Shushufindi, el cual consistía en

la toma del agua de formación directamente del tanque de lavado y la posterior reinyección.


En la actualidad la planta de tratamiento del agua de formación, no realiza ninguna función y no aporta en nada al tratamiento químico del agua de formación que se reinyecta, pues en todos los casos el sistema o parte de él se encuentra en by pass, es decir el agua se la toma directamente del tanque de lavado y se la reinyecta a los pozos: SSF-02RW, SSF-20A, SSF-21, SSF-25, SSF-47 y SSF-93.

La decisión para poner fuera de servicio las plantas fue ocasionada por el deterioro, corrosión, taponamiento, sedimentación y falta de capacidad de las mismas.

En la figura 3.1 se indica la disposición del sistema que implantó la Cía. SOLIPET S.A., con las siguientes características para la Estación Shushufindi Sur:

- Tanque de Agua Cruda de 6000 bls (TK-100), H = 9.75 m y diámetro = 11.25 m
- Tanque Clarificador de 4150 bls (TK-110), H = 10.52 m y diámetro = 7.32 m
- Tanque de Sedimentación de 3600 bls (TK-120), H = 7.32 m y diámetro = 9.75 m
- Tanque de Almacenamiento de Agua Tratada de 6000 bls (TK-130), H = 9.75 m y diámetro = 11.25 m
- Bombas instaladas: 3 bombas WG: TJ-12000-41, 1 REDA, 2 Centrilift 82P1000 que están en reserva.
- Además del respectivo programa de químicos.

Desde Marzo de 2002 a Marzo de 2006, se encontraba trabajando un sistema de tratamiento mecánico y químico en la estación de producción Shushufindi Sur, para purificar el agua de formación que se obtenía en el tanque de lavado, e inyectar a la formación Tiyuyacu. La figura 3.1., muestra el Sistema de reinyección de agua implantado por la Cía. SOLIPET S.A.

3.1.1. SISTEMA OPERATIVO DE LA CÍA. SOLIPET

En el tanque de lavado se separa el agua de formación asociada al petróleo con contenidos de aceite en agua de 10 a 100 ppm (OIW), sólidos suspendidos totales de 5 a 50 ppm (SST), 0 ppb de oxígeno disuelto (O₂), bacterias sulfato reductoras planctónicas o flotadoras de 10-10000 colonias/mL (BSR), y composición física y química variable, dependiendo de cada estación.

El proceso de tratamiento, constaba de los siguientes equipos:

a) Tanque de agua cruda (TK-100): Este recipiente recibía la producción de agua de formación del tanque de lavado (TK-200). Al proporcionar un tiempo de residencia corto se estimaba que ayudaba a separar cierto contenido de aceite en agua (OIW). Dependiendo de la distancia y altura hidrostática con la descarga del TK-200, la transferencia de agua se realizaba por el principio de vasos comunicantes o se requería una bomba centrifuga (P-100).

Este recipiente era un tanque atmosférico y no tenía un aislamiento total del aire para evitar la oxigenación del agua. Estaba construido por láminas galvanizadas y empernado con aislamientos de caucho.

b) Tanque clarificador (TK-110): Su función era proporcionar un tiempo de agitación y de aglomeración de los sólidos suspendidos para obtener partículas más grandes y pesadas que precipiten; la capacidad de este tanque era de 4150 bls, con tiempos de tratamiento o residencia de 2 a 4 horas. La entrada del agua se realizaba por la parte superior y la descarga una o dos pulgadas más abajo del nivel de la entrada.

El agua que ingresaba iba a un tubo central, con el extremo inferior tipo campana, donde se podía agitar a velocidad variable y descendía hasta el fondo; el agua abandonaba el equipo por el espacio anular. Los sólidos decantados se acumulaban en el fondo cónico del equipo, y eran drenados por una línea de 4 pulgadas hacia el filtro atmosférico (F-100).

Existía una válvula de ½ pulgada en la línea de descarga para eliminar acumulaciones de aire o vapor. Las válvulas de entrada y salida se controlaban automáticamente desde el computador en la sala de control. Actualmente no está operando el agitador en ningún tanque.

- c) **Tanque de Sedimentación (TK-120):** Este equipo estaba constituido de la misma forma que el clarificador, aunque el volumen de agua de formación era menor y variaba entre 1050 y 3600 bls.
- d) Tanque de agua tratada (TK-130): Recibía el agua tratada del TK-120 y servía de alimentación para las bombas booster y de alta presión (HPS). Podía tener o no válvulas de presión y vacío. En la descarga del tanque estaba instalado un sensor hidráulico de nivel que transmitía la señal de nivel hacia la computadora.

Existía una toma de agua con tubería acerada de 3/8 pulgadas que iba al turbidímetro para medir el contenido de turbidez, **el valor que se debía entregar era de 15 NTU.**

La construcción de estos tanques fue de láminas galvanizadas unidas por pernos y empaques de caucho. Existía un sistema de tuberías de 2 pulgadas de diámetro que interconectaban los techos de los tanques 110, 120 y 130. De acuerdo al personal operativo de SOLIPET S.A., esta interconexión cumplía una función similar a un "gas blanket", es decir controlaban la presión interna por valores positivos o negativos; y, evitaban el ingreso de aire que oxidaría el agua y provocaría mayor formación de sólidos suspendidos totales (SST), corrosión y turbidez (NTU).

- e) Bombas de inyección: Constaban de los siguientes elementos:
- Strainer de acero inoxidable para retener partículas sólidas grandes.
- Contador y totalizador de flujo.
- Bombas centrífugas o booster: elevaban la presión de 6 a 65 psig.
- Bombas horizontales centrífugas multietapa (HPS): de diferentes marcas como Centrilift y Weatherford, elevaban la presión de 20-1800 psig.
- Líneas de alta presión de diferente diámetro para transportar el agua al pozo inyector.

3.1.2. EVALUACIÓN DE LA OPERACIÓN DE LA PLANTA

a) Uno de los mayores inconvenientes en la operación de esta planta fue el diseño de la tubería de descarga del tanque clarificador y del tanque de sedimentación. La tubería de 6 pulgadas tomaba el agua de salida directamente de una altura de 20 pies o más, y no se llenaba completamente, ocasionando un efecto succionador que generaba el ingreso de aire por no funcionar adecuadamente la interconexión del gas blanket en los tanques 110, 120 y 130.

Al tomar la muestra de agua de la línea de salida del clarificador se obtuvo flujos intermitentes de aire y en el cono del equipo para medir oxígeno se podía observar claramente las burbujas de aire. Se cuantificó el contenido de oxígeno disuelto y la turbidez a la entrada y salida del tanque clarificador y del tanque de sedimentación.

b) El flujo o caudal de agua a la entrada y salida del tanque clarificador y del tanque de sedimentación no era igual por el problema señalado en el literal anterior. Esto ocasionaba un abastecimiento menor hacia el tanque de agua tratada y el incremento del nivel de agua en el tanque de lavado (TK-200), por lo cual se tomó la decisión de poner en by pass todo el sistema y bombear directamente al pozo.

- c) Todos los tanques tenían tuberías y válvulas automáticas para realizar el by pass de uno o de todos los tanques.
- d) No se podía drenar periódicamente los sólidos acumulados en el fondo del tanque clarificador y del tanque de sedimentación, por no disponer del filtro atmosférico. Esto pudo haber ocasionado un arrastre de sólidos de un tanque a otro y el incremento de la turbidez

3.1.3. TRATAMIENTO QUÍMICO QUE MANTENÍA LA CÍA. SOLIPET.

El principal contaminante de las aguas de formación del área Shushufindi-Aguarico es el sólido Schmoo formado por:

• Sulfuro de hierro 40% peso

Hidrocarburos parafínicos
 45% peso

• Carbonatos 10% peso

Óxidos y otros
 5 % peso

Este sólido es una mezcla de compuestos orgánicos e inorgánicos en diferentes proporciones. Es semisólido o coloide y se adhiere con gran facilidad a las paredes metálicas. El tamaño de partículas varía desde 1 a 100 micrones. La cantidad varía dependiendo de la acumulación de este producto en el fondo del tanque de lavado (TK-200) y de la altura de la descarga; históricamente se han reportado valores de 5 a 250 ppm.

El petróleo o aceite en agua es otro de los mayores contaminantes que causa incremento en la turbidez del agua. La concentración depende exclusivamente del tratamiento de deshidratación en el tanque de lavado (calidad de demulsificante) y de la operación del nivel de agua en el mismo tanque. Se han tenido valores históricos de 10 a 1000 ppm.

El tratamiento químico estuvo compuesto por la inyección de los siguientes productos:

- a) Coagulante A-100.- Es un producto que servía para formar aglutinar los sólidos suspendidos totales y formar flóculos, se adicionaba continuamente a la entrada del clarificador. Se inyectaba diluido a una concentración de 0.3 ppm.
- b) **Bactericida BAC-98.-** Es un producto que disuelve el sulfuro de hierro y elimina las bacterias reductoras de sulfato (BSR). Se inyectaba a la entrada del tanque de agua tratada en forma continua.
- c) Inhibidor de incrustaciones MX-452.- Inhibía la formación de incrustaciones de carbonato de calcio y magnesio principalmente. Se inyectaba en forma continua a la entrada del tanque de agua tratada.
- d) **Surfactante DT-273.-** Es un detergente o surfactante fuerte que limpiaba las paredes de las tuberías de sólidos y ayudaba a mantenerlos en suspensión. Se aplicaba a la descarga del tanque de agua tratada.
- e) **Inhibidor de corrosión P1106.-** Es un inhibidor fílmico que se adhiere a la superficie interna metálica y evita el contacto del agua de formación con el metal. Se inyectaba a la descarga del tanque de agua tratada. Ocasionalmente se utilizaba el químico limpiador de carbonatos D-705 y diesel para la limpieza de las bombas HPS.

3.1.4. PROBLEMAS OCASIONADOS EN EL PROCESO DE TRATAMIENTO Y REINYECCIÓN DE AGUA MANEJADO POR LA CÍA. SOLIPET.

- El principal problema por el que no se cumplió con la especificación de mantener 15 NTU a la salida del tanque de agua tratada (TK-130) fue la oxigenación del agua en el tanque clarificador y el tanque de sedimentación principalmente, que incrementó hasta 1000% el valor de la turbidez en la descarga del tanque de lavado (TK-200).
- Al estar la toma de agua en la descarga del tanque clarificador y del tanque de sedimentación afectadas por el mal funcionamiento del gas blanket, esta no se llenaba completamente y el caudal que ingresaba era menor al que salía, incrementando el nivel de colchón de agua en el TK-200, obligando a poner el sistema en by-pass.
- El tanque de agua cruda (TK-100) no operaba como un skimmer o desnatador para minimizar el contenido de petróleo en agua y disminuir la turbidez.
- El sistema de tuberías de 2 plg, que interconectó los tanques clarificadores, de sedimentación y agua tratada no mantuvo un ambiente interno libre de aire; además, hidráulicamente no fue suficiente el diámetro para equilibrar las altas presiones del agua del proceso, produciéndose las fugas de agua en los techos por las bridas del manhole o del motor del agitador.
- La falta de disponibilidad de filtros superficiales (F-100) no permitió drenar los sólidos acumulados en los tanques Clarificador (TK-110) y de sedimentación (TK-120), aumentando la turbidez.
- El coagulante A-100 no presentaba una buena eficiencia para aglomerar y decantar los sólidos suspendidos presentes en el agua de formación de Shushufindi.

- El bactericida BAC-98 no tenía una buena eficiencia en la disminución del sulfuro de hierro.
- La inyección del inhibidor de incrustaciones MX-452 no era apropiada en la entrada del tanque de agua tratada, porque se generaron más sólidos suspendidos en este equipo que disminuyeron su eficiencia.
- No se consideró la diferencia de presión entre la descarga de las bombas HPS y la presión de inyección del pozo, así como la tasa de agua inyectada, por lo que no se evaluó el grado de taponamiento de la línea horizontal.

3.2.PROPUESTA DE OPTIMIZACIÓN DEL SISTEMA DE REINYECCIÓN DE AGUA DE LA ESTACIÓN SUR DEL CAMPO SHUSHUFINDI.

Un sistema de reinyección combina distintos procesos con un sistema de distribución para producir y repartir agua con una calidad dada para el pozo de reinyección. Se pueden mencionar tres objetivos primordiales desde el punto de vista operacional:

- Entregar agua tratada al pozo reinyector.
- Prevenir incrustaciones y depositación de sólidos en líneas, tanques y pozos.
- Mantener el sistema íntegro para prevenir la corrosión de los equipos de superficie y de subsuelo.

Un sistema cerrado está diseñado para excluir oxígeno completamente. Puesto que el oxígeno es uno de los primeros agentes corrosivos, todo sistema de reinyección moderno está diseñado como sistema cerrado, independientemente de la fuente de agua. La turbidez del agua después de floculada y sedimentada durante un cierto

tiempo, así como también los constituyentes y las propiedades principales listadas en la tabla 1.1., del capítulo 1, se consideraron como los parámetros más importantes para caracterizar el proceso.

3.2.1. JUSTIFICACIÓN DEL PROYECTO

Los procesos extractivos de petróleo en los campos del Distrito Amazónico de PETROPRODUCCIÓN cada vez están, en mayor cantidad, asociados a la producción de agua de formación. Al área Shushufindi pertenecen las estaciones: Aguarico, Norte, Central, Sur y Suroeste. La producción de petróleo en la mencionada área es de aproximadamente 43000 barriles diarios, mientras que la cantidad de agua, generada en este proceso, se estima en 69000 barriles diarios.

La lógica de respeto al medio ambiente, al igual que las leyes vigentes, exige un adecuado tratamiento del agua de formación.

En el área Shushufindi no se trata de forma apropiada el agua de formación, debido a que las Plantas de Tratamiento, para este propósito, se encuentran fuera de servicio por varias causas, entre otras, corrosión y taponamiento de líneas, tanques con sedimentos, accesorios y válvulas obstruidas, sistemas de control sin repuestos, etc.

Como consecuencia de la falta de tratamiento de estas aguas se producen problemas tales como la precipitación de sólidos, formación de carbonatos, sulfuros que taponan las tuberías y las arenas receptoras.

Cabe mencionar además, que la falta de tratamiento del agua de formación, debido a que no puede ser drenada al entorno, puede ser la causa para que se detengan los procesos de producción en las locaciones con este problema. La disminución de la producción de petróleo impedirá a PETROPRODUCCIÓN cumplir con sus objetivos

empresariales, con la consiguiente reducción de ingresos al Presupuesto General del Estado. En el área Shushufindi, la producción de agua de formación día aproximada, (BAPD) por Estación a la fecha se presenta en la tabla 3.1.

TABLA 3.1. BARRILES DE AGUA PRODUCIDOS POR ESTACIÓN

Estación	Producción, BAPD
Aguarico	8000
Norte	9300
Central	17200
Sur	25300
Sur Oeste	9100
Total	68900

Fuente: PETROPRODUCCIÓN Elaborado por: Mayra Silva P.

3.2.2. OBJETIVO GENERAL

Reinyectar de forma inmediata y continua la totalidad del agua de formación producida en las estaciones del área Shushufindi.

3.2.3. OBJETIVOS ESPECÍFICOS

- Aplicar las normas referentes al tratamiento y reinyección de agua.
- Obtener las aprobaciones de los organismos de control pertinentes como la Dirección Nacional de Hidrocarburos, DINAPA y otros.
- Determinar los pozos destinados a la aceptación del agua de formación tratada, con la debida compatibilidad de la formación que determine el Departamento de Yacimientos.
- ❖ Manejar mediante un **Sistema Cerrado** el tratamiento del agua de formación.
- Implementar un sistema de captación, eliminación de trazas de crudo y almacenamiento del agua de formación.

- Proporcionar un adecuado tratamiento químico en superficie y bajo superficie en los pozos productores.
- Inyectar el agua tratada mediante bombas de alta presión.

3.2.4. DIAGNÓSTICO DEL SISTEMA INSTALADO

3.2.4.1. Situación operativa actual

ESTACIÓN SUR

Producción de Agua de formación +/- 25300 bls.

La tabla 3.2. presenta la capacidad de aceptación de agua de cada pozo reinyector en la Estación Sur del Campo Shushufindi.

TABLA 3.2. CAPACIDAD DE ACEPTACIÓN DE AGUA DE CADA POZO REINYECTOR

Pozos de Reinyección	Aceptación de Agua
Shushufindi 02RW	+/- 1000 bls de agua por día
Shushufindi 20 A	+/- 3500 bls de agua por día
Shushufindi 21	+/- 3000 bls de agua por día
Shushufindi 25	+/- 8000 bls de agua por día
Shushufindi 45 A	Pozo cerrado (colapsado)
Shushufindi 47	+/- 5700 bls de agua por día
Shushufindi 93	+/- 5800 bls de agua por día

Fuente: Departamento de Reinyección de Agua-Shushufindi.

Elaborado por: Departamento de Reinyección de Agua-Shushufindi.

La capacidad de aceptación de agua de formación de los pozos a la fecha sería de +/- 27000 bls, los mismos que se obtienen de pruebas de ratas múltiples las cuales se indican en la tabla 3.3.

TABLA 3.3.
PRUEBAS DE RATAS MÚLTIPLES PARA DETERMINAR LA CAPACIDAD DE ADMISIÓN DE LOS POZOS REINYECTORES

Pozo	TIEMPO (MIN)	PRESIÓN (psi)	BPM	BIPD	TOTAL INYECTADO (bls)
02RW	5	1160	0.8	1160	40
	15	2250	4.1	5904	62
	31	2300	6	8640	186
	32	2200	8	11520	256
	5	2240	9	12960	45
	13	2440	11	15840	143
	25	1720	5.6	8064	140
	22	1900	6.5	9360	144
	5	1920	6.8	9792	34
	10	1350	2.4	3500	24
20A	10	1500	2,6	3744	26
	15	2000	4,1	5904	61.5
	20	2500	6,2	8928	124
	20	2800	7,3	10512	146
21	5	1400	2.1	3000	10
	6	1500	4.9	7056	30
	12	1680	4.9	7056	60
	15	1790	5.7	8208	90
	20	1890	6.5	9360	130
	24	2000	7.3	10512	175
	25	2150	8.4	12096	210
	30	2194	8.4	12096	252
	10	753	2.2	3168	22
25	10	1400	4	5760	40
	15	1490	4.19	6034	63
	20	1540	5.6	8000	112
	20	1750	5.8	8352	116
	5	2000	7.07	10776	35
	10	2243	8	11568	80
47	10	1170	2	2880	20
	15	1480	3	4320	45
	20	1500	4	5700	80

TABLA 3.3. CONTINUACIÓN

POZO	TIEMPO (MIN)	PRESIÓN (psi)	ВРМ	BIPD	TOTAL INYECTADO (bls)
47	30	1580	6.1	8784	183
	90	1765	7	10080	630
93	110	1000	1.6	2304	176
	582	1200	4	5800	2328
	795	1510	4.2	6048	3339
	1083	1560	4.6	6624	498
	1334	1640	4.7	6768	6270
	1720	1050	5.4	7776	9288

Fuente: Ingeniería de Petróleos-Shushufindi

Elaborado por: Mayra Silva P.

Nota: Por una sola línea o tubería se bombea el agua de formación desde la Estación Sur a los pozos de reinyección 20 A, 21 y 05.

Los sistemas de tratamiento de agua son similares en cuanto a su diseño de proceso, pero diferentes en su capacidad. La planta deberá estar constituida por los siguientes elementos:

- 1 Tanque de tratamiento de agua cruda.
- 2 Bombas de transferencia
- 1 Tanque clarificador
- 4 Filtros tipo cáscara de nuez
- 1 Tanque de sedimentación
- 1 Tanque de agua tratada
- Bombas elevadoras de presión (boosters)
- Bombas de alta presión (centrífugas o reciprocantes)
- Sistema de bombas de inyección de químicos
- Sistema de visualización y control supervisorio SCADA

Para la determinación del número de filtros necesarios para el tratamiento mecánico se utiliza la fórmula recomendada por Kawamura⁽²⁾ en 1999:

$$N = 1.2 Q^{0.5}$$
 (3.1)

Donde:

Q = MM gal/día

Q = 50000 BPD = 2.1 MM gal/día

Según la fórmula de Kawamura se obtiene la instalación de dos filtros para el manejo de 50000 bls de agua, sin embargo en la práctica, cuatro filtros son el mínimo número que se debería utilizar, siendo los 2 filtros adicionales de reserva en caso de daño de uno de los filtros o por encontrarse en mantenimiento.

El rediseño, reparación, provisión de equipos y materiales, pruebas y puesta en operación de la Planta de Tratamiento del Agua de formación de la Estación Sur del Campo Shushufindi, se realizará mediante contrato en la modalidad llave en mano.

El diagnóstico permitirá determinar los equipos que puedan ser utilizados y los que deban ser renovados y proporcionados por la Contratista adjudicada para este contrato.

Las bases y términos de referencia para este contrato, fueron delegados al Departamento de Ingeniería de Petróleos mediante Memorando Nº 7046-SOPE-2006 del 13 de diciembre de 2006.

Cabe señalar, que la puesta en operación de la Planta de Tratamiento instalada y dejada por SOLIPET S.A. es solamente de forma temporal, debido a la crítica

⁽²⁾ Kawamura, S. "Desing and Operation of High Rate Filters." Journal AWWA 91(12):77, 1999

situación que atraviesa y a la urgente necesidad de ponerla en operación de forma inmediata.

Posteriormente, la segunda etapa del proyecto considera la implementación de una nueva planta, con capacidad y características específicas de tratamiento de acuerdo a la estación de producción Shushufindi Sur, tomando en consideración la proyección del incremento en el manejo del agua de formación.

3.2.5. ESPECIFICACIONES GENERALES DE INGENIERÍA

3.2.5.1. Normativa a aplicarse

Las principales normas, referentes al tratamiento del agua de formación en la producción petrolera y que tienen aplicabilidad en los sistemas propuestos, son las siguientes:

- NACE, ASME, API, ASTM, NFPA, FM, UL, ISA, Reglamento 1215

3.2.5.2. Diseño básico

Los elementos básicos que debe disponer un "Sistema Cerrado" de Tratamiento del agua de formación, de las características requeridas para la Estación Shushufindi Sur, son los siguientes:

- Tanque de retención de trazas de hidrocarburo, tanque de pulido (Skim)
- Bombas de transferencia
- Tanque de agua tratada
- Bombas incrementadoras de presión (booster)

- Bombas de alta presión
- Sistemas de inyección de químicos
- Sistema automatizado (SCADA) para controlar la planta
- Gas de sello en los tanques (gas blanket)

El diseño de las capacidades de las Plantas de Tratamiento del agua de formación, deberá realizarse en función de las necesidades determinadas por las proyecciones efectuadas por los Departamentos de Yacimientos, Exploración y Desarrollo y Producción.

3.2.5.3. Características especiales de los materiales

Los componentes de las Plantas de Tratamiento del agua de formación, como tuberías, válvulas, accesorios, bombas y tanques deberán ser proporcionados en aceros dúplex o aceros inoxidables súper- austeníticos, que permitan resistir el tratamiento del tipo de agua de cada estación.

3.2.5.4. Trabajo a contratar

Realizar ingenierías básica y de detalle, diseño, construcción, provisión de materiales, equipos, pruebas y puesta en marcha, modalidad llave en mano, en la planta de tratamiento de agua de formación para ser instalada en la estación Sur del Área Shushufindi del Distrito Amazónico de PETROPRODUCCIÓN.

Nota.- En caso de que la operación del sistema, una vez construida la planta, se decida contratar, es necesario indicar que la elaboración de los términos de referencia para realizar un concurso, fue delegado mediante Memorando Nº 387-

SOPE-2007 del 31 de enero de 2007, al Jefe de Área Shushufindi, que textualmente dice: "Para iniciar con el proceso precontractual para los servicios de operación de los sistemas de reinyección de agua de formación para el Área Shushufindi – Aguarico, esta subgerencia designa al Jefe de Área Shushufindi para que en el termino de treinta (30) días calendario, presente los términos de referencia, proyecto de contrato y presupuesto referencial actualizado para contar con los servicios de: operación, tratamiento químico del agua y de sólidos suspendidos para el sistema de reinyección de agua de formación del Área Shushufindi - Aguarico".

3.2.5.5. Equipos a ser instalados en el sistema de Reinyección de Agua de la Estación Shushufindi Sur

El Jefe de Área de Shushufindi ha determinado los siguientes equipos, sistemas y trabajos a ser realizados:

A) EQUIPOS PRINCIPALES

- Tanque de tratamiento de agua 50000 bls
- Tanque Clarificador 50000 bls
- Tanque de Sedimentación 50000 bls
- 4 Filtros de cáscara de nuez
- Tanque de Agua Tratada 50000 bls.
- Bombas Boosters
- Bombas de Alta Presión
- Bombas de Transferencia
- Bombas para Sistema de Inyección de Químicos

B) SISTEMA DE GAS BLANKET

• Incluye tuberías, válvulas y accesorios

C) VÁLVULAS, TUBERÍAS Y ACCESORIOS

D) OBRA ELÉCTRICA

- Cables
- Conectores
- Terminales para cables
- Arrancadores
- Tableros de control, etc.

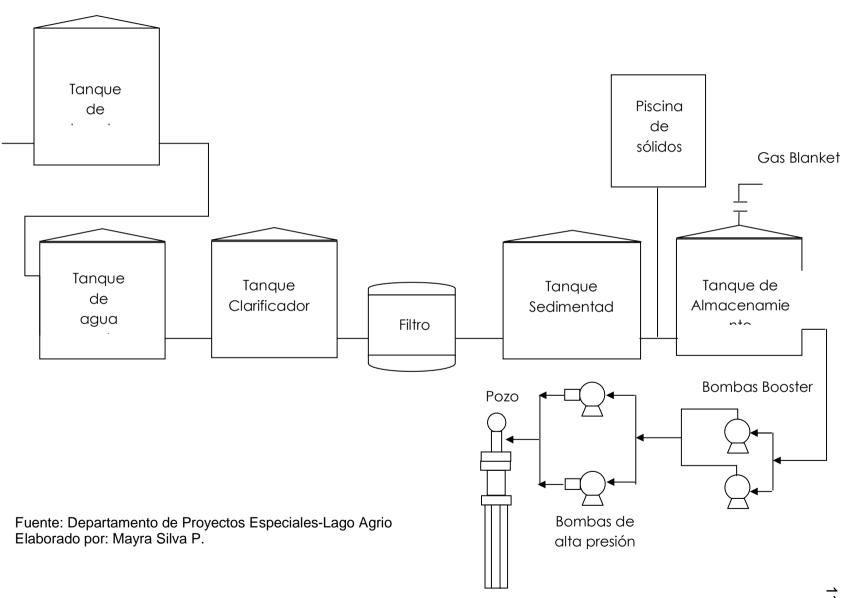
E) INSTRUMENTOS Y SISTEMAS DE CONTROL

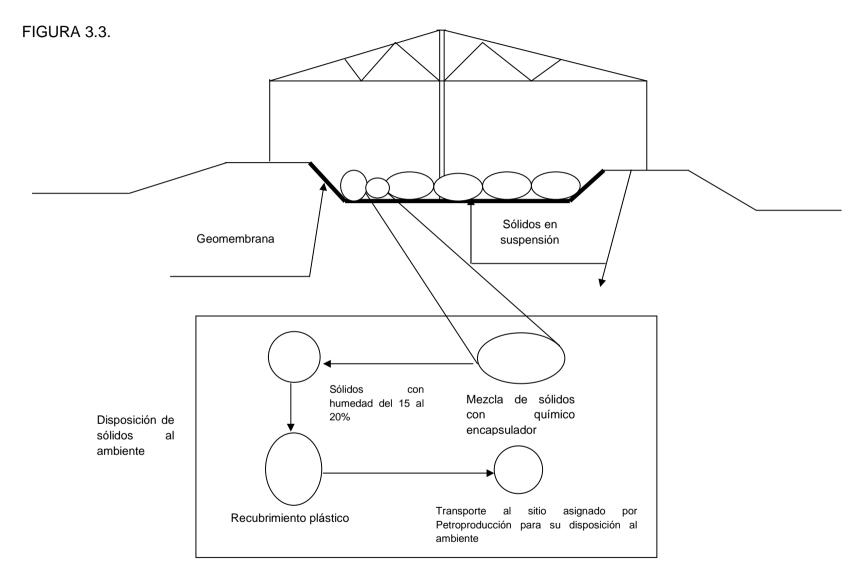
- Controlador Lógico Programable (PLC)
- Módulos I/O
- Fuente de poder
- Computador de escritorio de última tecnología marca DELL, disco duro de 100
 GB, Velocidad 3 GHz, Pantalla Plana LCD, Teclado, Mouse, Parlantes.
- Software y visualización para control
- Instrumentos de Campo, Sensores, Transmisores, Medidores de Flujo, etc.

F) INSTALACIÓN Y MONTAJE - MECÁNICA

- Soldadura de tuberías
- Pruebas Hidrostáticas
- Montaje de Válvulas

G) INSTALACIÓN Y MONTAJE - SISTEMA ELÉCTRICO E INSTRUMENTACIÓN


- Instalación de instrumentos
- Programación de PLC
- Instalación de Software y Hardware
- Configuración, pruebas y puesta en operación


3.3.TRATAMIENTO QUÍMICO A SER APLICADO

El tratamiento químico a ser aplicado para obtener una calidad de agua aceptable para el proceso de reinyección será el que la Cía QUIMIPAC ha venido utilizando, sumándose a éste el respectivo coagulante y floculante que la Cía. utilice, sin olvidarnos que de dicho tratamiento dependerá el funcionamiento de la nueva planta, poniendo énfasis en el control de sólidos mediante la instalación de filtros para evitar taponamiento de la tubería y de las bombas de reinyección, así como un correcto manejo de los otros químicos para evitar la presencia de corrosión, escala, bacterias, etc.

En las figuras 3.2. y 3.3. se indica el sistema de reinyección de agua sugerido y el sistema de tratamiento de sólidos respectivamente, para la Estación Shushufindi Sur.

FIGURA 3.2.

Fuente: Departamento de Proyectos Especiales-Lago Agrio Elaborado por: Mayra Silva P.

CAPÍTULO 4

ANÁLISIS TÉCNICO-ECONÓMICO DEL PROYECTO

Es importante para un proyecto saber los costos que van a tener las distintas fases y el porcentaje total del gasto, ya que todo radica en que su implementación debe satisfacer las exigencias técnicas conjugadas con mínimos costos de instalación y operación. Es así que, el presente análisis indica en forma general los montos aprobados y los valores comprometidos en el proyecto.

4.1. ANÁLISIS ECONÓMICO

La evaluación económica se basa principalmente en el criterio del valor actual neto (VAN) y la tasa interna de retorno (TIR), los cuales determinarán la puesta en marcha o abandono del proyecto.

Un proyecto es económicamente rentable cuando:

- El valor actual neto (VAN) es mayor que cero
- La tasa interna de retorno (TIR) es mayor a la tasa de actualización.

La tasa de actualización que el departamento financiero de PETROPRODUCCIÓN contempla en sus proyectos es del 12.00% anual y del 1.0 % mensual.

Siendo necesario determinar los costos, los cuales se dividirán en tres partes que son:

La amortización de los activos

- Los costos directos
- Los costos indirectos

4.1.1. AMORTIZACIÓN DE LOS ACTIVOS

Para este análisis se requerirá desglosar los activos que se utilizan en la reinyección de agua. Para hallar el costo de los activos por barril de agua dividimos el costo de los activos para las reservas probadas totales y dividirla para el BSW.

Es así que el costo de los activos por barril de agua es:

Costo de los activos = 5511707

Reservas Probadas totales = 278921000 bls

BSW promedio de la Estación SUR = 86.63

Costo de los activos por barril de agua = reservas probadas BSW ()

Costo de los activos por barril de agua 0.023

Para el caso del petróleo, los costos de producción se refieren a la cantidad que la empresa debe pagar por un barril producido, estos incluyen el valor operativo, de depreciación y de transporte, para realizar el análisis del presente estudio se utilizó el valor de 7.24 USD, costo de operación asumido por PETROPRODUCCIÓN para el Campo Shushufindi.

En la tabla 4.1. se indica el sistema sugerido para optimización de la reinyección de agua, con sus respectivos precios.

TABLA 4.1. SISTEMA SUGERIDO PARA LA OPTIMIZACIÓN DE LA REINYECCIÓN DE AGUA

ESTACIÓN SUR

ITEM	DESCRIPCIÓN	UNI	CANT.	P. UNIT	P. TOTAL
Α	EQUIPOS PRINCIPALES				6706169.857
1	TANQUE DE TRATAMIENTO DE AGUA 50000 BLS	U	1	850000	850000
2	TANQUE CLARIFICADOR 50000 BLS	U	1	850000	850000
3	TANQUE SEDIMENTADOR 50000 BLS	U	1	850000	850000
4	TANQUE DE ALMACENAMIENTO 50000	U	1	850000	850000
5	BOMBAS BOOSTERS	U	2	28941	57881
	BOMBAS DE ALTA PRESIÓN	U	2	156279	312559
7	BOMBAS DE TRANSFERENCIA	U	2	32414	64827
8	BOMBAS PARA SISTEMA DE INYECCIÓN DE QUÍMICOS		2	6880	13760
9	FILTROS	U	4	714285.71	2857142.857
В	SISTEMA DE GAS BLANKET	GLB	1	82000	82000
1	INCLUYE, TUBERÍA, VÁLVULAS, ACCESORIOS				
С	VÁLVULAS, TUBERÍAS Y ACCESORIOS	GLB	1	142748	142748
D	OBRA ELÉCTRICA	GLB	1	84000	84000
	CABLES, CONECTORES, TERMINALES PARA CABLES, ARRANCADORES, TABLEROS DE CONTROL, etc.				
E	INSTRUMENTOS Y SISTEMA DE CONTROL	GLB	1	82000	82000

TABLA 4.1. CONTINUACIÓN.

ITEM	DESCRIPCIÓN	UNI	CANT.	P. UNIT	P. TOTAL
1	CONTROLADOR LÓGICO PROGRAMABLE (PLC), MÓDULOS I/O, FUENTE DE PODER				
2	COMPUTADOR DE ESCRITORIO DE ULTIMA TECNOLOGÍA MARCA DELL, DISCO DURO DE 100 GB, VELOCIDAD 3 GHz, PANTALLA PLANA LCD, TECLADO, MOUSE, PARLANTES				
3	SOFTWARE Y VISUALIZACIÓN PARA CONTROL SUPERVISORIO				
4	INSTRUMENTOS DE CAMPO, SENSORES, TRANSMISORES, MEDIDORES DE FLUJO, CONTACTORES, FUSIBLES, ETC.				
F	INSTALACIÓN Y MONTAJE – MECÁNICA	GLB	1	1222132	1222132
1	SOLDADURA DE TUBERÍAS				
2	PRUEBAS HIDROSTÁTICAS				
3	MONTAJE DE VÁLVULAS,				
G	INSTALACIÓN Y MONTAJE - SISTEMA ELÉCTRICO E INSTRUMENTACIÓN	GLB	1	49800	49800
1	INSTALACIÓN DE INSTRUMENTOS				
2	PROGRAMACIÓN DE PLC				
3	INSTALACIÓN DE SOFTWARE Y HARDWARE				
4	CONFIGURACIÓN, PRUEBAS Y PUESTA EN OPERACIÓN				

TOTAL \$8368849.857

Fuente: Departamento de Proyectos Especiales-Lago Agrio Elaborado por: Departamento de Proyectos Especiales-Lago Agrio

4.1.2. COSTOS DIRECTOS

Los costos que se incluyen son:

- Costo de la energía
- Costo de los químicos
- Costos del mantenimiento

4.1.2.1. Costo de la energía

El costo total de energía es de 598000 USD. Del requerimiento de energía, tan sólo el 23.98% es utilizado en la reinyección de agua, lo cual corresponde a 143400 USD. Este valor es dividido para los 9966383 bls que se han reinyectado desde Enero a Octubre de 2007:

4.1.2.2. Costo de los químicos

El costo de la inyección de químicos se obtiene con el costo mensual de los químicos, dividido para la producción mensual:

Los mismos que se indican en la tabla 4.2., de la página siguiente:

TABLA 4.2. COSTO DE LOS QUÍMICOS UTILIZADOS EN LA ESTACIÓN SUR

Químico	SL	JR	COSTO	COSTO
Quinico	GPM	*ppm	US\$/GAL	US\$/MES
Antiescala MX-507	1421	43.7	10	14210.0
Anticorrosivo P-1106	482	14.9	8.25	3976.5
Biocida BAC-98	180	4.4	10	1800.0
Surfactante DT-273	123	3.9	14.6	1795.8
Coagulante NH-17 A-105	0	0.0	11.5	0.0
Floculante A-100	0	0.0	11.5	0.0
				21782.3

^{*}ppm = Concentración de químicos necesaria que se debe alcanzar para cumplir con el tratamiento químico.

Fuente: Departamento de Corrosión-Shushufindi

Elaborado por: Mayra Silva P.

4.1.2.3. Costo de mantenimiento

En la tabla 4.3., se indican el costo de mantenimiento del sistema cerrado:

TABLA 4.3. COSTO DE MANTENIMIENTO REALIZADOS EN LA ESTACIÓN SUR

Operación	Costo
Reparaciones mayores	91687.0
Mantenimiento de motores	210566.52
Mantenimiento de equipos REDA	28500
Mantenimiento de equipos Wood Group	110267.04
Mantenimiento del Sistema Cerrado	84000
Costo de mantenimiento total	525021.16

Fuente: Ingeniería de Petróleos-Petroproducción, Quito

Elaborado por: Mayra Silva P.

El agua reinyectada desde Enero a 19 de Octubre de 2007 es 9966383 bls; entonces tenemos que el costo de mantenimiento por barril es:

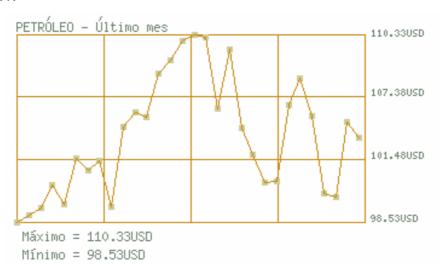
4.1.3. COSTOS INDIRECTOS

En estos costos se incluye los salarios, medio ambiente, relaciones comunitarias, entre otros. Para cuantificar su valor se tomará el 30 % de los costos directos, el cual es 0.095 USD, siendo el 30% igual a 0.0286 USD.

Es así que en la tabla 4.4., se muestra los costos operativos de producción de petróleo y agua:

TABLA 4.4. COSTOS OPERATIVOS DE PRODUCCIÓN DE PETRÓLEO Y AGUA

Descripción	COSTO
Amortización de los activos (agua producida)	0.0263
Costos Directos (Energía+Químicos+Mantenimiento, agua producida)	0.095
Costos Indirectos (30% de los Costos Directos, agua producida)	0.029
Costo total (barril de agua)	0.15 USD
Costo total (barril de petróleo)	7.24 USD
Costo operativo total	7.39 USD/bls


Fuente: Ingeniería de Petróleos-Petroproducción, Quito

Elaborado por: Mayra Silva P.

4.1.4. INGRESOS DEL PROYECTO

Los ingresos de este proyecto se refieren al resultado de multiplicar el número de bls de petróleo producidos por el precio de cada barril, el cual ha tenido una tendencia incremental, para el presente estudio se tomará el mínimo costo que se ubica en 98.53 dólares, contemplando los castigos que mantiene el crudo Ecuatoriano, para efectos de este análisis se mantiene invariable durante los siguientes 20 años, por lo tanto los ingresos podrían ser mayores basados en el comportamiento incremental en el precio del barril de petróleo. La variación del precio de petróleo se puede observar en la figura 4.1.

FIGURA 4.1.

Fuente: Banco Central del Ecuador

Elaborado por: Banco Central del Ecuador

4.1.5. VALOR ACTUAL NETO (VAN)

Denominamos Valor Actual Neto de un proyecto a la suma algébrica de los valores actualizados de cada mes.

$$VAN = \sum_{k=0}^{n} \frac{1-i^{k}}{(1-i)^{k}}$$

$$(3.5)$$

Donde:

FNC_k = Flujo Neto de Caja del año k

i = Tasa de Actualización de la empresa (i = 12.00%)

4.1.6. TASA INTERNA DE RETORNO (TIR)

La tasa interna de retorno es la tasa de rendimiento por periodo con la cual la totalidad de los beneficios actualizados son exactamente igual a los desembolsos expresados en moneda actual. Para ello se emplea la siguiente ecuación:

$$VAN = \sum_{k=0}^{n} \frac{1}{(k+1)^{k}} = 0$$
 (4.6)

- Cuando la tasa interna de retorno es mayor a la tasa de actualización (i), el proyecto es rentable.
- Cuando la tasa interna de retorno es igual a la tasa de actualización (i), el proyecto no tiene pérdidas ni ganancias.
- Cuando la tasa interna de retorno es menor a la tasa de actualización (i), el proyecto no es rentable.

Los resultados obtenidos de Valor Actual Neto (VAN) y Tasa Interna de Retorno (TIR) permitirá determinar si la aplicación del proyecto es rentable o no.

4.1.7. RELACIÓN COSTO-BENEFICIO (RCB)

La relación Costo/Beneficio (RCB), es otro método de evaluación de proyectos que, al igual que los anteriores, muestra de forma clara la rentabilidad de un proyecto considerando los ingresos generados, los gastos y la inversión, todos calculados en el período de la inversión, este método es relativamente simple y se tiene los siguientes criterios de aceptación del proyecto:

Si RCB > 1, el proyecto es aceptable (los ingresos son mayores que los egresos)

Si RCB = 1, el proyecto es indiferente (los ingresos son iguales a los egresos)

Si RCB < 1, el proyecto no es aceptable (los ingresos son menores que los egresos)

4.1.8. PERIODO DE RECUPERACIÓN DE LA INVERSIÓN (PRI)

El período de recuperación de la inversión de un proyecto es simplemente el tiempo necesario para recuperar la inversión mediante los flujos netos de caja de acuerdo a esto, se tiene que:

$$SFNC = \sum_{k}^{PRI} FNC = 0$$

$$= \sum_{k}^{RI} FNC = 0$$

$$()$$

Donde:

PRI = Período de Recuperación de la Inversión

SFNC = Suma Acumulada de los Flujos Netos de Caja

FNC_k = Flujo Neto de Caja al año k

El PRI no es un valor explícito por lo que está sujeto a procesos iterativos con las sumatorias de los flujos de caja que comprendan al PRI entre ellos hasta encontrar el período buscado.

4.1.9. RESULTADOS

Para la búsqueda de la tasa de descuento (TIR) que iguale los flujos positivos con el (los) negativo(s), se recurre al método de prueba y error, hasta encontrar la tasa que satisfaga esta condición.

Tradicionalmente, se asigna la tasa intuitivamente y se aplica a los flujos una y otra vez, hasta que se percibe que el resultado es cercano al valor del flujo origen

(negativos, ya que corresponde a la suma de egresos que se efectúan durante el proceso de inversión).

En la tabla 4.5., se indican los resultados para los cuales se satisface la condición que iguala los flujos negativos con los positivos, siendo el TIR = 3921 %.

TIR r r r r
$$\frac{1}{1+\binom{2}{2}}$$
 $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{2}$ $\frac{4.9}{2}$ $\frac{1}{1}$ $\frac{39.20562}{2}$ $\frac{39.20559}{2}$ $\frac{39.205609}{2}$

TABLA 4.5. CÁLCULO DEL VALOR DEL TIR


TIR = 39.20562	TIR = 39.20559	TIRc = 39.205609
-8368849.857	-8368849.857	-8368849.857
8199432.962	8199439.081	8199435.118
165985.2825	165985.5302	165985.3698
3359.951557	3359.959078	3359.954207
68.00985943	68.01006242	68.00993095
1.376523693	1.376528828	1.376525502
0.027859013	0.027859138	0.027859057
0.000563787	0.00056379	0.000563788
1.14085E-05	1.14086E-05	1.14085E-05
2.30835E-07	2.30837E-07	2.30836E-07
4.67015E-09	4.67019E-09	4.67017E-09
9.44741E-11	9.44749E-11	9.44743E-11
1.91091E-12	1.91093E-12	1.91092E-12
3.86465E-14	3.86469E-14	3.86467E-14
7.81476E-16	7.81484E-16	7.81479E-16
1.57997E-17	1.57999E-17	1.57998E-17
3.19378E-19	3.19382E-19	3.19379E-19
6.45466E-21	6.45474E-21	6.45469E-21
1.30421E-22	1.30422E-22	1.30421E-22
2.63459E-24	2.63463E-24	2.63461E-24
5.32064E-26	5.32072E-26	5.32067E-26
-2.25	4.13	-0.00000111

Fuente: Petroproducción. Elaborado por: Mayra Silva P. Para realizar el cálculo del PRI (período de recuperación de la inversión, es necesario tener la sumatoria del flujo de fondos en valor presente o actualizados, por el método analítico se determinó:

PRI T
$$= {}^{1}+ SFNC_{1+}^{1} ({}^{2}SFNC_{2}^{1})$$
 (4.10)

PRI 0 año $= {}^{(}-{}^{)}= 0.02539$ años $= 9.27$ días

FIGURA 4.2.

Fuente: Petroproducción Elaborado por: Mayra Silva P.

Por medio de la figura 4.2., que muestra la sumatoria de flujos netos de caja en valor presente o en valores actualizados al año cero, se puede determinar el período de recuperación de la inversión en el punto en que la curva interseca con el eje de coordenadas de tiempo, con la figura 4.2., se determinó un valor de 9.27 días ó 0.02539 años. Mientras que la relación costo-beneficio se obtiene al aplicar la ecuación 4.11.

En la tabla 4.6., se presenta los resultados del análisis económico.

TABLA 4			_	Ocata Issueda Is		Costo operativo de			
RESULT	SULTADOS DEL ESTUDIO ECONOMICO		SULTADOS DEL ESTUDIO ECONÓMICO		ECONÓMICO	Costo de venta de petróleo	98.53	producción de petróleo	7.24
-				Tasa de actualización	12	Costo operativo de producción de agua	0.15		
			Producción anual	Producción anual de	Ingrasas nor	Costos C	perativos		
	Período	Año	de petróleo	agua	Ingresos por ventas	Costo operativo de petróleo	Costo operativo de agua		
	0	2007	0	0	0	83688	49.857		
	1	2008	4065408.72	12721878.9	400564721.2	29433559.13	1908281.835		
	2	2009	3707815.37	12757050.3	365331048.4	26844583.28	1913557.545		
	3	2010	3381675.93	12792221.8	333196529.4	24483333.73	1918833.27		
	4	2011	3084223.72	12827393.3	303888563.1	22329779.73	1924108.995		
	5	2012	2812935.4	12862564.7	277158525	20365652.3	1929384.705		
	6	2013	2565509.6	12897736.2	252779660.9	18574289.5	1934660.43		
	7	2014	2339847.38	12932907.6	230545162.4	16940495.03	1939936.14		
	8	2015	2134034.4	12968079.1	210266409.4	15450409.06	1945211.865		
	9	2016	1946324.74	13003250.6	191771376.6	14091391.12	1950487.59		
	10	2017	1775126.01	13038422	174903165.8	12851912.31	1955763.3		
	11	2018	1618985.93	13073593.5	159518683.7	11721458.13	1961039.025		
	12	2019	1476579.93	13108765	145487420.5	10690438.69	1966314.75		
	13	2020	1346699.96	13143936.4	132690347.1	9750107.71	1971590.46		
	14	2021	1228244.23	13179107.9	121018904	8892488.225	1976866.185		
	15	2022	1120207.87	13214279.4	110374081.4	8110304.979	1982141.91		
	16	2023	1021674.38	13249450.8	100665576.7	7396922.511	1987417.62		
	17	2024	931807.903	13284622.3	91811032.68	6746289.218	1992693.345		
	18	2025	849846.08	13319793.8	83735334.26	6152885.619	1997969.07		
	19	2026	775093.618	13354965.2	76369974.18	5611677.794	2003244.78		
	20	2027	706916.384	13390136.7	69652471.32	5118074.62	2008520.505		
	То	tal	38888957.56	261120155.5	3831728988	281556052.7	39168023.33		

Fuente: Petroproducción Elaborado por: Mayra Silva P.

TABLA 4.6. CONTINUACIÓN

		Costo	s V.A.		
Flujo de Caja	Ingresos V.A.	Costos V.A. de petróleo	Costos V.A. de agua	Flujo de Caja Actualizado	SFNC _k actualizado
-8368849.857	0	8368849.857		-8368849.857	-8368849.857
369222880.2	357647072.5	26279963.51	1703823.067	329663285.9	321294436
336572907.6	291239675.1	21400337.44	1525476.359	268313861.3	589608297.3
306794362.4	237162708.3	17426753.35	1365787.62	218370167.3	807978464.6
279634674.4	193126675.7	14190978.71	1222806.051	177712890.9	985691355.5
254863488	157267190.4	11556018.05	1094784.697	144616387.6	1130307743
232270711	128066043	9410313.116	980159.1827	117675570.7	1247983314
211664731.2	104286923.3	7663019.635	877528.5907	95746375.06	1343729689
192870788.5	84923076.18	6240161.083	785638.4471	77897276.65	1421626966
175729497.9	69154680.92	5081496.903	703365.3786	63369818.64	1484996784
160095490.2	56314138.37	4137971.804	629703.4397	51546463.13	1536543247
145836186.5	45857809.72	3369639.118	563751.8589	41924418.74	1578467666
132830667.1	37342997.18	2743969.345	504704.0212	34094323.81	1612561990
120968648.9	30409202.83	2234473.038	451837.6469	27722892.14	1640284882
110149549.6	24762865.46	1819579.274	404505.9883	22538780.19	1662823662
100281634.5	20164932.02	1481722.397	362129.9163	18321079.7	1681144742
91281236.53	16420736.16	1206598.293	324190.865	14889947	1696034689
83072050.12	13371757.35	982558.8468	290224.5089	12098973.99	1708133663
75584479.57	10888908.55	800118.724	259815.0789	9828974.743	1717962638
68755051.61	8867071.553	651553.8216	232590.2947	7982927.437	1725945565
62525876.19	7220646.381	530574.2393	208216.8234	6481855.318	1732427420
3511004912	1894495111	139207800.7	14491039.84	1740796270	

Fuente: Petroproducción Elaborado por: Mayra Silva P.

Es así que, en la tabla 4.7., se presenta un resumen de los resultados del análisis económico, los mismos que sirven para demostrar que el proyecto es rentable.

TABLA 4.7. RESUMEN DE LOS RESULTADOS DEL ANÁLISIS ECONÓMICO

Flujo descontado	1740796270
Costos descontados	153698840.5
Beneficios descontados	1894495111
VAN	1732427420
TIR	3921

TABLA 4.7. CONTINUACIÓN

RCB	11.7
PRI	9.27

Fuente: TABLA 4.6.

Elaborado por: Mayra Silva P.

Los datos utilizados en las proyecciones de producción de petróleo y agua se obtienen de los datos que se indican en el Anexo No 6.

CAPÍTULO 5

CONCLUSIONES Y RECOMENDACIONES

5.1.CONCLUSIONES:

- Del análisis de las características del agua de la Estación Shushufindi Sur, se determinó que el agua tiende a formar incrustaciones de carbonato de calcio, ya que la depositación de las mismas causa problemas como: disminución de volúmenes reinyectados, incremento de presiones de reinyección, taponamiento de líneas, daños de bombas o formaciones receptoras, daños en equipos, etc. Se debe proveer de un tratamiento químico que prevenga la formación de dichas incrustaciones.
- El incremento en los sólidos suspendidos es un indicativo de corrosión, formación de incrustaciones o actividad bacterial; el cual puede ser contrarrestado al tener un tratamiento químico eficiente.
- El control de las bacterias sulfato reductoras no debe ser descuidado puesto que los depósitos de sulfuro de hierro en las tuberías obstruyen las líneas, llegando en muchos casos a taponarlas casi por completo. De igual forma, el sulfuro de hidrógeno como producto de la actividad bacteriana incrementa la corrosividad del agua.
- El flujo o caudal de agua a la entrada y salida del tanque clarificador y/o tanque de sedimentación no era igual, debido al mal funcionamiento de la interconexión del gas blanket en los tanques 110, 120 y 130. Lo que ocasionaba un abastecimiento menor hacia el tanque de agua tratada y el incremento del nivel

de agua en el tanque de lavado (TK-200), por lo cual se tomó la decisión de poner en by pass todo el sistema y bombear directamente a los pozos.

- PETROPRODUCCIÓN, viene incumpliendo con el Decreto Nº 1215 del Reglamento Ambiental para las operaciones hidrocarburíferas, publicado en el registro oficial Nº 265 del 13 de febrero de 2001, causando inconvenientes a las comunidades de la región, ya que no se dispone de estudios de valoración de impactos ambientales causados por el agua de formación en el área Shushufindi, además no se cumple con el literal c.4., del artículo 29 del Reglamento 1215 al no hacer estudios que determinen que la formación seleccionada no es fuente de agua dulce para consumo humano ni riego, esto es que contenga sólidos totales disueltos mayor a 5000 ppm.
- Uno de los mayores inconvenientes en la operación de la planta instalada por la compañía SOLIPET S.A., fue el diseño de la tubería de descarga de los clarificadores y sedimentadores. La tubería de 6 pulgadas tomaba el agua de salida directamente de una altura de 20 pies o más, y no se llenaba completamente, ocasionando un efecto de vacío que generaba el ingreso de aire al sistema.
- En la actualidad, no se está dando tratamiento químico del agua de formación para separación de sólidos, lo que ocasiona problemas de taponamiento de líneas.
- Una de las principales dificultades que se presenta en el sistema reinyector es el mantenimiento óptimo de las instalaciones de superficie. Para lo cual, se realizan monitoreos continuos con el fin de evitar problemas en los equipos superficiales.
- En la Estación Sur, el tanque de lavado se encuentra con bastantes sedimentos, dando lugar a que el tiempo de residencia disminuya y, por tanto, la concentración

de petróleo en agua sea elevada, por lo que es necesaria una reformulación del producto demulsificante que mejore la calidad de agua que se drena de los tanques de lavado.

- La producción de agua de formación, llegará a alcanzar grandes volúmenes debido a la relación de movilidad, que cada vez favorece al agua en los pozos productores, la misma que será reinyectada en formaciones geológicas que reúnan los parámetros necesarios, y previo tratamiento en superficie.
- Al no disponer del filtro atmosférico, se ocasiona un arrastre de sólidos de un tanque a otro y el incremento de la turbidez, sumada la falta de drenaje de sólidos ocasionando así los problemas que se mantienen en la actualidad.
- La acumulación de sólidos en el Wash Tank limita un tratamiento adecuado con Biocida provocando Bacterias Sulfato Reductoras (BSR), que posteriormente se presentan en el Sistema de Tratamiento del Agua de Reinyección, obstruyéndolo y causando uno de los principales problemas.
- Uno de los problemas en el sistema de bombeo es la presencia de incrustaciones de Carbonato de Calcio (CaCO₃), donde los daños frecuentes van desde roturas de eje hasta la inutilización del equipo.
- Para alcanzar la capacidad de saturación de Tiyuyacu se requiere de 89 años, considerando un promedio anual de confinamiento de 28339516 bls para el Área Shushufindi-Aguarico.
- De acuerdo a la evaluación económica es un proyecto rentable ya que cumple con los criterios de aceptación de los métodos de análisis utilizados, recuperando la inversión de 8368849.857 dólares en 9.27 días.

 El proyecto es rentable por tener un VAN al final de los 20 años es 1732427420 dólares, un TIR de 3921% y un RCB de 11.7.

5.2. RECOMENDACIONES:

- Se recomienda diseñar, construir e instalar un Sistema Cerrado para la clarificación del agua de formación que se produce en la Estación Shushufindi Sur, debido a la tendencia del agua a formar escala, ya que un sistema cerrado permite minimizar el desprendimiento de CO₂ y consecuentemente disminuye la depositación de carbonato de calcio en las líneas. Además, requiere menor cantidad de químico anticorrosivo al tener menos problemas de corrosión, reduciendo el costo de su mantenimiento.
- Es necesario realizar periódicamente un análisis físico químico del agua de formación de los tanques de lavado, antes de que ésta ingrese a la planta de tratamiento, en la succión y en la descarga de las bombas, de tal manera de que los sistemas de reinyección dispongan de información oportuna para aplicar los correctivos necesarios que ayudarán a mantener y a mejorar la calidad del agua. Esto permitirá, optimizar los químicos y mantener bajo control los caudales y presiones de reinyección.
- Para evitar la oxidación del agua es indispensable implementar el sistema de gas blanket, ya que disminuye la turbidez del agua e impide daños a los sistemas de reinyección.
- Se recomienda instalar filtros atmosféricos, para evitar el arrastre de sólidos de un tanque a otro, disminuyendo la turbidez del agua.

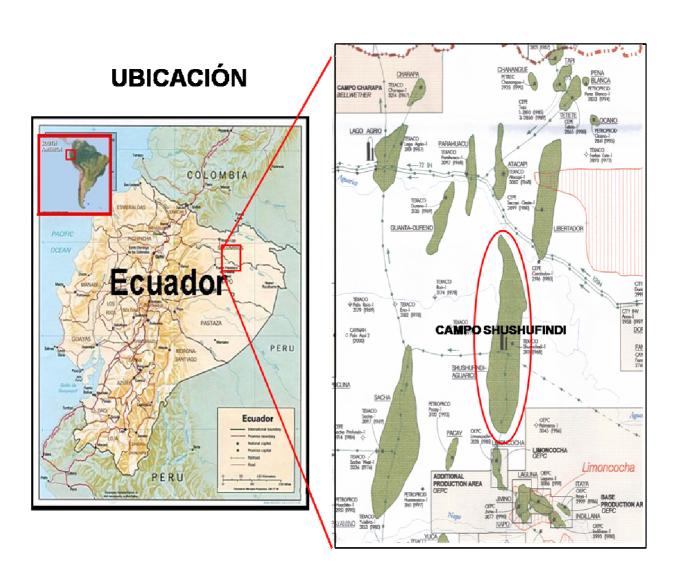
- Revisar el tratamiento químico aplicado, y de ser posible aplicar una prueba de jarras que permita evaluar otros coagulantes y floculantes que produzcan flóculos grandes y pesados, disminuyendo la dificultad del manejo de sólidos.
- Se recomienda realizar los estudios pertinentes a las arenas receptoras de agua de formación, específicamente de Tiyuyacu, para disponer de información necesaria a fin de evaluar el comportamiento de la formación Tiyuyacu.
- Se debe verificar la calidad de todos los químicos que se inyectan desde los bulk tanks semanalmente, midiendo su dosificación, la gravedad específica y la viscosidad, para garantizar un adecuado tratamiento químico.
- Se debe considerar la diferencia de presión entre la descarga de la planta y la presión de inyección del pozo, así como la velocidad del agua, para que se pueda evaluar el grado de taponamiento de la línea horizontal.

REFERENCIAS BIBLIOGRÁFICAS

- ALMEIDA T; (1992), Estudio regional de la Formación Tiyuyacu, Tesis de grado (UCE).
- AUCANCELA L, BEDÓN M, (2005), Análisis y evaluación de la Formación
 Tiyuyacu como receptor de agua de formación en el bloque 16, Tesis de
 grado (UCE).
- FLORES MUÑOZ Luis, (2001), Análisis de los sistemas de tratamiento y reinyección de aguas de formación en las facilidades de producción de los campos Aguarico y Guanta, Tesis de grado (EPN).
- GARCÉS FRÍAS Segundo Aquilino, (2001), *Análisis comparativo entre los sistemas abiertos y cerrados de tratamiento y reinyección para el Campo Shushufindi*, Tesis de grado (EPN).
- MANOBANDA Edwin, (2005), Diseño de una planta de tratamiento de agua de formación para la reinyección en el Campo Lago Agrio, Tesis de grado (ESPOCH).
- YÁNEZ CARRERA Tatty, (2000), Investigación de métodos para contrarrestar la proliferación de bacterias sulforeductoras en un sistema de reinyección de agua del Distrito Amazónico (Shushufindi Suroeste), Tesis de grado (UCE).
- Archivos Técnicos del Campo Shushufindi, PETROPRODUCCIÓN.
- Banco Central del Ecuador, (2007). Precio del barril de petróleo. www.bce.fin.ec/resumen_ticker.php?ticker_value=petroleo.
- Dr. Charles C. Patton, Second Edition, (1995), APPLIED WATER TECHNOLOGY.
- Fipetrol Tec Latinoameriaca C.A, Formación e investigación petrolera y energética, Quito-Ecuador, REINYECCIÓN DE AGUA Y TRATAMIENTO.

- Kawamura, S., Journal AWWA 91 (12):77, (1999), DESING AND OPERATION OF HIGH RATE FILTERS.
- The petroleum publishing company. Tulsa, Oklahoma, "GLOSARIO DE LA INDUSTRIA PETROLERA".

ANEXOS


ÍNDICE DE ANEXOS

٩N	IEXO NO. 1: MAPA DE UBICACIÓN DEL CAMPO SHUSHUFINDI	. 143
٩N	IEXO No. 2: DESCRIPCIÓN DEL POTENCIAL ZETA	. 146
٩N	IEXO No. 3: ANÁLISIS DE AGUA	. 149
	Datos de Análisis de agua	
	ECUACIONES DE TITULACIÓN	. 151
	CONCENTRACIÓN DE SULFATOS	. 151
	FORMATO No. 1: CÁLCULOS DE TITULACIÓN, CONCENTRACIÓN DE	
	SULFATO, CÁLCULO DE SODIO POR BALANCE	
	IÓNICO	
	FORMATO No. 2: FORMATO DE REPORTE DE ANÁLISIS DE AGUA	. 154
	FORMATO No. 3: CÁLCULO DE LA SOLUBILIDAD DEL CARBONATO	
	DE CALCIO	. 155
	FORMATO No. 4: CÁLCULO DEL pH DEL AGUA DEL SISTEMA DE	
	INYECCIÓN	. 156
	FORMATO No. 5: CÁLCULO DEL IS DEL AGUA DEL SISTEMA DE	
	INYECCIÓN	. 157
	FORMATO No. 6: CÁLCULO DEL IS EN POZOS DE INYECCIÓN DE	
	AGUA	. 158
	FORMATO No. 7: CÁLCULO DE LA CANTIDAD DE ESCALA DE	4-0
	CaCO ₃ PRECIPITADA	. 159
	FORMATO No. 8: CÁLCULO DE LA SOLUBILIDAD DEL SULFATO DE	400
	CALCIO	. 160
	FORMATO No. 9: CÁLCULO DE LA SOLUBILIDAD DEL SULFATO DE	404
	DE BARIO	. 161
	FORMATO No. 10: CÁLCULO DE K _c PARA EL SULFATO DE	400
	ESTRONCIOFORMATO No. 11: CÁLCULO DE LA SOLUBILIDAD DEL SULFATO DE	. 162
	ESTRONCIO	160
	FORMATO No. 12: CÁLCULO DE LA CALIDAD DEL AGUA DE MAR	
	FORMATO No. 12: CALCULO DE LA CALIDAD DEL AGUA DE MAR FORMATO No. 13: CÁLCULO DE LA CALIDAD DEL AGUA	. 104
	TONIVIATO NO. 13. CALCULU DE LA VALIDAD DEL AGUA	

PRODUCIDA165
FORMATO No. 14: GRÁFICO DE LA CALIDAD DEL AGUA-AGUA
DE MAR166
FORMATO No. 15: GRÁFICO DE LA CALIDAD DEL AGUA-AGUA
PRODUCIDA167
EJEMPLO DE CÁLCULO No. 1: CÁLCULOS DE TITULACIÓN,
CONCENTRACIÓN SULFATO,
CÁLCULO DE SODIO POR BALANCE
IÓNICO168
EJEMPLO DE CÁLCULO No. 2: FORMATO DE REPORTE DE
ANÁLISIS DE AGUA169
EJEMPLO DE CÁLCULO No. 3: CÁLCULO DE LA SOLUBILIDAD DEL
CARBONATO DE CALCIO 170
EJEMPLO DE CÁLCULO No. 4: CÁLCULO DE C _{Wtr}
EJEMPLO DE CÁLCULO No. 5: CÁLCULO DE LA CANTIDAD DE
ESCALA DE CaCO₃ PRECIPITADA 172
EJEMPLO DE CÁLCULO No. 6: CÁLCULO DE LA SOLUBILIDAD DEL
SULFATO DE CALCIO 173
EJEMPLO DE CÁLCULO No. 7: CÁLCULO DE LA SOLUBILIDAD DEL
SULFATO DE BARIO174
EJEMPLO DE CÁLCULO No. 8: CÁLCULO DE K _c PARA EL SULFATO
DE ESTRONCIO175
EJEMPLO DE CÁLCULO No. 9: EJEMPLO: MEZCLA DE AGUAS
EJEMPLO DE CÁLCULO No. 10: EJEMPLO: CÁLCULO DE LA TASA DE
CORROSIÓN USANDO CUPONES 177
EJEMPLO DE CÁLCULO No. 11: CÁLCULO DEL pH DEL AGUA DEL
SISTEMA DE INYECCIÓN178
EJEMPLO DE CÁLCULO No. 12: CÁLCULO DEL IS DEL AGUA DEL
SISTEMA DE INYECCIÓN179
EJEM PLO DE CÁLCULO No. 13: CÁLCULO DEL IS EN POZOS DE
INYECCIÓN DE AGUA180
EJEMPLO DE CÁLCULO No. 14: CÁLCULO DE LA CANTIDAD DE

ESCALA DE CaCO₃ PRECIPITADA	181
ANEXO No 4: FORMATOS Y EJEMPLOS DE CÁLCULO UTILIZANDO LAS	
ECUACIONES DE ODDO-TOMSON QUE CONSIDERA FASE	
GASEOSA PRESENTE Y PH DESCONOCIDO PARA LOS	
POZOS PRODUCTORES DE LA ESTACIÓN SHUSHUFINDI	
SUR	182
FORMATO No. 1: CÁLCULO DEL IS y pH DEL AGUA DEL SISTEMA	
DE INYECCIÓN	183
FORMATO No. 2: CÁLCULO DE K _c	185
FORMATO No. 3: CÁLCULO DE LA CANTIDAD DE ESCALA DE	
CARBONATO DE CALCIO PRECIPITADA	186
FORMATO No. 4: CÁLCULO DE LA K _{st}	187
FORMATO No. 5: CÁLCULO DE LA PRECIPITACIÓN DE SULFATO	
DE CALCIO	188
EJEMPLO DE CÁLCULO No. 1: CÁLCULO DEL IS Y pH DEL AGUA	
DEL SISTEMA DE INYECCIÓN	190
EJEMPLO DE CÁLCULO No. 2: CÁLCULO DE Kc	192
EJEMPLO DE CÁLCULO No. 3: CÁLCULO DE LA CANTIDAD DE	
ESCALA DE CARBONATO DE CALCIO	
PRECIPITADA	193
EJEMPLO DE CÁLCULO No. 4: CÁLCULO DE LA K _{st}	194
EJEMPLO DE CÁLCULO No. 5: CÁLCULO DE LA PRECIPITACIÓN	
DE SULFATO DE CALCIO	195
ANEXO No 5: FORMATOS USADOS PARA DETERMINAR EL IS Y PTB	
DE LOS POZOS REINYECTORES Y PRODUCTORES	197
ANEXO No. 6: PROYECCIONES DE PRODUCCIÓN DE AGUA Y	
PETRÓLEO	225

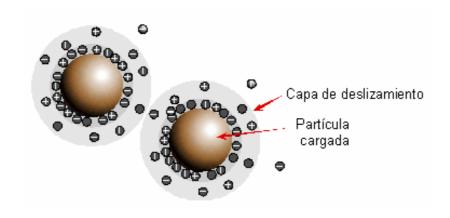
ANEXO No. 1 MAPA DE UBICACIÓN DEL CAMPO SHUSHUFINDI

Fuente: Departamento de Yacimientos-Quito. Elaborado por: Departamento de Yacimientos-Quito

ABCDEFGHI PETROPRODUCCION

MAPA DE UBICACIÓN DE POZOS PERFORADOS EN EL CAMPO SHUSHUFINDI

Fuente: Departamento de Yacimientos-Quito. Elaborado por: Departamento de Yacimientos-Quito

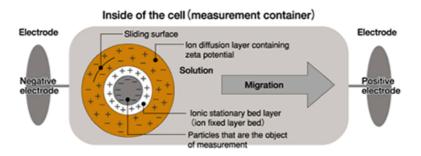

ANEXO No. 2 DESCRIPCIÓN DEL POTENCIAL ZETA

POTENCIAL ZETA

El potencial zeta es uno de los parámetros fundamentales que controla la interacción de las partículas en suspensión.

Cuando partículas con carga se aproximan entre ellas, el que se repelen depende del equilibrio entre las fuerzas de atracción experimentadas en todos los cuerpos, y de las fuerzas de repulsión determinadas por la magnitud del potencial en la capa de deslizamiento. Este es el potencial a una corta distancia de la superficie en dónde las moléculas del dispersantes se mueven con respecto a las moléculas en el límite de la superficie.

El potencial zeta es el potencial en la capa de deslizamiento. Las partículas interactúan de acuerdo al potencial en esta capa.


Fuente: QuimiNet Elaborado por: QuimiNet

El principio de determinación del potencial zeta es muy simple.

Se aplica un campo eléctrico controlado por medio de electrodos inmersos en una muestra en suspensión; esto provoca que las partículas cargadas se muevan a través del electrodo de polaridad opuesta.

Las fuerzas viscosas que actúan en la partícula en movimiento tienden a oponerse a este movimiento, estableciéndose un equilibrio entre ambas fuerzas de atracción electrostática y la resistencia de viscosidad.

.

Fuente: QuimiNet

Elaborado por: QuimiNet

ANEXO No. 3 ANÁLISIS DE AGUA

Datos de Análisis de agua

Se han analizado varias muestras de agua y los procedimientos de análisis y los datos analiticos del agua del proceso son los siguientes:

PROCEDIMIENTOS

lón	Procedimiento	Indicador	Agente Titulante	Normalidad
Ca ⁺⁺	Titulación	Indicador de Calcio	EDTA	0.2
Mg ⁺⁺	Titulación	Eriocromo Negro T	EDTA	0.2
CI ⁻	Titulación	Na ₂ CrO ₄	$AgNO_3$	2
GP3 [™] O	Titulación	Fenolftaleína	H ₂ SO ₄	0.02
-3	Titulación	Metil Violeta	H ₂ SO ₄	0.02
SO ₄ =	Turbidimétrico	-	-	-
рН	Electrométrico	-	-	-

DATOS DE TITULACIÓN

lón	Mar Ego		Caliza L		Dolomita D	
	VM	VAT	VM	VAT	VM	VAT
Ca ⁺⁺	50	5.1	10	6.8	5	24.3
Mg ⁺⁺	50	32.4	10	9.7	5	50.7
Cl	25	7.3	10	10.3	5	8.8
င႖ၧီင္ငင	50	1.2	25	0	10	0
	³ 50	7.4	25	5.8	10	5.5

VM = Volumen de muestra (mL) y VAT = Volumen del Agente Titulante (mL)

OTRAS DETERMINACIONES

Formación Productora	Determinación de Sulfatos			Temperatura	
	Volumen de muestra (mL)	Transmitancia (%)		(°C)	
Mar Egeo	1	28	8.3	23	
L	1	20	6.5	50	
D	2	50	6.35	22	

ECUACIONES DE TITULACIÓN

Las concentraciones de los diferentes iones determinados por titulación pueden ser calculadas usando las siguientes ecuaciones:

Nota: Si CO₃⁼, que es el caso más común para las aguas de formación, entonces esta ecuación se transforma en:

CONCENTRACIÓN DE SULFATOS

La concentración de sulfatos se determina por una técnica turbidimétrica. El volumen de la botella colorimétrica es de 25 mL. Cuando la muestra de agua contiene más de 300 ppm de sulfatos, el medidor se sale de la escala y la muestra debe ser diluida.

Todas las aguas listadas en la página anterior contienen más de 300 ppm de sulfatos y todas fueron diluidas con agua desionizada con la finalidad de poder estar dentro del rango del colorímetro. Los volúmenes de muestras dados en la página anterior son los volúmenes reales de la muestra de agua que fueron añadidos a la botella colorimétrica. Las botellas fueron entonces aforadas hasta la marca de 25 mL con agua desionizada.

El siguiente procedimiento se usa para obtener la concentración de sulfatos:

- 1. Tomar el valor de % de transmitancia de los datos dados para el agua de interés en la página anterior y leer los correspondientes ppm de SO₄⁼ de la curva de calibración dada en la siguiente página.
- 2. Calcular el factor de dilución.

3. Multiplicar la concentración de sulfato obtenida en el paso 1 por el factor de dilución para obtener la concentración de sulfato en el agua original.

Nota: Para el método de Oddo-Tomson se utilizan las ecuaciones para fase gaseosa ausente.

FORMATO No. 1 CÁLCULOS DE TITULACIÓN, CONCENTRACIÓN DE SULFATO, CALCULO DE SODIO POR BALANCE IÓNICO

1. CÁLCULC Ca mg/L ++()	OS DE TITULACIÓN VAT N 20 = × × × —VM
Mg mg/L	VAT para la titulación de Mg - VAT para la titulación de Ca \times N 12.2 \times WM
$\operatorname{CI}_{-}(\operatorname{mg/L})$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$CO_{=3}(mg/L)$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
HCO ₃ mg/L	$= \begin{bmatrix} VAT \text{ para la titulación de HCO}_{3-\left(\times\right)}^{2} & VAT \text{ para la titulación de CO}_{3-\left(\times\right)} & N & 61 \end{bmatrix} \times \times \times \times - \dots$

2. DETERMINACIÓN DE LA CONCENTRACIÓN DE SULFATO

De la	curva de calibrad	ción, 28% de t	ransmitancia	a = _	
Formato	de Dilución = —V	′olumen de la	muestra m	<u>L</u> =	-=
	., .				

Concentración de Sulfato =

% de transmitancia x Factor de dilución

3. CÁLCULO DEL SODIO POR BALANCE IÓNICO

<u>Aniones</u>	mg/L	Peso Equivalente		meq/L
Cl		35.5		
SO ₄ =		48		
CO_3		30		
HCO ₃		61		
			Suma =	Total Aniones
Cationes	mg/L	Peso Equivalente		meq/L
Ca ⁺⁺		20		
Mg ⁺⁺		12.2		
			Suma =	Total Aniones

Concentración de sodio calculada (meq/L) = Total Aniones - Total Cationes mg/L = (meq/L)(Peso Equivalente)

FORMATO No. 2 FORMATO DE REPORTE DE ANÁLISIS DE AGUA

Solicitado por:			Muestra No.	Fecha de Muestreo:	
Campo:	Ubicación	:	Provincia:		
Bloque o Unidad:	Pozo:	Publicidad:	Formación:		Tasa B/D:
Tipo de Agua (Pro para Suministro, e		Punto de muestreo	(Tratador, Tanque, etc)		Muestreado por:
Apariencia de la m	nuestra	Clara Sólidos Suspendid	Turbia os Petróleo <u>Pr</u> esente	Coloreada Olor	
Observaciones (C	ualquier otr	a información releva	nute) [7	

SÓLIDOS DISUELTOS

<u>CATIONES</u> mg/L meq/L <u>OTRAS PROPIEDADES</u>

Sodio, Na (Calculado) pH

Calcio, Ca Gravedad Especifica, 60/60 °F(hidrómetro)

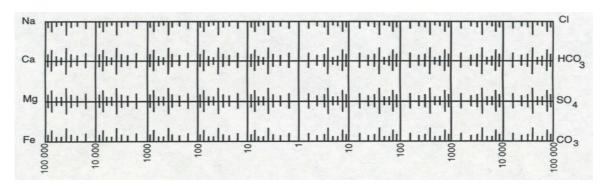
Magnesio, Mg Resistividad (Ω -m) a 68° F Bario, Ba Gases Disueltos (mg/L)

Estroncio, Sr Oxígeno

Hierro, Fe (Total) Sulfuros Totales como H₂S

Dióxido de Carbono

ANIONES Petróleo en agua (mg/L)


Cloruro, Cl Temperatura
Sulfato, SO₄ Turbidez (NTU)

Carbonato, CO₃ Sólidos Suspendidos (mg/L)

Bicarbonato, HCO₃

TDS

PATRÓN DE AGUA meq/L

FORMATO No. 3 CÁLCULO DE LA SOLUBILIDAD DEL CARBONATO DE CALCIO Método de Stiff y Davis

Des	cripción de la Muestra	a de Agua			
	Ecuaci	ión: IS = pH - pl	H _s		
1. Calcular el esfuerzo i	ónico molar del agua	(μ).			
<u>lón</u>	mg/L	<u>F</u>	-actor	<u>Producto</u>	
Na⁺		2.	.2×10 ⁻⁵		×10 ⁻⁵
Ca ⁺⁺		 5.	0×10 ⁻⁵		×10 ⁻⁵
Mg ⁺⁺		8.	2×10 ⁻⁵		×10 ⁻⁵
Ba ⁺⁺		1.	.5×10 ⁻⁵		×10 ⁻⁵
Sr ⁺⁺		2.	.3×10 ⁻⁵		×10 ⁻⁵
Cl		1.	4×10 ⁻⁵		×10 ⁻⁵
SO ₄ =		2.	1×10 ⁻⁵		×10 ⁻⁵
CO ₃		3.	.3×10 ⁻⁵		×10 ⁻⁵
HCO ₃		0.	.8×10 ⁻⁵		- ×10⁻⁵
			 Suma = μ =		×10 ⁻⁵
			μ =		-
Determinar K del apé Temperatura =		°F	°C	K =	
3. Determinar pCa del a	ipendice 13 dei manua	al de Patton. Ca =	mg/L	рСа 	
4. Calcular la alcalinidad		co			
	C	-3	mg/L		
		⁻³ =			
	Alcalinidad To	otal =	mg/L		
5. Determinar pAlk del a	apéndice 13 del manu	al de Patton.	~ A.U.		
			pAlk =		
6. Calcular pHs					
2. 23.03.0. p. 10		pH _s = K+p	oCa+pAlk =		
7. Calcular SI	10		_		
IS= pH-pH _s	10 =	-	=		

FORMATO No. 4 CÁLCULO DEL pH DEL AGUA DEL SISTEMA DE INYECCIÓN Método de Oddo y Tomson

$$\frac{\text{HCO}}{3}$$
 = Concentración de $\frac{\text{HCO}}{3}$, moles/L = mg/L ÷ 61000

C_{Wtr} = Concentración del CO₂ en el agua, moles/L

T = Temperatura, °F P = Presión, psia

μ = Esfuerzo iónico, moles/L

<u>Variable</u> G	<u>Valor</u>	<u>Factor</u>	<u>Producto</u>
Constante	+6.39	1 1	+6.39
Constante	+0.39	· · · · · · · · · · · · · · · · · · ·	+0.39
T		-1.2×10 ⁻³	
T^2		+7.9×10 ⁻⁶	
Р	·	-3.5×10 ⁻⁵	
μ		0.6	
$\mu^{1/2}$		-1.07	
		Suma = pH =	

Referencia: Oddo, J.E. and Tomson, M.B.: "Why Scale Forms and How to Predict It" SPE Production & Facilities (Feb. 1994) 47.

FORMATO No. 5 CÁLCULO DEL IS DEL AGUA DEL SISTEMA DE INYECCIÓN Método de Oddo y Tomson

Descripción de la Muestra de Agua

C_{Wtr} = Concentración del CO₂ en el agua, moles/L

T = Temperatura, °F

P = Presión, psia

μ = Esfuerzo iónico, moles/L

<u>Variable</u>	<u>Valor</u>	<u>Factor</u>	<u>Producto</u>
L		1	
Constante	+3.63	1	+3.63
Т		+8.68×10 ⁻³	
T^2		+8.55×10 ⁻⁶	
Р		-6.56×10 ⁻⁵	
μ		+1.373	
$\mu^{1/2}$		-3.42	
		Suma = IS =	

Referencia: Oddo, J.E. and Tomson, M.B.: "Why Scale Forms and How to Predict It" SPE Production & Facilities (Feb. 1994) 47.

FORMATO No. 6 CÁLCULO DEL IS EN POZOS DE INYECCIÓN DE AGUA Tendencia a la Formación de Escala de Carbonato de Calcio Método de Oddo y Tomson

Descripción de la Muestra de Agua

$$\Delta IS = \begin{pmatrix} 8.68 & 10^{-3} \Delta T \\ \times & \times \end{pmatrix} + \begin{bmatrix} 8.55 & 10^{-6} \\ \times & \end{bmatrix} + \begin{bmatrix} 72 & 72 \\ 0 & S \end{bmatrix} - \begin{pmatrix} 6.56 & 10^{-5} \Delta P \\ \times & \end{bmatrix}$$

Donde:

$$T_d$$
 = Temperatura de Fondo de Pozo, °F T_s = Temperatura de Superficie, °F

<u>Variable</u>	<u>Fondo</u>	Superficie		<u>Cambio</u>	Constante		<u>Producto</u>
Т			= _		× +8.68×10 ⁻³	=	
T^2		-	=		× +8.55×10 ⁻⁶	=	
Р		-	=		× -6.56×10 ⁻⁵	=	
			_		Suma =	_ =	
IS (Fondo)	= IS (Superf	icie) +	= _		+	_ =	

<u>Variable</u>	<u>Fondo</u>	<u>Superficie</u>		<u>Cambio</u>		<u>Constante</u>		<u>Producto</u>
Т		-	=		×	-1.20×10 ⁻³	=	
T^2		-	=		×	+7.94×10 ⁻⁶	=	
Р		-	=		×	-3.53×10 ⁻⁵	=	
					-	Suma =	=	

mg/L

PTB

FORMATO No. 7 CÁLCULO DE LA CANTIDAD DE ESCALA DE CaCO₃ PRECIPITADA

Descrip	oción de la Mue	estra de Agua			_
k Stiff y Davis = pH = k-pH =		°C			
PT = Cantidad d C = Concentrac A = Concentrac G = C + A X = C - A	ción de Caப்கு ción de ೈ	oitada, mg/L moles/L	al		
<u>lón</u> Ca ⁺⁺ CO ₋₃ -	mg/L	Factor 2.49×10^{-5} 1.64×10^{-5} $G = C + A$		moles/L	_ = C _ = A

 $(X^2+4K_c)^{1/2}$

× 0.35

 $G-(X^2+4K_c)^{1/2}$

 $PT = 50000[G-(X^2+4K_c)^{1/2}]$

Donde:

FORMATO No. 8 CÁLCULO DE LA SOLUBILIDAD DEL SULFATO DE CALCIO Método de Skillman. McDonald v Stiff

Wetodo di	e Skiiiiiaii, WcDollaii	u y Still	
Descripción de la Muestra (Ecuación:	de Agua 1000 x ₂ 4K 		
Calcular el esfuerzo iónico molar d			
	er agua (μ). <u>actor</u> <u>Producto</u>		
	2×10 ⁻⁵	×10 ⁻⁵	
	0×10 ⁻⁵	×10 ⁻⁵	
	2×10 ⁻⁵	×10 ⁻⁵	
	5×10 ⁻⁵	×10 ⁻⁵	
	3×10 ⁻⁵	×10 ⁻⁵	
	4×10 ⁻⁵	×10 ⁻⁵	
	1×10 ⁻⁵	×10 ⁻⁵	
	3×10 ⁻⁵	×10 ⁻⁵	
<u> </u>	8×10 ⁻⁵	×10 ⁻⁵	
	ma = μ =	×10 ⁻⁵	
	μ =		
	<u> </u>		
2. Determinar Kc del apéndice 15 del	manual de Patton.		
Temperatura =° F°C		; 4Kc =	
·			
3. Calcular X:			
lón mg/L Factor de Co			
Ca^{++} \times 2.5×10^{-5} \times 1.04×10^{-5} \times	×10 ⁻⁵		
$SO_4^{=}$ × 1.04×10 ⁻⁵	×10 ⁻⁵		
$X = Ca^{++} - SO_4^{-} $	×10 ⁻⁵	_	
		$X^2 = $	
		$(X^2+4K_c)^{1/2} = $	-
	$S = 1000[(X^2)]$	$^{2}+4K_{c})^{1/2}-X]=$	meq/L
4. La concentración real de CaSO₄ es		s valores:	
$\begin{array}{ccc} \underline{lón} & \underline{mg/L} & \underline{Factor} \ de \ Cc \\ Ca^{++} & \div & 20 \end{array}$	onv. meq/L		
SO ₄ ÷ 48		Real =	meq/L
Cantidad de esc	cala precipitada = 68.1 x		mg/L
		×0.35 =	PTB

FORMATO No. 9 CÁLCULO DE LA SOLUBILIDAD DEL SULFATO DE BARIO Usando Datos de Templeton

	•	JSando Datos	de rempiet	on		
	Descripción de	e la Muestra de A	∖gua:	Formacion F		
		Ecuación:	S 1000 X	- 4K X		
1. Calcular el esf	uerzo iónico m	olar del agua (µ).			
	<u>lón</u>	mg/L	<u>Factor</u>	<u>Producto</u>		
	Na⁺ 	30990	2.2×10 ⁻⁵		×10 ⁻⁵	
	Ca ⁺⁺	934	5.0×10 ⁻⁵		×10 ⁻⁵	
	Mg ⁺⁺	157	8.2×10 ⁻⁵		×10 ⁻⁵	
	Ba ⁺⁺	66	1.5×10 ⁻⁵		×10 ⁻⁵	
	Sr ⁺⁺	0	2.3×10 ⁻⁵		×10 ⁻⁵	
	Cl	48656	1.4×10 ⁻⁵		×10 ⁻⁵	
	SO ₄ =	9	2.1×10 ⁻⁵		×10 ⁻⁵	
	CO ₃	0	3.3×10 ⁻⁵		×10 ⁻⁵	
	HCO ₃	377	0.8×10 ⁻⁵		×10 ⁻⁵	
	_		- Suma = μ =		×10 ⁻⁵	
			μ =			
 Determinar Ko Temperatura = Calcular X: lón Ba⁺⁺ SO₄⁼ 	F× 0× 1	C Factor de Conv. 0.73×10 ⁻⁵	; Kc =	;4Kc = ×10 ⁻⁵ ×10 ⁻⁵ ×10 ⁻⁵		
	Λ =	Ba -5U ₄			_	
				$(X^2+4K_c)^{1/2}$		
			S - 100	$00[(X^2+4K_c)^{1/2}-X]$		 meq/L
			0 = 100			
4. La concentraci <u>lón</u> Ba ⁺⁺		actor de Conv. 68.7	•	s valores:		
$SO_4^=$	÷	48	-	Real	=	meq/L
	Ca	antidad de escala	a precipitada =	116.7 x(Real – S)	=	mg/L
				×0.35	=	PTB

FORMATO No. 10 CÁLCULO DE K_c PARA EL SULFATO DE ESTRONCIO Método de Jacques y Bourland

Descripción de la Muestra de Agua: Formacion R

	1.	Calcular	el	esfuerzo	iónico	molar	del	agua	(µ).
--	----	----------	----	----------	--------	-------	-----	------	------

<u>lón</u>	mg/L	<u>Factor</u>	<u>Producto</u>	
Na⁺	19900	2.2×10 ⁻⁵		×10 ⁻⁵
Ca ⁺⁺	5130	5.0×10 ⁻⁵		×10 ⁻⁵
Mg ⁺⁺	0	8.2×10 ⁻⁵		×10 ⁻⁵
Ba ⁺⁺	0	1.5×10 ⁻⁵		×10 ⁻⁵
Sr ⁺⁺	421	2.3×10 ⁻⁵		×10 ⁻⁵
Cl	39700	1.4×10 ⁻⁵		×10 ⁻⁵
$SO_4^=$	447	2.1×10 ⁻⁵		×10 ⁻⁵
CO ₃	0	3.3×10 ⁻⁵		×10 ⁻⁵
HCO ₃	180	0.8×10 ⁻⁵		×10 ⁻⁵
		Suma = μ =		×10 ⁻⁵
		μ =		

<u>Variable</u>	<u>Valor</u>	<u>Factor</u>	<u>Producto</u>	
Constante	0.266498	1	0.266498	×10 ⁻³
E		-244.828×10 ⁻³		×10 ⁻³
μ		+0.053543×10 ⁻³		×10 ⁻³
$\mu^{1/2}$		-0.191065×10 ⁻³		×10 ⁻³
P^2		-1.383×10 ⁻¹²		×10 ⁻³
(E)(P)		+1.103323×10 ⁻⁶		×10 ⁻³
$(\mu^{1/2})(P^{1/2})$		-0.509×10 ⁻⁹		×10 ⁻³
		Suma = R =		×10 ⁻³
		$z = log K_c = E/R =$		
		$K_c = 10^z =$		×10 ⁻⁵

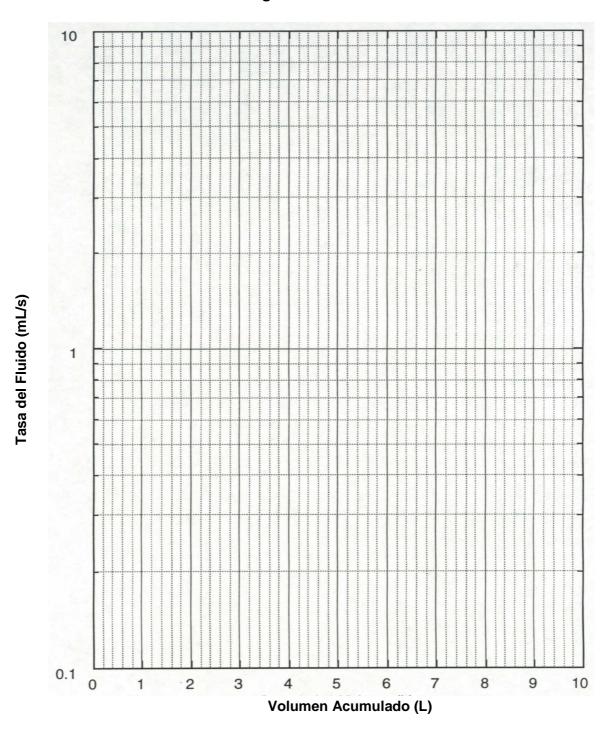
FORMATO No. 11 CÁLCULO DE LA SOLUBILIDAD DEL SULFATO DE ESTRONCIO

Descripció	n de la Muesti	a de Agua:			
	Ecuación:	S 1000 [<u> </u>		
fuerzo iónic	o molar del ad	uua (u).			
	<u>mg/L</u>		<u>Producto</u>		
Na ⁺		2.2×10 ⁻⁵		×10 ⁻⁵	
Ca ⁺⁺		5.0×10 ⁻⁵		×10 ⁻⁵	
Mg ⁺⁺		8.2×10 ⁻⁵		×10 ⁻⁵	
Ba ⁺⁺		1.5×10 ⁻⁵		×10 ⁻⁵	
Sr ⁺⁺		2.3×10 ⁻⁵		×10 ⁻⁵	
Cl		1.4×10 ⁻⁵		×10 ⁻⁵	
$SO_4^=$		2.1×10 ⁻⁵		×10 ⁻⁵	
CO_3		3.3×10 ⁻⁵		×10 ⁻⁵	
HCO ₃		0.8×10 ⁻⁵		×10 ⁻⁵	
		Suma = µ =		×10 ⁻⁵	
		μ = ⁻			
°F × ×	Factor de Conv. 1.14×10 ⁻⁵ 1.04×10 ⁻⁵	; Kc = moles/L	$\times 10^{-5}$ $\times 10^{-5}$ $\times 10^{-5}$ $\times 10^{-5}$ $\times 10^{-5}$	$X^2 = (C_c)^{1/2} = C_c$	
		S =	: 1000[(X²+4K _c)	$^{1/2}$ - X] =	meq/
<u>mg/L</u> ÷	Factor de Conv. 43.8 48	meq/L	= 91.8 x (Real	-S) =	meq/ mg/L PTB
	fuerzo iónic Ión Na ⁺ Ca ⁺⁺ Mg ⁺⁺ Ba ⁺⁺ Sr ⁺⁺ Cl ⁻ SO ₄ ⁼ CO ₃ HCO ₃ cutilizando x X =	Ecuación: fuerzo iónico molar del ag lón mg/L Na ⁺ Ca ⁺⁺ Mg ⁺⁺ Ba ⁺⁺ Sr ⁺⁺ Cl' SO ₄ CO ₃ HCO ₃ Cutilizando el metodo de °F°C mg/L x 1.14×10 ⁻⁵ x 1.04×10 ⁻⁵ X = Ba ⁺⁺ -SO ₄ = sión real de SrSO ₄ es el m mg/L factor de Conv. x 1.4×10 ⁻⁵ x 1.04×10 ⁻⁵ X = Aa ⁺⁺ -SO ₄ =	fuerzo iónico molar del agua (µ). \frac{\longle ión}{\text{Na}^{+}} & \frac{\text{Factor}}{\text{Ca}^{++}} & \frac{\text{5.0x10}^{-5}}{\text{5.0x10}^{-5}} \\ \text{Mg}^{++} & \text{8.2x10}^{-5} & \text{Mg}^{++} \\ \text{Ba}^{++} & \text{1.5x10}^{-5} & \text{Sr}^{++} & \text{2.3x10}^{-5} & \text{Sr}^{++} & \text{2.3x10}^{-5} & \text{SO}_4^{\text{5.0x10}^{-5}} \\ \text{CI}^{-} & \text{1.4x10}^{-5} & \text{2.1x10}^{-5} & \text{SO}_4^{\text{7.0x10}^{-5}} \\ \text{SUma} = \mu = \mu = \mu \\ \text{Pactor de} & \text{CO3}^{\text{7.0x10}^{-5}} & \text{Suma} = \mu = \mu \\ \text{Pactor de} & \text{moles/L} & \text{Moles/L} \\ \text{Suma} = \mu \text{Indx10}^{-5} & \text{Indx10}^{-5} & \text{Indx10}^{-5} \\ \text{Suma} = \mu \text{Indx10}^{-5} & \text{Indx10}^{-5} & \text{Indx10}^{-5} \\ \text{Suma} = \mu \text{Indx10}^{-5} & \text{Indx10}^{-5} & \text{Indx10}^{-5} \\ \text{Suma} = \mu \text{Indx10}^	Ecuación: $= 1000 \left[\sqrt{\frac{X_2 - 4K}{+}} - \frac{X}{-} \right]$ fuerzo iónico molar del agua (μ). $\frac{ \acute{o}n }{Na^{\dagger}} \frac{mg/L}{2.2\times10^{-5}} \frac{Producto}{5}$ $Ca^{++} \frac{5.0\times10^{-5}}{4.5\times10^{-5}} \frac{Producto}{5}$ $Ca^{++} \frac{5.0\times10^{-5}}{4.5\times10^{-5}} \frac{Producto}{5}$ $Mg^{++} \frac{8.2\times10^{-5}}{4.5\times10^{-5}} \frac{Producto}{5}$ $Sr^{++} \frac{2.3\times10^{-5}}{4.5\times10^{-5}} \frac{Producto}{5}$ $Sr^{++} \frac{2.3\times10^{-5}}{4.5\times10^{-5}} \frac{Producto}{5}$ $SO_4^{\pm} \frac{2.1\times10^{-5}}{4.5\times10^{-5}} \frac{Producto}{5}$ $SO_4^{\pm} \frac{2.1\times10^{-5}}{4.5\times10^{-5}} \frac{Producto}{5}$ $SO_4^{\pm} \frac{2.1\times10^{-5}}{4.5\times10^{-5}} \frac{Producto}{5}$ $Sr^{++} \frac{2.3\times10^{-5}}{4.5\times10^{-5}} Pr$	Ecuación:

FORMATO No. 12 CÁLCULO DE LA CALIDAD DEL AGUA DE MAR

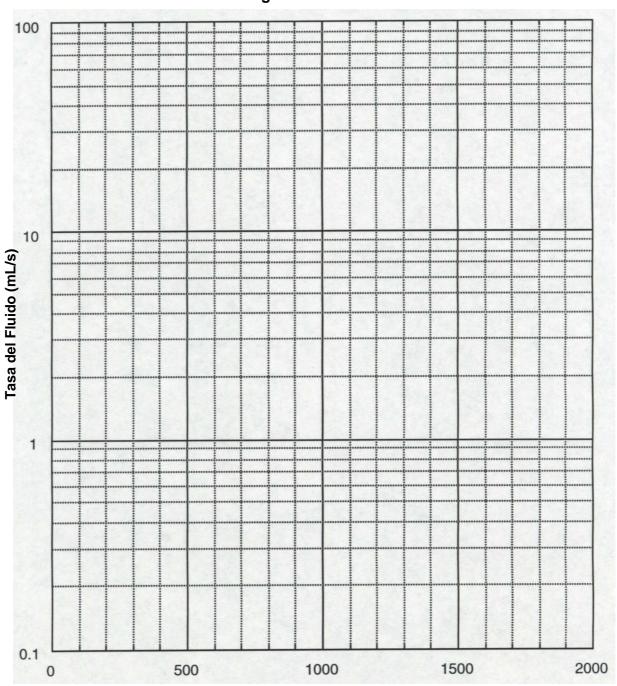
Fecha:	Punto de Muestreo	
1 0011a	i dinto do maconos	

Tiempo Acumulado (min:s)	Tiempo acumulado (s)	(s)	Volumen Acumulado (mL)	(mL)	$= \frac{\Delta}{\Delta} Ts$
	1				


FORMATO No. 13 CÁLCULO DE LA CALIDAD DEL AGUA PRODUCIDA

Fecha:	Punto de Muestreo

Tiempo Acumulado	Tiempo acumulado	(s)	Volumen Acumulado	(mL)	$= \frac{\Delta}{\Delta} Ts$
(min:s)	(s)		(mL)		Δ


FORMATO No. 14 GRÁFICO DE LA CALIDAD DEL AGUA

Agua de Mar

FORMATO No. 15 GRÁFICO DE LA CALIDAD DEL AGUA

Agua Producida

Volumen Acumulado (mL)

EJEMPLO DE CÁLCULO No. 1 CÁLCULOS DE TITULACIÓN, CONCENTRACIÓN DE SULFATO, CÁLCULO DE SODIO POR BALANCE IÓNICO

1. CÁLCULOS DE TITULACIÓN

2. DETERMINACIÓN DE LA CONCENTRACIÓN DE SULFATO

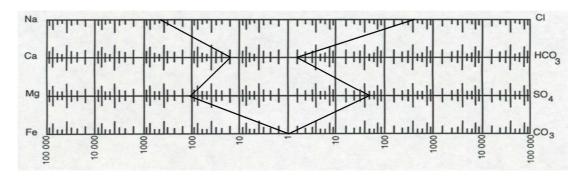
De la curva de calibración, 28% de transmitancia = 115 ppm de sulfato

Formato de Dilución
$$=$$
 _Volumen de la muestra _mL $=$ _1mL $=$ _1mL $=$

Concentración de Sulfato = (115)(25) =2875 ppm

3. CÁLCULO DEL SODIO POR BALANCE IÓNICO

<u>Aniones</u>	mg/L	Peso Equivalente		meq/L		
Cl	20732	35.5		584.0		
$SO_4^=$	2875	48		59.9		
CO ₃	29	30		1.0		
HCO ₃	122	61		2.0		
		•	Suma	646.9	Total Aniones	
<u>Cationes</u>	mg/L	Peso Equivalente		meq/L		
Ca ⁺⁺	408	20		20.4		
Mg ⁺⁺	1332	12.2		109.2		
			Suma	129.6	Total Aniones	
					- T	
(


EJEMPLO DE CÁLCULO No. 2

FORMATO DE REPORTE DE ANÁLISIS DE AGUA

Solicitado por: Operac	lora		Muestra No. 4-A	Fecha de muestreo: 10/04/2006	
Campo: Mar Egeo	Ubicación:		País: Grecia		
Bloque o unidad:	Pozo:	Profundidad: 100 ft	Formación:	Tasa B/D: 20 gpm	
Tipo de Agua (Produci de Mar	da, para sumin	istro, etc.): Agua	Punto de muestreo (Tratador, Tanque, etc): Bomba Sumergible	Muestreado por: AU	
Apariencia de la muestra: Clara X Turbia Coloreada Coloreada Olor Observaciones (Cualquier otra información relevante)					
Observaciones (Cuaiq	uier otra inform	acion reievante)			

SÓLIDOS DISUELTOS			OTRAS PROPIEDADES
<u>CATIONES</u>	mg/L	meq/L	рН
Sodio, Na (Calculado)	11898	517.3	Gravedad Especifica, 60/60 °F(hidrómetro)
Calcio, Ca	408	20.4	Resistividad (Ω-m) a 68° F
Magnesio, Mg	1332	109.2	Gases Disueltos (mg/L)
Bario, Ba			Oxígeno
Estroncio, Sr			Sulfuros Totales como H ₂ S
Hierro, Fe (Total)	1.1		Dióxido de Carbono
			Petróleo en agua (mg/L)
<u>ANIONES</u>			Temperatura
Cloruro, Cl	20732	584.0	Turbidez (NTU)
Sulfato, SO ₄	2875	59.9	Sólidos Suspendidos (mg/L)
Carbonato, CO ₃	29	1.0	
Bicarbonato, HCO ₃	122	2.0	
TDS	37397		

PATRÓN DE AGUA meq/L

EJEMPLO DE CÁLCULO No. 3 CÁLCULO DE LA SOLUBILIDAD DEL CARBONATO DE CALCIO Método de Stiff y Davis

Descripción de la Muestra de Agua

 $IS = pH-pH_s$ SI = 8.03 - 8.02 =

Mar Egeo

___+0.28__

Ecuación: IS = pH - pH_s

1. Calcular el esfuerzo iónico molar del agua (µ).

lán	ma/l	Footor	Producto	
<u>lón</u> Na ⁺	<u>mg/L</u> 11898	<u>Factor</u> 2.2×10 ⁻⁵	26176	v10 ⁻⁵
Ca ⁺⁺	408	_ 2.2 x 10 5.0 x 10 ⁻⁵		×10 ⁻⁵
Mg ⁺⁺	1332	_	10922	
Ba ⁺⁺	- 1332	_	10922	×10 ⁻⁵
Sr ⁺⁺	<u>-</u>	_ 1.3×10 2.3×10 ⁻⁵	_	×10 ⁻⁵
Cl ⁻	20732	_ 2.3×10 1.4×10 ⁻⁵	29025	
SO ₄ =	2875	_ 1.4x10 2.1×10 ⁻⁵		×10 ⁻⁵
	29	_ 2.1×10 3.3×10 ⁻⁵		×10 ⁻⁵
CO ₃		_ 3.3×10 ⁻ 0.8×10 ⁻⁵		
HCO ₃	122	=		×10 ⁻⁵
		Suma = μ =	74394	×10°
		μ =	0.74	
Temperatura =	el apéndice 12 del ma del apéndice 13 del	°F <u>23</u>	°C mg/L	K = <u>3.40</u> pCa
4. Calcular la alcal	inidad total HCO			
	$CO_{3}^{-3} = CO_{3}^{-3} = $	122 29 151	mg/L mg/L mg/L	
5. Determinar pAlk	del apéndice 13 del		2.62	
6. Calcular pHs		pH _s = K+pCa+pAlk =	8.02	
7. Calcular SI				

EJEMPLO DE CÁLCULO No. 4 CÁLCULO DE C_{Wtr}

SISTEMA DE INYECCIÓN DE AGUA Método de Oddo y Tomson

Descripción de la muestra Arenisca S

El agua producida de la arenisca S va a ser reinyectada. Calcular la concentración de CO_2 disuelto, C_{Wtr} , en el agua de inyección dentro del tanque de almacenamiento de agua con eliminador de gas. La temperatura del agua en el tanque es de 68 °F y la presión en el tanque es de 15 psia. El gas asociado contiene 2% de CO_2 y el esfuerzo iónico del agua es 0.75 moles/L.

<u>Valor</u>	<u>Factor</u>	<u>Producto</u>	
-0.523	_ 1	-0.523	
-2.212	_ 1	-2.212	
68	-6.51×10 ⁻³	-0.443	
4624	+10.19×10 ⁻⁶	0.047	
15	-1.29×10 ⁻⁵	0	
0.75	-0.059	-0.044	
0.866	-0.077	-0.067	
С	Suma = log (C _{3,12,42})	-3.242	
Wtr=	(wtr) = - =	0.00057	moles/L
	-0.523 -2.212 68 4624 15 0.75 0.866	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Referencia: Oddo, J.E. and Tomson, M.B.: "Why scale Forms and How to Predict It", SPE Production & Facilities (Feb. 1994) 47.

EJEMPLO DE CÁLCULO No. 5 CÁLCULO DE LA CANTIDAD DE ESCALA DE CACO₃ PRECIPITADA

Descripción de la Muestra de Agua Mar Egeo

$$PT = 50000[G-(X^2+4K_c)^{1/2}]$$

Donde: PT = Cantidad de escala precipitada, mg/L

C = Concentración de Ca++, moles/L A = Concentración de $^{-3}$, moles/L

G = C + AX = |C - A|

Kc = Constante del producto de solubilidad condicional

<u>lón</u>	<u>mg/L</u>	<u>Factor</u>		moles/L	
Ca ⁺⁺ HCO	408	2.49×10 ⁻⁵		0.010159	С
-3	151	1.64×10 ⁻⁵		0.002476	Α
		G = C + A	=	0.012636	•
		X= C - A	=	0.007683	
		χ^2	=	0.000059	
		4K _c	=	0.000048	
		$(X^2+4K_c)^{1/2}$	=	0.0103	
		$G-(X^2+4K_c)^{1/2}$	=	0.002290	
		$PT = 50000[G-(X^2+4K_c)^{1/2}]$	=	115	mg/L
		× 0.35	=	40	PTB

EJEMPLO DE CÁLCULO No. 6 CÁLCULO DE LA SOLUBILIDAD DEL SULFATO DE CALCIO

Método de Skillman, McDonald y Stiff

1. Calcular el esfuerzo iónico molar del agua (µ).

<u>lón</u>	<u>mg/L</u>	<u>Factor</u>	<u>Producto</u>	
Na⁺	11898	2.2×10 ⁻⁵	26175.6	×10 ⁻⁵
Ca ⁺⁺	408	5.0×10 ⁻⁵	2040	×10 ⁻⁵
Mg ⁺⁺	1332	8.2×10 ⁻⁵	10922.4	×10 ⁻⁵
Ba ⁺⁺	-	1.5×10 ⁻⁵		×10 ⁻⁵
Sr ⁺⁺	-	2.3×10 ⁻⁵		×10 ⁻⁵
Cl	20732	1.4×10 ⁻⁵	29024.8	×10 ⁻⁵
$SO_4^=$	2875	2.1×10 ⁻⁵	6037.5	×10 ⁻⁵
CO ₃	29	3.3×10 ⁻⁵	95.7	×10 ⁻⁵
HCO ₃	122	0.8×10 ⁻⁵	97.6	×10 ⁻⁵
		Suma = μ =	74393.6	× 10⁻⁵
		μ =	0.74	

2. Determinar Kc del apéndice 15 del manual de Patton.

Temperatura=
$$^{\circ}$$
F 23 $^{\circ}$ C; Kc = 14.4×10-4; 4Kc = 0.0057

3. Calcular X:

4. La concentración real de CaSO4 es el más pequeño de dos valores:

<u>Ión</u> Ca⁺⁺	<u>mg/L</u>		Factor de Conv.	meq/L				
Ca ⁺⁺	408	÷	20	20.4				
SO ₄ =	2875	÷	48	59.9	Real	=	20.4	meq/L
	_		Cantidad de escala p	recipitada =	68.1 x(Real – S)	=	-2583	mg/L
					×0.35	=	-904	PTB

EJEMPLO DE CÁLCULO No. 7 CÁLCULO DE LA SOLUBILIDAD DEL SULFATO DE BARIO

Usando Datos de Templeton

Descripción de la Muestra de Água: Ejemplo

1. Calcular el esfuerzo iónico molar del agua (µ).

<u>lón</u>	mg/L	<u>Factor</u>	Producto	
Na⁺	22500	2.2×10 ⁻⁵	49500	×10 ⁻⁵
Ca ⁺⁺	9860	5.0×10 ⁻⁵	49300	×10 ⁻⁵
Mg ⁺⁺	1870	8.2×10 ⁻⁵	15334	×10 ⁻⁵
Ba ⁺⁺	20	1.5×10 ⁻⁵	30	×10 ⁻⁵
Sr ⁺⁺	0	2.3×10 ⁻⁵	0	×10 ⁻⁵
Cl	57600	1.4×10 ⁻⁵	80640	×10 ⁻⁵
$SO_4^=$	105	2.1×10 ⁻⁵	220	×10 ⁻⁵
CO_3	0	3.3×10 ⁻⁵	0	×10 ⁻⁵
HCO ₃	480	0.8×10 ⁻⁵	384	×10 ⁻⁵
•		Suma = μ =	195408	×10 ⁻⁵
		μ =	1.95	<u> </u>

2. Determinar Kc del apéndice 16 del manual de Patton. Temperatura =
$$\ ^{\circ}F \ _{80}\ ^{\circ}C \$$
; Kc = $\ _{56.5\times10-9}\$; 4Kc = $\ _{2.26\times10-9}\$

3. Calcular X	:							
<u>lón</u>	mg/L	Factor de Conv.	moles/L					
Ba ⁺⁺	20	× 0.73×10 ⁻⁵	14.6	×10 ⁻⁵				
SO ₄ =	105	× 1.04×10 ⁻⁵	109.2	×10 ⁻⁵				
·	X =	Ba ⁺⁺ -SO ₄ ⁼	94.6	×10 ⁻⁵		=	9.46E-04	
					X^2	=	8.95E-07	•
					$(X^2+4K_c)^{1/2}$	=	1.059E-03	-
			S	= 1000	$[(X^2+4K_c)^{1/2}-X]$	=	0.113	meq/L

4. La concentración real de BaSO₄ es el más pequeño de dos valores:

				meq/L	Factor de Conv.	mg/L	<u>lón</u>	
				0.291	68.7	20	Ba ⁺⁺	
meq/L	0.291	=	Real	2.19	48	105	$SO_4^=$	
mg/L	20.8	=	Cantidad de escala precipitada = 116.7 \times (Real – S)					
PTB	7.3	=	×0.35					

EJEMPLO DE CÁLCULO No. 8 CÁLCULO DE K_c PARA EL SULFATO DE ESTRONCIO

Método de Jacques y Bourland

Descripción de la Muestra de Agua: Ejemplo

1. Calcular el esfuerzo iónico molar del agua (µ).

<u>lón</u>	mg/L	<u>Factor</u>	<u>Producto</u>	
Na⁺	22500	2.2×10 ⁻⁵	49500	×10 ⁻⁵
Ca ⁺⁺	9860	5.0×10 ⁻⁵	49300	×10 ⁻⁵
Mg ⁺⁺	1870	8.2×10 ⁻⁵	15334	×10 ⁻⁵
Ba ⁺⁺	20	1.5×10 ⁻⁵	30	×10 ⁻⁵
Sr ⁺⁺	0	2.3×10 ⁻⁵	0	×10 ⁻⁵
Cl	57600	1.4×10 ⁻⁵	80640	×10 ⁻⁵
SO ₄ =	105	2.1×10 ⁻⁵	220.5	×10 ⁻⁵
CO ₃	0	3.3×10 ⁻⁵	0	×10 ⁻⁵
HCO ₃	480	0.8×10 ⁻⁵	384	×10 ⁻⁵
		Suma = μ =	195408.5	×10 ⁻⁵
		μ =	1.95	_

2. Determinar Kc

EJEMPLO DE CÁLCULO No. 9 EJEMPLO

Se ha planificado mezclar dos aguas A y B en una relación de 40% del agua A y 60% del agua B. Los análisis de las dos aguas son:

mg/L	Agua A	Agua B
Na⁺	5277	9080
Ca ⁺⁺	306	1258
Mg ⁺⁺	89	338
Cl	8370	14910
SO ₄ =	0	2900
CO ₃	0	0
HCO ₃	977	274
Ph	5	7.6

Calcular la composición y el pH de la mezcla A-B en la relación 40/60

Solución

a) Cálculo de la composición de la mezcla:

mg/L	Agua A	0.4A	Agua B	0.6B	0.4A + 0.6B
Na⁺	5277	2111	9080	5448	7559
Ca ⁺⁺	306	122	1258	754.8	877
Mg ⁺⁺	89	36	338	202.8	238
Cl	8370	3348	14910	8946	12294
SO ₄ =	0	0	2900	1740	1740
CO ₃	0	0	0	0	0
HCO ₃	977	391	274	164	555

b) Cálculo del pH de la mezcla:

A:
$$pH = 5.0$$
, $y [H+] = 10-5.0 = 1.0 \times 10-5$ moles/L

B:
$$pH = 7.6$$
, $y [H+] = 10-7.6 = 2.5 \times 10-8 \text{ moles/L}$

[H+]mezcla =
$$(0.4)(1.0 \times 10-5) + (0.6)(2.5 \times 10-8) = 401.5 \times 10-8 \text{ moles/L}$$

pH de la mezcla $\log H$ $= \log \frac{5.4}{1000} = \frac{1000}{1000} = \frac{1000}{1000}$

EJEMPLO DE CÁLCULO No. 10 EJEMPLO

Dada la siguiente información:

Cupón No.	Fecha de instalación	Fecha de Remoción	Tiempo de Exposición (días)	Pérdida de Peso (g)
1	1 de Julio	31 de Julio	30	0.6754
2	1 de Julio	30 de Agosto	60	1

Calcular:

- a) La tasa de corrosión de cada cupón
- b) La tasa de corrosión para el período de 30 días, 31 de julio al 30 de agosto.

Tasa de corrosión del Cupón No. 2:

$$\frac{3.24 \quad 128.8 \quad 60}{())()} = \frac{14.6 \quad mpy}{()}$$

Tasa de corrosión para el período 31 de julio al 30 de agosto

$$\frac{3.24 (128.8 60 - 30)}{(1)(1)(1)} = 9.5 \text{ mpy}$$

EJEMPLO DE CÁLCULO No. 11 CÁLCULO DEL pH DEL AGUA DEL SISTEMA DE INYECCIÓN Método de Oddo y Tomson

Descripción de la Muestra de Agua Arenisca S

$$^{\text{HCO}_{\frac{1}{3}}}$$
 Concentración de $^{\text{HCO}_{\frac{1}{3}}}$ moles/L = mg/L ÷ 61000

C_{Wtr} = Concentración del CO₂ en el agua, moles/L

Т = Temperatura, F

= Esfuerzo iónico, moles/L μ

<u>Variable</u>	<u>Valor</u>	<u>Factor</u>	<u>Producto</u>
G	+1.158	1	+1.158
Constante	+6.39	1	+6.39
Т	68	-1.2×10 ⁻³	-0.082
T^2	4624	+7.9×10 ⁻⁶	+0.037
Р	15	-3.5×10⁻⁵	-0.001
μ	0.75	+0.6	+0.450
$\mu^{1/2}$	0.866	-1.07	-0.927
		Suma = pH =	+7.030

$$IS = 7.03 - 6.94 = +0.1$$

Referencia: Oddo, J.E. and Tomson, M.B.: "Why Scale Forms and How to Predict It" SPE Production & Facilities (Feb. 1994) 47.

EJEMPLO DE CÁLCULO No. 12 CÁLCULO DEL IS DEL AGUA DEL SISTEMA DE INYECCIÓN Método de Oddo y Tomson

Descripción de la Muestra de Agua Arenisca S

Ca = Concentración de $Ca^{++}_{HCO^{2}}$ moles/L = mg/L \div 40000 HCO $_{3}^{-}$ Concentración de $_{3}^{-}$, moles/L = mg/L \div 61000

CWtr = Concentración del CO2 en el agua, moles/L

T = Temperatura, °F P = Presión, psia

μ = Esfuerzo iónico, moles/L

<u>Variable</u>	<u>Valor</u>	<u>Factor</u>	<u>Producto</u>
L	-2.326	1	-2.326
Constante	3.63	1	+3.630
Т	68	+8.68×10 ⁻³	+0.590
T^2	4624	+8.55×10 ⁻⁶	+0.040
Р	15	-6.56×10 ⁻⁵	-0.001
μ	0.75	+1.373	+1.030
$\mu^{1/2}$	0.8660254	-3.42	-2.962
		Suma = IS =	0

Referencia: Oddo, J.E. and Tomson, M.B.: "Why Scale Forms and How to Predict It" SPE Production & Facilities (Feb. 1994) 47.

EJEMPLO DE CÁLCULO No. 13 CÁLCULO DEL IS EN POZOS DE INYECCIÓN DE AGUA Tendencia a la Formación de Escala de Carbonato de Calcio Método de Oddo y Tomson

Descripción de la Muestra de Agua Arenisca S

$$\Delta |S = \begin{pmatrix} 8.68 & 10^{-3} & \Delta T \\ \times & \times & \times \end{pmatrix} + \begin{bmatrix} 8.55 & 10^{-6} & T_2 & T_2 \\ \times & \times & \times \end{bmatrix} - \begin{pmatrix} 6.56 & 10^{-5} & \Delta P \\ \times & \times & \times \end{bmatrix}$$

Donde:

T_d = Temperatura de Fondo de Pozo, °F

P_d = Presión de fondo de Pozo, psia

 T_s = Temperatura de Superficie, ${}^{\circ}F$ P_s = Presión Superficie, psia

<u>Variable</u>	<u>Fondo</u>		Superficie		<u>Cambio</u>		Constante		Producto
Т	150		68	_ =	82	_ ×	+8.68×10 ⁻³	=	+0.712
T^2	22500	-	4624	_ =	17876	×	+8.55×10 ⁻⁶	=	+0.153
Р	3000	-	15	_ =	2985	×	-6.56×10 ⁻⁵	_ = _	-0.196
							Suma =	=	+0.670
IS (Fondo)	= IS (Supe	erfic	cie) +	=	0	+	0.67	_ =	+0.67

Método de Stiff y Davis

pH Fondo pH Superficie
$$\Delta pH^+$$
 + $\frac{1}{2}$ ΔpH^- + $\frac{1}{2}$ $\Delta pH^ \frac{1}{2}$ $\frac{1}{2}$ $\Delta pH^ \frac{1}{2}$ $\frac{1}{2}$ $\Delta pH^ \frac{1}{2}$ $\frac{1}{2}$ $\Delta pH^ \frac{1}{2}$ $\frac{1}{2}$ $\frac{1$

EJEMPLO DE CÁLCULO No. 14 CÁLCULO DE LA CANTIDAD DE ESCALA DE CACO₃ PRECIPITADA

Descripción de la Muestra de Agua Arenisca S

Temperatura=
$$\frac{150}{\mu}$$
 °F_ °C
 $\mu = \frac{0.75}{2.24}$
k Stiff y Davis = $\frac{2.24}{7.24}$
 k -pH = $\frac{-5.00}{1.0 \times 10^{-5}}$

$$PT = 50000[G-(X^2+4K_c)^{1/2}]$$

Donde: PT = Cantidad de escala precipitada, mg/L

C = Concentración de Catto moles/L

A = Concentración de ⁻³ , moles/L

G = C + A

X = |C - A|

Kc = Constante del producto de solubilidad condicional

ANEXO No 4

FORMATOS Y EJEMPLOS DE CÁLCULO UTILIZANDO LAS ECUACIONES DE ODDO-TOMSON QUE CONSIDERA FASE GASEOSA PRESENTE Y pH DESCONOCIDO PARA LOS POZOS PRODUCTORES DE LA ESTACIÓN SHUSHUFINDI SUR

ANÁLISIS DE AGUA UTILIZANDO LAS ECUACIONES DE ODDO - TOMSON QUE CONSIDERA FASE GASEOSA PRESENTE Y pH DESCONOCIDO

FORMATO No. 1 CÁLCULO DEL IS y pH DEL AGUA DEL SISTEMA DE INYECCIÓN Método de Oddo y Tomson

Descripción de la Muestra de Agua

$$\begin{split} & \int_{g} = \exp\left[\begin{array}{c} P \\ \times \left(\begin{array}{c} 2.84 \\ \times \end{array} \begin{array}{c} 10^{-4} \\ - T \\ \end{array} \begin{array}{c} - 460 \\ \end{array} \right) \right] \\ & y_g = \frac{Pf - 5BWPD - 10BOPD - 10^{-5}}{\left[\begin{array}{c} 1 \\ + \end{array} \begin{array}{c} - (2.2 \text{ Na} - 5 \text{ Ca} \\ \times \end{array} \begin{array}{c} - 8.2 \text{ Mg} \\ + \times \end{array} \begin{array}{c} 1.5 \text{ Ba} \\ + \times \end{array} \begin{array}{c} - (2.2 \text{ Na} - 5 \text{ Ca} \\ \times \end{array} \begin{array}{c} - 8.2 \text{ Mg} \\ + \times \times \end{array} \begin{array}{c} - 1.5 \text{ Ba} \\ + \times \times \end{array} \begin{array}{c} - (2.3 \text{ Sr} - 1.4 \text{ Cl} - 2.1 \text{ SO} - 0.8 \text{ HCO} \\ - \times \times \times \end{array} \begin{array}{c} - (2.3 \text{ Sr} - 1.4 \text{ Cl} - 2.1 \text{ SO} - 0.8 \text{ HCO} - 3) \\ - (2.3 \text{ Sr} - 1.4 \text{ Cl} - 3.3)^2 \\ - (2.3 \text{ Sr} - 1.4 \text{ Cl} - 3.3)^2 \\ - (2.3 \text{ Sr} - 1.4 \text{ Cl} - 3.334 \text{ Ju} - 1.431 \text{ Ju} \\ - \times \times \times \begin{array}{c} - (2.3 \text{ Sr} - 1.64 \text{ MCO} - 3) \\ - (2.3 \text{ Sr} - 1.64 \text{ MCO} - 3)^2 \\ - (2.37 \text{ 10} - 5 \text{ P} - 3.334 \text{ Ju} - 1.431 \text{ Ju} \\ - (2.237 \text{ 10} - 5 \text{ P} - 0.99 \text{ Ju} - 0.658 \text{ Ju} \\ - (2.237 \text{ 10} - 5 \text{ P} - 0.99 \text{ Ju} - 0.658 \text{ Ju} \\ - (2.237 \text{ 10} - 5 \text{ P} - 0.99 \text{ Ju} - 0.658 \text{ Ju} \\ - (2.237 \text{ Ju} - 5 \text{ P} - 0.99 \text{ Ju} - 0.658 \text{ Ju} \\ - (2.237 \text{ Ju} - 5 \text{ P} - 0.99 \text{ Ju} - 0.658 \text{ Ju} \\ - (2.237 \text{ Ju} - 5 \text{ P} - 0.99 \text{ Ju} - 0.658 \text{ Ju} \\ - (2.237 \text{ Ju} - 5 \text{ P} - 0.99 \text{ Ju} - 0.658 \text{ Ju} \\ - (2.237 \text{ Ju} - 5 \text{ P} - 0.99 \text{ Ju} - 0.658 \text{ Ju} \\ - (2.237 \text{ Ju} - 5 \text{ P} - 0.99 \text{ Ju} - 0.658 \text{ Ju} \\ - (2.237 \text{ Ju} - 5 \text{ P} - 0.99 \text{ Ju} - 0.658 \text{ Ju} \\ - (2.237 \text{ Ju} - 5 \text{ P} - 0.99 \text{ Ju} - 0.658 \text{ Ju} \\ - (2.237 \text{ Ju} - 5 \text{ P} - 0.99 \text{ Ju} - 0.658 \text{ Ju} \\ - (2.237 \text{ Ju} - 5 \text{ Ju} - 5 \text{ Ju} - 5 \text{ Ju} - 5 \text{ Ju} \\ - (2.237 \text{ Ju} - 5 \text{ Ju} \\ - (2.237 \text{ Ju} - 5 \text{ Ju} \\ - (2.237 \text{ Ju} - 5 \text{ Ju} \\ - (2.237 \text{ Ju} - 5 \text{ Ju} \\ - (2.237 \text{ Ju} - 5 \text$$

Donde:

f_g = Coeficiente de fugacidad del CO2

y_q = Fracción molar del CO₂ en la fase de gas a P y T especifica

μ = Esfuerzo iónico molar

BOPD = Barriles de petróleo por día.

BWPD = Barriles de agua por día

MMscf = Millones de pies cúbicos estándar de gas por día

Ca⁺⁺= Concentración de Calcio, moles/L

HCO₃ = Concentración de Bicarbonato, moles/L

T = Temperatura, °F

P = Presión, psia

<u>Variable</u> A	<u>Valor</u>	<u>Factor</u> 1	Producto -
Constante	+5.85	1	+5.85
Т		+15.19×10 ⁻³	
T^2		-1.64×10 ⁻⁶	
Р		-5.27×10 ⁻⁵	
μ		+1.431	
$\mu^{1/2}$		-3.334	
		Suma = I _s =	
		•	
<u>Variable</u>	<u>Valor</u>	<u>Factor</u>	<u>Producto</u>
В		1	
Constante	+8.6	1	+8.6
Т		+5.31×10 ⁻³	
T^2		-2.253×10 ⁻⁶	
Р		-2.237×10 ⁻⁵	
μ		+0.658	
$\mu^{1/2}$		-0.99	
		Suma – nH –	
		Suma = pH =	

FORMATO No. 2 CÁLCULO DE K_c

Descripción de la M	luestra de Agua	
•	U —	

 $K_{\text{C}} = pH - 2.76 + 9.88 \times 10^{-3}\,T + 0.61 \times 10^{-6}\,T^2 - 3.03 \times 10^{-5}\,P + 0.77\mu - 2.348\sqrt{\mu}$

T =	°F
P =	psia
μ =	
= Ha	

<u>Variable</u>	<u>Valor</u>	<u>Factor</u>	<u>Producto</u>
рН		1	
Constante	-2.76	1	-2.76
Т		+9.88×10 ⁻³	
T^2		+0.61×10 ⁻⁶	
Р		-3.03×10 ⁻⁵	
μ		+0.77	
$\mu^{1/2}$		-2.348	
		Suma = pK_c =	
		K _c =	

FORMATO No. 3 CÁLCULO DE LA CANTIDAD DE ESCALA DE CARBONATO DE CALCIO PRECIPITADA

Descripción de la Muestra de Agua	

$$PT = 50000[G-(X^2+4K_c)^{1/2}]$$

.	
Donde:	PT = Cantidad de escala precipitada, mg/L
	C = Concentración de 6a++, moles/L
	A = Concentración de ⁻³ , moles/L
	G = C +
	A
	X = C
	A
	Kc = Constante del producto de solubilidad condicional

<u>lón</u>	mg/L	<u>Factor</u>		moles/L	
Ca ⁺⁺		2.49×10 ⁻⁵			С
HCO ⁻³		1.64×10 ⁻⁵			A
		G = C + A	=		_
		X= C - A	=		<u> </u>
		χ^2	=		
		4K _c	=		_
		$(X^2+4K_c)^{1/2}$	=		_
		$G-(X^2+4K_c)^{1/2}$	=		_
		$PT = 50000[G-(X^2+4K_c)^{1/2}]$	=		mg/L
		× 0.35	=		– PTB

FORMATO No. 4 CÁLCULO DE LA K_{st}

Descripción de la Muestra de Agua_____

T = Temperatura (oF)

P = Presión total (psia)

μ = Fuerza iónica (moles/L

<u>Variable</u>	<u>Valor</u>	<u>Factor</u>	<u>Producto</u>
Constante	1.86	1	+1.86
Т		+4.5×10 ⁻³	
T^2		-1.2×10 ⁻⁶	
Р		+10.7×10 ⁻⁵	
μ		0.58	
$\mu^{1/2}$		-2.38	
$\mu^{1/2}T$		-1.3×10 ⁻³	
		Suma = $logK_{st}$ =	
		$K_{st} = 10^{logKst} =$	

FORMATO No. 5 CÁLCULO DE LA PRECIPITACIÓN DE SULFATO DE CALCIO

Descripción del Agua de Formación

$$\begin{bmatrix} SO_{\underline{q}} \\ - \begin{bmatrix} & & \\ & & \\ & & \end{bmatrix} \end{bmatrix} = \frac{\begin{bmatrix} & & \\ & & \\ & & \\ & & \end{bmatrix} \begin{bmatrix} & & & \\ & & \\ & & \\ & & \end{bmatrix} \begin{bmatrix} & & \\ & & \\ & & \\ & & \\ & & \end{bmatrix} \begin{bmatrix} & & \\ & & \\ & & \\ & & \end{bmatrix} \begin{bmatrix} & & \\$$

Yeso

Hemi-hidrita Hemi- 1.66
$$\mu$$
 0.49 μ 0.66 μ 0.67 μ 0.7 μ

Anhidrita

Concentración de Iones (mg/L)	Factor de conversión	Concentración de los iones (moles/L)
	96060	
	40080	
	24305	
	87620	
	137330	
	Catsum =	

<u>Variable</u> A	<u>Valor</u>	<u>Factor</u> 1	<u>Producto</u>
Constante	3.47	. '	+3.47
T	J.+1	+1.8×10 ⁻³	10.47
T^2		+2.5×10 ⁻⁶	
r P		-5.9×10 ⁻⁵	
μ		+0.37	
μ ^{1/2}		-1.13	
μ μ ^{1/2} Τ		-2.0×10 ⁻³	
μ .		Suma = IS _{Yeso} =	
		Sullia = IS _{Yeso} =	
<u>Variable</u>	<u>Valor</u>	<u>Factor</u>	<u>Producto</u>
Α		1	
Constante	4.04	1	+4.04
T		-1.9×10 ⁻³	
T^2		+11.9×10 ⁻⁶	
Р		-6.9×10 ⁻⁵	
μ		+0.49	
$\mu^{1/2}$		-1.66	
$\mu^{1/2}T$		-0.66×10 ⁻³	
		Suma = IS _{Hemi} =	
<u>Variable</u>	<u>Valor</u>	<u>Factor</u>	<u>Producto</u>
Α		1	
Constante	2.52	. 1	+2.52
Т		+9.98×10 ⁻³	
T^2		-0.97×10 ⁻⁶	
Р		-3.07×10 ⁻⁵	
μ		+0.5	
$\mu^{1/2}$		-1.09	
$\mu^{1/2}T$		-3.3×10 ⁻³	
		Suma = IS _{Anhi} =	

EJEMPLO DE CÁLCULO No. 1

CÁLCULO DEL IS Y pH DEL AGUA DEL SISTEMA DE INYECCIÓN

MÉTODO DE ODDO Y TOMSON

Descripción de la Muestra de Agua POZO SSF-06B

$$f_{g} = \exp \left[P \left(\frac{2.84}{\times} \frac{10^{4}}{-1.460} \right) \right] = \exp \left[\frac{100}{\times} \left(\frac{2.84}{\times} \frac{10^{4}}{-1.30.460} \right) \right] = \frac{0.99}{1.000.460}$$

$$f_{g} = \exp \left[P \left(\frac{2.84}{\times} \frac{10^{4}}{-1.30.460} \right) \right] = \frac{1000.0.99 \cdot 5 \cdot 637 \cdot 10 \cdot 955}{1 \cdot 1000.0.99 \cdot 5 \cdot 637 \cdot 10 \cdot 955} = \frac{0.037}{1 \cdot 1000.0.99 \cdot 5 \cdot 637 \cdot 10 \cdot 955} = \frac{0.037}{1 \cdot 1000.0.99 \cdot 5 \cdot 637 \cdot 10 \cdot 955} = \frac{0.037}{1 \cdot 1000.0.99 \cdot 5 \cdot 637 \cdot 10 \cdot 955} = \frac{0.037}{1 \cdot 1000.0.99 \cdot 5 \cdot 637 \cdot 10 \cdot 955} = \frac{0.037}{1 \cdot 1000.0.99 \cdot 5 \cdot 637 \cdot 10 \cdot 955} = \frac{0.037}{1 \cdot 1000.0.99 \cdot 5 \cdot 637 \cdot 10 \cdot 955} = \frac{0.037}{1 \cdot 1000.0.99 \cdot 5 \cdot 637 \cdot 10 \cdot 955} = \frac{0.037}{1 \cdot 1000.0.99 \cdot 5 \cdot 637 \cdot 10 \cdot 955} = \frac{0.037}{1 \cdot 1000.0.99 \cdot 5 \cdot 637 \cdot 10 \cdot 955} = \frac{0.037}{1 \cdot 1000.0.99 \cdot 5 \cdot 637 \cdot 10 \cdot 955} = \frac{0.037}{1 \cdot 1000.0.99 \cdot 5 \cdot 637 \cdot 10 \cdot 955} = \frac{0.037}{1 \cdot 1000.0.99 \cdot 5 \cdot 637 \cdot 10 \cdot 955} = \frac{0.037}{1 \cdot 1000.0.99 \cdot 5 \cdot 637 \cdot 10 \cdot 955} = \frac{0.037}{1 \cdot 1000.0.99 \cdot 5 \cdot 637 \cdot 10 \cdot 955} = \frac{0.037}{1 \cdot 1000.0.99 \cdot 5 \cdot 637 \cdot 10 \cdot 955} = \frac{0.037}{1 \cdot 1000.0.99 \cdot 5 \cdot 637 \cdot 10 \cdot 955} = \frac{0.037}{1 \cdot 1000.0.99 \cdot 5 \cdot 637 \cdot 10 \cdot 955} = \frac{0.037}{1 \cdot 1000.0.99 \cdot 5 \cdot 637 \cdot 10 \cdot 955} = \frac{0.037}{1 \cdot 1000.0.99 \cdot 5 \cdot 637 \cdot 10 \cdot 955} = \frac{0.037}{1 \cdot 1000.0.99 \cdot 5 \cdot 637 \cdot 10 \cdot 955} = \frac{0.037}{1 \cdot 1000.0.99 \cdot 5 \cdot 637 \cdot 10 \cdot 955} = \frac{0.037}{1 \cdot 1000.0.99 \cdot 5 \cdot 637 \cdot 10 \cdot 955} = \frac{0.037}{1 \cdot 1000.0.99 \cdot 5 \cdot 637 \cdot 10 \cdot 955} = \frac{0.037}{1 \cdot 1000.0.99 \cdot 5 \cdot 637 \cdot 10 \cdot 955} = \frac{0.037}{1 \cdot 1000.0.99 \cdot 5 \cdot 637 \cdot 10 \cdot 955} = \frac{0.037}{1 \cdot 1000.0.99 \cdot 5 \cdot 637 \cdot 10 \cdot 955} = \frac{0.037}{1 \cdot 1000.0.99 \cdot 5 \cdot 637 \cdot 10 \cdot 955} = \frac{0.037}{1 \cdot 1000.0.99 \cdot 5 \cdot 637 \cdot 10 \cdot 955} = \frac{0.037}{1 \cdot 1000.0.99 \cdot 5 \cdot 637 \cdot 10 \cdot 955} = \frac{0.037}{1 \cdot 1000.0.99 \cdot 5 \cdot 637 \cdot 10 \cdot 955} = \frac{0.037}{1 \cdot 1000.0.99 \cdot 5 \cdot 637 \cdot 10 \cdot 955} = \frac{0.037}{1 \cdot 1000.0.99 \cdot 5 \cdot 637 \cdot 10 \cdot 955} = \frac{0.037}{1 \cdot 1000.0.99 \cdot 5 \cdot 637 \cdot 10 \cdot 955} = \frac{0.037}{1 \cdot 1000.0.99 \cdot 1000} = \frac{0.037}{1 \cdot 10000.0.99 \cdot 1000} = \frac{0.037}{1 \cdot 10000.0.99 \cdot 10000} = \frac{0.037}{1 \cdot 10000.0.99 \cdot$$

$$pH = log(\underbrace{\frac{HCO}{Py f}}_{g g}) + \underbrace{\frac{8.60}{5.31}}_{h} \underbrace{\frac{10}{3} T - 2.253}_{h} \underbrace{\frac{10}{6} T^{2}}_{h} + \underbrace{\frac{2.237}{5} P - 0.99}_{h} \underbrace{\frac{10}{5} P - 0.658 \mu}_{h}$$

$$= log(\underbrace{\frac{HCO}{Py f}}_{g g})$$

$$= log(\underbrace{\frac{HCO}{py f}}_{g g})$$

Donde:

f_g = Coeficiente de fugacidad del CO₂

y_g = Fracción molar del CO₂ en la fase de gas a P y T especifica

μ = Esfuerzo iónico molar

BOPD = Barriles de petróleo por día.

BWPD = Barriles de agua por día.

MMscf = Millones de pies cúbicos estándar de gas por día.

Ca⁺⁺ = Concentración de Calcio, moles/L

HCO₃⁻ = Concentración de Bicarbonato, moles/L

T = Temperatura, °F

P = Presión, psia

<u>Variable</u>	<u>Valor</u>	<u>Factor</u>	<u>Producto</u>
A	-5.86	1.0	-5.86
Constante	+5.85	1.0	+5.85
Т	130	+15.19×10 ⁻³	+1.9747
T^2	16900	-1.64×10 ⁻⁶	-0.028
Р	100	-5.27×10 ⁻⁵	-0.0053
μ	2.71	+1.431	+3.88
$\mu^{1/2}$	1.65	-3.334	-5.50
		Suma = IS =	0.33
		_	
<u>Variable</u>	<u>Valor</u>	<u>Factor</u>	<u>Producto</u>
В	-2.82	1.0	-2.82
Constante	+8.60	1.0	+8.60
Т	130	+5.31×10 ⁻³	+0.693
T^2	16900	-2.253×10 ⁻⁶	-0.038
Р	100	-2.237×10 ⁻⁵	-0.0022
μ			4 =0
	2.71	+0.658	+1.78
$\mu^{1/2}$	2.71 1.65	+0.658 -0.99	+1.78 -1.63

EJEMPLO DE CÁLCULO No. 2 CÁLCULO DE K_c

Descripción de la Muestra de Agua Pozo SSF-06B

$$K_{\text{C}} = pH - 2.76 + 9.88 \times 10^{-3} \, T + 0.61 \times 10^{-6} \, T^2 - 3.03 \times 10^{-5} \, P + 0.77 \mu - 2.348 \sqrt{\mu}$$

$$\mu = 2.71$$

$$pH = 6.58$$

<u>Valor</u>	<u>Factor</u>	<u>Producto</u>
6.58	1	+6.58
-2.76	1	-2.76
130	+9.88×10 ⁻³	1.284
16900	+0.61×10 ⁻⁶	+0.0103
100	-3.03×10 ⁻⁵	-0.00303
2.71	+0.77	+2.087
1.65	-2.348	-3.87
	Suma = pK_c =	3.33
	K _c =	0.00046
	6.58 -2.76 130 16900 100 2.71	

EJEMPLO DE CÁLCULO No. 3 CÁLCULO DE LA CANTIDAD DE ESCALA DE CARBONATO DE CALCIO PRECIPITADA

Descripción de la Muestra de Agua Pozo SSF-06B

$$PT = 50000[G-(X^2+4K_c)^{1/2}]$$

Donde: PT = Cantidad de escala precipitada, mg/L

C = Concentración de Ca++ moles/L

A = Concentración de GO , moles/L

G = C + A

X = |C - A|

Kc = Constante del producto de solubilidad condicional

EJEMPLO DE CÁLCULO No. 4 CÁLCULO DE LA K_{st}

Descripción de la Muestra de Agua Pozo SSF-06B

T = Temperatura (°F)

P = Presión total (psia)

μ = Fuerza iónica (moles/L

<u>Variable</u>	<u>Valor</u>	<u>Factor</u>	<u>Producto</u>
Constante	1.86	1	+1.86
Т	130	+4.5×10 ⁻³	+0.585
T^2	16900	-1.2×10 ⁻⁶	-0.0203
Р	100	+10.7×10 ⁻⁷	+0.0107
μ	2.71	0.58	+1.572
$\mu^{1/2}$	1.65	-2.38	-3.918
$\mu^{1/2}T$	214	-1.3×10 ⁻³	-0.278
		Suma = $logK_{st}$ =	-0.189
		$K_{st} = 10^{logKst} =$	0.65

EJEMPLO DE CÁLCULO No. 5 CÁLCULO DE LA PRECIPITACIÓN DE SULFATO DE CALCIO

Descripción del Agua de Formación

Pozo SSF-06B

$$=$$
 Ca $+$ Mg $+$ Sr $+$ Ba

$$\begin{bmatrix} Mg \\ + \end{bmatrix} = \frac{Mg}{+ K_{s}} \underbrace{SO}_{=} = 0.045$$

$$\begin{bmatrix} Ca \\ + \end{bmatrix} = \frac{C_{Ca}}{+ K_{s}} \underbrace{SO}_{=} = 0.172$$

$$\begin{bmatrix} Sr \\ + \end{bmatrix} = \frac{C_{Sr}}{+ K_{s}} \underbrace{SO}_{=} = 0$$

$$\begin{bmatrix} Ba \\ + \end{bmatrix} = \frac{C_{Ba}}{+ K_{s}} \underbrace{SO}_{=} = 0$$

Yeso

Hemi-hidrita

Anhidrita

Concentración de lones (mg/L)	Factor de conversión	Concentración de los iones (moles/L)
112.5	96060	0.00117
6880	40080	0.17166
1093.5	24305	0.04499
0	87620	0
0	137330	0
	Catsum =	0.21782

<u>Variable</u>	<u>Valor</u>	<u>Factor</u>	<u>Producto</u>
Α	-3.75	1	-3.75
Constante	3.47	1 _	+3.47
T	130	+1.8×10 ⁻³	+0.234
T^2	16900	+2.5×10 ⁻⁶	+0.04225
Р	100	-5.9×10 ⁻⁵	-0.0059
μ	2.71	+0.37	+1.0027
$\mu^{1/2}$	1.646207763	-1.13	-1.86
$\mu^{1/2}T$	214.0070092	-2.0×10 ⁻³	-0.428
		Suma = IS_{Yeso} = _	-1.29
<u>Variable</u>	<u>Valor</u>	Factor	<u>Producto</u>
	-3.75	1	-3.75
Constante	4.04	1	+4.04
Т	130	-1.9×10 ⁻³	-0.247
T^2	16900	+11.9×10 ⁻⁶	+0.20
Р	100	-6.9×10 ⁻⁵	-0.0069
μ	2.71	+0.49	+1.33
$\mu^{1/2}$	1.65	-1.66	-2.733
$\mu^{1/2}T$	214	-0.66×10 ⁻³	-0.141
		Suma = IS _{Hemi} =	-1.31
<u>Variable</u>	<u>Valor</u>	<u>Factor</u>	<u>Producto</u>
A	-3.75	1	-3.75
Constante	2.52	1	+2.52
Т	130	+9.98×10 ⁻³	+1.2974
T^2	16900	-0.97×10 ⁻⁶	-0.0164
Р	100	-3.07×10 ⁻⁵	-0.00307
μ	2.71	+0.5	+1.355
$\mu^{1/2}$	1.65	-1.09	-1.79
$\mu^{1/2}T$	214	-3.3×10 ⁻³	-0.706
		Suma = IS _{Anhi} =	-1.10

ANEXO No 5

FORMATOS USADOS PARA DETERMINAR EL IS Y PTB DE LOS POZOS REINYECTORES Y PRODUCTORES

DETERMINACIÓN DEL IS Y PTB DE LOS POZOS REINYECTORES Y PRODUCTORES

Para los pozos reinyectores se utilizan las ecuaciones de Oddo-Tomson para fase gaseosa ausente, además se presenta el cálculo realizado por QUIMIPAC S.A., utilizando el programa SiCalc Beta 1.0., y para los pozos productores se utilizan las ecuaciones de Oddo-Tomson para fase de gas presente y pH desconocido.

Pozos Reinyectores, utilizando las ecuaciones para fase gaseosa ausente.

SSF-02RW

CÁLCULO DEL IS Y PTB UTILIZANDO SiCalc Beta 1.0 – SSF-02RW

Site Information	Physical Prop	erties		Appended	Data
Company Petroproduccion Field Shushufindi Point Date	Ionic Strengtl pH Temperature Pressure	6.95 152 1,160	Calculated Calculated F psia	Compone	Value Unit
Cations Calcium 1,784 mg/l Magnesium 274 mg/l Barium 0 mg/l Strontium 0 mg/l Sodium 12711 mg/l	Calculate for C CO2 in Ga: 0.00 © Dissolved 43 C Known pH 0.00	s Phase @ mole %	STP	Template Notes	None
Anions		SI	PTB		
Bicarbonate	Calcite	0.95	258.1	1	
Alkalinity 710 mg/l	Gypsum	-1.61	N/A		
Sulfate 125 mg/l	Hemihydrate	-1.58	N/A		
	Anhydrite	-1.40	N/A		
Chloride 23,050 mg/l	Barite Celestite	N/A N/A	N/A N/A		

Fuente: Departamento de Corrosión Shushufindi

Elaborado por: Mayra Silva P.

EJEMPLO DE CÁLCULO APLICANDO LAS ECUACIONES DE ODDO-TOMSON PARA FASE GASEOSA AUSENTE

Cálculo de Sodio por Balance Iónico

Aniones	mg/L	Peso Equivalente	meq/L
Cl	23050	35.5	649.30
SO ₄ =	125	48.0	2.60
CO ₃	156	30.0	5.20
HCO ₃	710	61.0	11.64
			668.74

Cationes	mg/L	Peso Equivalente	meq/L
Ca ⁺⁺	1784	20.0	89.20
Mg ⁺⁺	274	12.2	22.46
			111.66

Concentración de Sodio calculada (meq/L)= mg/L=(meq/L)(Peso Equivalente)

557.08 12812.85

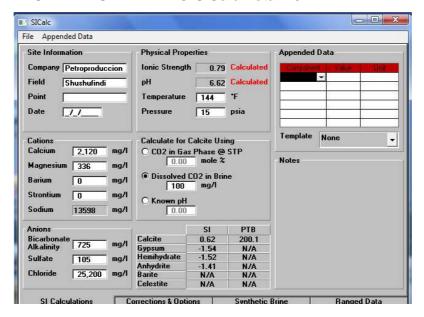
Cálculo de Sólidos Totales Disueltos				
Cationes	mg/L	meq/L		
Sodio (calculado)	12812.85	557.08		
Calcio	1784.00	89.20		
Magnesio	274.00	22.46		
Bario				
Estroncio				
Hierro	12.50			
Aniones				
Cloruro	23050.00	649.30		
Sulfato	125.00	2.60		
Carbonato	156.00	5.20		
Bicarbonato	710.00	11.64		
TDS	38924.35			

Cálculo del pH

moles/L

HCO ₃	0.011639344		
C_{Wtr}	0.000977273		
G	1.075912735		
μ	0.73		
Variable	Valor	Factor	Producto
G	1.075912735	1	1.07591273
Constante	6.39	1	6.39
Т	152	-0.0012	-0.1824
T ²	23104	0.0000079	0.1825216
Р	1160	-0.000035	-0.0406
μ	0.73	0.6	0.438
μ ^{1/2}	0.854400375	-1.07	-0.9142084
		рН	6.94922593

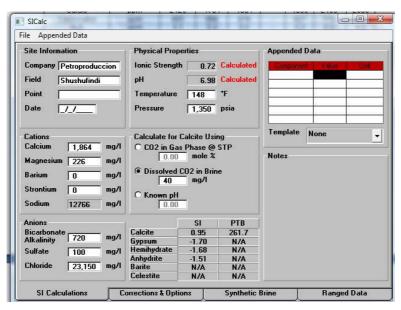
Cálculo del PTB


lon	mg/l	Factor	moles/I	
Ca ⁺⁺	1784	0.0000249	0.0444216	С
HCO ₃	710	0.0000164	0.011644	Α
		G=C+A	0.0560656	
		X=C-A	0.0327776	
		X ²	0.00107437	
		4Kc	0.00023777	
		(X ² + 4Kc) ^{1/2}	0.03622352	
		$G - (X^2 + 4Kc)^{1/2}$	0.01984208	
		PT	992.10424	m
		x 0.35	347.236484	РΊ

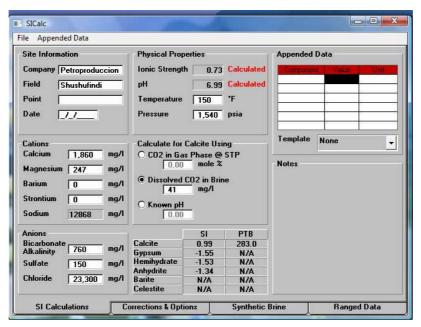
Cálculo del IS

Variable	Valor	Factor	Producto
L	-2.209	1	-2.209
Constante	3.63	1	3.63
T	152	0.00868	1.319
T ²	23104	0.00000855	0.197
Р	1160	-0.0000656	-0.076
μ	0.73	1.373	1.002
μ ^{1/2}	0.85440037	-3.42	-2.922
		IS	0.941

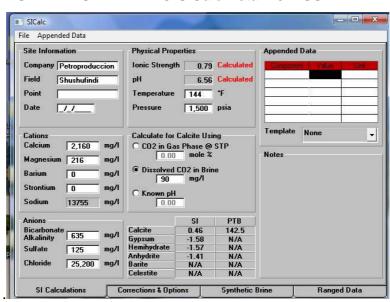
Fuente: Departamento de Corrosión Shushufindi. Elaborado por: Mayra Silva P.


WTCÁLCULO DEL IS Y PTB UTILIZANDO SiCalc Beta 1.0 – WT

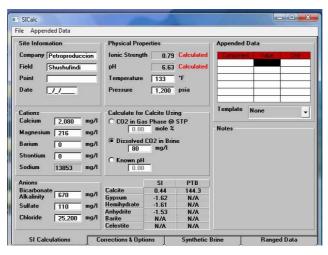
Fuente: Corrosión Shushufindi Elaborado por: Mayra Silva


SSF-20A

CÁLCULO DEL IS Y PTB UTILIZANDO SiCalc Beta 1.0 - SSF-20A


Fuente: Corrosión Shushufindi Elaborado por: Mayra Silva

SSF-25
CÁLCULO DEL IS Y PTB UTILIZANDO SiCalc Beta 1.0 – SSF-25


Fuente: Corrosión Shushufindi Elaborado por: Mayra Silva

SSF-47
CÁLCULO DEL IS Y PTB UTILIZANDO SiCalc Beta 1.0 – SSF-47

Fuente: Corrosión Shushufindi Elaborado por: Mayra Silva

SSF-93
CÁLCULO DEL IS Y PTB UTILIZANDO SiCalc Beta 1.0 – SSF-93

Fuente: Corrosión Shushufindi Elaborado por: Mayra Silva

Pozos productores, utilizando las ecuaciones de presencia fase gaseosa y pH desconocido:

Pozo SSF-02

CÁLCULO DEL IS BASADO EN EL MODELO DE ODDO-TOMSON SSF-02 Información del origen de la muestra

iliuestia	
Compañía	Petroproducción
Campo	SHUSHUFINDI
Pozo	SSFD-2
Arena	U
Fecha	6-Jun-07
Realizado por :	Ing. Marco Coro

Análisis del Agua (mg/L)

	,
Calcio	4840
Magnesio	291.6
Bario	0
Estroncio	0
Sodio *	24508
Alcalinidad	402.6
Sulfatos	300
Cloruros	46750

^{* -} Valor calculado

Producción del pozo

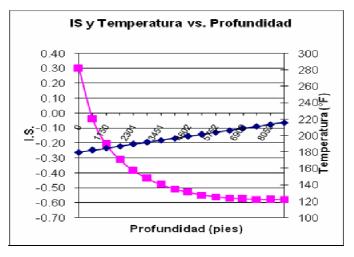
BPPD	372
BAPD	1954
MMscf	0.997

Método de cálculo

motodo do	oaioai	•
CO ₂ en gas		15.00%

Propiedades Físicas

•	
Fuerza Iónica *	1.47
pH *	6.06
T. Cabeza	180
P. Cabeza	70
T. Fondo	216
P. Fondo	1475


Resultados de IS & PTB

Tipo de Escala	IS	PTB
Carbonato de calcio	0.30	106.3
Yeso	-1.00	
Hemi-Hidrato	-0.89	
Anhidrita	-0.56	
Sulfato de Ba		
Sulfato de Sr		

Variación de IS con la P & T

Temperatura	Presión	IS	Profundidad
180	70	0.30	0
182	164	-0.04	575
185	257	-0.21	1150
187	351	-0.31	1726
190	445	-0.38	2301
192	538	-0.44	2876
194	632	-0.48	3451
197	726	-0.51	4026
199	819	-0.53	4602
202	913	-0.55	5177
204	1007	-0.56	5752
206	1100	-0.57	6327
209	1194	-0.57	6902
211	1288	-0.58	7478
214	1381	-0.58	8053
216	1475	-0.58	8628

Fuente: Corrosión Shushufindi Elaborado por: Ing. Marco Coro

Fuente: Corrosión Shushufindi Elaborado por: Ing. Marco Coro

Pozo SSF-06B

CÁLCULO DEL IS BASADO EN EL MODELO DE ODDO-TOMSON SSF-06B

Información del origen de la muestra

Compañía	Petroproducción	
Campo	SHUSHUFINDI	
Pozo	SSFD-06B	
Arena	Us	
Fecha	7-Dec-07	
Realizado por :	Ing. Diego Palacios	

Análisis del Agua (mg/L)

Calcio	6880
Magnesio	1093.5
Bario	0
Estroncio	0
Sodio *	47289
Alcalinidad	329.4
Sulfatos	112.5
Cloruros	88000

^{* -} Valor calculado

Propiedades Físicas

Fuerza Iónica *	2.71
pH *	6.58
T. Cabeza	130
P. Cabeza	100
T. Fondo	224
P. Fondo	1007

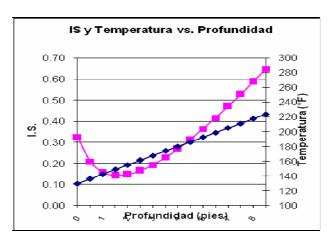
Producción del pozo

BPPD	955
BAPD	637
MMscf	0.223

Método de cálculo

CO ₂ en gas	4.00%
------------------------	-------

Resultados de IS & PTB


Tipo de Escala	IS	PTB
Carbonato de calcio	0.33	92.9
Yeso	-1.29	
Hemi-Hidrato	-1.31	
Anhidrita	-1.10	
Sulfato de Ba		
Sulfato de Sr		

Variación de IS con la P & T

Temperatura	Presión	IS	Profundidad
130	100	0.33	0
136	160	0.21	587
143	221	0.16	1173
149	281	0.14	1760
155	342	0.15	2346
161	402	0.17	2933
168	463	0.19	3519
174	523	0.23	4106
180	584	0.27	4692
186	644	0.31	5279
193	705	0.36	5865
199	765	0.42	6452

Temperatura	Presión	IS	Profundidad
205	826	0.47	7038
211	886	0.53	7625
218	947	0.59	8211
224	1007	0.65	8798

Fuente: Corrosión Shushufindi Elaborado por: Ing. Diego Palacios

Fuente: Corrosión Shushufindi Elaborado por: Ing. Diego Palacios

Pozo SSF-20B

CÁLCULO DEL IS BASADO EN EL MODELO DE ODDO-TOMSON SSF-20B Información del origen de la muestra

Compañía Petroproducción
Campo SHUSHUFINDI
Pozo SSFD-20B
Arena U
Fecha 8-Oct-07
Realizado por : Ing. Wilson Albán

Análisis del Agua (mg/L)

<u> </u>	<u> </u>
Calcio	4400
Magnesio	1385.1
Bario	0
Estroncio	0
Sodio *	22604
Alcalinidad	378.2
Sulfatos	150
Cloruros	46350

^{* -} Valor calculado

Producción del pozo

BPPD	253
BAPD	431
MMscf	0.305

Método de cálculo

motous de saist	4.0
CO ₂ en gas	10.00%

Propiedades Físicas

Fuerza Iónica *	1.49
pH *	6.59
T. Cabeza	146
P. Cabeza	20
T. Fondo	213
P. Fondo	1941

Resultados de IS & PTB

Tipo de Escala	IS	PTB
Carbonato de calcio	0.42	128.1
Yeso	-1.32	
Hemi-Hidrato	-1.27	
Anhidrita	-1.09	
Sulfato de Ba		
Sulfato de Sr		

Variación de IS con la P & T

Temperatura	Presión	IS	Profundidad
146	20	0.42	0
150	148	-0.39	560
155	276	-0.60	1119
159	404	-0.71	1679
164	532	-0.77	2238
168	660	-0.80	2798
173	788	-0.82	3357
177	916	-0.83	3917
182	1045	-0.83	4476
186	1173	-0.82	5036
191	1301	-0.81	5595
195	1429	-0.79	6155
200	1557	-0.77	6714
204	1685	-0.74	7274
209	1813	-0.72	7833
213	1941	-0.69	8393

Fuente: Corrosión Shushufindi Elaborado por: Ing. Wilson Albán

Fuente: Corrosión Shushufindi Elaborado por: Ing. Wilson Albán

Pozo SSF-22B

CÁLCULO DEL IS BASADO EN EL MODELO DE ODDO-TOMSON SSF-22B

Información del origen de la muestra

	<u> </u>
Compañía	Petroproducción
Campo	SHUSHUFINDI
Pozo	SSFD-22B
Arena	UT
Fecha	6-Jun-07
Realizado por :	Ing. Marco Coro

Análisis del Agua (mg/L)

Calcio	1600
Magnesio	315.9
Bario	0
Estroncio	0
Sodio *	13465
Alcalinidad	1390.8
Sulfatos	275
Cloruros	23500

^{* -} Valor calculado

Propiedades Físicas

Fuerza Iónica *	0.75
pH *	6.30
T. Cabeza	185
P. Cabeza	100
T. Fondo	222
P. Fondo	1416

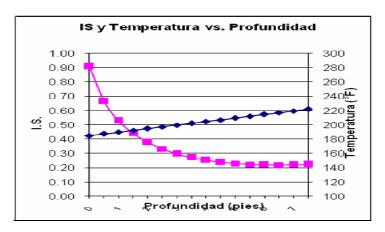
Producción del pozo

BPPD	620
BAPD	2481
MMscf	0.393

Método de cálculo

CO ₂ en gas	17.00%
------------------------	--------

Resultados de IS & PTB


Tipo de Escala	IS	PTB
Carbonato de calcio	0.91	615.1
Yeso	-1.30	
Hemi-Hidrato	-1.17	
Anhidrita	-0.85	
Sulfato de Ba		
Sulfato de Sr		

Variación de IS con la P & T

Temperatura	Presión	IS	Profundidad
185	100	0.91	0
187	188	0.67	567
190	275	0.53	1134
192	363	0.44	1701
195	451	0.38	2267
197	539	0.33	2834
200	626	0.30	3401
202	714	0.27	3968
205	802	0.25	4535
207	890	0.24	5102
210	977	0.23	5669
212	1065	0.22	6236
215	1153	0.22	6802

Temperatura	Presión	IS	Profundidad
217	1241	0.22	7369
220	1328	0.22	7936
222	1416	0.22	8503

Fuente: Corrosión Shushufindi Elaborado por: Ing. Marco Coro

Fuente: Corrosión Shushufindi Elaborado por: Ing. Marco Coro

Pozo SSF-23

CÁLCULO DEL IS BASADO EN EL MODELO DE ODDO-TOMSON SSF-23 Información del origen de la muestra

information der origen de la maestra		
Compañía	Petroproducción	
Campo	SHUSHUFINDI	
Pozo	SSFD-23	
Arena	Ts+i	
Fecha	21-Mar-07	
Realizado por :	Ing. Marco Coro	

Análisis del Agua (mg/L)

/ manoro dor / igua (mg/L)		
560		
48.6		
0		
0		
7166		
1464		
175		
11200		

^{* -} Valor calculado

Producción del pozo

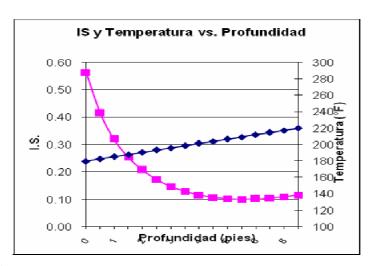
BPPD	786
BAPD	2788
MMscf	0.434

Método de cálculo

Mictodo de Galodio			
CO ₂ en gas	14.00%		

Propiedades Físicas

Fuerza Iónica *	0.36
pH *	6.13
T. Cabeza	180
P. Cabeza	200
T. Fondo	220
P. Fondo	1765


Resultados de IS & PTB

Tipo de Escala	IS	PTB
Carbonato de calcio	0.56	281.6
Yeso	-1.70	30000000000000000000000000000000000000
Hemi-Hidrato	-1.54	
Anhidrita	-1.27	
Sulfato de Ba		
Sulfato de Sr		

Variación de IS con la P & T

Temperatura	Presión	IS	Profundidad
180	200	0.56	0
183	304	0.41	574
185	409	0.32	1148
188	513	0.25	1722
191	617	0.21	2296
193	722	0.17	2870
196	826	0.15	3444
199	930	0.13	4018
201	1035	0.12	4593
204	1139	0.11	5167
207	1243	0.10	5741
209	1348	0.10	6315
212	1452	0.10	6889
215	1556	0.10	7463
217	1661	0.11	8037
220	1765	0.12	8611

Fuente: Corrosión Shushufindi Elaborado por: Ing. Marco Coro

Fuente: Corrosión Shushufindi Elaborado por: Ing. Marco Coro

Pozo SSF-28

CÁLCULO DEL IS BASADO EN EL MODELO DE ODDO-TOMSON SSF-28 Información del origen de la muestra

Compañía	Petroproducción
Campo	Shushufindi
Pozo	SSF-28
Arena	U
Fecha	29-Jun-07
Realizado por :	Ing. Marco Coro

Análisis del Agua (mg/L)

Calcio	9920
Magnesio	388.8
Bario	0
Estroncio	0
Sodio *	50862
Alcalinidad	256.2
Sulfatos	20
Cloruros	96950

^{* -} Valor calculado

Propiedades Físicas

•	
Fuerza Iónica *	3.01
pH *	6.50
T. Cabeza	160
P. Cabeza	160
T. Fondo	235
P. Fondo	1503

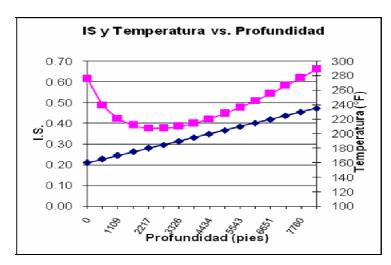
Producción del pozo

BPPD	408
BAPD	348
MMscf	0.305

Método de cálculo

00	4.000/
CO ₂ en gas	4.00%

Resultados de IS & PTB


Tipo de Escala	IS	PTB
Carbonato de calcio	0.61	108.6
Yeso	-2.01	
Hemi-Hidrato	-1.92	
Anhidrita	-1.57	
Sulfato de Ba		
Sulfato de Sr		

Variación de IS con la P & T

Temperatura	Presión	IS	Profundidad
160	160	0.61	0
165	250	0.49	554
170	339	0.43	1109
175	429	0.39	1663
180	518	0.38	2217
185	608	0.38	2771
190	697	0.39	3326
195	787	0.40	3880
200	876	0.42	4434
205	966	0.45	4988
210	1055	0.48	5543
215	1145	0.51	6097
220	1234	0.54	6651
225	1324	0.58	7205

Temperatura	Presión	SI	Profundidad
230	1413	0.62	7760
235	1503	0.66	8314

Fuente: Corrosión Shushufindi Elaborado por: Ing. Marco Coro

Fuente: Corrosión Shushufindi Elaborado por: Ing. Marco Coro

Pozo SSF-45B

CÁLCULO DEL IS BASADO EN EL MODELO DE ODDO-TOMSON SSF-45B Información del origen de la muestra

morniación do crigon do la macon a		
Compañía	Petroproducción	
Campo	SHUSHUFINDI	
Pozo	SSFD-45B	
Arena	Т	
Fecha	22-Sep-07	
Realizado por :	Ing. Marco Coro	

Análisis del Agua (mg/L)

<u>_ </u>	0 ,
Calcio	480
Magnesio	72.9
Bario	0
Estroncio	0
Sodio *	4281
Alcalinidad	817.4
Sulfatos	50
Cloruros	7150

^{* -} Valor calculado

Producción del pozo

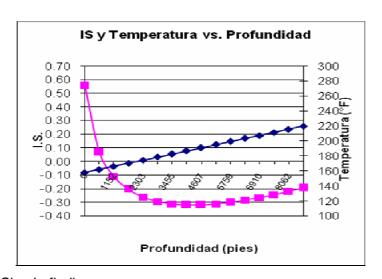
BPPD	1240
BAPD	698
MMscf	0.439

Método de cálculo

motous as sais.	u. •
CO ₂ en gas	15.00%

Propiedades Físicas

Fuerza Iónica *	0.23
pH *	6.48
T. Cabeza	158
P. Cabeza	35
T. Fondo	220
P. Fondo	1345


Resultados de IS & PTB

Tipo de Escala	IS	PTB
Carbonato de calcio	0.56	205.8
Yeso	-2.21	30000000000000000000000000000000000000
Hemi-Hidrato	-2.06	
Anhidrita	-1.95	
Sulfato de Ba		
Sulfato de Sr		

Variación de IS con la P & T

Temperatura	Presión	IS	Profundidad
158	35	0.56	0
162	122	0.07	576
166	210	-0.11	1152
170	297	-0.20	1728
175	384	-0.26	2303
179	472	-0.29	2879
183	559	-0.31	3455
187	646	-0.32	4031
191	734	-0.32	4607
195	821	-0.31	5183
199	908	-0.30	5759
203	996	-0.28	6335
208	1083	-0.27	6910
212	1170	-0.24	7486
216	1258	-0.22	8062
220	1345	-0.19	8638

Fuente: Corrosión Shushufindi Elaborado por: Ing. Marco Coro

Fuente: Corrosión Shushufindi Elaborado por: Ing. Marco Coro

Pozo SSF-67

CÁLCULO DEL IS BASADO EN EL MODELO DE ODDO-TOMSON SSF-67

Información del origen de la muestra

Compañía	Petroproducción
Campo	SHUSHUFINDI
Pozo	SSFD-67
Arena	Т
Fecha	22-Sep-07
Realizado por :	Ing. Diego Palacios

Análisis del Agua (mg/L)

Calcio	320
Magnesio	72.9
Bario	0
Estroncio	0
Sodio *	4099
Alcalinidad	915
Sulfatos	225
Cloruros	6400

^{* -} Valor calculado

Propiedades Físicas

Fuerza Iónica *	0.21
pH *	6.22
T. Cabeza	183
P. Cabeza	136
T. Fondo	220
P. Fondo	1684

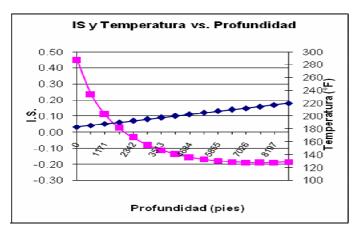
Producción del pozo

BPPD	850
BAPD	2573
MMscf	0.253

Método de cálculo

CO ₂ en gas	12.00%
------------------------	--------

Resultados de IS & PTB


Tipo de Escala	IS	PTB
Carbonato de calcio	0.45	140.4
Yeso	-1.72	
Hemi-Hidrato	-1.53	
Anhidrita	-1.26	
Sulfato de Ba		
Sulfato de Sr		

Variación de IS con la P & T

Temperatura	Presión	IS	Profundidad
183	136	0.45	0
185	239	0.24	585
188	342	0.11	1171
190	446	0.03	1756
193	549	-0.03	2342
195	652	-0.08	2927
198	755	-0.11	3513
200	858	-0.14	4098
203	962	-0.15	4684
205	1065	-0.17	5269
208	1168	-0.18	5855
210	1271	-0.19	6440
213	1374	-0.19	7026

Temperatura	Presión	IS	Profundidad
215	1478	-0.19	7611
218	1581	-0.19	8197
220	1684	-0.19	8782

Fuente: Corrosión Shushufindi Elaborado por: Ing. Diego Palacios

Fuente: Corrosión Shushufindi Elaborado por: Ing. Marco Coro

Pozo SSF-68

CÁLCULO DEL IS BASADO EN EL MODELO DE ODDO-TOMSON SSF-68 Información del origen de la muestra

Petroproducción
SHUSHUFINDI
SSFD-68
Ts
21-Mar-07
Ing. Marco Coro

Análisis del Aqua (mg/L)

/a		
Calcio	4880	
Magnesio	729	
Bario	0	
Estroncio	0	
Sodio *	29311	
Alcalinidad	732	
Sulfatos	175	
Cloruros	55400	

^{* -} Valor calculado

Producción del pozo

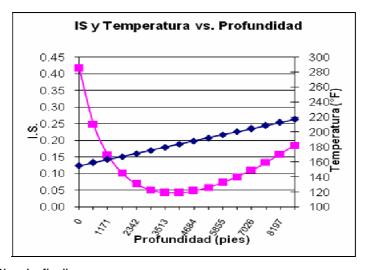
BPPD	831
BAPD	2494
MMscf	0.321

Método de cálculo

	_
CO ₂ en gas	8.00%

Propiedades Físicas

Fuerza Iónica *	1.73
pH *	6.21
T. Cabeza	155
P. Cabeza	180
T. Fondo	217
P. Fondo	1976


Resultados de IS & PTB

Tipo de Escala	IS	PTB
Carbonato de calcio	0.42	240.9
Yeso	-1.26	
Hemi-Hidrato	-1.19	
Anhidrita	-0.94	***************************************
Sulfato de Ba		
Sulfato de Sr		

Variación de IS con la P & T

Temperatura	Presión	IS	Profundidad
155	180	0.42	0
159	300	0.25	585
163	419	0.16	1171
167	539	0.10	1756
172	659	0.07	2342
176	779	0.05	2927
180	898	0.04	3513
184	1018	0.04	4098
188	1138	0.05	4684
192	1258	0.06	5269
196	1377	0.07	5855
200	1497	0.09	6440
205	1617	0.11	7026
209	1737	0.13	7611
213	1856	0.16	8197
217	1976	0.18	8782

Fuente: Corrosión Shushufindi Elaborado por: Ing. Marco Coro

Fuente: Corrosión Shushufindi Elaborado por: Ing. Marco Coro

Pozo SSF-75

CÁLCULO DEL IS BASADO EN EL MODELO DE ODDO-TOMSON SSF-75

Información del origen de la muestra

Compañía	Petroproducción
Campo	SHUSHUFINDI
Pozo	SSFD-75
Arena	Т
Fecha	18-Apr-07
Realizado por :	Ing. Marco Coro

Análisis del Agua (mg/L)

Calcio	440
Magnesio	72.9
Bario	0
Estroncio	0
Sodio *	1706
Alcalinidad	976
Sulfatos	75
Cloruros	3000

^{* -} Valor calculado

Propiedades Físicas

Fuerza Iónica *	0.12
pH *	6.68
T. Cabeza	185
P. Cabeza	80
T. Fondo	218
P. Fondo	1752

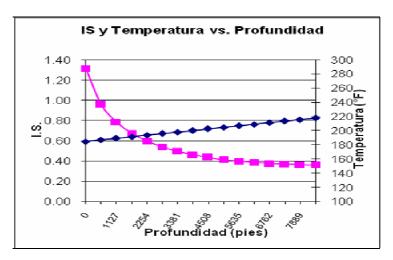
Producción del pozo

BPPD	642
BAPD	1735
MMscf	0.198

Método de cálculo

CO ₂ en gas	8.00%
------------------------	-------

Resultados de IS & PTB


Tipo de Escala	IS	PTB
Carbonato de calcio	1.31	336.1
Yeso	-2.03	
Hemi-Hidrato	-1.82	
Anhidrita	-1.56	
Sulfato de Ba		
Sulfato de Sr		

Variación de IS con la P & T

Temperatura	Presión	IS	Profundidad
185	80	1.31	0
187	191	0.96	564
189	303	0.79	1127
192	414	0.68	1691
194	526	0.60	2254
196	637	0.54	2818
198	749	0.50	3381
200	860	0.46	3945
203	972	0.44	4508
205	1083	0.42	5072
207	1195	0.40	5635
209	1306	0.39	6199
211	1418	0.38	6762

Temperatura	Presión	IS	Profundidad
214	1529	0.37	7326
216	1641	0.37	7889
218	1752	0.36	8453

Fuente: Corrosión Shushufindi Elaborado por: Ing. Marco Coro

Fuente: Corrosión Shushufindi Elaborado por: Ing. Marco Coro

Pozo SSF-79

CÁLCULO DEL IS BASADO EN EL MODELO DE ODDO-TOMSON SSF-79 Información del origen de la muestra

miormation at ongon at in matter		
Compañía	Petroproducción	
Campo	SHUSHUFINDI	
Pozo	SSF-79	
Arena	Т	
Fecha	7-Dec-07	
Realizado por :	Ing. Diego Palacios	

Análisis del Agua (mg/L)

	•
Calcio	5920
Magnesio	291.6
Bario	0
Estroncio	0
Sodio *	25485
Alcalinidad	854
Sulfatos	175
Cloruros	50000

^{* -} Valor calculado

Producción del pozo

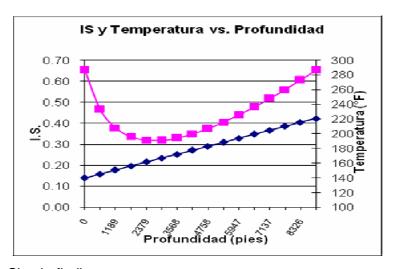
BPPD	1074
BAPD	146
MMscf	0.201

Método de cálculo

CO ₂ en gas		9.00%

Propiedades Físicas

Fuerza Iónica *	1.59
pH *	6.42
T. Cabeza	140
P. Cabeza	80
T. Fondo	221
P. Fondo	1077


Resultados de IS & PTB

Tipo de Escala	IS	PTB
Carbonato de calcio	0.65	367.1
Yeso	-1.13	,
Hemi-Hidrato	-1.09	
Anhidrita	-0.93	***************************************
Sulfato de Ba		
Sulfato de Sr		

Variación de IS con la P & T

Temperatura	Presión	IS	Profundidad
140	80	0.65	0
145	146	0.47	595
151	213	0.38	1189
156	279	0.34	1784
162	346	0.32	2379
167	412	0.32	2974
172	479	0.33	3568
178	545	0.35	4163
183	612	0.37	4758
189	678	0.40	5353
194	745	0.44	5947
199	811	0.48	6542
205	878	0.52	7137
210	944	0.56	7732
216	1011	0.61	8326
221	1077	0.65	8921

Fuente: Corrosión Shushufindi Elaborado por: Ing. Diego Palacios

Fuente: Corrosión Shushufindi Elaborado por: Ing. Diego Palacios

Pozo SSF-82

CÁLCULO DEL IS BASADO EN EL MODELO DE ODDO-TOMSON SSF-82

Información del origen de la muestra

Compañía	Petroproducción
Campo	SHUSHUFINDI
Pozo	SSFD-82
Arena	UI-SUP
Fecha	15-Oct-07
Realizado por :	Ing. Wilson Albán

Análisis del Agua (mg/L)

Calcio	4920
Magnesio	753.3
Bario	0
Estroncio	0
Sodio *	28881
Alcalinidad	366
Sulfatos	300
Cloruros	55000

^{* -} Valor calculado

Propiedades Físicas

Fuerza Iónica *	1.72
pH *	6.82
T. Cabeza	150
P. Cabeza	80
T. Fondo	221
P. Fondo	1256

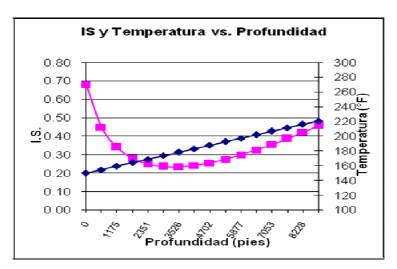
Producción del pozo

BPPD	2364
BAPD	714
MMscf	0.245

Método de cálculo

CO ₂ en gas

Resultados de IS & PTB


Tipo de Escala	IS	PTB
Carbonato de calcio	0.68	162.3
Yeso	-1.00	
Hemi-Hidrato	-0.95	
Anhidrita	-0.73	
Sulfato de Ba		
Sulfato de Sr		

Variación de IS con la P & T

Temperatura	Presión	IS	Profundidad
150	80	0.68	0
155	158	0.45	588
159	237	0.34	1175
164	315	0.28	1763
169	394	0.25	2351
174	472	0.24	2939
178	550	0.23	3526
183	629	0.24	4114
188	707	0.26	4702
193	786	0.27	5290
197	864	0.30	5877
202	942	0.33	6465
207	1021	0.36	7053

Temperatura	Presión	IS	Profundidad
212	1099	0.39	7641
216	1178	0.42	8228
221	1256	0.46	8816

Fuente: Corrosión Shushufindi Elaborado por: Ing. Wilson Albán

Fuente: Corrosión Shushufindi Elaborado por: Ing. Wilson Albán

Pozo SSF-91

CÁLCULO DEL IS BASADO EN EL MODELO DE ODDO-TOMSON SSF-91 Información del origen de la muestra

miormaoion aoi origon ao ia maoona		
Petroproducción		
SHUSHUFINDI		
SSFD-91		
U		
22-Jan-07		
Ing. Marco Coro		

Análisis del Agua (mg/L)

Andrisis del Agua (mg/L)		
Calcio	5520	
Magnesio	1215	
Bario	0	
Estroncio	0	
Sodio *	28032	
Alcalinidad	1098	
Sulfatos	200	
Cloruros	55750	

^{* -} Valor calculado

Producción del pozo

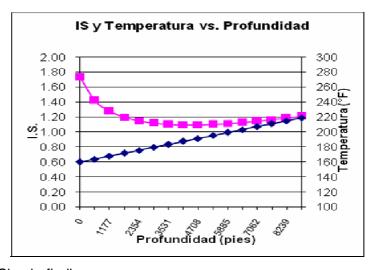
BPPD	947
BAPD	774
MMscf	0.304

Método de cálculo

CO ₂ en gas	3.00%	

Propiedades Físicas

Fuerza Iónica *	1.79
pH *	7.24
T. Cabeza	160
P. Cabeza	63
T. Fondo	219
P. Fondo	1298


Resultados de IS & PTB

Tipo de Escala	IS	PTB
Carbonato de calcio	1.73	615.9
Yeso	-1.16	
Hemi-Hidrato	-1.09	
Anhidrita	-0.82	
Sulfato de Ba		
Sulfato de Sr		

Variación de IS con la P & T

Temperatura	Presión	IS	Profundidad
160	63	1.73	0
164	145	1.42	588
168	228	1.28	1177
172	310	1.20	1765
176	392	1.15	2354
180	475	1.12	2942
184	557	1.10	3531
188	639	1.10	4119
191	722	1.10	4708
195	804	1.10	5296
199	886	1.11	5885
203	969	1.13	6473
207	1051	1.14	7062
211	1133	1.16	7650
215	1216	1.19	8239
219	1298	1.21	8827

Fuente: Corrosión Shushufindi Elaborado por: Ing. Marco Coro

Fuente: Corrosión Shushufindi Elaborado por: Ing. Marco Coro

Pozo SSF-92

CÁLCULO DEL IS BASADO EN EL MODELO DE ODDO-TOMSON SSF-92

Información del origen de la muestra

Compañía	Petroproducción
Campo	SHUSHUFINDI
Pozo	SSFD-92
Arena	Ts+i
Fecha	3-Jan-08
Realizado por :	Ing. Carlos Jiménez

Análisis del Agua (mg/L)

_	
Calcio	640
Magnesio	24.3
Bario	0
Estroncio	0
Sodio *	5186
Alcalinidad	1342
Sulfatos	25
Cloruros	8400

^{* -} Valor calculado

Propiedades Físicas

Fuerza Iónica *	0.28
pH *	6.07
T. Cabeza	175
P. Cabeza	220
T. Fondo	245
P. Fondo	1747

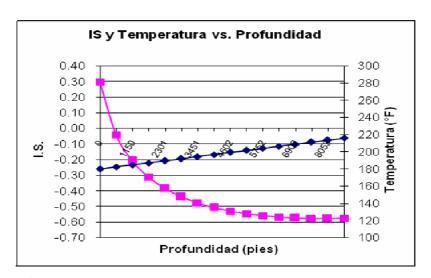
Producción del pozo

BPPD	804
BAPD	3044
MMscf	0.587

Método de calculo

CO ₂ en gas	13.00%
------------------------	--------

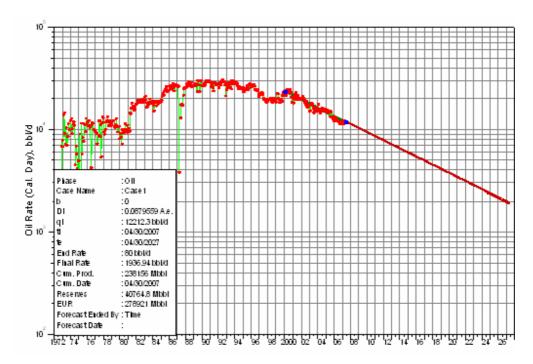
Resultados de IS & PTB

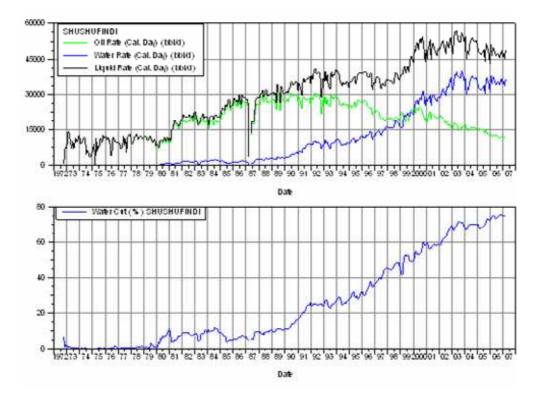

Tipo de Escala	IS	PTB
Carbonato de calcio	0.59	309.1
Yeso	-2.45	
Hemi-Hidrato	-2.29	
Anhidrita	-2.05	
Sulfato de Ba		
Sulfato de Sr		

Variación de IS con la P & T

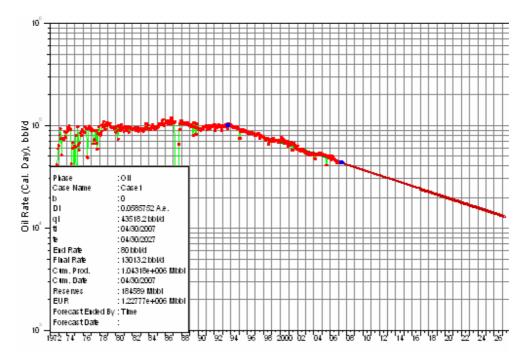
Temperatura	Presión	IS	Profundidad
175	220	0.59	0
180	322	0.48	566
184	424	0.43	1131
189	525	0.40	1697
194	627	0.38	2263
198	729	0.38	2829
203	831	0.38	3394
208	933	0.40	3960
212	1034	0.41	4526
217	1136	0.44	5092
222	1238	0.46	5657
226	1340	0.49	6223
231	1442	0.52	6789

Temperatura	Presión	IS	Profundidad
236	1543	0.55	7355
240	1645	0.58	7920
245	1747	0.62	8486


Fuente: Corrosión Shushufindi Elaborado por: Ing. Carlos Jiménez


Fuente: Corrosión Shushufindi Elaborado por: Ing. Carlos Jiménez

ANEXO No. 6 PROYECCIONES DE PRODUCCIÓN DE AGUA Y PETRÓLEO



Porcentaje de Agua de la Estación Shushufindi Sur.

Proyección de producción de Petróleo y Agua del Campo Shushufindi.

