LENTES DE BOCINA

t

١

.

Tesis previa a la obtención del título de Ingeniero en la especialización de Electrónica y Telecomunicaciones de la Escuela Politécnica Nacional.

GABRIEL O. BERNAL GOMEZ.

QUITO

Julio de 1973.

Certifico que este trabajo ha sido realizado en su t<u>o</u> talidad por el Sr. Gabriel O. Bernal G**ó**mez.

Eng, Mario Cevallos CONSULTOR DE TESIS.

Quito, Julio de 1973.

A MIS PADRES Y HERMANOS.

PROLOGO

Los rápidos y profundos cambios en Telecomunicaciones, últimamente logrados en el País, han acrecentado en mi el interés por un es tudio más detenido de ciertas materias de Telecomunicaciones.

Este trabajo, justamente, es el resultado de una investigación bibliográfica complementada con análisis teóricos y experimentales, personales, de un tema de los campos de las Microondas y Radiación Electromagnética.

Espero que los aspectos aqui tratados sin pretender ser compl<u>e</u> tos, puedan aportar al estudiante y al profesional una información <u>ge</u> neral y resumida sobre el tema: "Lentes para Antenas de Bocina".

Jamás este trabajo pudo haberse realizado sin antes aplicar los conocimientos recibidos en la Escuela Politécnica Nacional; para ella mis profundos agradecimientos.

Debo al Ing. Mario Cevallos mi reconocimiento. El, como Consul tor de Tesis me brindó su invalorable ayuda en la elaboración de ésta.

Es honroso para mi agradecer públicamente al Dr. Kanti Hore, Jefe del Departamento de Electrónica. Al personal que labora en el Laboratorio del Departamento de \underline{E} lectrónica agradezco su cooperación al ofrecerme libre acceso a los <u>e</u> quipos necesarios para la experimentación.

ι

Finalmente, gracias a Alicia, esforzada supo ayudarme a transcribir este trabajo.

> Gabriel O. Bernal Gómez. Quito, Julio de 1973.

INDICE GENERAL

		Página
PROLOGO		IV
Capitulo Primero	: INTRODUCCION Y CONSIDERACIONES GENERALES	1
Capitulo Segundo	: TEORIA SOBRE BOCINAS ELECTRO- MAGNETICAS	5
2.1. / Defin:	ición	6
2.2. /Tipos	de Bocinas	6
2.3. Distr	ibución del Campo Electromagnéti-	
co der	ntro de una bocina en sector	8
2.3.1. Distri	bución para una excitación TE 1,0	8
2.3.2. Condic	ciones de borde	11
2.3.3. Anális	sis de las expresiones de campo o <u>b</u>	
tenida	s	13
2.3.4. Distri	bución para una excitación TE 0,1	16

2.3.5.	Condiciones de borde	18
2.3.6.	Análisis de la expresión de campo e-	
	léctrico obtenida	18
2.4.	Flujo de Energía en una bocina en se <u>c</u>	
	tor	20
2.5.	Bocinas Piramidales	22
2.5.1.	Comprobación de la distribución cose	
	noidal de campo eléctrico en una su-	
	perficie equifase	23
2•5•2•	Impedancia de onda en la pertura de	
	una bocina piramidal	26
2•5•3•	Determinación de las constantes de pro	
	pagación en una bocina piramidal	27
2.6. /	Modelos de radiación	28
2.6.1.	Condiciones para la utilización del	
	método basado en el principio de Huygens	30
2.6.2.	Radiación de la apertura	30
2.6.3.	Funciones de Distribución de Amplitud y	
	Fase	34
2.6.4.	Modelos de radiación en los planos E y H	38
2•7•	Explicación adicional sobre los resulta-	
	dos de la sección 2.6	49
2.8.	Ganancia Directiva de Schelkunoff	51

.

. —	Ŧ	T	
VΤ	Т	L.	

Capitulo !	Fercero: TEORIA SOBRE LENTES	54
3.1.	Propósito de los lentes	55
3.2.	Velocidad de Fase e Indice de Refracción	57
3.2.1.	Indice de Refracción menor que la unidad	58
3.2.2.	Explicación adicional sobre el Indice de	
	Refracción menor que la unidad	65
3.3.	Tipos de lentes	66
3•4•	Lentes cilindricos y de revolución de die	
	léctrico	67
3•4•1•	Utilización de estos lentes de acuerdo al	
	tipo de ondas	67
3.4.2.	Determinación del perfil de lentes de die	
	léctrico	69
3•4•3•	Aproximación para aperturas pequeñas	73
3.4.4.	Reflexiones en el lente y forma de evitar	
	las	74
3•4•5•	Lentes zonales	77
3.4.6.	Dependencia de la frecuencia de los lentes	
	zonales	80
3•4•7•	Zonas en las superficies hiperbólica de los	
	lentes	83
3.4.8.	Efectos de las zonas sobre la iluminación	85
3.5.	Lentes con una y dos superficies de refracción	86

Página

3.5.1.	Con una superficie de refracción	86
3.5.2.	Con dos superficies de refracción	87
3.6.	Lentes de dieléctricos artificiales	87
3•7•	Lentes metálicos	89
3•7•1•	Lentes metálicos normales	89
3.7.2.	Aproximaciones para aperturas pequeñas	93
3•7•3•	Lentes normales de revolución	94
3•7•4•	Variación de la distribución de Amplitud de	
	campo por efecto de los lentes metálicos	94
3•7•5•	Lentes zonales	102
3.7.6.	Efectos de las zonas en la iluminación de	
	la apertura	107
3•7•7•	Lentes metálicos guiados	108
3.8.	Modelos de radiación de una bocina con lente	113
3.8.1.	Modelos en el plano E	114
3.8.2.	Modelos en el plano H	118
3.9.	Ganancia Directiva y Area Efectiva de una	
	bocina con lente	121
3.10.	Consideraciones de Diseño de los lentes m <u>e</u>	
	tálicos	123
3.10.1.	Indice de Refracción	123
3.10.2.	Ancho de Banda de un lente metálico	126

IX

-

-		
	C 12	-
- H	P. I.	1124
****	<u>–</u>	

3.10.3.	Toler ancia en la variación de la sep <u>a</u>	
	ración entre láminas	135
3•10•4•	Tolerancia en el espesor del lente	139
3.10.5.	Tolerancia de giro del lente	1 40

Capitulo Cuarto: DISEÑO DE BOCINAS Y LENTES PARA

	EXPERIMENTACION	142
4.1.	Introducción	143
4.2.	Frecuencia de trabajo	143
4.3.	Diseño de las bocinas	1 43
4.3.1.	Explicación previa	143
4.3.2.	Bocina en sector	144
4.3.3.	Bocina piramidal y acoplador de guía	1 45
4.4.	Diseño de los lentes	151
4.4.1.	Explicación previa	15 1
4.4.2.	Lente de Índice de refracción variable	1 52
4.4.3.	Lente de indice de refracción constante	157
4.4.4.	Lente de revolución para la bocina pir <u>a</u>	
	midal	161

Capitulo	Quinto:	RESULTADOS	EXPERIMENTALES	1	164
5.1.	Introdu	ucción		1	165

х

.

.

5•2•	Determinación de la Relación de ondas esta-	
	cionarias e Impedancia	165
5.2.1.	Equipo utilizado	165
5.2.2.	Forma de medición y resultados	166
5•3•	Determinación de los Diagramas de Radiación	175
5.3.1.	Equipo utilizado	175
5•3•2•	Forma de medición y resultados	176
5.4.	Determinación de la ganancia	191
5•5•	Discusión de los resultados	193
5.5.1.	Análisis de los valores de Relación de Ondas	
	Estacionarias e Impedancia	193
5.2.2.	Análisis de los diagramas de Radiación	194
5.2.3.	Análisis de los valores de ganancia obtenidos	206
Capitulo Se	exto: COMENTARIOS Y CONCLUSIONES	207

- APENDICE "A" 211
- BIBLIOGRAFIA 223

XI

÷

Página

...

.

XII

INDICE DE TABLAS

Tabla 2-1	Valores de Amplitud de Campo E(u)	
	para $\beta_2 = \pi /4$	43
Tabla 2-2	Valores de Amplitud de Campo E(u)	
	para $\beta_1 = \pi/2$	44
Tabla 3-1	Valores del indice de refracción, como	
	función de la separación entre láminas	63
Tabla 3-2	Valores de A () / A (o) como función	
	de \varTheta	100
Tabla 3-3	Valores de A (y) / A (o) como función	
	de O	100
Tabla 3-4	Valores relativos del campo eléctrico	
	E(u) en el plano E	1 16
Tabla 3-5	Valores relativos del campo eléctrico	
	E(v) en el plano H	119
Tabla 3-6	Ancho de Banda de un lente metálico como	
	función de su espesor t	132
Tabla 3-7	Ancho de Banda de un lente metálico zonal	
	como función del número de zonas K	133
Tabla 4-1	Valores de los radios del contorno elip-	
	tico para diferentes angulos del lente de	
N	"n" constante	160

XIII

Tabla 4-2	Valores del radio del contorno elip-	
	tico para diferentes ángulos en el	
	lente de revolución	163
Tabla 5 -1	Valores de "S" y Z_r / Z_o de la bocina	
	en sector	167
Tabla 5-2	Valores de "S" y Z_r / Z_o de la bocina	
	en sector con lente de "n" variable	168
Tabla 5-3	Valores de "S" y Z_r / Z_o de la bocina	
	en sector con lente de "n" constante	168
Tabla 5 -4	Valores de "S" y Z_r / Z_o de la bocina	
	piramidal	169
Tabla 5-5	Valores de "S" y Z_r / Z_o de la bocina	
	piramidal con lente	169
Tabla 5-6	Valores relativos de campos para la bo-	
	cina piramidal con lente	178
Tabla 5 - 7	Valores relativos de campo para la bo-	
	cina piramidal sin lente	179
Tabla 5-8	Valores relativos de campo para la boc <u>i</u>	
	na en sector sin lente	180
Tabla 5-9	Valores relati vo s de campo para la boc <u>i</u>	
	na en sector con lente de "n" constante	181

Tabla 5-10	Valores relativos de campo para la bo-	
	cina en sector con lente de "n" varia-	
	ble	182
Tabla 5-11	Valores relativos de campo para la bo-	
	cina piramidal-rectangular	189

CAPITULO PRIMERO

.

Ĺ

L

INTRODUCCION Y CONSIDERACIONES

GENERALES

INTRODUCCION Y CONSIDERACIONES GENERALES.

La bocina electromagnética es un dispositivo radiante de gran \underline{u} so en Telecomunicaciones aplicable en el rango de las Microondas. A me nudo esta antena ha sido utilizada como standard o de referencia para el cálculo de ganancias de otros tipos de elementos radiante^s incluyendo conjuntos de antenas de grandes magnitudes y altas ganancias.

Para ciertos casos, sin embargo, ha sido necesario mejorar la ganancia direccional de la bocina o modificar su diagrama de radiación incrementando su lóbulo principal y reduciendo en lo posible los secun darios.

Básicamente los diagramas de radiación de una apertura radiante como es la bocina, dependen de la distribución de Amplitud y Fase que tienen los campos electromagnéticos sobre la apertura. A fín de lograr una radiación de determinadas características es necesario primero fijar o definir la distribución de los campos en la apertura radiante. <u>A</u> quí se hace necesario el lente electromagnético. Este dispositivo dieléctrico o metálico tiene la propiedad de transformar los frentes de onda emergentes de la bocina según sea su diseño para obtener la dis-tribución electromagnética deseada.

En este trabajo, trataré al lente específicamente como formador de frentes de onda planos que dan lugar a diagramas muy direccionales

2

⊂y de alta Directividad.

Antes de entrar a analizar las características y formas de dis<u>e</u> ño de los lentes he creído conveniente, en el Capítulo II efectuar un estudio teórico-matemático de los campos electromagnéticos dentro de las bocinas en sector y piramidal partiendo de las ecuaciones de Max-well. El objeto de este estudio es determinar la distribución de los campos sobre la apertura de las bocinas. Inmediatamente analizo los diagramas de radiación de una bocina excitada por un modo TE 1,0 que es el más común y el único posible de utilizarse con los lentes metál<u>i</u> cos. Para este fin utilizo el método basado en el principio de Huygens. Como complemento a este capítulo he preparado el apéndice A en el cual llego a determinar las características radiantes de un "Elemento de Huy gens" utilizando en el desarrollo los Teoremas de la Equivalencia e Inducción.

3

7

En el capítulo III establezco el concepto de Indice de Refracción del cual se desprenden las diferencias de los medios metálicos y dieléctricos y de las cuales se concluyen, a su vez, las propiedades de los lentes electromagnéticos de ambos tipos. Las características de diseño de los lentes también son tratadas en este capítulo así como también las propiedades de radiación del conjunto bocina-lente. Esto último me sirve para efectuar la comparación con la forma de radiación de la bocina sola.

Debo indicar que en el capítulo III incluyo ciertos aspectos de

L.

los lentes que no son aplicados en su totalidad en el diseño pero, he creído conveniente mencionarlos en un afán de lograr una visión más completa de esos dispositivos.

✓ El capítulo IV comprende el diseño mismo de dos bocinas: una en sector y otra piramidal y de tres lentes: uno de índice de refracción variable para la bocina en sector, otro de espesor variable también para la misma bocina y un lente de revolución para la bocina piramidal.

La frecuencia de diseño es 10 GHz. Naturalmente todos los elementos diseñados tienen un ancho de banda dentro del cual son utiliza bles.

Considerando a la parte experimental como un complemento inel<u>u</u> dible de la parte teórica he utilizado los lentes y bocinas diseñados para efectuar comprobaciones experimentales que confirmen los estudios de los capítulos II y III. Básicamente las pruebas realizadas fueron: Comprobación de acoplamiento de las cargas mencionadas con el sistema de alimentación de microondas, confirmación de la mejora de la ganancia direccional del conjunto bocina-lente y comparación de los diagr<u>a</u> mas de radiación de la bocina con y sin lente.

4

CAPITULO SEGUNDO

TEORIA SOBRE BOCINAS

ELECTROMAGNETICAS

.

2.1. DEFINICION.

La bocina es una antena constituida por una guía de onda cuya sección transversal va incrementándose progresivamente para terminar en una apertura radiante.

Este cambio gradual de su sección transversal da a la bocina la característica de un transformador de impedancia que realiza el <u>a</u> coplamiento de la impedancia característica de la guía de onda con la impedancia intrínseca del espacio libre, permitiendo de esta man<u>e</u> ra una eficiente transferencia de energía radiante del sistema de transmisión al espacio libre.

2.2. TIPOS DE BOCINAS.

Existen diferentes tipos de bocinas que de acuerdo a su forma se han clasificado en piramidales, cónicas, bicónicas, de sección va riable exponencialmente, etc. Además, tomando en cuenta la posición del vector de campo de excitación, se tienen bocinas en sector en el plano E y bocinas en sector en el plano H. En la figura 2.1. se ha-llan representados algunos tipos de ellos.

Para el desarrollo del presente trabajo tomaremos en cuenta <u>ú</u> nicamente los tipos de bocina en sector y piramidales, puesto que los lentes electromagnéticos a analizarse posteriormente tienen rel<u>a</u>

6

ción con este tipo de bocinas.

En las figuras 2.1. (e) y (f) se muestran bocinas en sector en el plano E y H, llamadas así por cuanto su apertura radiante se incr<u>e</u> menta únicamente en el plano E o H respectivamente.

La bocina mostrada en la figura 2.1. (d) es piramidal por cuanto su apertura radiante se incrementa simultáneamente en ambos planos.

2.3. DISTRIBUCION DEL CAMPO ELECTROMAGNETICO DENTRO DE UNA BOCINA EN SECTOR.

2.3.1. Para una excitación TE 1,0.

El problema de la determinación de la distribución de campo electromagnético dentro de una bocina se facilita si se asume que sus paredes son conductores perfectos.

Para determinar la configuración del campo dentro de una bocina en sector excitada por el modo TE 1,0 utilicemos la figura 2.2. en la cual utilizamos un sistema de coordenadas cilíndricas.

Considerando las ecuaciones de Maxwell con variación sinunsoidal en el tiempo y asumiendo que en el interior de la bocina rigen co<u>n</u> diciones de espacio libre.

$$\nabla \times \vec{E} = -j \omega \mu_{\circ} \vec{H}$$
(2.1)
$$\nabla \times \vec{H} = j \omega \epsilon_{\circ} \vec{E}$$
(2.2)

se obtienen las ecuaciones de onda:

$$\nabla^{2} \vec{E} = -k_{o}^{2} \vec{E}$$
(2.3)
$$\nabla^{2} \vec{H} = -k_{o}^{2} \vec{H}$$
(2.4)

donde:

$$k_0^2 = \omega^2 \mu_0 \epsilon_0$$

 $\mu_0 = \text{permeabilidad [Henry/metro]}$
 $\epsilon_0 = \text{constante dieléctrica [Faradio/metro]}$

Para el caso específico en que la excitación es del tipo TE 1,0 la com ponente E_f es cero por tratarse de ondas transversales eléctricas*. También la componente E¢ es igual a cero por cuanto en este modo el vector de campo eléctrico está polarizado linealmente existiendo una sola componente transversal de campo eléctrico que en este caso es Ez.

^{*} JORDAN E.C., Electromagnetic waves and Radiating Systems, Prentice -Hall, Pág. 267.

Si las condiciones $E_f = E_f = 0$ reemplazamos en las ecuaciones (2.1) y (2.2), desarrolladas en coordenadas cilíndricas, llega remos a las siguientes conclusiones:

$$Hz = 0 (a)$$

$$j\omega \in \mathcal{J} = \frac{\partial}{\partial J} \left(\mathcal{J} + \mathcal{J} \right) - \frac{\partial}{\partial \mathcal{J}} + \mathcal{J}$$
(b)

$$-j\omega\mu_{o} f H_{f} = \frac{\partial}{\partial \phi} E_{z}$$
(c)
$$j\omega\mu_{o} H\phi = \frac{\partial}{\partial f} E_{z}$$
(d)

De (2.5) (b), (c) y (d) llegamos entonces a la siguiente ecua-ción de onda para Ez:

(2.5)

$$\frac{1}{j} \frac{\partial}{\partial j} \left(j \frac{\partial E_z}{\partial j} \right) + \frac{1}{j^2} \frac{\partial^2 E_z}{\partial \phi^2} = -k_o^2 E_z$$
(2.6)

Para la solución de esta ecuación se utilizará el método de separación de variables. Entonces puede escribirse:

$$Ez = R(f) \Phi(\phi)$$
(2.7)

Utilizando las siguientes denominaciones:

$$\mathbf{v}^2 = -\frac{1}{\Phi} \frac{d^2 \Phi}{d \phi^2}$$
(2.8)

$$\mathbf{x} = k_o \mathbf{j} \tag{2.9}$$

la ecuación (2.6) se transforma en:

$$\frac{d^2 R}{dx^2} + \frac{1}{x} \frac{dR}{dx} + (1 - \frac{v^2}{x^2}) R = 0$$
 (2.10)

cuya solución es*:

$$R = A H_{v}(x) = A H_{v}(k_{o})$$
(2.11)

donde H_v (k, f) es la función de Hankel de orden v y argumento k, y A es una constante compleja.

La variable Φ se puede obtener de la expresión (2.8) cuya solu ción está dada por:

$$\oint = C_3 \cos v \emptyset + C_4 \sin v \emptyset$$
 (2.12)

donde $C_3 y C_4$ son constantes complejas.

De esta manera:

$$\mathbb{E}_{z} = \mathbb{R} \Phi = \mathbb{A} H_{v} (k_{\circ} l) [C_{3} \cos v \phi + C_{4} \sin v \phi]$$
(2.13)

2.3.2. Condiciones de borde.

Considerando, para el caso práctico, que el metal de las pare-

^{*} McLACHLAN, <u>Bessel Functions for Engineers</u>, Segunda Edición, Oxford University Press. Pág. 27.

des es de alta conductividad, las condiciones de borde establecen que la componente tangencial de campo eléctrico es cero en z = 0 y z = by en $\emptyset = 0$ y $\emptyset = 2\emptyset_1$

Como la única componente del campo sigue la dirección z, no existe componente tangencial a las paredes superior e inferior de la bocina por lo cual las condiciones de borde automáticamente se cumplen para z = 0 y z = b.

Las condiciones en $\emptyset = 0$ establecen que $C_3 = 0$ Las condiciones en $\emptyset = 2\emptyset_1$ determinan sen $v2\emptyset_1 = 0$, lo cual requiere que: $v2\emptyset_1 = \Pi$ y entonces:

$$\mathbf{v} = \frac{\pi}{2\phi_1}$$

La expresión para E_{z} se reduce finalmente a:

$$E_{z} = CH_{v}(k, f) \text{ sen } v \not o$$
(2.14)

donde $C = C_4 A_{\bullet}$

Al reemplazar (2.14) en las ecuaciones (2.1) y (2.2) se determinan las componentes de campo magnético:

$$H_{f} = \frac{C_{v}}{j\omega\mu f} \cos v \phi \quad H_{v}(k,f)$$
(2.15)

$$H_{\varphi} = \frac{-jC}{\gamma} \operatorname{sen} \nabla \varphi \cdot \frac{\partial H_{\nu}(k_{o}f)}{\partial (k_{o}f)}$$
(2.16)

donde $\gamma = 2\pi / \lambda_o \omega \mu_o$ $\lambda_o = \text{longitud de onda en el espacio libre}$ $k_o = \omega \sqrt{\mu_o \epsilon_o}$

2.3.3. Análisis de las expresiones de campo obtenidas.

Es necesario realizar un análisis de las últimas expresiones para el estudio y diseño de los lentes que se hará posteriormente.

De la expresión (2.14) se puede ver que el campo eléctrico tiene en cualquier superficie cilíndrica $\int =$ constante, una distribución co senoidal tomando como eje de referencia aquel que pase por la parte media de la superficie $\int =$ constante, según se puede observar en la figu ra (2.3.).

FIG. 2.3

13

Para fines posteriores es necesario conocer las características de las ondas en regiones cercanas a la apertura de la bocina. Para el efecto usaremos la definición que rige para ondas propaga-das exponencialmente dentro de guías de onda y que considera a la constante de atencuación $\overline{}$ y a la constante de fase $\overline{}$ como la relación logarítmica de decrecimiento de amplitud y cambio de fase en la dirección de propagación respectivamente. De esta manera escrib<u>i</u> remos:

$$E_{z} = E_{z}^{\circ} \mathcal{O}^{\left(\vec{\alpha}+j\vec{\beta}\right)}$$
(2.17)

La expresión (2.17) es una solución de la siguiente ecuación:

$$\frac{\partial E_z}{\partial \rho} = -(\overline{\alpha} + i/\overline{\beta}) E_z$$
(2.18)

Si en la última relación reemplazamos la expresión (2.14),que nos dá E_z , llegamos a lo siguiente:

$$\overline{\alpha} + j \overline{\beta} = -\frac{2\pi}{\lambda} \frac{H_{\nu}(\kappa, l)}{H_{\nu}(\kappa, l)}$$
(2.19)

Nos interesa la determinación de $\overline{\checkmark}$ y $\overline{\beta}$ para un \int grande. Por lo tanto en el segundo miembro de 2.19 utilizaremos la aproxima ción asintótica de la función de Hankel para argumentos ($k_0 \int$) mucho mayores que uno. Dicha aproximación es: *

$$H_{v}(k_{\circ}l) \simeq \sqrt{\frac{2}{\Pi k_{\circ}l}} \mathcal{C}^{j\left[-k_{\circ}l+(2\nu+1)\Pi/4\right]}$$
(2.20)

Tomando la primera derivada de (2.20) se llega a:

$$H_{v}^{2}(k_{o}l) = -\frac{1}{2}\sqrt{\frac{2}{\pi}} \binom{-3/2}{k_{o}l} \overset{j[-k_{o}l] + (2v+1)\frac{\pi}{4}}{2} - j\sqrt{\frac{2}{\pi}} \binom{k_{o}l}{k_{o}l} \overset{-1/2}{\ell} \overset{j[-k_{o}l] + (2v+1)\frac{\pi}{4}}{2}$$
(2.21)

Reemplazando (2.20) y (2.21) en (2.19) y separando partes real imaginaria obtenemos:

$$\vec{\alpha} = \frac{1}{2 \int}$$
 (a) $\vec{\beta} = \frac{2 \vec{n}}{\lambda_o}$ (b) (2.22)

Se puede observar que para argumentos grandes la constante de fa se es $\overline{\beta} = \frac{2\pi}{\lambda_o}$ que es el valor de la constante β_o para el espacio libre y por lo tanto la longitud de onda en la región de argumento grande se puede considerar igual a la longitud de onda en el espacio libre.

Sabemos que la impedancia característica de onda está dada por la expresión:

$$\mathbf{z}_{\circ} = -\frac{\mathbf{E}_{z}}{\mathbf{H}_{\phi}} \tag{2.23}$$

^{*} LÖSCH F., Tables of Higher Functions, Sexta edición, McGraw Hill Book Co., pág. 146.

reemplazando (2.14) y (2.16) en (2.23) se determina:

$$Z_{\circ} = + j \eta \frac{H_{v} \left(\frac{2\pi}{\lambda_{o}}\right)}{H_{v}' \left(\frac{2\pi}{\lambda_{o}}\right)}$$
(2.24)

Utilizando las aproximaciones (2.20) y (2.21) se llega a:

$$Z_{\circ} = \frac{2\pi}{\lambda_{\circ}} \gamma \left(\frac{2\pi}{\lambda_{\circ}} - j \frac{1}{2f} \right) / \left(\frac{1}{4f^{2}} + \frac{4\pi^{2}}{\lambda_{\circ}^{2}} \right)$$
(2.25)

Finalmente como $\frac{2\Pi}{\lambda_o} \beta$ es mucho mayor que uno, se concluye que:

$$Z_{\circ} \approx \eta$$
 (2.26)

donde
$$\gamma = \sqrt{\frac{\mu_o}{\epsilon_o}} = 377$$
 ohmios.

2.3.4. Para una exitación TE 0,1.

El campo dentro de una bocina en sector para este tipo de excita ción puede ser obtenido siguiendo un proceso similar a la anterior.

En este caso, las componentes $\mathbf{E}_{\mathbf{z}} = \mathbf{E}_{\mathbf{j}} = \mathbf{H}_{\mathbf{j}} = 0$ con lo cual las ecuaciones de Maxwell (2.1) y (2.2) se reducen a:

$$\frac{\partial H_{1}}{\partial z} - \frac{\partial H_{z}}{\partial j} = j\omega \varepsilon_{o} \varepsilon_{o} \varepsilon_{o} (a) \qquad \frac{1}{j} \frac{\partial (j \varepsilon_{o})}{\partial z} = j\omega \mu_{o} H_{j} (c) (2.27)$$

$$\frac{1}{j} \frac{\partial (j \varepsilon_{o})}{\partial z} = -j\omega \mu_{o} H_{z} (b)$$

De la misma manera la ecuación de onda para la componente $\mathbf{E}_{\mathbf{p}}$ se reduce a:

$$\frac{\partial^{2} E \phi}{\partial f^{2}} + \frac{1}{f} \frac{\partial E \phi}{\partial f} + \frac{\partial^{2} E \phi}{\partial z^{2}} + \left[\left(\frac{\omega}{c} \right)^{2} - \frac{1}{f^{2}} \right] E \phi = 0 \qquad (2.28)$$
donde $c = \frac{1}{\sqrt{\mu_{e} \epsilon_{e}}}$

Utilizando también el método de separación de variables se tiene que:

$$\mathbb{E}_{\boldsymbol{\beta}}(\boldsymbol{\beta},\boldsymbol{z}) = \mathbb{R}(\boldsymbol{\beta}) \mathbb{Z}(\boldsymbol{z})$$
(2.29)

y reemplazando (2.29) en (2.28) se llega a:

$$\int^{2} \frac{\partial^{2} R}{\partial f^{2}} + \int \frac{\partial R}{\partial f} + \left\{ \left[\left(\frac{\omega}{c} \right)^{2} - n^{2} \right] \int^{2} - 1 \right\} R = 0$$
 (2.30)

donde
$$n^2 = -\frac{1}{Z} - \frac{d^2 Z}{dz^2}$$
 (2.31)

La solución de (2.30) para R es:

$$R = A H_1\left(\sqrt{\left(\frac{\omega}{c}\right)^2 - n^2} \int\right)$$
(2.32)

Por su parte, de (2.31), se tiene:

$$Z = C_{3} \cos nz + C_{4} \sin nz \qquad (2.33)$$

Por lo tanto:

$$\mathbb{E}_{\mathbf{p}} = A H_1 \left(\sqrt{\left(\frac{\omega}{c}\right)^2 - n^2} \right) \left(C_3 \cos nz + C_4 \sin nz \right)$$
(2.34)

2.3.5. Condiciones de borde.

Las condiciones de borde establecen que la componente tangencial de campo eléctrico debe ser cero sobre un conductor perfecto. Esto se cumple en las paredes $\emptyset = 0$ y $\emptyset = 2\emptyset_1$ por cuanto la única compon**ente** de campo eléctrico que existe es perpendicular a dichas paredes.

Las condiciones $\mathbf{E}_{\mathbf{p}} = 0$ para $\mathbf{z} = \mathbf{b}$ establecen que $\mathbf{C}_{\mathbf{j}} = 0$ y $\mathbf{n} = \widetilde{\mathbf{n}}/\mathbf{b}$. Debe observarse que $\mathbf{E}_{\mathbf{p}}$ tiene una distribución sinusoidal con respecto a la variable z, tomando en cuenta que la una cara horizontal de la bocina se encuentra en el plano $\mathbf{z} = 0$.

Finalmente la expresión total para E, queda:

$$E_{p} = A C_{4} \operatorname{sen}\left(\frac{\pi}{b}z\right) H_{1}\left(\sqrt{\left(\frac{\omega}{c}\right)^{2} - \left(\frac{\pi}{b}\right)^{2}}\right)$$
(2.35)

Las componentes del campo magnético pueden ser obtenidas reempla zando (2.35) en: (2.27) (b) y (2.27) (c).

2.3.6. Análisis de la expresión (2.35).

Similarmente al análisis hecho en el caso de una excitación TE 1,0

haremos uso de la expresión:

$$\frac{\partial E_{\emptyset}}{\partial f} = -\left(\vec{\alpha} + j\vec{\beta}\right) E_{\emptyset}$$
(2.36)

cuya solución es la ecuación de propagación en el sentido β :

$$E_{\phi} = E_{\phi}^{\circ} e^{-(\bar{\alpha} + j\bar{\beta})f}$$

Reemplazando la expresión (2.35) en (2.36) y haciendo uso de las aproximaciones (2.20) y (2.21) se llega a determinar finalmente que:

$$\overline{\beta} = \sqrt{\left(\frac{\omega}{c}\right)^2 - \left(\frac{\pi}{b}\right)^2} = \sqrt{\left(\frac{2\pi}{\lambda_o}\right)^2 - \left(\frac{\pi}{b}\right)^2}$$
(2.37)

Es decir, la constante dentro de la bocina es exactamente igual a la constante en una guía de onda excitada por el mismo modo*.

La longitud de onda dentro de la bocina será por lo tanto mayor que en el espacio libre y estará dada por $\overline{\lambda} = \frac{2\widetilde{\Pi}}{\sqrt{3}}$.

 $\overline{\beta}$ y $\overline{\lambda}$ están, por lo tanto, determinados por la separación b, para el tipo de excitación TE 0,1.

^{*} JORDAN E.C., Electromagnetic Waves and radiating systems, Prentice Hall, Pág. 267.

2.4. FLUJO DE ENERGIA.

Como una aplicación de las expresiones (2.14), (2.15) y (2.16), podemos determinar que la energía fluye en el sentido radial.

Para el efecto encontramos el vector de Poynting que es una medida del flujo de energía por unidad de área. Si este vector lo inte-gramos sobre el área transversal y normal a ese vector habremos determinado la energía que fluye a través de esa área. En el caso específico de la bocina en sector, esa área es una superficie cilíndrica de \int constante y localizada entre los límites $\emptyset = 0$ y $\emptyset = 2\emptyset_1$ y entre Z = 0 y Z = b.

Sabemos que el vector de Poynting* en forma compleja está dado por:

$$\overline{P} = \frac{1}{2} \overline{E} \times \overline{H}^{*}$$
(2.38)

Sustituyendo en (2.38) las expresiones (2.14) (2.15) y (2.16), obtenemos la componente radial de P:

$$P_{j} = H_{\varphi}^{*} E_{z} = -j \left| C \right|^{2} \frac{1}{2} \sqrt{\frac{\varepsilon_{o}}{\mu_{o}}} \cos^{2}(v\varphi) H_{v}\left(\frac{2\pi}{\lambda_{o}}\right) H_{v}^{*}\left(\frac{2\pi}{\lambda_{o}}\right)$$

^{*} JORDAN E.C., <u>Electromagnetic Waves and radiating systems</u>, Prentice Hall, Pág. 171.

Integrando sobre la superficie cilíndrica tenemos:

$$P_{T} = -j \left| C \right|^{2} \frac{4}{2} \sqrt{\frac{\varepsilon}{\mu_{o}}} \int_{0}^{2\varphi_{i}} \int_{0}^{\varphi_{o}} \int_{0}^{\varphi_{o}} \int_{0}^{\varphi_{o}} \left| \cos^{2} v \varphi \right| H_{v} \left(\frac{2\pi}{\lambda_{o}} \beta \right) H_{v}^{*} \left(\frac{2\pi}{\lambda_{o}} \beta \right) dz \int_{0}^{\varphi} d\varphi$$

La función de Hankel es una combinación de una función de Be ssel de primera clase con una función de Bessel de segunda clase:

$$H_{v} = J_{v} - j Y_{v}$$

donde:

 J_v es la función de Bessel de primera clase y Y_v es la función de Bessel de segunda clase.

Por lo tanto:

$$P_{T} \operatorname{real} = |C|^{2} \sqrt{\underline{\epsilon}_{o}} \frac{\cancel{p}_{i} b \cancel{p}}{2} \left[J_{v} \left(\frac{2\pi}{\lambda_{o}} \cancel{p} \right) Y_{v}' \left(\frac{2\pi}{\lambda_{o}} \cancel{p} \right) - Y_{v} \left(\frac{2\pi}{\lambda_{o}} \cancel{p} \right) J_{v}' \left(\frac{2\pi}{\lambda_{o}} \cancel{p} \right) \right]$$

La expresión dentro del corchete conocida como Wroskiano es <u>i</u> gual a: $\lambda_o / \beta \pi^2$

Por lo que finalmente se tiene:

$$P_{\rm T} \, {\rm real} = |C|^2 \sqrt{\frac{\varepsilon_0}{\mu_0}} \frac{\phi_{\rm t} \, b \, \lambda_0}{2\pi^2} \tag{2.39}$$

^{*} McLACHLAN, <u>Bessel Functions for Engineers</u>, Segunda Edición, 1955, Oxford University Press, Pág. 32.

2.5. BOCINAS PIRAMIDALES.

En la sección 2.3.1., se llegó a determinar la expresión (2.14) que nos dá la distribución de la componente transversal del campo eléc trico en una superficie equifase, al excitar una bocina en sector con un modo TE 1.0. De dicho estudio se puede concluir que la componente transversal de \overline{E} sigue una distribución del tipo $\underline{E}_{\not p} = C \operatorname{sen} \frac{\widehat{T}}{2\not p_4} \not p$. En la determinación de la expresión última se consideró que una de las pa redes laterales de la bocina se encontraba situada en el origen de la variable $\not p$ o sea sobre el eje x (ver figura 2.2).

Por razones de facilidad en estudios posteriores consideraremos que la una pared lateral de la bocina se halla localizada en $\emptyset = -\emptyset_1$ es decir que el eje x pasa por el centro de la bocina. En este caso la distribución del campo la podemos expresar como:

$$E_{\phi} = C \cos \frac{\widehat{\Pi}}{2\phi_1} \phi$$

Ł

En la sección 2.3.4., se llegó a determinar el campo dentro de la misma bocina, pero excitada en este caso por un modo TE 0,1. También aquí la componente transversal del campo eléctrico tiene una di<u>s</u> tribución cosenoidal en el sentido transversal.

Lo indicado anteriormente determina que si excitamos a una boci na piramidal con un modo TE 1,0 la componente transversal del campo e-

22

7
léctrico también tendrá una distribución de tipo cosenoidal.

Por otra parte, en el estudio realizado en la sección 2.3.3., se concluyó que las características de propagación en la región próxima a la apertura radiante de la bocina en sector en el plano H, son simil<u>a</u> res a las del espacio libre (para un modo TE 1,0) y en ningún momento dependen de la altura b de la bocina.

Si dicha altura b va aumentando conforme crece \int , tendremos una bocina piramidal, pero las características de propagación básicamente no variarán puesto que no dependen de la dimensión b en el caso que la excitación sea también TE 1,0.

Para confirmar los planteamientos anteriormente hechos, transcr<u>i</u> biremos a continuación los resultados a que llegaron ciertos autores – que nos dan las componentes de campo de una onda esférica en una bocina piramidal excitada con un modo TE 1,0 y luego, a partir de esas expre-siones haremos un estudio de las características de propagación en la <u>a</u> pertura de la bocina piramidal.

2.5.1. <u>Comprobación de la distribución cosenoidal de campo eléctrico</u> en una superficie equifase.

Haciendo referencia a la figura 2.4. en la cual se observa un frente de onda esférico en una bocina piramidal, los autores F. Borgnis y C. Papas* han llegado a determinar:

$$H_{r} = \frac{q(q+1)}{r^{3/2}} H_{q+1/2}^{(1)} (kr) \operatorname{sen} \left(\frac{\pi}{2} \frac{\pi - 2\Theta}{\pi - 2\Theta_{1}} \right)$$
(a)

$$H_{\Theta} = \frac{1}{r} \frac{d}{dr} \left[\sqrt{r} H_{q+1/2}^{(1)}(kr) \right] \frac{d}{d\Theta} sen\left(\frac{\pi}{2} \frac{\pi - 2\Theta}{\pi - 2\Theta_1} \right)$$
 (b) (2.40)

$$E\phi = -j\omega\mu \cdot \frac{1}{\sqrt{r}} H_{q+1/2}^{(1)}(kr) \frac{d}{d\theta} \operatorname{sen}\left(\frac{\pi}{2} \frac{\pi}{\pi} - 2\theta_{1}\right) \quad (c)$$

$$H\phi = Er = E\phi = 0 \tag{d}$$

Donde: $H_{q+1/2}^{(1)}(kr)$ es la función de Hankel de primera clase y orden q + + 1/2.

$$k = \omega \sqrt{\mu_{o} \varepsilon_{o}}$$

$$q = -\frac{1}{2} + \sqrt{\frac{1}{4} + \frac{\pi^{2}}{4} \left(\frac{2}{\pi - 2\Theta_{1}}\right)^{2}}$$

Si en la expresión (2.40) (c) efectuamos la derivada de la función seno, tendremos:

$$E\phi = j\omega \mu_0 \frac{1}{\sqrt{r}} H_{q+1/2}^{(1)}(kr) \frac{\pi}{\pi_-\Theta_1} \cos\left(\frac{\pi}{2} \frac{\pi_-2\Theta}{\pi_-2\Theta_1}\right)$$

Para una superficie equifase r = constante, podemos escribir en

^{*} BORGNIS F. y PAPAS CH., <u>Electromagnetic Waveguides and Resonators</u>, Pág. 352.

$$E \phi = C \cos\left(\frac{\pi}{2} \frac{\pi - 2\Theta}{\pi - 2\Theta_1}\right)$$

/

Sustituyendo la variable Θ por su complemento $\int = \frac{\Pi}{2} - \Theta$, tenemos:

$$E\phi = C \cos\left(\frac{\pi \delta}{2\gamma_1}\right)$$
(2.41)

Claramente podemos observar la distribución cosenoidal que ti<u>e</u> ne la única componente de campo eléctrico E_{ϕ} en el sentido transversal.

001625

2.5.2. Impedancia de onda en la apertura de la bocina.

La impedancia de onda en el sentido radial está dada por la expresión $Z_0 = -E_{p} / H_0$, si en ella sustituimos (2.40) (b) y (2.40) (c) llegamos a lo siguiente:

$$\overline{Z}_{o} = \frac{j\omega\mu_{o}}{\frac{1}{r}} \frac{d}{dr} \left[\sqrt{r} H_{q+1/2}^{(4)}(kr) \right] = \frac{j\omega\mu_{o}}{\frac{1}{2r}} H_{q+1/2}^{(4)}(kr) + \frac{1}{k} \frac{dH_{q+1/2}^{(0)}(kr)}{d(kr)}$$
(2.42)

Como a nosotros nos interesa la determinación de Z_0 en la apertura de la bocina, o sea donde kr \gg 1, podemos utilizar las expresiones asintóticas de la función de Hankel de primera clase y su primera derivada:

$$H_{q+1/2}^{(1)}(kr) = \sqrt{\frac{2}{\pi kr}} e^{j \left[kr - (2q+2)\pi/4\right]}$$
(a)

$$\frac{d H_{q+1/2}^{(1)}(kr)}{d(kr)} = -\frac{1}{2} \sqrt{\frac{2}{11}} (kr)^{-3/2} C^{j\alpha} + j \sqrt{\frac{2}{11}} (kr)^{-1/2} C^{j\alpha}$$
(b)

donde: $a = kr - (2q + 2) \pi/4$ (2.43)

De esta manera:

$$Z_{\circ} = \frac{j \omega \mu_{\circ} \sqrt{\frac{2}{\pi k r}} e^{j \alpha}}{\frac{1}{2r} \sqrt{\frac{2}{\pi k r}} e^{j \alpha} + \frac{1}{k} \left(-\frac{1}{2} \sqrt{\frac{2}{\pi}} (kr)^{-3/2} e^{j \alpha} + j \sqrt{\frac{2}{\pi}} (kr)^{-1/2} e^{j \alpha}\right)}$$

Simplificando y eliminando los términos inversamente proporcionales a r se llega finalmente a

$$Z_{\circ} \cong \sqrt{\frac{\mu_{\circ}}{\epsilon_{\circ}}} = \gamma$$
(2.44)

Se puede observar que la impedancia de onda en la apertura de - la bocina es aproximadamente igual a la impedancia intrínseca del espacio libre γ_l' .

2.5.3. Determinación de las constantes de propagación.

La misma asunción generalizada de que la propagación de las ondas a través de guías sigue una ley exponencial, podemos utilizar en el caso de una bocina piramidal para determinar las constantes de atenuación y fase:

$$E\phi = E_{\phi}^{\circ} e^{-(\bar{\alpha} + j\bar{\beta})r}$$

que es una solución de la ecuación:

$$\frac{d E \phi}{dr} = -(\overline{\alpha} + j\overline{\beta}) E \phi$$

De esta manera tenemos:

$$\frac{\overline{\alpha} + j\overline{\beta}}{k} = \frac{\frac{d H_{q+1/2}^{(1)}(kr)}{d(kr)}}{H_{q+1/2}^{(0)}(kr)}$$

-Utilizando las aproximaciones asintóticas para la función de Hankel para argumentos mucho mayores que uno, llegamos a determinar:

$$\overline{\mathcal{A}} = \frac{1}{2r} \qquad (a)$$

$$\overline{\mathcal{A}} = \frac{217}{\lambda_{o}} \qquad (b)$$

-Es decir, la constante de fase $\overline{\beta}$ en la apertura de la bocina es igual al β en el espacio libre.

2.6. MODELOS DE RADIACION.

El método que vamos a utilizar para determinar los modelos de radiación se basa en el principio de Huygens que dice:

"Cada partícula en cualquier frente de onda actúa como una nueva

fuente de disturbio emitiendo ondas secundarias y estas ondas secunda-

Utilizando este principio se puede considerar que la apertura radiante de la bocina es un arreglo bidimensional de fuentes secunda-rias infinitesimales con apropiada distribución de amplitud y fase.

Cada uno de estos elementos radiantes produce un campo lejano y al integrar el efecto de uno de ellos sobre el área rectangular que ocupa la apertura radiante se determina el campo lejano total producido por la apertura de la bocina.

En la determinación del campo producido por un elemento de Huygens juegan un papel importante los teoremas de Inducción y de Equiva-lencia. Este proceso se encuentra realizado en el apéndice A de este trabajo.

Por lo pronto aceptaremos que el campo eléctrico lejano generado por un elemento de Huygensestá dado por las siguientes componentes:

$$\mathbb{E}_{\theta} = j \frac{\mathbb{E}_{0,y} \, dx \, dy \, e^{-j\beta r}}{\lambda_{o} r} \operatorname{sen} \phi \qquad (2.46)$$

$$E\phi = j \frac{E_{o,y}}{\lambda_o r} \frac{dx}{dy} \frac{e^{-j/\beta r}}{cos} \cos \phi \qquad (2.47)$$

2.6.1. Condiciones para la utilización de este método.

En este desarrollo se asumirán las siguientes condiciones:

- a) El campo en la apertura radiante es el mismo que aquel que hubiere cuando la bocina fuese de longitud infinita, eliminando así los efectos de discontinuidad.
- b) La longitud de la bocina es de algunas longitudes de onda, es decir la apertura se encuentra en la región donde la longitud de la onda transmitida es igual a la del espacio libre.
- c) El ángulo de apertura no es muy grande (menor que 60⁰) a fin de <u>e</u>
 vitar perturbaciones en la garganta de la bocina producidas por variaciones bruscas de la sección transversal.
- d) Las dimensiones de la apertura son grandes con relación a la longitud de onda, de manera que la radiación producida por las paredes de la bocina es despreciable.
- e) El modo de excitación es TE 1,0.

2.6.2. Radiación de la apertura.

En la figura (2.5) se muestra una apertura de bocina de dimensiones a y b.

El punto P, donde se trata de determinar el campo, se halla localizado en un sistema de coordenadas esféricas y a una distancia r de la apertura. Estando P lo suficientemente lejano se puede aceptar que r es paralelo a r_0 .

Un elemento localizado en el origen del sistema de coordenadas, producirá un campo dado por las componentes:

$$\mathbf{E}_{\theta}^{\circ} = j \frac{\mathsf{E}_{0,y} \, \mathrm{d}_{\mathbf{x}} \, \mathrm{d}_{y} \, \mathcal{C}^{-j/\beta r_{o}}}{\lambda_{o} r_{o}} \, \mathrm{sen} \, \phi \qquad (2.48)$$

$$\mathbf{E}_{\phi}^{\circ} = j \frac{\mathbf{E}_{\phi,y} \, d\mathbf{x} \, dy}{\lambda_{o} \, \mathbf{r}_{o}} \cos \phi \qquad (2.49)$$

Un elemento D cualquiera radiará de la forma:

$$\mathbf{E}_{\phi}^{\mathsf{D}} = j \frac{\mathsf{E}_{\phi,y} \, \mathrm{d} \mathbf{x} \, \mathrm{d} \mathbf{y} \, \mathcal{C}}{\lambda_{\mathsf{o}} \, r_{\mathsf{o}}} \, \mathrm{sen} \, \phi \, \mathcal{C} \qquad (2.50)$$

$$\mathbf{E}_{\phi}^{\mathbf{p}} = j \frac{\mathbf{E}_{o,y} \, d\mathbf{x} \, dy}{\lambda_{o} \, r_{o}} \cos \phi \, e^{j\beta j \cos \psi + j \mathbf{F}(\mathbf{x}, \mathbf{y})}$$
(2.51)

En (2.50) y (2.51), F (x, y) es la fase propia de cada elemento. Es función de la posición de los elementos dentro del arreglo que cons tituye la apertura y será definida posteriormente.

En las mismas expresiones se observa que si r es grande, la relación 1 / r se puede aceptar como constante para un P lejano y es por eso que en el denominador de las igualdades (2.50) y (2.51) se ha es-crito r_0 . Para consideraciones de fase, sin embargo, no se puede hacer esa aproximación y al contrario es muy necesario determinar las dife-rencias de las trayectorias de los elementos radiantes hasta el punto P; pues las diferencias de trayectoria dan lugar a diferencias de fase que pesan mucho en la forma de los diagramas de radiación.

En (2.50) y (2.51), la diferencia de fase entre las radiaciones de los elementos O y D está dada por $\beta \int \cos \psi$, que es el producto de

la constante de fase β por la diferencia entre las distancias r_o y r.

En la figura (2.4) podemos observar que, por Geometría, se cumple:

$$\mathbf{r} = \left[\left(\mathbf{x}_{0} - \mathbf{x} \right)^{2} + \left(\mathbf{y}_{0} - \mathbf{y} \right)^{2} + \mathbf{z}_{0}^{2} \right]^{1/2}$$

donde (x_0, y_0, z_0) son coordenadas del punto P y(x, y)son las coordenadas del punto D.

De acuerdo a la misma figura se cumplen las siguientes rela-ciones: $x_0 = r_0 \operatorname{sen} \Theta \cos \emptyset$, $y_0 = r_0 \operatorname{sen} \Theta \operatorname{sen} \emptyset$, $z_0 = r_0 \cos \Theta$; si ellas se reemplazan en la expresión que nos dá r, se llega a lo siguiente:

$$r \cong r_{\circ} \left[1 - \frac{2}{r_{\circ}} \operatorname{sen} \Theta \left(x \cos \phi + y \operatorname{sen} \phi\right)\right]^{1/2}$$

pero como x / r_o y y / r_o , son muy pequeños comparados con la unidad, sus cuadrados los serán más aún y haciendo uso de la expansión Binomial podemos escribir finalmente la siguiente expresión para r_o - r:

$$\int \cos \psi = r_o - r = x \, \operatorname{sen} \theta \, \cos \phi + y \, \operatorname{sen} \theta \, \operatorname{sen} \phi \qquad (2.52)$$

Por lo cual:

$$\mathbf{E}_{\boldsymbol{\beta}}^{\boldsymbol{P}} = \frac{j \, \boldsymbol{E}_{0, \boldsymbol{y}} \, d\boldsymbol{x} \, d\boldsymbol{y} \, \boldsymbol{\ell}^{-j\beta r_{o}}}{\lambda_{o} \, r_{o}} \cos \boldsymbol{\phi} \, \boldsymbol{\ell}^{j\beta(\boldsymbol{x}\cos\boldsymbol{\phi} + \boldsymbol{y} \, sen \, \boldsymbol{\phi}) \, sen \, \boldsymbol{\theta} + j \, \boldsymbol{F}(\boldsymbol{x}, \boldsymbol{y})}$$

(2.53)

$$\mathbf{E}_{\boldsymbol{\Theta}}^{\boldsymbol{D}} = \frac{j \, \boldsymbol{\Xi}_{\boldsymbol{0}, \boldsymbol{y}} \, d\mathbf{x} \, d\boldsymbol{y} \, \boldsymbol{\mathcal{C}}^{\boldsymbol{j} \boldsymbol{\beta} \boldsymbol{r}_{\boldsymbol{0}}}}{\lambda_{\boldsymbol{o}} \boldsymbol{r}_{\boldsymbol{o}}} \operatorname{sen} \boldsymbol{\emptyset} \, \boldsymbol{\mathcal{C}}^{\boldsymbol{j} \boldsymbol{\beta} (\boldsymbol{x} \cos \boldsymbol{\phi} + \boldsymbol{y} \sin \boldsymbol{\phi}) \sin \boldsymbol{\Theta}} + j \, \boldsymbol{F}(\boldsymbol{x}, \boldsymbol{y})$$

(2.54)

Extendiendo a toda la superficie ab se tiene:

$$E_{\phi} = \frac{j e^{-j/3 r_o}}{\lambda_o r_o} \int_{-a/2}^{a/2} \int_{-b/2}^{b/2} E_{o,y}(x,y) e^{-j/3(x\cos\phi + y\sin\phi)\sin\theta + j F(x,y)} dx dy$$
(2.55)

$$E_{p=\frac{je^{-j/3r_{o}}}{\lambda_{o}r_{o}}} \int \int E_{o,y}(x,y)e^{j\beta(x\cos\phi + y\sin\phi)sen\theta} + jF(x,y) dx dy$$

$$= \frac{je^{-j/3r_{o}}}{\lambda_{o}r_{o}} \int \int E_{o,y}(x,y)e^{-\alpha/2} + jF(x,y) dx dy$$

$$= \frac{je^{-j/3r_{o}}}{\lambda_{o}r_{o}} \int \int E_{o,y}(x,y)e^{-\alpha/2} + jF(x,y) dx dy$$

$$= \frac{je^{-j/3r_{o}}}{\lambda_{o}r_{o}} \int \int E_{o,y}(x,y)e^{-\alpha/2} + jF(x,y) dx dy$$

$$= \frac{je^{-j/3r_{o}}}{\lambda_{o}r_{o}} \int \int E_{o,y}(x,y)e^{-\alpha/2} + jF(x,y) dx dy$$

$$= \frac{je^{-j/3r_{o}}}{\lambda_{o}r_{o}} \int \int E_{o,y}(x,y)e^{-\alpha/2} + jF(x,y) dx dy$$

$$= \frac{je^{-j/3r_{o}}}{\lambda_{o}r_{o}} \int \int E_{o,y}(x,y)e^{-\alpha/2} + jF(x,y)e^{-\alpha/2} + jF(x,y) dx dy$$

$$= \frac{je^{-j/3r_{o}}}{\lambda_{o}r_{o}} \int \int E_{o,y}(x,y)e^{-\alpha/2} + jF(x,y)e^{-\alpha/2} + jF($$

2.6.3. Funciones $E_{0,y}(x,y) \neq F(x,y)$.

La función $E_{O,y}$ (x,y) que aparece en las expresiones (2.55) y - (2.56) influye en el perfil de la curva de amplitud del campo. En el es tudio del campo dentro de una bocina realizado en la sección (2.3) se -

hubo determinado que la componente transversal de campo eléctrico sigue, en general, una ley de distribución del tipo C cos $\pi x/a$.

Por lo tanto esta misma distribución de campo existirá en la <u>a</u> pertura de la bocina y utilizaremos la expresión:

$$E_{O,y}(x,y) = C \cos \frac{\pi x}{a}$$
(2.57)

La superficie sobre la apertura de la bocina es plana, pero el frente de onda emergente desde la garganta de la bocina no lo es. Dicho frente de onda puede ser esférico o cilíndrico según la bocina sea piramidal o en sector. Esto determina que no todos los elementos radiantes localizados en la apertura plana se hallen en fase.

De esta manera, se considera que la fase de los elementos radian tes en la apertura sigue una distribución de tipo cuadrático* tomando como elemento de fase cero aquel que se halla en el punto central.

Para obtener la función F (x,y) haremos el siguiente análisis: en la figura (2.6a) tenemos una bocina piramidal cuya apertura tiene d<u>i</u> mensiones a y b. En la figura (2.6b) tenemos el corte de la misma bocina en el plano y = 0 y allí se observa un frente de onda esférico AOA'

^{*} TERMAN F., Electronic and Radio Engineering, Mc Graw Hill Book Co., Pág. 914.

que llega a la apertura localizada sobre el eje x. La máxima diferencia de fase existente entre los elementos localizados sobre el plano de la apertura dependerá de la diferencia entre las distancias VO y VB o sea dependerá de d_h, debido a que el frente de onda llega primero al punto central y más tarde al extremo B. Por Geometría se tiene:

$$d_{h} = L_{h} - \left[L_{h}^{2} - \left(\frac{a}{2} \right)^{2} \right]^{1/2}$$

Utilizando la aproximación dada por la expansión Binomial podemos escribir: $d_h \cong \frac{\frac{a^2}{a}}{8L_h}$

36

De esta manera la máxima desviación de fase sobre el eje x estará dada por:

$$F_{máx}(x) = 3 \frac{a^2}{8L_h}$$
 (2.58)

Donde /3 es la constante de fase.

Por otra parte, si aceptamos una distribución cuadrática de fase sobre el eje x tendremos:

$$F(x) = k_1 x^2$$
 (2.59)

Para un x máximo igual a a/2 tendremos un F(x) máximo que es el que nos dá la expresión 2.58. De esta manera k_1 puede ser determinado de 2.58 y 2.59, así:

$$\frac{\mathcal{B}_{a}^{2}}{8L_{h}} = k_{1} \left(\frac{a}{2}\right)^{2}$$

de alli:
$$k_1 = \frac{\beta}{2L_h}$$

y entonces

$$F(x) = \frac{\beta}{2L_h} x^2$$
 (2.60)

Haciendo un análisis similar para el plano x = 0 y utilizando

la figura (2.6c) llegamos a la siguiente expresión que nos dá la distribución sobre el eje y:

$$F(y) = \frac{\beta}{2L_e} y^2$$
(2.61)

De (2.60) y (2.61) se concluye que un elemento cualquiera D de coordenadas x,y tendrá la siguiente distribución de fase:

F (x,y) = -
$$\left(\frac{\beta}{2L_{h}}x^{2} + \frac{\beta}{2L_{e}}y^{2}\right)$$
 (2.62)

El signo menos se debe a que la fase de los elementos localizados en los extremos está atrasada con respecto a la del elemento cen--tral.

Reemplazando (2.62) en (2.55) y (2.56) se tiene:

$$E\phi = \frac{je^{-j/3r_o}}{\lambda_o r_o} \cos\phi \int \int c \cos \frac{\pi x}{a} e^{j\beta(x\cos\phi + y\sin\phi)\sin\theta - j(\frac{\beta}{2L_h}x^2 + \frac{\beta}{2L_e}y^2)} dxdy$$

$$(2.63)$$

$$E_{\theta} = \frac{de^{-j\beta r_{o}}}{\sum_{\sigma} r_{o}} \frac{\int \int C \cos \frac{\pi x}{\alpha} e^{-j\beta(x\cos\phi + y\sin\phi)\sin\theta - j\left(\frac{\beta}{2L_{h}}x^{2} + \frac{\beta}{2L_{e}}y^{2}\right)}{dx \, dy}}{dx \, dy}$$

2.6.4. Modelos en los planos E y H.

Para el tipo de excitación TE 1,0 el plano H ocupará la posición $\emptyset = 0$ y el plano E la posición $\emptyset = \pi/2$.

a) En el plano E: cos $\emptyset = 0$ y por lo tanto la expresión (2.63) es - cero y nos queda:

$$E(\theta) = j \frac{e^{-j\beta r_o} C}{\lambda_o r_o} \int_{-\frac{4}{2}}^{\frac{a}{2}} \int_{-\frac{b}{2}}^{\frac{b}{2}} \cos \frac{\pi x}{a} e^{-j\beta y \sin \theta} e^{-j\frac{\beta}{2L_h}x^2} e^{-j\frac{\beta}{2L_e}y^2} dx dy =$$

$$= j \frac{e^{-j/3r_0}C}{\lambda_0 r_0} \int_{-q/2}^{q/2} \cos \frac{\pi x}{\alpha} e^{-j/\frac{3}{2L_h}x^2} dx \begin{bmatrix} b/2 \\ \int e^{j/3y \operatorname{den} \Theta} e^{-j\frac{3}{2L_e}y^2} \\ e^{-b/2} \end{bmatrix}_{-b/2}^{-b/2} (2.65)$$

La expresión fuera del corchete tiene un valor determinado y c<u>o</u> mo nos interesa únicamente valores relativos la llamaremos K_1 . Entonces:

$$E(\Theta) = K_1 \int_{-b/2}^{b/2} e^{j/3y \operatorname{sen}\Theta} e^{-j\frac{\beta}{2Le}y^2} dy \qquad (2.66)$$

que puede escribirse:

$$E(\Theta) = K_2 \int e^{j \frac{\pi b}{\lambda_0} \overline{y} \operatorname{sen} \Theta} e^{-j/\beta_2 \overline{y}^2} d\overline{y}$$

(2.67)

Donde:
$$K_2 = \frac{b}{2} K_1$$
; $\beta_2 = \frac{\beta b}{8Le}$; $\overline{y} = \frac{2}{b} y$

La solución de (2.67) está dada por:

$$E(\Theta) = K_2 \sqrt{\frac{\pi}{2\beta_2}} \left\{ C(m_2) - C(m_1) - j \left[S(m_2) - S(m_1) \right] \right\} \quad (2.68)$$

donde:

$$m_{2} = \sqrt{\frac{2\beta_{2}}{\pi}} \left(1 - \frac{\frac{\pi b}{\lambda_{o}} \operatorname{sen} \Theta}{\frac{2\beta_{2}}{\pi}} \right) \qquad (a) \qquad (2.69)$$

$$m_{2} = \sqrt{\frac{2\beta_{2}}{\beta_{2}}} \left(-1 - \frac{\pi b}{\lambda_{o}} \operatorname{sen} \Theta}{\frac{\lambda_{o}}{\lambda_{o}}} \right) \qquad (b)$$

$$m_{1} = \sqrt{\frac{2/\beta_{2}}{\pi}} \left(-1 - \frac{\lambda_{o}}{2\beta_{2}} \right)$$
 (b)

$$C(m) = \int_{0}^{\infty} \cos\left(\frac{\pi}{2}y^{2}\right) dy \qquad (c)$$

$$S(m) = \int_{0}^{\infty} sen\left(\frac{\pi}{2}y^{2}\right) dy \qquad (d)$$

C(m) y S(m) son conocidas como las integrales de Fresnel.

A continuación se efectúa la representación de las curvas de am plitud de E (Θ) como función de u = $\frac{\pi}{\lambda_o}$ sen Θ .

Utilizamos u como variable independiente a fin de generalizar las representaciones, puesto que no se conoce b y $\lambda_{\circ}.$

En las tablas* (2-1) y (2-2) se pueden encontrar los diferentes valores de E (0) para diferentes valores de u. Cada una de estas tablas se ha construido para un valor de β_2 ; en la primera para β_2 =

 Π /4 y en la segunda para $\beta_2 = \Pi$ /2. Los modelos indicados en la figura se han hecho tomando en cuenta los valores relativos de cada punto con respecto al valor máximo de cada curva de acuerdo a la relación:

$$db = 20 \log \frac{|E(u)|}{|E(0)|}$$
 (2.70)

Observando las dos curvas de la figura (2-7) se puede concluir que mientras mayor es la desviación máxima de fase β_2 son mayores los lóbulos secundarios y a su vez el lóbulo fundamental decrece. A continuación hacemos el cálculo de los dos valores máximos de amplitud de cada una de las curvas:

Para
$$\beta_2 = \pi/2$$
 se tiene:

$$\left| E(\circ) \right| = \left| K_2 \sqrt{\frac{2\pi}{2\pi}} \left[C(m_2(\circ)) - C(m_1(\circ)) - j \left\{ S(m_2(\circ)) - S(m_1(\circ)) \right\} \right] \right| = 1.79 \text{ K}_2$$

Para $\beta_2 = \pi/4$ se tiene:

^{*} C(m) y S(m) han sido tomadas de "Tables of Higher Functions" de Friedrich Lösch. Pág. 29-35.

$$\left| E(o) \right| = \left| K_2 \sqrt{\frac{211}{37}} \left[C(m_2(o)) - C(m_1(o)) - j \left\{ S(m_2(o)) - S(m_1(o)) \right\} \right] \right| = 1.95 \text{ K}_2.$$

Haciendo la relación en decibeles se tiene que la diferencia entre los dos valores máximos es 0,76 db.

TABLA 2-1

Valores de Amplitud del Campo (Eu) para $\beta_2 = \pi /4$					
u[77]	^m 2	²² 1	$ \mathbf{E}(\mathbf{u}) / \mathbf{K}_2 \sqrt{2}$	db=20 $\log \frac{ E(u) }{ E(o) }$	
0	+0.707	-0.707	1,38	00.00	
1/6	+0.472	-0.943	1.3200	-00.39	
1/3	+0.235	-1. 178	1.1400	-01.66	
1/2	0.000	- 1•414	0.8900	-03.82	
2/3	-0.235	-1.650	0.6020	-07.20	
5/6	-0.471	-1.885	0.3360	-12.28	
1 .	-0.707	-2.120	0.2180	-16.30	
7/6	-0.940	-2.350	0.2800	-13.86	
4/3	-1 •180	-2.590	0.3390	-12 •00	
3/2	-1 •414	-2.830	0.3255	-12.56	
5/3	-1.645	-3.060	0.2470	-14.94	
11/6	-1.890	-3.300	0.1480	-19.84	
2	-2.120	-3•5 3 0	0.0627	-26.84	
13/6	-2.350	-3.770	0.1154	-21.56	
7/3	-2.590	-4.010	0.1820	-17.60	
5/2	-2.830	-4.240	0.2850	-17.44	
8/3	-3.070	-4.480	0.1543	-19.04	
17/6	-3.300	-4.720	0.0763	-24.16	
3	-3.540	-4.950	0.0240	-34.70	
19/6	-3.770	-5.180	0.0738	-25.44	
10/3	<u>-</u> 4 _• 010	-5.420	0.1043	-22.44	
7/2	-4.240	-5.650	0 .1150	-21.58	
11/3	-4.480	-5.900	0 .1 056	-22.32	
23/6	-4.720	-6.130	0.0640	-26.68	
4	~ 4•950	-6.360	0.0155	-39.00	
				}	

TABLA 2-2

	Valores de Amplitud del Campo E(u) para $\beta_2 = \tilde{n}/2$				
u [ก]	^m 2	^m 1	E(u) /K 2	db=20 $\log \frac{ E(u) }{ E(o) }$	
0	+1.000	-1,000	1.7900	-00.00	
1/6	+0.834	-1.165	1.7150	-00.37	
1/3	+0.667	-1.332	1.5000	-01•54	
1/2	+0.500	-1.500	1.2090	-03.42	
2/3	+0.333	-1.667	0.8920	-06.04	
5/6	+0.167	-1.834	0.6680	-08,56	
1	0.000	-2.000	0.5970	-09.54	
7/6	-0.167	-2.168	0.6140	-09.30	
4/3	-0.333	-2.334	0.6330	-09.03	
3/2	-0.500	-2.500	0.5550	-10.17	
5/3	-0.667	-2.667	0.4110	-12.80	
11/6	-0.834	-2.834	0.2620	-16.70	
2	-1,000	-3.000	0•1833	-19,80	
13/6	-1.165	-2.170	0.2350	-17,64	
7/3	-1.332	-3.333	0.2890	-15.84	
5/2	-1.500	-3.500	0.2960	-15.64	
8/3	-1.667	-3.667	0.2470	-17.20	
17/60	-1.834	-3.834	0.1345	-22.48	
3	-2,000	-4.000	0.0777	-27.24	
19/6	-2.168	-4.170	0.123	-22.62	
10/3	-2.334	-4.330	0.1854	-17.68	
7/2	-2.500	-4.500	0.1973	-19.70	
11/3	-2.667	-4.667	0.1630	-20.80	
23/6	-2.834	-4.834	0.0988	-25,16	
4	-3.000	5.000	0.0421	-32.56	
1					

_

b) en el plano H: sen $\emptyset = 0$, por lo tanto la expresión (2.64) es igual a cero y nos queda que el campo E (Θ) está dada por la expre-sión:

$$E(\Theta) = \int \frac{e^{-j\beta r_0}C}{\lambda_0 r_0} \int \int \cos \frac{\pi x}{\alpha} e^{j\beta x \sin \Theta} e^{-j\frac{\beta}{2L_h}x^2} e^{-j\frac{\beta}{2L_e}y^2} dx dy =$$

$$= \int \frac{e^{-j\beta r_0}C}{\lambda_0 r_0} \int e^{-j\frac{\beta}{2L_e}y^2} dy \left[\int \cos \frac{\pi x}{\alpha} e^{j\beta x \sin \Theta} e^{-j\frac{\beta}{2L_h}x^2} dx \right]$$

$$= \int \frac{e^{-j\beta r_0}C}{\lambda_0 r_0} \int e^{-j\frac{\beta}{2L_e}y^2} dy \left[\int \cos \frac{\pi x}{\alpha} e^{j\beta x \sin \Theta} e^{-j\frac{\beta}{2L_h}x^2} dx \right]$$
(2.71)

La expresión que queda fuera del corchete tiene un valor determinado, por no ser función de Θ y como para el cálculo de los puntos de la curva de amplitud de campo, nos interesa solamente valores relati-vos entre si la llamaremos K₃. Entonces:

$$E(\Theta) = K_{3} \int_{-\alpha/2}^{\alpha/2} \cos \frac{\pi x}{\alpha} e^{\frac{1}{\beta} x \operatorname{sen} \Theta} e^{-\frac{1}{\beta} \frac{\pi^{2}}{2L_{h}} x^{2}} dx \qquad (2.72)$$

que a su vez haciendo un cambio de variable puede escribirse de la siguiente manera:

$$E(\Theta) = K_{4} \int_{-1}^{1} \cos \frac{\pi \bar{x}}{2} e^{j \frac{\pi \alpha}{\lambda_{0}} \bar{x} \sin \Theta} e^{-j \beta_{4} \bar{x}^{2}} d\bar{x} \qquad (2.73)$$

.

2.7. Explicación adicional sobre los resultados de la sección 2.6.

Las expresiones (2.67) y (2.73) nos han servido para obtener los modelos de radiación en el plano E y H respectivamente de una bo cina piramidal.

Para el caso de una bocina en sector en el plano H la onda emergente es del tipo <u>cilíndrico</u>, como se había visto en la sección -2.3., por lo tanto hay una distribución cuadrática de fase en el sen tido del eje x pero, siendo constante en el sentido y. Por otra parte la distribución de amplitud a lo largo del eje x es del tipo cose noidal. En estas circunstancias la misma ley que gobierna el diagrama de radiación en el plano H de una bocina piramidal, dada en la ex presión 2.73 puede ser aplicable a una bocina en sector en el plano H para obtener el diagrama en ese plano.

Similarmente la expresión (2.67) determina el diagrama de radiación en el plano E de una bocina en sector en ese mismo plano.

Esto confirma la exposición del autor D. Rhodes quien experimentalmente* llegó a determinar que el diagrama de radiación en un -

^{*} RHODES D., <u>An Experimental Investigation of the Radiation Patterns</u> of Electromagnetic Horn Antennas, Proceedings of the IRE, Septiembre de 1948, pág. 1101.

plano (E o H) depende únicamente de la distribución de amplitud y f<u>a</u> se existentes a lo largo de ese plano, independientemente de la distribución en el otro plano.

• Por su parte los autores Barrow y Lewis F*., mantienen que el modelo en el plano E de una bocina en sector el plano H y el modelo en el plano H de una bocina en sector en el plano E básicamente son los mismos que aquellos originados por la guía de alimentación en el caso que ésta radiara sin bocina.

Para nuestros fines como se verá en el capítulo III, únicamen te nos interesa el análisis de los modelos de radiación de las bocinas en sector en el plano en que las bocinas incrementan su sección transversal.

1...

50

^{*} BARROW y LEWIS F., The Sectorial Electromagnetic Horn. Proceedings of the IRE, Enero de 1939, Pág. 44.

2.8. GANANCIA DIRECTIVA DE SCHELKUNOFF.

El autor Schelkunoff ha ideado un método para determinar las ganancias directivas de las bocinas piramidales y en sector para ca-sos en que la curvatura de los frentes de onda no sea mayor.

En este trabajo nos limitaremos únicamente a mencionar los resultados a que dicho autor llegó* pues, ellos los utilizaremos en el diseño de bocinas para la parte práctica.

Para una bocina en sector en el plano H la ganancia directiva máxima está dada por:

$$g'_{Hmax} = \frac{4 \operatorname{T} b \operatorname{R}_{m}}{\lambda_{o} \alpha} \left\{ \left[C(u) - C(v) \right]^{2} + \left[S(u) - S(v) \right]^{2} \right\}$$
(2.74)

Para una bocina en sector en el plano E:

$$\mathcal{G}_{E max} = \frac{64 \ a \ Re}{\pi \ \lambda_{o} \ b} \left[C^{2}(\omega) + S^{2}(\omega) \right]$$
(2.75)

Para una bocina piramidal la ganancia directiva está dada por:

$$\mathcal{E}_{\text{max}} = \frac{\Pi}{32} \left(\frac{\mathcal{E}_{\text{Hmax}}}{b} \lambda_{\text{o}} \right) \left(\frac{\mathcal{E}_{\text{Emax}}}{\alpha} \right)$$
(2.76)

* SCHEIKUNOFF S., Antenna Theory and Practice, John Wiley & Son, Inc. 1952, Pág. 524. En las figuras (2.9) (a) y (b) podemos observar las curvas - construidas a base de las ecuaciones (2.74) y (2.75). Allí también podemos ver a que corresponde R_m , R_e , a y b.

Por su parte:

$$C(u) = \int_{0}^{u} \cos\left(\frac{1}{2}\pi t^{2}\right) dt \qquad S(u) = \int_{0}^{u} \sin\left(\frac{1}{2}\pi t^{2}\right) dt$$

$$u = \frac{1}{\sqrt{2}} \left(\frac{\sqrt{\lambda_{o}R_{m}}}{\alpha} + \frac{\alpha}{\sqrt{\lambda_{o}R_{m}}}\right)$$

$$v = \frac{1}{\sqrt{2}} \left(\frac{\sqrt{\lambda_{o}R_{m}}}{\alpha} - \frac{\alpha}{\sqrt{\lambda_{o}R_{m}}}\right)$$

$$\omega = \frac{b}{\sqrt{2 \lambda_{o} Re}}$$

CAPITULO TERCERO

TEORIA SOBRE LENTES

3.1. PROPOSITO DE LOS LENTES.

En Optica se utilizan dispositivos que actúan sobre los rayos de luz para producir determinados efectos. Similarmente, en Microondas donde la longitud de onda se aproxima a la de la luz, se puede utili-zar también dispositivos que actúen sobre los rayos y frentes de onda electromagnética para lograr determinadas características de propaga-ción. Uno de estos dispositivos es el lente electromagnético.

En el capítulo segundo se vió que dentro de una bocina se tiene una determinada configuración de campo y un sistema de ondas esféricas o cilíndricas, según el tipo de bocina, cuyos frentes de onda tienen su origen en la garganta formada por una unión de la guía de alimentación con la bocina.

Las ondas así formadas llegan a la apertura de la bocina que es una superficie plana, por lo tanto no todos los puntos de la apertura tienen la misma fase. En la figura 3.1. podemos ver que mientras la onda pro pagada ha llegado a la apertura en la parte central, en los extremos to davía tiene que recorrer una distancia d.

55

La función de los lentes es justamente corregir esa diferencia de fase de elementos de la apertura radiante, formando frentes de onda pl<u>a</u> nos. Esto se puede conseguir, ya sea aumentando la velocidad de la o<u>n</u> da en los extremos o disminuyéndola en la parte central.

Las diferencias de fase en la apertura, hemos visto en el Capí tulo II, hacen que los modelos de radiación tengan lóbulos secunda--rios mayores.

Por otra parte, el uso de un lente adecuadamente diseñado para una bocina piramidal puede aumentar el área efectiva a un 80% de su <u>é</u> rea real, mientras que el área efectiva de la misma bocina, sin lente, se ha comprobado es aproximadamente un 45% de su área real*. Como la ganancia directiva es proporcionar al área efectiva, ésa se incrementará también.

En las curvas (2.9) se puede observar que para una dimensión de apertura dada, se requiere de una determinada longitud de bocina para lograr la máxima ganancia (diseño óptimo). De manera que para una dimensión de apertura igual a 40 λ , se requiere aproximadamente una lon gitud óptima de 800 λ , . El uso de un lente en la apertura de esa mis ma bocina puede reducir esa longitud a 38 λ , a fin de obtener los mis mos resultados**.

^{*} y ** KOCK W. E., Metal Lens Antennas, Proceedings of the I.R.E. and Waves and Electrons, Noviembre de 1946. Pág. 830.

3.2. VELOCIDAD DE FASE E INDICE DE REFRACCION.

Velocidad de fase es la velocidad con la cual se propagan las su perficies equifases, entendiéndose por estas a aquellas en las cuales cualquier componente particular de campo electromagnético alcanza su má ximo valor en tiempo, en el mismo instante para todos los puntos de la superficie.

El índice de refracción n de un medio determinado es la relación entre la velocidad de una onda electromagnética en el espacio libre denominado \mathbf{v}_{o} y su velocidad de <u>fase</u> v a través de dicho medio.

$$n = \frac{v_{\circ}}{v}$$
(3.1)

Para materiales dieléctricos el indice de refracción, a las fr<u>e</u> cuencias de microondas, es mayor que la unidad, de ahí que un lente electromagnético dieléctrico opere similarmente a un lente óptico, re-fractando los rayos de acuerdo a la ley de Snell como se puede ver en el prisma dieléctrico de la figura (3.2)

FIG. 3.2

3.2.1. Indice de refracción menor que uno.

A frecuencias de radio es posible también crear un medio en el cual las ondas electromagnéticas tengan velocidades de fase mayores que en el espacio libre es decir que el <u>indice de refracción sea me---</u> nor que uno.

En el análisis de propagación de ondas del tipo TE en un medio no condu<u>c</u> tivo, entre placas paralelas infinita--mente grandes y perfectamente conducto-ras, como las mostradas en la figura --(3.3), se tiene que la constante de pr<u>o</u> pagación $\tilde{\chi}$ está dada por*:

FIG. 3.3

$$\overline{\vartheta} = \sqrt{\left(\frac{m\,\overline{n}}{\alpha}\right)^2 - \omega^2/4_{\circ}} \, \epsilon_{\circ}$$
(3.2)

donde: a es la separación entre placas.

 ω es la frecuencia angular

 μ . y ϵ , son las constantes de permeabilidad y dieléctrica del medio entre placas, que en nuestro caso específico será dieléctri

^{*} JORDAN E.C., Electromagnetic Waves and Radiating Systems, Prentice Hall, Inc. Pág. 184.

co aire.

m es un entero: 0, 1, 2, 3..... Para el modo dominante m = 1

En la expresión (3.2) se puede considerar tres posibilidades:

- a) Cuando $(\Pi/\alpha)^2 > \omega^2 \mu_0 \in_o$, la expressión en el radicando es posit<u>i</u> va y $\overline{\gamma}$ es un real puro, por lo tanto la propagación no puede oc<u>u</u> rrir. Existe únicamente atenuación de la onda y está determinada por la constante. $\overline{\gamma} = \overline{\sim} = \left[\left(\frac{\overline{\Pi}}{\alpha} \right)^2 - \omega^2 \mu_0 \in_o \right]^{1/2}$
- b) Cuando la frecuencia es lo suficientemente alta y $\omega^2 \mu_{\circ} \epsilon_{\circ} > (\pi/\alpha)^2$ con lo cual $\overline{\delta}$ es puramente imaginario y la constante de propagación $\overline{\delta}$ está dada por:

$$\overline{\vec{v}} = j \overline{\vec{\beta}} = j \sqrt{\omega^2 \mu_0 \epsilon_0 - \left(\frac{\pi}{\alpha}\right)^2}$$
(3.3)

En estas circunstancias las ondas se propagan con una constante de fase determinada por (3.3)

c) Cuando $\omega_{\mu,c_{o}}^{2} = \left(\frac{\pi}{\alpha}\right)^{2}$ se tiene la situación límite entre las posibil<u>i</u> dades a) y b). Aquí existe la frecuencia de corte f_{c} en la cual c<u>e</u> sa el movimiento de las ondas y está dada por

$$f_{c} = \frac{\omega_{c}}{2 \pi} = \frac{1}{2 \alpha \sqrt{\mu \cdot \epsilon_{o}}}$$
(3.4)
La correspondiente longitud de onda para f $_c$ será:

$$\lambda_{c} = \frac{\upsilon_{o}}{f_{c}} = \frac{1/\sqrt{\mu_{o}\varepsilon_{o}}}{1/\sqrt{\mu_{o}\varepsilon_{o}}} = 2\alpha$$
(3.5)

En este trabajo nos interesa únicamente la posibilidad b) en la cual se cumple:

$$f > \frac{1}{2\alpha \sqrt{\mu_{\bullet}\epsilon_{\bullet}}}$$
(3.6)

Es decir que para una separación entre láminas a, solo se propagarán las frecuencias superiores a la frecuencia de corte f_c . En otras palabras, solo se propagarán las ondas cuyas longitudes de onda en el espacio libre sean menores que λ_c . De manera que una onda λ_o para po der propagarse entre dos láminas separadas una distancia a debe cumplir:

$$\lambda_{\rm c}$$
 $<$ $\lambda_{\rm c}$ Ver expression (3.5)

Por lo tanto:

$$\lambda_o \langle 2\alpha \rangle$$
 (3.7)

y finalmente para que exista propagación $(\lambda_o/2) < \alpha$ (3.8)

Es decir que para que sea posible la propagación del modo dominan te entre dos placas conductoras se requiere, que la separación entre e--llas sea mayor que la mitad de la longitud de la onda a la frecuencia de trabajo. Con el objeto de impedir la propagación del modo inmediato sup<u>e</u> rior la separación a debe ser menor que λ_{\bullet} . Por lo tanto a debe cum---plir:

$$\frac{\lambda_{\circ}}{2} \langle a \langle \lambda_{\circ} \rangle$$
(3.9)

Por otra parte sabemos que la velocidad de fase v_f y la longitud de onda $\overline{\lambda}$ dentro de las placas están relacionadas a la constante de fa se $\overline{\beta}$ de la siguiente manera:

$$\mathbf{v}_{\mathbf{f}} = \overline{\lambda} \mathbf{f} = \frac{2\overline{11}}{\overline{\beta}} \cdot \frac{\omega}{2\overline{11}} = \frac{\omega}{\overline{\beta}}$$
 (3.10)

Reemplazando (3.3) en (3.10) se tiene:

$$\mathbf{v}_{\mathbf{f}} = \frac{\omega}{\sqrt{\omega^2 \mu_o \epsilon_o - \left(\frac{\widetilde{n}}{\alpha}\right)^2}}$$
(3.11)

que a su vez puede ser escrita como:

$$\mathbf{v}_{f} = \frac{1/\sqrt{\mu_{o}\varepsilon_{o}}}{\sqrt{1 - \left(\frac{\pi}{\omega}\sqrt{\mu_{o}\varepsilon_{o}}\alpha\right)^{2}}} = \frac{J_{o}}{\sqrt{1 - \left(\lambda_{o}/2\alpha\right)^{2}}}$$
(3.12)

En (3.12) se puede ver que v es mayor que v. El indice de refracción n será entonces menor que uno y estará dado por:

$$n = v_{o} / v_{f}$$
(3.13)

y entonces:

$$n = \sqrt{1 - \left(\frac{\lambda_o}{2\alpha}\right)^2}$$
(3.14)

Como esta expresión será usada a menudo en este trabajo se han calculado diferentes valores de n en función de a/λ , que se hallan en la tabla (3.1) y representados en la figura (3.4): TABLA 3-1

Valores de n como función de la separación entre láminas "a"			
a/\.	n	a/7.	-n
0 •50	0.000	0•76	0.754
0,52	0.275	0•78	0.768
0•54	0,380	0.80	0.780
0•56	0.452	0.82	0.792
0•58	0,508	0.84	0.805
0.60	0.552	0.86	0.815
0,62	0•592	0.88	0.820
0•64	0.625	0.90	0.830
0.66	0.654	0.92	0.840
0.68	0.678	0•94	0.847
0.70	0.700	0.96	0.857
0.72	0•720	0.98	0.863
0•74	0.735	1.00	0.867

3.2.2. Explicación adicional.

Es importante notar en el análisis último que las ondas TE no tienen componente de campo eléctrico en la dirección z y al reemplazar esa condición en las ecuaciones de Maxwell que gobiernan el comportamiento - de campo entre placas, la componente E_y es también cero con lo cual queda únicamente la componente E_x que es paralela a las láminas conducto----ras.

Un análisis semejante puede hacerse en guías de onda rectangula-res por un modo TE 1,0. En este caso se llega también a obtener una costante de fase $\overline{\beta}$ dada por la expresión*:

$$\overline{\beta} = \sqrt{\omega^2 \mu_{\circ} \epsilon_{\circ} - \left(\frac{\pi}{a}\right)^2}$$
(3.15)

Donde "a" es la dimensión de la guía perpendicular al vector eléctr<u>i</u> co, como puede apreciarse en la figura (3.5).

De lo dicho se concluye que se puede conseguir un índice de refracción menor que la unidad entre placas conductoras infinitamente gra<u>n</u> des entre las cuales se propagan ondas TE, cuyo vector E es paralelo a las placas, así como también dentro de una guía de onda rectangular exc<u>i</u>

^{*} JORDAN E.C., <u>Electromagnetic Waves and Radiating Systems</u>, Prentice Hall, Inc., Pág. 267.

3.3. TIPOS DE LENTES.

La existencia de medios con indices de refracción mayores y me nores que la unidad sirve como base para la clasificación de los lentes electromagnéticos, según se puede observar en el cuadro a conti--nuación:

a) cilíndricos

b) de revolución

- c) de una superficie de refracción
- d) de dos superficies de refra<u>c</u> ción

n > 1

de dieléctrico «

n < 1 metálicos normales metálicos guiados

En este trabajo se analizarán, de preferencia, los lentes de tipo metálico tanto normales como guiados y los de dieléctricos natural puesto que son factibles de construcción en nuestro medio.

3.4. LENTES CILINDRICOS Y DE REVOLUCION DE DIELECTRICO.

3.4.1. Utilización de estos lentes de acuerdo al tipo de onda.

Como en el titular se indica, los materiales usados en la cons trucción de estos lentes son dieléctricos a los cuales se les dá formas determinadas, a fin de que actuen apropiademente sobre las ondas que reciben.

Según se había visto en el capítulo 2, las ondas que se producen en una bocina en sector, son de tipo cilíndrico, y para lograr tener superficies equifases planas, la curvatura del frente de onda debe ser corregida en una dirección como se pueden ver en la figura -

(3.6). Esto determina que el lente también debe ser de tipo cilin drico, variando su perfil en un solo sentido, como puede observar se en la misma figura.

En el caso de una bocina piramidal las ondas generadas son esféricas y para lograr superfi-cies equifases planas se deben utilizar lentes de revolución que corrijan la curvatura esférica.

El perfil de un lente de revolución quedará definido al conocer el perfil de una superficie G que pase por su centro, la cual al girar sobre el eje z-z', generará el cuerpo de revolución, que constituye el lente, como puede verse en la figura (3.7)

FIG. 3.7

68

3.4.2. Determinación del perfil de lentes cilíndricos y revolución.

Según lo indicado en la sección 3.4.1., el mismo análisis para la determinación del perfil de un lente cilíndrico puede ser aplicado a un lente de revolución.

Comenzaremos diciendo que si la velocidad de fase v dentro de un dieléctrico es menor que la velocidad en el espacio libre v_0 , se puede aprovechar esta propiedad para reducir la velocidad de fase en la parte central de la superficie equifase. Esto obliga a pensar que el lente dieléctrico debe ser de espesor mayor en su parte central y así lo representamos en la figura (3.8)

El punto F corresponde a la fuente de ondas, localizadas en la garganta de la bocina. Un rayo cualquiera FD se refractará en el punto D de acuerdo a la ley de Snell. El perfil de la superficie de refracción PBP¹ que lo vamos a determinar debe ser tal que el rayo se refracte en el punto D, paralelamente al eje z. Por su parte el ra yo FB al incidir normalmente en B se refracta en la misma z.

Para que la onda sea plana a la salida del eje se requiere que el tiempo de recorrido de un rayo a lo largo de una trayectoria cualquiera FDS debe ser igual al tiempo de recorrido a lo largo de la tr<u>a</u> yectoria FBCT. Sabiendo que el tiempo el igual a la distancia recorr<u>i</u> da sobre la velocidad de fase, podemos escribir:

$$\frac{FD}{\mathbf{v}} + \frac{DS}{\mathbf{v}} = \frac{FB}{\mathbf{v}} + \frac{BC}{\mathbf{v}} + \frac{CT}{\mathbf{v}}$$
(3.16)

Las distancias DS y CT son iguales y como ambas son recorridas dentro del dieléctrico, pueden simplificarse, de manera que la condición (3.16) queda:

$$\frac{FD}{\mathbf{v}_{o}} = \frac{FB}{\mathbf{v}_{o}} + \frac{BC}{\mathbf{v}_{o}}$$
(3.17)

En la figura (3.8) se puede determinar:

FD =
$$\sqrt{(FB + BC)^2 + \overline{CD}^2} = \sqrt{(f + z)^2 + x^2}$$
 (a)
FB = f (b) (3.18)
BC = z (c)

Reemplazando (3.18) (a) (b) y (c) en (3.17) se tiene:

$$\frac{\sqrt{(f+z)^2 + x^2}}{v_0} = \frac{f}{v_0} + \frac{z}{v}; \quad \sqrt{(f+z)^2 + x^2} = f + z v_0 / v$$
(3.19)

Reemplazando $v_0 / v = n =$ índice de refracción y ordenando se llega a:

$$(n^2 - 1) z^2 + 2f (n - 1) z - x^2 = 0$$
 (3.20)

La expresión (3.20) nos da el perfil PBP' y por Geometría Analítica se puede determinar que corresponde a una Hipérbola con las si guientes características:

Dominio: de -
$$\infty^{2}$$
 a - $\frac{2f}{n-1}$ y de O a + ∞ (3.21)

Codominio: de -
$$\infty$$
 a + ∞ (3.22)

Ecuaciones de las asíntotas:
$$x = \pm \sqrt{n^2 - 1} \left(z + \frac{f}{n+1}\right)$$
 (3.23)

Centro de las asíntotas: $z = -\frac{f}{n+1} \quad y \quad x = 0$ (3.24)

De las últimas expresiones se pueden apreciar mejor observando la figura (3.9)

De la figura (3.9) y por Trigonometría se puede llegar a determinar que el ángulo θ_{∞} que hacen las asíntotas con el eje z es tá dado por: θ_{∞} = arc cos 1/n. Este ángulo nos dá la apertura má xima que puede tener la bocina que ilumina al lente.

Una forma más fácil de expresar la ecuación es en coordenadas polares. Para esto, se puede ver en la figura (3.8) que:

$$x = r sen \Theta$$
 (a) $y z = r cos \Theta - f$ (b) (3.25)

Reemplazando (3.25) (a) y (b) en (3.20) se llega finalmente a:

$$\mathbf{r} = \frac{(\mathbf{n}-1) \mathbf{f}}{\mathbf{n} \cos \theta - 1} \tag{3.26}$$

3.4.3. Aproximación del perfil para aperturas pequeñas.

Para casos en que la bocina sea de apertura pequeña se puede aproximar la ecuación del perfil hiperbólico al de una circunferencia de radio R. En la figura (3.10) y considerando que el ángulo △ es pequeño se puede aceptar que:

$$\mathbf{x} = \mathbf{R} \operatorname{sen} \Delta \quad (\mathbf{a}) \quad \mathbf{y} \quad \mathbf{z} = \mathbf{R} - \mathbf{R} \cos \Delta \quad (\mathbf{b})$$
(3.27)

$$\int_{\mathbf{F}} \frac{1}{\mathbf{A}} \int_{\mathbf{F}} \frac{1}{\mathbf{A}} \int_{$$

$$(n^{-} - 1) R^{-} (1 - \cos \Delta)^{-} + 2f (n - 1) R (1 - \cos \Delta) + - R^{2} sen^{2} \Delta = 0$$
 (3.28)

Dividiendo todo para 2R (1 - cos Δ): $\frac{n^2 - 1}{2} R (1 - cos \Delta) + f (n - 1) - \frac{R \operatorname{sen}^2 \Delta}{2(1 - \cos \Delta)} = 0 \qquad (3.29)$ Efectuando productos y simplificando se llega finalmente a:

$$R = f(n - 1) + \frac{1}{2}n^{2}R(1 - \cos \Delta)$$
 (3.30)

Para \triangle pequeño, $\cos \triangle$ tiende a uno y el paréntesis (1 - $\cos \triangle$) a cero por lo cual:

R = f(n - 1) (3.31)

que es el radio de la circunferencia que puede sustituir al perfil hiperbólico generalizado, para aperturas pequeñas.

3.4.4. Reflexiones del lente y formas de evitarlas.

En la figura (3.11) se puede observar que un rayo FD saliente de la fuente F que llega al punto D con incidencia oblicua va a producir un rayo DS que se refracta y otro que se refleja en la direc-ción DE.

A su vez el rayo transmitido DS, al incidir en el punto S pro duce un rayo que se transmite al espacio libre y otro R que se refleja y que se refracta en el punto D, de acuerdo a la ley de Snell e incide nuevamente sobre la fuente F. Este tipo de reflexión puede ser suficiente para causar un desacoplamiento entre la bocina y su guía de alimentación. Para eliminar este efecto se puede girar el

lente un pequeño ángulo 🖌 con el objeto de que los rayos reflejados no converjan en el punto F como se observa en la figura (3.12) (a).

Otra forma de anular esa reflexión es diseñando el lente en dos mitades cuyas distancias focales $f_1 y f_2$ difieran en $\lambda_0/4$, como se in dica en la figura (3.12) (b).

De esta manera, un rayo en la mitad 1, inmediatamente antes del eje z, sale de la fuente F, atraviesa el lente de índice n se r<u>e</u> fleja en t para regresar nuevamente al punto F. La correspondiente trayectoria eléctrica es: FB + n BT + n TB + BF.

Un rayo de la mitad 2, inmediatamente después del eje z que sale de f se refleja en T' y regresa a F deberá recorrer la siguien te trayectoria eléctrica FB + $\lambda_0/4$ + n B' T' + n T' B' + $\lambda_0/4$ BF.

Como BT = B' T', la diferencia entre las dos trayectorias es $\lambda_o/2$ que equivale a una diferencia en fase de 180°, anulándose de esta manera los efectos de reflexión en F de la mitad 1 con los de la mitad 2.

Existe finalmente otra forma de evitar la reflexión en la su perficie recta del lente por medio de un acoplamiento de cuarto de onda. Para el efecto los autores, Morita y Cohn^{*}han simulado un medio que acople el lente al medio exterior (espacio libre) formando un sistema de agujeros, cilindros, corrugaciones verticales u horizontales todas ellas de apropiada profundidad y diseño. Este método constituye una técnica especial y detallada que no será tratada en este trabajo, pero para quienes estén interesados en ella, pueden

^{*} MORITA T. y COHN S.B., <u>Microwave Lens Matching by Simulated Quarter</u> <u>Wave Transformers</u>, IRE Transactions on Antennes and Propagation, Enero 1959, Pág. 31.

encontrarla en la referencia al pie de la página anterior.

3.4.5. Lentes zonales.

Comenzaremos esta sección diciendo que, si en un lente dieléctrico se mantiene constante el "diámetro" PP' (ver figura 3.8), el es pesor BT aumenta al reducir la distancia focal f, haciéndose mas abul tado y pesado.

Lo dicho puede demostrarse obteniendo una expresión en la cual se tenga BT como función de f. Para el efecto utilicemos la igualdad (3.17) que puede escribirse como:

$$FD = FB + nBC$$
(3.32)

Particularizando (3.32) para el caso en que el rayo pase por el extremo P tendremos:

$$FP = f + nBT$$
(3.33)

En la figura(3.8) se puede observar que:

$$FP^2 = (f + BT)^2 + TP^2$$
 (3.34)

Reemplazando (3.33) en (3.34) se tiene:

$$(f) + nBT)^2 = (f + BT)^2 + \overline{TP}^2$$
 (3.35)

De donde:

$$\overline{BT}^2$$
 (n² - 1) + 2f BT (n - 1) - $\overline{TP}^2 = 0$ (3.36)

La raiz positiva de BT obtenida de (3.36) es:

$$BT = \frac{1}{n^2 - 1} \left[\sqrt{f^2 (n - 1)^2 + (n^2 - 1) \overline{TP}^2} - f (n - 1) \right]$$
(3.37)

Si en la última expresión damos valores a f, podemos ver que si ésta decrece, el espesor BT aumenta. De esta manera en una bocina de corta longitud, el espesor de un lente colocado sobre su apertura será grande.

Como una solución a este problema se han diseñado los lentes zo nales, en los cuales se ha removido parte del material dieléctrico sin que cambie el comportamiento mismo del lente.

Consideremos la figura (3.13) (a) donde se muestra una parte de un lente dieléctrico.

La variación de la fase a lo largo de la distancia z₁, dentro del dieléctrico, será:

$$\beta_{d} \mathcal{Z}_{1} = \frac{2\pi}{\lambda_{d}} \mathcal{Z}_{1} = \frac{2\pi n}{\lambda_{o}} \mathcal{Z}_{1}$$
(3.38)

donde: β_d = constante de fase en el dieléctrico λ_d = longitud de onda dentro del dieléctrico n = índice de refracción.

Si una porción de espesor z_1 es removida, la configuración que da como se indica en la figura (3.13) (b). Ahora se tendrá un cambio de fase a lo largo de z_1 , pero en el medio exterior, donde la constan te de fase es β_0 y la longitud de onda es λ_0 :

$$\beta_{o} \mathcal{Z}_{i} = \frac{2\pi}{\lambda_{o}} \mathcal{Z}_{i}$$
(3.39)

79

Se puede escoger la profundidad z_1 de manera que la separación de la porción del lente, se la haga cada vez que el dieléctrico pro-duzca un cambio de fase 2Π <u>relativo</u> al cambio que experimenta la o<u>n</u> da a través del medio exterior. Lo último puede expresarse, con la ayuda de las expresiones (3.38) y (3.39), como se indica a continua--ción:

$$\frac{2\pi n}{\lambda_{o}} \tilde{z}_{1} - \frac{2\pi}{\lambda_{o}} \tilde{z}_{1} = 2\pi \qquad (3.40)$$

Entonces:

$$\mathcal{Z}_{4} = \frac{\lambda_{\circ}}{n-1} \tag{3.41}$$

La expresión (3.41) nos dá la apropiada profundidad que debe tener una zona y como en ningún punto se requiere corregir la fase en más de 2π , el espesor máximo de lente está dado por $\lambda_0 / n - 1$. En la parte central del lente, se debe considerar, sin embargo, un espesor adicional que sea suficiente para hacer estable al sistema desde - el punto de vista mecánico.

3.4.6. Dependencia de la frecuencia de los lentes zonales.

Los lentes dieléctricos sin zonas son independientes de la frecuencia. Los lentes zonales si dependen de la frecuencia como se puede ver en la expresión (3.41).Por lo tanto la utilización de los lentes - zonales va acompañada de un compromiso entre peso y ancho de banda.

En la figura (3.14) el ancho inicial del lente, antes de formar las zonas, es BT. Luego de extraer diferentes porciones para formar K zonas, el espesor sobre el eje es: BT' = BT - (K - 1) z_1 .

El rayo que pasa por el extremo P del lente deberá recorrer la trayectoria FP para llegar al plano aa' de salida del lente. El rayo central, en cambio, debe recorrer la trayectoria: FB + nBT' + T'T. Por lo tanto a la frecuencia de trabajo f_o debe cumplirse:

 $FP - (K - 1) \lambda_o = FB + nBT' + T'T$ (3.42)

donde: (K-1) λ_o corresponde al número entero de longitudes de onda que

difieren las dos trayectorias debido a la existencia de las zonas. La expresión (3.42) puede escribirse:

 $FP = FB + nBT' + T'T + (K - 1) \lambda_0$

(3.43)

A una frecuencia f_1 se tendrá:

$$FP + \delta = FB + nBT' + T'T + (K - 1) (\lambda_0 + \Delta \lambda_0)$$
(3.44)

donde δ mantiene la igualdad matemática, pues el momento que varía la frecuencia, el camino electromagnético del rayo central sufrirá una va riación (K - 1) $\Delta\lambda_{\circ}$, lo largo de las (K - 1) zonas, como se puede ver en el último término del segundo miembro de la expresión (3.44). Restando (3.43) de (3.44) se tiene:

$$\delta = (K - 1) \Delta \lambda_{\circ}$$
(3.45)

Lo que corresponde a una variación de fase $\Delta \emptyset$:

$$\Delta \phi = \frac{2\Pi}{\lambda_{\circ}} (K - 1) \Delta \lambda_{\circ}$$
(3.46)

A una frecuencia f_1 , cerc**a**na a la de trabajo f_0 , el frente de onda saliente del lente no será plano sino que tendrá una pequeña curvatura hacia adentro o hacia afuera. Experimentalmente* se ha demostra do que mientras la fase no sufra un cambio $\Delta \emptyset$ mayor que $\pm \pi/4$ entre las fases del centro y la periferie del lente, el comportamiento mismo del dispositivo no varia. Por lo tanto de acuerdo a (3.46) y se-

^{*} KOCK E.E., <u>Metal Lens Antennas</u>, Proceedings of the I.R.E. and Waves and Electrons, Noviembre de 1946, Pág. 832.

gún la última explicación se desprende la siguiente relación:

$$\frac{2\widetilde{n}}{8} \ge 2\widetilde{n} \frac{\Delta \lambda_{\bullet}}{\lambda_{\bullet}} (K-1)$$
(3.47)

En el caso extremo se debe cumplir:

$$\frac{\Delta \lambda_{o}}{\lambda_{o}} = \frac{1}{8(K-1)}$$
(3.48)

Como esta variación es permitida a uno y otro lado de la frecuencia central, el ancho de banda B del lente estará dado por:

$$B \cong 2 \frac{\Delta \lambda_o}{\lambda_o} = \frac{1}{4 (K-1)}$$
(3.49)

y en porcentaje:

$$B \cong \frac{25}{K-1} \% \tag{3.50}$$

De la última expresión se puede concluir que al aumentar el número de zonas K, disminuye el ancho de banda.

3.4.7. Formación de zonas en la superficie hiperbólica del lente.

En la sección se vió que las zonas pueden formarze en la super ficie plana del lente, pero también son factibles de realizarse en la superficie hiperbólica, como puede observarse en la figura (3.15) La ecuación de la hipérbola correspondiente a la primera zona según establece (3.26), está dada por

$$r = \frac{(n-1) f_1}{n \cos \Theta - 1}$$

De acuerdo a lo est<u>a</u> blecido en (3.41) la longitud focal de la <u>segunda</u> zona variará en $\lambda_0/n - 1$ y la correspondiente ecuación de la hipérbola será:

$$r = \frac{(n-1)(f_1 - \lambda_0/n - 1)}{n \cos \Theta - 1}$$
Generalizando a una zona K, tenemos:

$$\mathbf{r} = \frac{(n-1)\left[\mathbf{f}_{1} - (K-1)\frac{\lambda_{o}}{n-1}\right]}{n\cos\theta - 1}$$
(3.52)

que puede escribirse:

$$r = \frac{(n-1) f_1 - (K-1) \lambda_0}{n \cos \theta - 1}$$
(3.53)

3.4.8. Efectos de las zonas en la iluminación de la apertura.

La presencia de zonas en los lentes de dieléctrico produce efectos negativos en la iluminación como se verá a continuación.

En los lentes que tienen zonas en la superficie hiperbólica, como se indica en la figura (3.16) (a) existen rayos como el FA que no son refractados de manera correcta debido a que inciden sobre la base aa' de cada zona. Naturalmente una refracción de este tipo producirá decrecimiento de la potencia transmitida y de la ganancia direccional.

En los lentes con zonas en la superficie plana la situación no es crítica como puede verse en la figura 3.16 (b), sin embargo pu<u>e</u> den ocurrir pequeñas perturbaciones en la base de la zona bb', justo dentro y fuera del dieléctrice.

85

3.5. LENTES CON UNA Y DOS SUPERFICIES DE REFRACCION.

3.5.1. Con una superficie de refracción.

En la clasificación general de los lentes se ha mencionado en tre los lentes dieléctricos a los de una y dos superficies de refrac ción. En el numeral 3.4.1. se analizaron los lentes cilíndricos y de revolución. Estos lentes al mismo tiempo caen dentro del tipo con una sola superficie de refracción, pues los rayos de la onda incidente se refractan solamente en la superficie hiperbólica y salen nor--malmente a través de la superficie plana.

A continuación mencionaremos a los cóncavos entre los lentes con una superficie de refracción. Uno de ellos se muestra en la figu ra (3.17). Los rayos salientes de la fuente F inciden normalmente so bre la superficie esférica PEP' y se refractan en la superficie PTP'.

El radio de la cara esférica, en coordenadas polares está dado por: $r_1 = f - d =$ constante. La superficie elíptica y está definida por la ecuación*

* THOUREL L., The Antenna, Chapman & Hall, 1960, Pág. 345.

f(n - 1)

(3.54)

3.5.2. Con dos superficies de refracción.

Entre los lentes con dos superficies de refracción mencionaremos al plano - conexo representado en la figura (3.18)*

Claramente se puede ver que un rayo saliente de **F** se refracta tanto en la superficie plana como en la superficie curva.

La complejidad en el diseño de estos lentes se ve compensado con la

ventaja de que los rayos reflejados no convergen en la fuente f produciendo desacoplamiento.

3.6. LENTES DE DIELECTRICOS ARTIFICIALES.

El diseño, la construcción y la utilización de lentes a base de "dieléctricos artificiales" constituye una técnica muy particular y variada.

^{*} JASIK H., Antenna Engineering Handbook, Mc Graw-Hill Book Co. Inc., 1961, Pág. 14-4.

Como estos tipos de lentes no serán usados en la práctica de es te trabajo, no realizaremos un análisis de la estructura de ellos, úni camente explicaremos en forma breve lo que es un dieléctrico artifi--cial.

Un dieléctrico artificial es un medio con índice de refracción mayor que la unidad y está constituido por un conjunto de elementos m<u>e</u> tálicos que pueden ser esferas, discos o tiras localizados convenient<u>e</u> mente, simulando de esta manera una estructura molecular macroscópica.

Basándose en la teoría de Líneas de Transmisión y determinando equivalencias entre elementos de una línea y de dieléctricos artifi-ciales, el autor W.M. Sharpless* llega a determinar un índice de re-fracción equivalente para estos medio artificiales en función de las dimensiones de los elementos metálicos y su separación.

Teniendo estos materiales un n > 1, la determinación de los perfiles de los lentes construidos con ellos, será similar a la estudiada en la sección (3.4.2) para dieléctricos naturales.

^{*}SHARPLESS W.M., "Artificial Dielectrics for Microwaves", Proceedings of the IRE., Noviembre de 1951, Pág. 1389.

5.7. LENTES METALICOS.

En la sección (3.2.1.) se demostró que es posible crear un medio con índice de refracción menor que la unidad, en el cual la velocidad de fase es mayor que en el espacio libre.

Utilizando esa posibilidad, se pueden crear lentes de un n < 1. Sin embargo, de acuerdo a la forma en que se refractan los rayos en estos lentes metálicos, se pueden considerar dos tipos diferentes: lentes metálicos normales y lentes metálicos guiados.

3.7.1. Lentes metálicos normales.

Consideremos una fuente de ondas cilíndricas F, cuyo vector \overline{E} es tangente al frente de onda como se puede ver en la figura (3.19).

De acuerdo al estudio hecho en la sección (3.2.1) es condición necesaria que las láminas entre las cuales se crea el medio de n< 1, sean paralelas al vector eléctrico; por esta razón, si el vector \overline{E} se halla paralelo al plano xz, las láminas deben también estar paralelas a dicho plano.

Para la determinación del perfil que deben tener las láminas metálicas consideremos la figura (3.20).

Alli se muestra el perfil PEP' de una de las láminas. Un rayo cualquiera FB se refrac ta en el punto D de acuerdo a la ley de Snell, siendo esta la característica fundamental de los lentes normales

Como la velocidad de fase entre láminas es mayor que en el espacio libre, se aprovecha esta

característica para la corrección de la curvatura de los frentes de on da cilíndricos, aumentando su velocidad hacia los extremos, por lo tan to estos lentes tendrán también un espesor mayor en sus extremos. Para que la onda sea plana, luego de atravesar el lente, se requiere que el tiempo de recorrido de un rayo a lo largo de una trayectoria cualquiera FBCS debe ser igual al tiempo de recorrido a lo largo de FBT. La úl tima condición la podemos expresar como:

$$\frac{FD}{\mathbf{v}_{o}} + \frac{DC}{\mathbf{v}} + \frac{CS}{\mathbf{v}} = \frac{FB}{\mathbf{v}_{o}} + \frac{BT}{\mathbf{v}}$$
(3.55)

como: CS = BT (a)
FD =
$$\sqrt{(f - z)^2 + x^2}$$
 (b)
DC = z (c)
y FB = f = distancia focal (d) (3.56)

la expresión (3.55) queda

$$\frac{\sqrt{(f-z)^2 + x^2}}{v_0} + \frac{z}{v} = \frac{f}{v_0}$$
(3.57)

reemplazando n = v_0/v en (3.57) y ordenando queda finalmente:

$$(1 - n^2) z^2 - 2f (1 - n) z + x^2 = 0$$
 (3.58)

la expresión (3.58) nos dá el perfil PBP'. Por Geometría Analítica se puede determinar que dicha expresión corresponde a una elipse con las siguientes características:

Dominio: de O a
$$\frac{2f}{1+n}$$
 (3.59)

Codeminio:

de
$$-\sqrt{\frac{1-n}{1+n}}$$
 f a $+\sqrt{\frac{1-n}{1+n}}$ f (3.60)

Estos resultados pueden verse mejor en la figura (3.21)

La expresión (3.58) se puede transformar a coordenadas polares para lo cual reemplazaremos $x = r \ sen \ \Theta \ y \ z = f - r \ cos \ \Theta$. La expre-sión a la que se llega es:

$$r = \frac{(1-n)f}{1-n\cos\theta}$$
(3.61)

En ecuaciones paramétricas* la misma elipse estará dada por:

$$z = f \frac{(1-\cos \Theta)}{(1-n \cos \Theta)}$$
 (a) $x = f \frac{(1-n) \sin \Theta}{1-n \cos \Theta}$ (3.62)

* SOUTHWORTH G., Principles and Applications of Waveguide Transmission, D-Van Nostrand Company, Inc., 1961, Pág. 463. 3.7.2. Aproximación del perfil para aperturas pequeñas.

Para casos en que la bocina sea de apertura pequeña, la forma elíptica del lente puede aproximarse a una circular de radio R =(1 - n) f. Esto lo podemos demostrar en el desarrollo a continua---ción.

En la figura (3.22) se puede ver que para un \triangle pequeño se cum ple:

$$z = R (1 - \cos \Delta) (a) y x = R sen \Delta$$
 (b) (3.63)

Sustituyendo (3.63) (a) y (b) en (3.58) se llega a:

$$\frac{(1-n)^2}{2} R (1-\cos \Delta) - f (1-n) + R \frac{\sin^2 \Delta}{2(1-\cos \Delta)} = 0 \qquad (3.64)$$

Efectuando productos, simplificando y reagrupando se tiene:

$$R - f(1 - n) - \frac{1}{2}n^{2}R(1 - \cos \Delta) = 0 \qquad (3.65)$$

Para un \triangle pequeño, cos \triangle tiende a 1 y el paréntesis (1 - cos \triangle) tiende a cero, por lo cual nos queda finalmente:

$$R = f(1 - n)$$
 (3.66)

3.7.3. Lentes metálicos normales de revolución.

El análisis realizado para determinar el perfil de un lente metálico cilíndrico nos sirve también para los lentes metálicos de revolución. Para el caso que se trate de corregir frentes de onda esféri--cos, la forma de la superficie de refracción estará dada por un elip-soide de rotación generado por una elipse que gira alrededor de su eje mayor. Esta elipse puede ser calculada a partir de las ecuaciones -(3.58) o (3.61) o (3.62) (a) y (b).

La superficie de salida de estos lentes será también plana, como en el caso de los lentes cilíndricos.

3.7.4. Variación de la distribución de amplitud del campo por efecto de los lentes metálicos normales.

Hemos visto como un lente metálico normal puede actuar sobre <u>u</u> na superficie equifase cilíndrica o esférica para transformarlas en planas. Veamos ahora como ha vari**ado** la distribución de amplitud del campo por acción del lente. sólido diferencial don como el indicado en la figura (3.24) será:

$$dp = d \Omega \quad \Phi \quad (3.68)$$

donde Φ (Θ) es la intensidad de radiación o potencia por ángulo sól<u>i</u> do unitario

A su vez: $d \Omega = sen \Theta d\Theta d \emptyset$ (3.69)

y la potencia total p radiada sobre la componente anular de ángulo s<u>ó</u> lido será:

$$p = \int_{0}^{2\pi} \sin \Theta \, d\Theta \, \overline{\Phi}(\Theta) \, d\emptyset = 2\pi \, \operatorname{sen} \Theta \, d\Theta \, \overline{\Phi}(\Theta) \tag{3.71}$$

Asumiendo que no existen pérdidas en el lente, p debe ser igual a W. Por lo tanto de (3.67) y (3.71) se tiene:

 $\int d\int P(f) = \operatorname{sen} \Theta \ d\Theta \ \Phi(\Theta)$ (3.72)
$$P(f) = \frac{\operatorname{sen} \Theta \Phi(\Theta)}{\int (df) / d\Theta}$$
(3.73)

pero $\int = R \operatorname{sen} \Theta y$ a su vez $R = \frac{(1-n) f}{1-n \cos \Theta}$, según lo determina (3.58)

Por lo tanto (3.73) se transforma en:

$$P(f) = \frac{\operatorname{sen} \varphi \, \hat{\Phi}(\varphi)}{\frac{(1-n) \, f}{1-n \, \cos \varphi} \, \operatorname{sen} \varphi \left(\frac{d}{d\varphi} \, \frac{(1-n) \, f \, \operatorname{sen} \varphi}{1-n \, \cos \varphi}\right)}$$
(3.74)

Efectuando la derivada y simplificando se llega a:

$$P(f) = \frac{(1 - n \cos \theta)^3 \Phi(\theta)}{(1 - n)^2 f^2 (\cos \theta - n \cos^2 \theta - n \sin^2 \theta)}$$
(3.75)

La potencia por unidad de superficie P (\int) para un Θ = O será:

$$P(o) = \frac{\oint (\Theta)}{f^2}$$
(3.76)

La relación de la potencia P (\int) a una distancia \int y la potencia a una distancia O estará dada por (3.75)/(3.76) y nos queda:

$$\frac{P(\hat{J})}{P(o)} = \frac{(1 - n \cos \theta)^3}{(1 - n^2) (\cos \theta - n)}$$
(3.77)

De allí que la relación de una amplitud A (β) a la amplitud A (O) será:

$$\frac{A(f)}{A(0)} = \left[\frac{(1-n\cos\theta)^3}{(1-n)^2(\cos\theta-n)}\right]^{1/2}$$
(3.78)

Para el caso de un lente cilíndrico metálico que actúa sobre on das cilíndricas, se puede hacer un análisis semejante. Para el efecto consideremos la figura (3.25).

La potencia W que pasa a través de la sección rectangular a dy

será:

$$W = P(y) dy a \qquad (3.79)$$

donde P (y) es la potencia por unidad de superficie a una altura y.

La potencia a través de un elemento a do será:

$$p = a \, d\Theta \, \Phi(\Theta) \tag{3.80}$$

Por su parte: $y = R \operatorname{sen} \Theta y R = \frac{(1-n) f}{1-n \cos \Theta}$

Finalmente se llega a:

$$\frac{A(y)}{A(o)} = \left[\frac{(1 - n\cos \theta)^2}{(1 - n)(\cos \theta - n)}\right]^{1/2}$$
(3.81)

En las tablas (3.2) y (3.3) se han determinado valores para -A $(\int) / A (0)$ y A(y) / A (0) en función de Θ respectivamente y sus representaciones se encuentran en la figura (3.26).

Observando la figura (3.26) concluimos que la distribución prima ria de amplitud de campo ha sido afectada por los lentes tanto de revolución como cilíndricas y así las amplitudes A (\int) y A (y) van aumentando con O lo que quiere decir que la iluminación primaria se atenúa mas hacia el centro del lente. Lógicamente esta variación en la ilumina ción repercutirá en los diagramas de radiación y en la ganancia direct<u>i</u> va de la bocina. Sin embargo para ángulos O pequeños, se puede aceptar que la atenuación del campo es uniforme manteniéndose la misma distrib<u>u</u> ción primaria.

TABLA 3-2

A () / A (O) como función de O		
÷	A (9)/ A (0)	
0	1.00	
10	1.05	
20	1.24	
30	1.60	
40	2.42	
50	6.00	

TABLA 3-3

A (y) / A (O) como función de \varTheta		
Ģ	A (y)/ A (O)	
0	1.00	
10	1.04	
20	1.18	
30	1.49	
40	2.08	
50	4.80	

3.7.5. Lentes Zonales.

De manera similar a los lentes dieléctricos, los lentes metálicos normales pueden hacerse más livianos utilizando el sistema de zonas. Para eso se separa una porción de lente cada vez que ella produz ca un avance de fase igual a 2N con relación al avance de la misma onda pasante por el espacio libre.

La variación de fase a lo largo de una distancia z₁ dentro del lente será:

$$\beta_{m} \mathcal{Z}_{1} = \frac{2\pi}{\lambda_{m}} \mathcal{Z}_{1} = \frac{2\pi n}{\lambda_{o}} \mathcal{Z}_{1}$$
(3.82)

donde: β_m = constante de fase dentro del lente λ_m = longitud de onda dentro del lente λ_o = longitud de onda en el espacio libre n = índice de refracción.

Si una porción del lente de espesor z_1 es removida, se tendrá una nueva variación de fase a lo largo de z_1 , pero ahora en el espacio libre y será igual a:

$$\beta_0 \, \mathcal{Z}_1 = \frac{2 \, \mathcal{\Pi}}{\lambda_0} \, \mathcal{Z}_1 \tag{3.83}$$

Si escogemos z_1 de manera que la diferencia entre las expresio-

nes (3.82) y (3.83), sea igual a 2Π , la fase en la apertura no habrá variado y tendremos:

$$\frac{2\pi}{\lambda_{\circ}} \mathcal{Z}_{1} - \frac{2\pi n}{\lambda_{\circ}} \mathcal{Z}_{1} = 2\pi$$
(3.84)

Y por lo tanto:

$$n_1 = \frac{\lambda_o}{1 - n} \tag{3.85}$$

La expresión (3.85) nos dá el espesor de cada zona.

Para el caso en que las zonas se formen en la superficie elíptica del lente, la ecuación, en polares, del perfil de la <u>primera</u> zona, será la conocida expresión:

$$r_{1} = \frac{(1-n) f_{1}}{1 - n \cos \Theta}$$
(3.86)

En la segunda zona, la distancia focal f_1 , tendrá un aumento igual al espesor de una zona z_1 y por lo tanto la ecuación correspon-diente será:

$$r_{2} = \frac{(1-n) \left(f_{1} + \frac{\lambda_{\circ}}{1-n}\right)}{1 - n \cos \theta}$$
(3.87)

y en general para una zona K:

$$r_{k} = \frac{(1-n)\left[f_{1} + (k-1)\frac{\lambda_{o}}{1-n}\right]}{1-n\cos\theta}$$
(3.88)

que puede escribirse:

$$r_{k} = \frac{(1-n) f_{1} + (k-1) \lambda_{\bullet}}{1 - n \cos \Theta}$$
(3.89)

Como se puede ver en la figura (3.27), existe un espesor mínimo d_{mín} que sirve únicamente para mantener la estabilidad mecánica del lente.

De acuerdo a lo establecido en la expresión (3.58), las ecuaciones de los perfiles de cada zona en coordenadas cartesianas serán:

Para la zona 1:

$$(1 - n^2) z^2 - 2 f (1 - n) z + x^2 = 0$$
 (3.90)

Para la zona 2:

$$(1 - n^{2}) (z + \frac{\lambda_{o}}{1 - n})^{2} - 2 (f + \frac{\lambda_{o}}{1 - n}) (1 - n) (z + \frac{\lambda_{o}}{1 - n}) + x^{2} = 0$$
(3.91)

Para la zona K:

$$(1 - n^{2})(z + \frac{(k-1)\lambda_{\circ}}{1-n})^{2} - 2(f + \frac{(k-1)\lambda_{\circ}}{1-n})(1-n)(z + \frac{(k-1)\lambda_{\circ}}{1-n} + x^{2} = 0$$
(3.92)

A continuación demostraremos como dos zonas contiguas de un len te zonal producen una diferencia de fase igual a 2π a la salida del lente. En la figura (3.28) tenemos una parte del lente correspondiente a la zona 1 y la zona 2.

Se puede observar que un rayo que sale de F y que pasa inmediatamente antes del punto a, tendrá que recorrer la trayectoria Faef y por lo tanto el avance de fase \emptyset_1 a lo largo de esta trayectoria será:

$$\emptyset_1 = \beta_0 r_i + \frac{\lambda_0}{1-n} \beta_m + dmin \beta_m$$
(3.93)

donde β_m y β_o son las constantes de fase dentro y fuera del lente respectivamente.

Un rayo que sale de F y que pasa inmediatamente después del pun to a, tendrá que recorrer la trayectoria Fbcd y el avance de fase \emptyset_2 a lo largo de esta trayectoria será:

$$\emptyset_2 = \beta_0 r_2 + \beta_m \left[\frac{\lambda_0}{1-n} - (r_2 - r_4) \cos \theta_m \right] + d_{\min} \beta_m$$
(3.94)

De acuerdo a la expresión (3.61)

$$r_1 = \frac{(1 - n) f_1}{1 - n \cos \Theta m}$$

y además:

$$\beta_{\circ} = \frac{2\pi}{\lambda_{\circ}}$$
 y $\beta_{m} = \frac{2\pi}{\lambda_{m}} = \frac{2\pi n}{\lambda_{\circ}}$

por lo tanto \emptyset_1 se transforma en:

Por su parte y de acuerdo a la expresión (3.89), r_2 será:

$$r_2 = \frac{(1-n) f_1 + \lambda_o}{1 - n \cos 9m}$$
 (3.96)

y ϕ_2 se tranforma en:

1

Simplificando

La diferencia de fase estará dada por: (3.98) menor (3.95):

$$\phi_2 - \phi_1 = 2 \Pi$$
 (3.99)

3.7.6. Efectos de las zonas en la iluminación de la apertura.

Si bien es cierto que la formación de las zonas en un lente me tálico puede alivianar su estructura, en cambio, produce sombras en En las figuras (3.30) (a) y (b) mostramos otro tipo de lentes metálicos conocidos como guiados.

En este caso, un rayo que llega al lente no se refracta por la ley de Snell sino que es obligado a tomar una trayectoria entre las láminas.

Según el estudio realizado en la sección (3.2.2) para que sea posible la propagación entre láminas, es condición necesaria que el vector E sea paralelo a ellas.

Como se puede observar, todas las láminas que conforman el lente son de forma rectangular, pero los anchos varían de acuerdo a la forma que debe tomar el perfil del lente a la entrada, para conseguir que la onda cilíndrica aumente su velocidad de fase hacia los extremos, logran do un frente de onda plano a la salida. Este perfil puede ser calculado de una manera similar a la utilizada en la sección (3.7.1) y se ha llegado a determinar que es elíptico y está dado por la expresión:

$$r = \frac{(1-n) f}{1 - n \cos \theta}$$
(3.100)

Utilizando el principio de que el índice de refracción n para una frecuencia dada, depende de la separación entre láminas, se puede también aumentar la velocidad de fase de la onda cilíndrica hacia sus extremos, haciendo que los rayos en esta sección pasen a través de un medio con un índice de refracción menor; de esta manera se puede ir di<u>s</u> minuyendo progresivamente la separación entre placas a partir del punto central, manteniendo constantemente el espesor del lente y así éste qu<u>e</u> dará conformado por un conjunto de guías de onda de igual longitud "d", pero de diferentes anchos como se puede observar en la figura (3.31) -(a).

FIG. 3-31

En la figura (3.31) (b) podemos ver que un rayo que sale de F y pasa por la primera guía de índices n_0 , tendrá que recorrer una trayec toria electromagnética igual a: $f_0 + n_0$ d. Un rayo cualquiera que sale de F y pasa por la guía de índice n_k , deberá recorrer una trayectoria igual también a $f_0 + n_0$ d. Por lo tanto se puede observar en la figura que:

$$f_k + n_k d - (f_0 - n_0 d) = 0$$
 (3.101)

o en su defecto, el primer miembro de la igualdad anterior puede ser igualado a un número entero de longitudes de onda:

$$f_k + n_k d - (f_0 + n_0 d) = m\lambda_0$$
 (3.102)

donde:

 λ_{\circ} = longitud de la frecuencia de trabajo m = 0, 1, 2, 3,

d = longitud de lente que es constante para todas las guías
y puede ser escogida arbitrariamente.

Como
$$f_k = \frac{f}{\cos \Theta_k}$$
, la expresión (3.102) puede escribirse:

$$\frac{\mathbf{f}}{\cos \theta_{k}} + n_{k} d - (\mathbf{f}_{0} + n_{0} d) = m \lambda.$$
(3.103)

Una vez escogido el ancho de la guía central, queda determinado el paréntesis ($f_0 + n_0$ d). Se puede entonces escoger sucesivamente el ancho de las otras guías. Por ejemplo: escogido el ancho n_k , éste determina $n_k y \Theta_k$ de acuerdo a las siguientes relaciones:

$$n_{k} = \sqrt{1 - \left(\frac{\lambda_{o}}{2 \, \Omega_{\kappa}}\right)^{2}}$$
(3.104)

$$\theta_{\kappa} = \operatorname{arc} \dagger g \quad \frac{h_{\kappa}}{f} = \frac{\sum_{n=1}^{\kappa-1} a_{n} + \frac{q_{\kappa}}{2}}{f} \quad (3.105)$$

El escogimiento de a_k debe ser ancho de manera que n_k y Θ_k al ser reemplazados en (3.103) hagan cumplir esa relación.

Al mismo tiempo, debe observarse que en cada guía a debe ser - mayor que $\lambda_0/2$ para que sea posible la propagación del modo fundamen tal.

3.8. MODELOS DE RADIACION DE UNA BOCINA CON LENTE.

En el capítulo 2, en la sección (2.6.3), se llegaron a determinar expresiones que nos dan los modelos de radiación de una bocina considerando distribuciones de amplitud y de fase en su apertura.

El momento que colocamos un lente en la apertura de la bocina, la distribución de fase en su apertura es uniforme, de manera que la función de distribución de fase F(x, y) que está dada por la expresión (2.62) es igual a cero por cuanto las desviaciones máximas de fase $k_1 y k_2$ son también cero. La distribución de amplitud en la apertura, también varía con la utilización de un lente, según se vió en la sección (3.7.4). Para nuestro análisis consideraremos sin embargo que los ángulos de apertura en la bocina no son grandes manteniéndose la misma distribución de amplitud que se tenía en una bocina sin lente; es decir una dis-tribución del tipo C cos $\frac{\pi}{a}$.

Haciendo referencia a la figura (2.5), podemos utilizar las expresiones (2.65) y (2.71) que nos dan los modelos de amplitud de -E (0) en los planos E y H respectivamente, particularizando para el caso en que $k_1 = k_2 = 0$.

3.8.1. Modelos en el plano E.

De acuerdo a la expresión (2.65) se tiene:

$$\left| E(\theta) \right| = \left| \frac{j \bar{\mathcal{E}}^{j\beta r_{o}}}{\lambda_{o} r_{o}} C \right| \left| \int_{-\alpha/2}^{\alpha/2} \cos \frac{\pi x}{\alpha} dx \int_{-b/2}^{b/2} e^{j\beta y \sin \theta} dy \right|$$
(3.106)

Integrando:

$$\left| E(\theta) \right|_{=} \left| \overline{K}_{1} \right| \frac{\operatorname{sen}\left(\frac{\pi b}{\lambda_{0}} \operatorname{sen}\theta\right)}{\frac{\pi b}{\lambda_{0}} \operatorname{sen}\theta}$$

$$\operatorname{donde:} \overline{K}_{1} = \overline{j} \frac{2 \operatorname{ab} e^{-\overline{j}/3r_{0}} C}{\pi \lambda_{0} r_{0}}$$

$$(3.107)$$

En la tabla (3.4) se han calculado diferentes valores de amplitud de campo de acuerdo a la expresión (3.107), como función de $u = \frac{\Pi b}{\lambda_o}$ sen Θ .

Se han calculado también los valores relativos de cada E(u) con respecto al valor máximo E(O), de acuerdo a la siguiente relación:

$$db = 20 \log \frac{|E(u)|}{|E(0)|}$$
(3.108)

En la figura (3.32) se representan los diferentes valores obtenidos de acuerdo a (3.108)y en ella se pueden observar que existen va lores periódicos de u para los cuales la amplitud del campo se hacen cero. Además, comparando este modelo con aquellos obtenidos en la figura (2.7) cuando se consideró la bocina sin lente, se puede concluir que los niveles de los lóbulos secundarios relativos al lóbulo princi pal se reducen con la utilización del lente.

J	· · · · · · · · · · · · · · · · · · ·	-
u	$\frac{ E(u) }{ K_1 } = \frac{\operatorname{sen} u}{u}$	$-20 \log \frac{1}{ E(u) }$
0	1.0000	-00.00
1 TT/6	0,9560	-00.40
2 îî/6	0.8270	-01.65
3 π/6	0.6360	-03.92
4 TT/6	0,4140	-07.66
5 TT/6	0,1922	-14.32
π	0.0000	00
7 11/6	0.1365	-17.30
8 T/6	0,2070	-13.68
9 ĩ1/6	0,2120	-13.48
10 17/6	0.1655	-15.64
11 17/6	0.0867	-21.24
211	0.0000	-00
13 īī/6	0.0733	-22,70
14 17/6	0,1182	-18.54
15 17/6	0.1272	-17,90
16 17/6	0.1033	-19.72
17 17/6	0.0562	-25.00
3 11	0.0000	-00
19 17/6	0.0502	-25,90
20 17/6	0.0827	-21.64
21 17/6	0.0908	-20.74
22 M/6	0.0752	-22.48
23 Π/6	0.0415	-17.64
4 TT	0.0000	-00
	1	

3.8.2. Modelos en el plano H.

De la ecuación (2.71) se determina que:

$$\left| E(\theta) \right|_{=} \left| j \frac{e^{j/3r_{o}}C}{\lambda_{o}r_{o}} \right| \left| \int_{-a/2}^{a/2} dy \int_{-b/2}^{b/2} \cos \frac{\pi x}{a} e^{j/3x \cdot en\theta} dx \right| (3.109)$$

Efectuando la integral se llega a:

$$\left| E(\Theta) \right|_{=} \left| \vec{K}_{3} \right| \frac{\cos\left(\frac{\pi\alpha}{\lambda_{0}} \operatorname{sen}\Theta\right)}{\frac{\pi}{4}^{2} - \left(\frac{\alpha\pi}{\lambda_{0}} \operatorname{sen}\Theta\right)^{2}}$$

$$\frac{\operatorname{donde:}}{\kappa_{3}} = \frac{\pi}{2} \frac{e^{-d/\beta r_{0}}}{\lambda_{0} r_{0}} \operatorname{ab}$$
(3.110)

Utilizando la expresión (3.110) se han calculado diferentes valores de amplitud de campo en función de $\mathbf{v} = \frac{\pi}{\lambda_0}$ sen 0. La figura (3.33) es una representación gráfica de los diferentes valores de E(v), relativos a E(0), de acuerdo a la expresión siguiente:

db = 20 log
$$\frac{|E(v)|}{|E(0)|}$$
 (3.111)

También en este caso, existen valores periódicos de v, para los cuales el campo E(v) es igual a cero. Una comparación de la curva de la figura (3.33) con las de la figura (2.8) nos lleva a la conclusión de que los niveles de los lóbulos secundarios relativos al lóbulo princi--pal se reducen con la utilización del lente.

u	$\frac{ \mathbf{E}(\mathbf{v}) }{ \mathbf{\vec{K}}_{3} } = \frac{\cos \mathbf{v}}{2.465 - \mathbf{v}^{2}}$	$-20 \log \frac{0.406}{ E(v) }$
0	0.4060	-00.00
1 ^{TT} /6	0.3950	-00.26
2 m/6	0.3660	-00.92
3 T/6	0.3180	01.90
4 m/6	0.2610	-03.86
5 ñ/6	0.1985	-06.24
Π	0.1350	-09.56
7 π/6	0.0792	~ 14 . 21
8 TT/6	0.0332	-21.76
9 π <i>/</i> 6	0.0000	- 00
10 T/6	0.0201	-26.12
11 T/6	0,0282	- 23 . 18
2 11	0.0270	- 23•56
13 π / 6	0.0197	-26.30
14 m/6	0.0097	-32.40
15 n/6	0.0000	- 00
16 ^m /6	0.0074	-34.82
17 m/6	0.0113	-31.00
3 11	0.0116	-30.92
19 M/6	0.0089	-33.12
20 M/6	0.0047	-38.84
21 ^M /6	0.0000	_ ~
22 î ī/ 6	0,0038	-40.50
23 17/6	0.0061	-36.50
4 17	0.0064	-36.02

3.9. GANANCIA DIRECTIVA Y AREA EFECTIVA DE UNA BOCINA CON LENTE.

Por definición la ganancia directiva está dada por la expresión:

$$g = -\frac{4\pi\Phi}{W}$$
(3.112)

donde: $\overline{\Phi}$ es la intensidad de radiación y

W es la potencia total radiada por la antena.

La intensidad de radiación de la apertura de la bocina excitada por un modo TE 1,0, considerando que la distribución de amplitud es – del tipo C cos $\frac{\Pi x}{a}$, ha sido calculada por Schelkunoff*, quien – parte de la intensidad de radiación de un elemento unitario de Huygen e integra su efecto sobre el área de apertura ab. El resultado final – es:

$$\Phi = \frac{C^{2} \alpha^{2} \operatorname{sen}^{2} \left(\frac{\Pi b}{\lambda_{o}} \operatorname{sen} \Theta \operatorname{sen} \phi\right) \cos^{2} \left(\frac{\Pi a}{\lambda_{o}} \operatorname{sen} \Theta \cos \phi\right) \left(1 + \cos \Theta\right)^{2}}{240 \Pi \operatorname{sen}^{2} \Theta \operatorname{sen}^{2} \phi \left(\Pi^{2} - \beta^{2} \alpha^{2} \operatorname{sen}^{2} \Theta \cos^{2} \phi\right)^{2}} (3.113)$$

La intensidad de radiación máxima \bigoplus máx se tiene para un $\Theta = 0$ y se puede obtener levantando la indeterminación en la expresión (3.113) por medio de la Ley de L'Hospital y se llega a:

^{*} SCHEIKUNOFF S., Antenna Theory and Practice, John Wiley & Son Inc., 1952, Pág. 523.

$$\Phi_{max} = \frac{C^2 a^2 b^2}{60 \pi^3 \lambda_o^2}$$
(3.114)

La potencia total radiada W puede encontrarse considerando a la bocina como una guía de sección grande excitada por un modo TE 1,0. De esta manera el vector de Poynting en la dirección z será:*

$$P_{z} = -\frac{1}{2} E_{y} H_{x}^{*} = \frac{1}{2} \frac{C^{2} \cos^{2}(\tilde{\pi} x/a)}{\eta}$$
(3.115)

Haciendo referencia a la figura (2.5) e integrando (3.115) sobre la superficie ab, se tendrá la potencia total W:

$$W = \frac{1}{2 \times 120 \,\mathrm{Tr}} \int_{-a/2}^{a/2} \int_{-b/2}^{b/2} \cos^2\left(\frac{\pi x}{a}\right) dx \, dy = \frac{C^2 ab}{480 \,\mathrm{Tr}}$$
(3.116)

Reemplazando (3.114) y (3.116) se tiene la ganancia directiva máxima g_{máx}:

$$g_{max} = \frac{32 \text{ ab}}{\pi \lambda_{\circ}^{2}}$$
(3.117)

El área efectiva A, por definición, está dada por:

$$\Lambda = \frac{\lambda}{4\pi} g$$
(3.118)

* Los campos E y H* han sido obtenidos de: <u>Electromagnetic Waves and</u> Radiating Systems de J.E. JORDAN. Capítulo 9, Pág. 267. Reemplazando (3.117) en (3.118) se tiene finalmente:

 $A = \frac{4}{5} ab = \frac{80\%}{del} del area de apertura.$ (3.119)

3.10. CONSIDERACIONES DE DISEÑO DE LOS LENTES METALICOS.

3.10.1. Indice de refracción.

El primer factor que debe tomarse en cuenta en el diseño de los lentes metálicos normales es el índice de refracción n que está determinado por la separación entre placas. Este factor puede ser escogido pero para ello debe tomarse en cuenta que su valor influye en el espesor del lente, así como también en el coeficiente de reflexión de ene<u>r</u> gia.

Para confirmar lo dicho en el párrafo anterior, recordemos la expresión (3.62) (a) que nos dá el perfil del lente en forma paramétr<u>i</u> ca. Un análisis de ella nos lleva a la conclusión que para una distancia focal f determinada y para un ángulo O dado, el valor de z crece conforme el valor de n se aproxima la unidad y por lo tanto el espesor del lente se hace más abultado.

Para ver como varía el factor de reflexión con n, consideremos la figura (3.34); un rayo cualquiera FD se refracta en el punto D del lente de acuerdo a la ley de Snell.

La expresión (3.120) (b), la podemos poner en función de las componentes de campo eléctrico. Para el efecto sabemos que en el es pacio libre se cumple:

$$H_{i} = E_{i} / \eta$$
 (a) $y H_{r} = E_{r} / \eta$ (b) (3.121)

Dentro de las guías que conforman el lente, se cumple para una onda TE*.

$$\frac{E_{t}}{H_{t}} = \text{Impedancia de onda} = \frac{\eta}{\overline{3}/\omega\sqrt{\mu_{0}\epsilon_{0}}}$$
(3.122)

Utilizando la misma nomenclatura que en la sección (3.2.1.), (3.122), se puede transformar en:

* JORDAN E.C., Electromagnetic Waves and Radiating Systems, Prentice Hall, Inc. Pág. 280.

$$\frac{E_t}{H_t} = \frac{\gamma}{n}$$
(3.123)

donde n es el indice de refracción.

Reemplazando (3.121) (a) y (b) y (3.123) en (3.120) (b) se tiene:

 $n (E_i + E_r) = E_t$

Combinando (3.120) (a) y (3.124) se llega a:

$$\frac{\mathbf{E}_{\mathbf{r}}}{\mathbf{E}_{\mathbf{i}}} = \frac{\cos \theta_{1} - \mathbf{n} \cos \theta_{2}}{\cos \theta_{1} + \mathbf{n} \cos \theta_{2}}$$
(3.125)

Manteniendo una distancia focal f y dando valores a n se puede ver que de acuerdo a la expresión (3.58) el lente se hace menos abul tado para un n más pequeño. Al mismo tiempo un rayo FD forma ángulos $\Theta_1 y \Theta_2$ más pequeños, los cuales están en tal proporción que la rela ción E_r / E_i aumenta. Esto se puede comprender mejor determinando – gráficamente $\Theta_1 y \Theta_2 y$ reemplazando esos valores en (3.25). Para el caso en que $\Theta_1 = \Theta_2 = 0$ la expresión (3.125) se hace más simple y alli se puede ver más claramente como se incrementa el factor de re-flexión al disminuir n.

Es necesario entonces llegar a un compromiso aceptable para de

terminar n de manera que no se produzca mucha reflexión ni tampoco de lugar a un espesor grande. Experimentalmente* se ha llegado a determinar que un n = 0,6 es el mas aconsejable.

3.10.2. Ancho de banda de un lente metálico.

Siendo como n depende de la frecuencia en los lentes metálicos, estos son sensitivos a la frecuencia y tiene un ancho de banda determinado.

A frecuencias superiores o inferiores de la del diseño el frente de onda saliente del lente no será plano sino que tendrá cierta curvatura. Como se manifestó en la sección (3.4.9) se ha llegado a d<u>e</u> mostrar que una variación de fase entre el centro y el extremo del lente igual a $\pm \frac{17}{4}$ ($\pm \frac{16}{8}$), puede ser tolerada para un comportamiento satisfactorio del dispositivo.

En el lente de la figura (3.35) y a la frecuencia de diseño f₀, debe cumplirse que las trayectorias electromagnéticas para los dos r<u>a</u> yos, indicados en la figura sean iguales: FA + nAB = FC + nCD + nDE (3.126) pero nAB = nDE y nos queda: FA = FC + nCD (3.127)

^{*} KOCK W.E., <u>Metal-Lens Antennas</u>, Proceedings of the I.R.E. and Waves and Electrons, Noviembre de 1946. Pág. 830.

A una frecuencia cercana a la de trabajo, el índica de re-fracción varía y por lo tanto la trayectoria eléctrica del rayo que se refracta en C también ca<u>m</u> bia. Para seguir manteniendo la igualdad matemática en (3.127), debemos incluir en el primer miembro un término 5 equivalen-

te a la diferencia entre las trayectorias eléctricas de los rayos FA y FC, luego de la variación de n:

$$FA + \delta = FC + n'CD \qquad (3.128)$$

donde n' es el indice de refracción a la nueva frecuencia.

Restando (3.127 de (3.128) se tiene:

 $\delta = (n' - n) CD = \Delta n t \qquad (3.129)$

Para pequeños cambios de frecuencia, se tendrán pequeños cambios de longitud de onda y podemos describir:

$$\frac{\Delta n}{\Delta \lambda_{o}} = \frac{dn}{d\lambda_{o}} = \frac{d\sqrt{1 - \left(\frac{\lambda_{o}}{2b}\right)^{2}}}{d\lambda_{o}}$$
(3.130)

Efectuando la derivada se llega a:

$$\Delta n = \Delta \lambda_{\circ} \left(\frac{n^2 - 1}{n \lambda_{\circ}} \right)$$
(3.131)

reemplazando (3.131) en (3.129) se tiene:

$$\mathcal{J} = \frac{\Delta \lambda_{\bullet}}{\lambda_{\bullet}} \cdot \frac{n^2 - 1}{n} \cdot t \tag{3.132}$$

$$\frac{\Delta \lambda_{\circ}}{\lambda_{\circ}} = \frac{n}{(1-n^2)t} \left[5 \right]$$
(3.133)

Por lo tanto:

$$B \simeq \frac{2 n \left| \mathcal{S} \right|}{(1-n^2) t}$$
(3.134)

Tomando en cuenta una tolerancia de variación de fase igual a π /4 la correspondiente variación en la trayectoria será = λ_{\circ} /8, con lo cual

$$B = \frac{2 n \lambda_{\bullet}}{8 (1-n^2) t}; B = \frac{25 n}{(1-n^2) t} \%$$
(3.135)

donde t es el espesor en el extremo del lente y está dado en lon gitudes de onda.

Un análisis similar puede ser desarrollado para los lentes zonales. Consideremos el lente de la figura (3.36) r_1 r_2 r_1 r_2 r_1 r_2 r_1 r_2 r_1 r_2 r_1 r_2 r_3 r_4 r_4 r_5 r_5 r_6 r_7 r_7 r_6 r_7 r_7 r_6 r_7 r_7

Un rayo central saliente de F tendrá que recorrer la trayectoria FA hasta llegar al plano aa'. Un rayo que pasa por el extremo B del lente, tendrá que recorrer la trayectoria: FB + nCB + CD.

De esta manera, a la frecuencia de trabajo se cumple:

$$FA + (K - 1) \lambda_{\bullet} = FB + nCB + CD$$
 (3.136)

El término (k - 1) λ . debemos colocar en el primer miembro a fin de establecer la igualdad matemática, y corresponde al número <u>en-</u> <u>tero</u> de longitudes de onda en que difieren las dos trayectorias, deb<u>i</u> do a la formación de las zonas. La expresión (3.136) la vamos a escr<u>i</u> bir:

 $FA = FB + nCB + CD - (k - 1) \lambda_o$ (3.137)

A una frecuencia cercana a la de trabajo escribiremos:

$$FA + \delta = FB " n'CB + CD - (k - 1) (\lambda + \Delta \lambda).$$
 (3.138)

donde δ mantiene la igualdad matemática, debido a que el variar la frecuencia, varía n y también el término (k - 1) λ_{o} ; es decir ha vari<u>a</u> do la trayectoria electromagnética del rayo que pasa por el extremo - del lente.

Restando (3.137) de (3.138) se tiene:

$$\delta = (n^{2} - n) CB - (k - 1) \lambda_{o}$$
 (3.139)

$$\delta = \Delta n CB - (k - 1) \Delta \lambda_{o}$$
(3.140)

Según la expresión (3.131) se tiene:

$$\Delta n = \frac{n^2 - 1}{n} \cdot \frac{\Delta \lambda_o}{\lambda_o}$$
(3.141)

Además si consideramos que el espesor del lente ha sido dividido en un número K de zonas el ancho CB será igual a $\lambda_o/1 - n_o$

De esta manera (3.140) se transforma en:

De alli se obtiene:

$$\left|\frac{\Delta\lambda_{\circ}}{\lambda_{\circ}}\right| = \frac{n|\delta|}{(1+n\kappa)\lambda_{\circ}}$$
(3.143)

y entonces el ancho de banda de este lente será:

$$B \approx \frac{2 n |S|}{(1 + n k) \lambda_{\circ}}$$
(3.144)

Aceptando el criterio, ya conocido, que $\delta \leq \frac{1}{8} \lambda_{\circ}$, tenemos finalmente:

$$B \cong \frac{25 \,\mathrm{n}}{1 + \mathrm{km}} \,\% \tag{3.145}$$

En las tablas (3.6) y (3.7) se han calculado valores de B para un lente sin zonas de espesor t y para un lente zonal de K pasos, para un índice de refracción n = 0,5. Para el efecto hemos utilizado las ex presiones (3.135) y (3.145) y las representaciones gráficas respecti-vas se encuentran en la figura (3.37)

El hecho de que la trayectoria a través de un medio sensitivo a la frecuencia (n \angle 1) se reduce al formar las zonas en un lente met<u>á</u> lico y esto hace que el ancho de banda mej**ere** en los lentes zonales, como puede verse en las curvas de la figura (3.37)

B1

TABLA 3-6

-Ancho de banda de un lente metálico como función de su espesor t $n = 0.5$			
t (λ _°)	в(%)	ŧ(λ。)	<u></u> В́(%
2	8.35	18	0.92
4	4.16	20	0.84
6	2.77	22	0.76
8	2.08	24	0.70
10	1.67,	26	0.64
12	1.39	28	0.60
14	1.19	30	0.56
16	1.05	32	0.52

ТАВLА **3-**7

Ancho de banda de un lente metálico		
zonal como función	del # de zonas K	
K	B	
О	12.5	
2	6.25	
4	4.17	
6	3.12	
8	2.50	
10	2.09	
12	1.79	
14	1,56	
16	1.39	

De acuerdo a la expresión (3.9), la separación entre láminas a puede variar entre 0,5 λ . y λ ., para que sea posible la propagación del modo dominante. El diseño del lente metálico se lo hace a partir de una separación a_o escogida para lograr un índice de refracción d<u>e</u> terminado y cualquier error en esa separación, traerá como consecue<u>n</u> cia diferencias de fase a la salida del lente. A continuación vere--mos cual será la tolerancia de error en la separación entre láminas.

En la figura (3.38) se puede observar una superficie equifase CAC' (línea a trazos) que incide sobre la superficie elíptica del -

El avance de fase del frente de onda en el punto D está dado

por:

$$\emptyset_{\rm D} = \frac{2\pi b}{\lambda_g} = \frac{2\pi bn}{\lambda_o}$$
(3.146)

donde: λ_o = longitud de onda en el espacio libre λ_g = longitud de onda dentro del lente.

La expresión (3.146) también la podemos escribir como:

$$\emptyset_{\rm D} = \frac{2\pi b}{\lambda_{\rm o}} \sqrt{1 - \left(\frac{\lambda_{\rm o}}{2\alpha_{\rm o}}\right)^2}$$
(3.147)

Ahora bien, en la parte central del lente se cumple:

$$d = f - r_0 \tag{3.148}$$

de acuerdo a (3.61) se tiene:

$$\mathbf{r}_{0} = \frac{(1-n) \mathbf{f}}{1-n \cos \theta_{0}}$$
(3.149)

donde el cos Θ_0 puede ser determinado de la ecuación paramétrica (3.62) (a), para un z = b y se tiene:

 $\cos \Theta_0 = \frac{b - f}{bn - f}$, de esta manera (3.149) se puede escribir como:

$$r_{o} = \frac{1-n}{1-n \frac{b-f}{bn-f}}$$
(3.150)

y reemplazando (3.150) en (3.148) se llega final/mente a:

$$d = bn$$
 (3.151)

Por lo tanto, el avance de fase en B, será el que se tiene a lo largo de bn:

$$\phi_{\rm B} = \frac{2\pi}{\lambda_{\rm o}} \, {\rm nb} \tag{3.152}$$

Para un espaciamiento correcto a_o, la diferencia entre \emptyset_B y \emptyset_D , debe ser cero. Por lo tanto de (3.147) y (3.152) se tiene:

$$0 = \emptyset_{\rm D} - \emptyset_{\rm B} = \frac{2\pi b}{\lambda_{\rm o}} \sqrt{1 - \left(\frac{\lambda_{\rm o}}{2q_{\rm o}}\right)^2} - \frac{2\pi}{\lambda_{\rm o}} nb \qquad (3.153)$$

de donde se obtiene:

$$\sqrt{1 - \left(\frac{\lambda_{\circ}}{2Q_{\circ}}\right)^2} = n \qquad ; \quad \left(\frac{\lambda_{\circ}}{2}\right)^2 = \left(1 - n^2\right) Q_{\circ}^2 \qquad (3.154)$$

Para el caso en que el espaciamiento a sufra una variación $\triangle a_{o}$ en el extremo del lente, se tendrá en dicho extremo un espaciamiento a= = $a_{o} + \triangle a_{o}$ y la fase en el punto D será:

$$\emptyset_{\rm D} = \frac{2\pi b}{\lambda_{\rm o}} \sqrt{1 - \left(\frac{\lambda_{\rm o}}{2a}\right)^2}$$
(3.155)

En este momento existirá una diferencia de fase entre las traye<u>c</u> tores AB y CD, que estará dada por:

Reemplazando (3.154) en (3.156) se tienen:

$$\boldsymbol{\emptyset}_{\mathrm{D}} - \boldsymbol{\emptyset}_{\mathrm{B}} = \frac{2\pi b}{\lambda_{\mathrm{o}}} \left[\sqrt{1 - (1 - n^2) (\frac{a_{\mathrm{o}}}{a})^2} - n \right]$$
(3.157)

En esta parte, cabe recordar que una variación sobre la frecuen cia de trabajo trae como consecuencia que la onda saliente no es plana y tiene cierta curvatura hacia adentre e hacia afuera y se ha di-cho también que la diferencia de fase tolerable, entre la parte cen-tral y el extremo del lente es $\pm \frac{\pi}{4} (\pm \frac{\lambda_o}{8})$, para que no varíe el comportamiento del lente.

El momento que en una sección del lente se produzca un error en la separación entre láminas, se tendrá también un error en la fase, en esa sección del lente. Este es un tipo de variación al azar en la fase de la apertura.

En el análisis que estamos desarrollando, consideramos que ese error se presenta en el extremo del lente, es decir en la parte más crítica. Experimentalmente* se ha demostrado que una variación al azar de la fase de apertura, igual a $\pm \frac{\pi}{8}(\pm \frac{\lambda}{16})$ es permitida; este criterio aplicaremos en la expresión (3.157). De esta manera:

$$\mathscr{P}_{D} - \mathscr{P}_{B} = \pm \frac{\pi}{8} = \frac{2\pi b}{\lambda_{\circ}} \left[\sqrt{1 - (1 - n^{2}) \left(\frac{a_{\circ}}{\alpha}\right)^{2}} - n \right]$$
(3.158)

^{*} KOCK W.E., <u>Metal Lens Antennas</u>, Proceedings of the I.R.E. and Waves and Electrons, Noviembre de 1946, Pág. 832.

mente lo podemos expresar de la siguiente manera:

$$\frac{2\pi}{\lambda_{o}} \Delta b - \frac{2\pi}{\lambda_{m}} \Delta b = \pm \Delta \phi \qquad (3.161)$$

Aceptando el criterio conocido referente a la variación de fase al azar, podemos escribir:

$$\frac{2\pi}{\lambda_{o}} \Delta b - n \frac{2\pi}{\lambda_{o}} \Delta b = \pm \frac{\pi}{8}$$
(3.162)

De la última expresión se concluye que la tolerancia de variación del espesor del lente es:

$$\Delta b = \pm \frac{\lambda_{\circ}}{16(1-n)} = \pm \frac{0.03 \lambda_{\circ}}{1-n}$$
(3.163)

3.10.5. Tolerancia de giro del lente.

En la sección (3.10.1) se vió que la utilización de un índice de refracción mayor que 0.6 podía reducir la reflexión producida en el lente. Sin embargo, puede ser necesario girar el lente un pequeño ángu lo \propto , con el objeto de que los rayos reflejados en la superficie pla na del lente no converjan nuevamente en la fuente F produciendo el correspondiente desacoplamiento, como se puede ver en la figura (3.39)

Las lineas a trazos corresponden a los rayos reflejados que con vergen fuera de la fuente F, luego del giro.

CAPITULO CUARTO

DISEÑO DE BOCINAS Y LENTES

PARA EXPERIMENTACION

r4.1. INTRODUCCION.

A fin de realizar la parte práctica-experimental de esta tesis se han diseñado dos bocinas: una de tipo en sector y otra piramidal, para cada una de las cuales se han diseñado también, sendos lentes m<u>e</u> tálicos.

4.2. FRECUENCIA DE TRABAJO.

Tomando en consideración el tipo de generador de microondas existente en el Laboratorio de la Escuela Politécnica Nacional se ha escogido una frecuencia de trabajo, dentro de la banda X, igual a 10 GHz. lo que determina una longitud de onda en el espacio libre - λ_{0} = 3 cms.

4.3. DISEÑO DE LAS BOCINAS

4.3.1. Explicación Previa.

Con el objeto de que la parte práctica esté de acuerdo con la parte teórica desarrollada en los Capítulos II y III, se han diseñado bocinas de apertura grande, es decir de dimensiones de algunas lo<u>n</u> gitudes de onda. Además se han considerado también longitudes de boc<u>i</u> na de algunas longitudes de onda a fin de que las condiciones a la s<u>a</u> lida de la bocina sean similares a las del espacio libre en especial a lo que a la longitud de onda se refiere.

14.3.2. Bocina en sector.

Las dimensiones en la garganta de la bocina en sector se han es cogido a fin de que exista un buen acoplamiento mecánico con la guía de onda de salida del generador cuyas dimensiones son 2.3. cms. x 1 cm convenientes para trabajar en el modo principal TE 1,0 y sobre la frecuencia de corte. Las dimensiones totales de la bocina sectoral se indican en la figura (4.1).

De acuerdo a las curvas de Schelkunoff dadas en la figura (2.9) se puede determinar para esta bocina:

$$\frac{\lambda_o}{b}$$
 g_m = 28

La longitud de onda λ_o es 3 cms. La dimensión b en nuestro c<u>a</u> so es 1 cm. que es menor que λ_o , por lo tanto la ganancia directiva máxima de esta bocina está dada aproximadamente por:

$$g_{\rm m} = \frac{28}{3} = 9.34$$

o en decibeles:

$$G = 10 \log 9.34 = 9.7 db$$

4.3.3. Bocina piramidal y acoplador de guía de onda.

La bocina piramidal ha sido diseñada con una apertura de forma cuadrangular y para lograr una total simetría de las dimensiones en los planos E y H se ha escogido una garganta también de sección cuadrangular. De esta manera la bocina tendrá la forma de una pirámide cuadrangular truncada.

Las guías de onda para la conducción de modos TE 1,0, en la banda X, disponibles en los laboratorios son, sin embargo, de forma rectangular. Esto nos obliga a utilizar una guía de acoplamiento que acople la guía rectangular con la garganta de la bocina, es decir rea lice las funciones de un transformador de impedancias. Este acoplamiento debe tener tal forma que la sección transversal en cualquier punto de su longitud, asegure la propagación del modo fundamental -TE 1,0 a la vez que corte la propagación de los modos superiores. Por otro lado, debe tener una longitud suficientemente larga (algunas longitudes de onda) con el objeto de que la transformación de impedancias se lo haga paulatinamente evitando desacoplamiento y grandes valores de VSWR.

Cabe añadir que se pudo también haber diseñado la bocina con la garganta rectangular de manera que se acople directamente con la guía disponible. En este caso, sin embargo, la prolongación de las cuatro caras laterales de la bocina no coincidirían en un sólo vértice, sino en dos, y el centro de fase, muy importante de determi-nar para conocer la longitud focal de los lentes a utilizarse, no sería conocido.

Con la utilización de una garganta cuadrangular podemos aceptar que el centro de fase coincide aproximadamente con el vértice geométrico de la bocina, localizado en la intersección de las cuatro caras laterales prolongadas.

En la figura 4.2. indicamos las dimensiones del diseño del <u>a</u> coplamiento.

Medidas del extremo rectangular para acoplamiento con la guía de ali mentación = 2.3 cm x 1 cm.

Medidas del extremo cuadrangular para acoplamiento con la bocina piramidal: 1,85 cm x 1,85 cm.

Longitud = 20 cms.

La separación de las paredes laterales en cualquier punto a lo largo del acoplamiento asegura la buena propagación del modo TE 1,0 por ser siempre mayor que λ_{\circ} /2, incluyendo el punto más critico que se tiene en el extremo de sección cuadrangular 1.85 cms x 1,85 cms.

Estas dimensiones han sido también escogidas de manera que se

impida la propagación de un posible modo TE 1,1. En la expresión siguiente* tenemos la longitud de onda de corte para un modo TEm,n

$$\lambda_{c} = \frac{2}{\sqrt{\left(\frac{m}{\alpha}\right)^{2} + \left(\frac{n}{b}\right)^{2}}}$$

que para el caso específico de TE 1,1 es

$$\lambda_{c} = \frac{2}{\sqrt{\left(\frac{1}{a}\right)^{2} + \left(\frac{1}{b}\right)^{2}}}$$

Como la sección transversal en el extremo del acoplamiento es cuadrangular o sea a = b, se tiene:

$$\lambda_c = \sqrt{2} a$$

,

Por lo tanto la no propagación del modo TE 1,1 se logra cuando

$$a < \frac{\lambda_c}{\sqrt{2}}$$

Si λ . en nuestro caso es 3 cms. entonces se requiere que $-a < 3/\sqrt{2}$, lo cual se cumple haciendo que el lado de la sección mida 1,85 cms.

^{*} JORDAN E.C., Electromagnetic Waves and radiating Systems, Prentice Hall, Pág. 265.

Para la bocina piramidal hemos escogido una longitud entre el \neg vértice y el plano de apertura igual a 10 λ , y un ángulo de apertura de 50° como se ve en la figura 4.3.

Por Trigonometría, y partiendo de las dimensiones impuestas a la bocina hemos calculado las otras dimensiones correspondientes al lado "a" de la apertura y a la longitud "l".

De esta manera se ha obtenido:

a = 9.32λ . l = 11,03 λ .

En la figura 4.4. podemos observar todas las dimensiones pa ra la bocina piramidal o de diseño.

En la figura 4.4 se tiene:

a = $9.32 \lambda_{o}$; l_{h} = $11,03 \lambda_{o}$ b = $9.32 \lambda_{o}$; l_{e} = $11,03 \lambda_{o}$

Podemos entonces calcular la ganancia directiva de la bocina: utilizando las curvas de Schelkunoff dadas en la figura (2.9) se obtiene:

$$\frac{b}{b} g^{m} = 2g$$

Como el punto de intersección de b y l_e cae fuera de las curvas de la figura 2.9, podemos utilizar la expresión 2.75 para la determinación de $\frac{\lambda_{\bullet}}{a}$ g_e. De esta manera:

$$\frac{\lambda_{\bullet}}{\alpha} \mathcal{B}_{e} = \frac{64 \times 11.03 \lambda_{\bullet}}{\Pi 9.32 \lambda_{\bullet}} \left[C^{2}(1.96) + S^{2}(1.96) \right] = 8$$

Según la expresión (2.76)

$$g_{max} = \frac{\pi}{32} \left(g_{m} \frac{\lambda_{\bullet}}{b}\right) \left(g_{e} \frac{\lambda_{\bullet}}{a}\right) = \frac{\pi}{32} \times 28 \times 8 = 22,0$$

$$G(db) = 10 \log 22, 0 = 13, 4 db.$$

4.4. DISEÑO DE LOS LENTES.

4.4.1. Explicación previa.

Para la bocina en sector se han construido dos lentes, ambos de tipo "guiado". El uno logra su efecto variando el indice de refracción a lo largo de la dimensión mayor de la apertura de la bocina pero manteniendo constante su espesor. El otro mantiene constante el indice de

frefracción pero varía su espesor en función de una elipse.

Experimentalmente se determinará el incremento de ganancia que producen estos lentes sobre la ganancia direccional de la bocina ind<u>e</u> pendiente.

En el diseño de los lentes se ha tomado en cuenta, además, la utilización de lámina de metal amarillo de 0.4 mm. de espesor "e", la misma que servirá para la formación de las guías de los lentes.

4.4.2. Lente de índice de refracción variable.

L

Según se había visto en un capítulo anterior, se trabajará con valores de índice de refracción próximos a 0.6, es decir en la parte media de la curva a/λ .vs n. Para el efecto se ha escogido un n en la parte media del lente igual a 0.8 que corresponde a una separación $a_0 = 0.833 \lambda_0$

De esta manera, y haciendo referencia a la figura (4.5), la tr<u>a</u> yectoria eléctrica de un rayo que pasa por la parte media de la prim<u>e</u> ra guía de onda será igual a:

$$\mathbf{f}_{0} + \mathbf{n}_{0} d = \frac{\mathbf{f}}{\cos \Theta_{0}} + \mathbf{n}_{0} d \qquad (4.1)$$

Según la figura 4.1., la distancia f es igual a 12.5 λ , y d se ha escogido igual a 2.5 λ . Por lo tanto la distancia electromagnética que recorre un rayo en la parte media es igual a:

$$f_{0} + n_{0} d = \frac{12.5 \lambda_{0}}{0.9995} + 0.8 \times 2.5 \lambda_{0} \simeq 14.5 \lambda_{0}$$

2

La trayectoria eléctrica de un rayo pasante por la parte media de la guía n_k debe ser entonces:

$$f_{k} + n_{k} d - 14.5 \lambda_{o} = m \lambda_{o}$$
 (4.2)
 $m = 0, 1, 2, 3$

Para nuestro caso utilizaremos m = 0. A su vez, por Trigonometría $f_k = 12.5 \lambda_0 / \cos \theta_k$ y la expresión (4.2) se transforma en:

$$\frac{12.5 \lambda_{\circ}}{\cos \theta_{k}} + 2.5 \lambda_{\circ} = 14.5 \lambda_{\circ}$$

que a su vez puede escribirse como:

$$\cos \Theta_k (5.8 - n_k) = 5$$
 (4.3)

donde:

$$n_{k} = \sqrt{1 - (\frac{\lambda_{\bullet}}{2s_{k}})^{2}}$$

a_k = ancho de la guía k

у

$$\theta_{k} = \operatorname{arc} t_{g} \frac{\ell/2 + k\ell}{12.5 \lambda_{o}} a_{n} + \frac{a_{k}}{2} =$$

$$= \operatorname{arc} t_{g} \frac{0.0133 \lambda_{o} (1+2k) + 2 \sum_{n=1}^{k-1} a_{n} + a_{k}}{25 \lambda_{o}}$$

 $e = 0.4 \text{ mm} = 0.0133 \lambda_{\circ} \text{ para} \quad \lambda_{\circ} = 3 \text{ cms}.$

La expresión (4.3) debe cumplirse para cada una de las guías. A fin de facilitar el cálculo se ha utilizado la curva $\frac{a}{\lambda_0}$ vs. n dada en la figura 3.4 y luego de un proceso de valoración sucesiva se han determinado los siguientes valores de n_k y a_k que satisfagan la expresión 4.3.

$$n_0 = 0.8$$
 $a_0 = 0.833$ λ_0 $n_1 = 0.775$ $a_1 = 0.792$ λ_0 $n_2 = 0.74$ $a_2 = 0.744$ λ_0 $n_3 = 0.68$ $a_3 = 0.682$ λ_0 $n_4 = 0.61$ $a_4 = 0.631$ λ_0 $n_5 = 0.54$ $a_5 = 0.594$ λ_0 $n_6 = 0.47$ $a_6 = 0.565$ λ_0 $n_7 = 0.38$ $a_7 = 0.54$ λ_0

De los últimos valores se puede observar que todos los a_k se mantienen entre los límites $\lambda_{\bullet}/2$ y λ_{\bullet} a fin de que el modo TE 1,0 de la frecuencia de 10 GHz. pueda propagarse entre las guías impi--diendo cualquier modo superior.

La suma total de los anchos de cada guía o sea 14 a_k y los espesores de las paredes o sea 15e nos da 10,96 λ_{\bullet} que es la dimensión de la apertura de la bocina. De esta manera los rayos en los extremos de la bocina serán apropiadamente guiados por el lente.

$$f = \frac{1-n}{1-n\cos\theta} f \qquad (4.6)^{-1}$$

Las expresiones (4.5) y (4.6) corresponden a la ecuación de una elipse en coordenadas cartesianas y polares respectivamente y, las guías individuales deben tener cierta longitud que den al lente ese perfil elíptico.

En la construcción de este lente se utilizarán 17 guías de onda, de manera que el largo de la apertura sea 10,96 λ_{\circ} para lograr el acoplamiento con la bocina.

Por lo tanto: 10,96 $\lambda_{0} = 17 a + 16 x 0.0133 \lambda_{0}$

Donde a es el ancho de cada guía y 0,0133 $\lambda_{
m o}$ es el espesor -

Se ha determinado finalmente un valor a = 0.632 λ_{0} que corres ponde a un índice de refracción n = 0,61.

Por otra parte, en la figura 4.7 y de acuerdo a 4.6 se tiene:

$$\mathbf{r}_{1} = \frac{1-n}{1-n\cos\Theta} \mathbf{f}$$

pero $r_1 = 13,65 \lambda$. y n = 0.61 por lo tanto:

4 - 1

TABLA

VALORES DE LOS RADIOS DEL CONTORNO ELLPTICO PARA DIFERENTES ANGULOS

$ \begin{array}{llllllllllllllllllllllllllllllllllll$							
1.00000 0.610000 0.510000 0.510000 0.53003674 0.599660 0.9996600 0.99966 0.6098786 0.6098786 0.9996620 0.9996620 0.9996620 0.99976 0.6091466 0.53003746 0.9996620 0.9996620 0.9996620000 0.99976 0.6091466 0.53903766 0.99962600 0.99962600 0.9996260000 0.99976 0.99976000000 0.3397575 0.99962600000000 $0.99962600000000000000000000000000000000$		D			2-2	r _ (1-n)15.43	
1.00000 0.610000 0.59968 1.000000 0.5996866 0.99946 0.609878 0.5997815 0.9996686 0.9996686 0.999662 0.6091466 0.5997815 0.9996686 0.9996686 0.999662 0.6007682 0.5393755 0.997815 0.997815 0.999622 0.6007682 0.5393757 0.9974091 0.997677 0.99976 0.999622 0.6007682 0.3937575 0.9914091 0.99157 0.6007682 0.3937575 0.9914707 0.9914707 0.99255 0.6007682 0.3937575 0.9914707 0.9914707 0.99257 0.990772 0.3937575 0.9914707 0.9914707 0.99257 0.9007288 0.3992772 0.991707 0.991707 0.99276 0.992772 0.9007288666417 0.907267777 0.99727777 0.97816 0.992772 0.9072728 0.90591777 0.97207777 0.97816 0.997777 0.9075777 0.9727777 0.97277777 0.977777 0.9977777 0.90759777 0.9757777 0.97592767777 0.97777 0.9757777 0.907591477777 0.97597777 0.97592767777 0.977777 0.97597777 0.97597777 0.975977777 0.975977777 0.9757777 0.97597777 0.975977777 0.975977777 0.9757777 $0.97597777777777777777777777777777777777$					1 - N COS Q	Л. 1-исо5Ө	
0.9998 0.609878 0.3590122 0.999686 0.99986 0.609634 0.3590122 0.9996260 0.9986 0.69986 0.599464 0.9996260 0.99946 0.699455 0.599464 0.9994691 0.99475 0.6096346 0.399464 0.9994691 0.99475 0.607682 0.393355 0.9944091 0.99475 0.607682 0.392718 0.9944091 0.99475 0.607682 0.392759 0.9944091 0.99475 0.607682 0.392759 0.9914707 0.9947 0.607682 0.392759 0.991777 0.9877 0.6007487 0.3927205 0.991777 0.9816 0.394461 0.4017224 0.991777 0.9817 0.4017224 0.991777 0.9175607 0.9613 0.401777 0.401777 0.9175607 0.9613 0.596441 0.401777 0.9175607 0.9613 0.596417 0.401777 0.9175607 0.9613 0.5964995 0.417657 0.9175607 0.9613 0.5975755 0.4176577		1-00000	0.610000	0.43900000	1.000000	15.430000	
0.9994 0.609634 0.390366 0.999062 0.9996260 0.9976 0.609146 0.590354 0.997815 0.997815 0.9976 0.609536 0.590464 0.994091 0.994091 0.9945 0.60945 0.597505 0.994091 0.994091 0.99962 0.606457 0.597595 0.994170 0.994170 0.9925 0.605425 0.597595 0.991470 0.991470 0.9925 0.605425 0.597595 0.991470 0.991470 0.9927 0.60728 0.597595 0.597777 0.991470 0.9877 0.60728 0.597757 0.991470 0.977777 0.9877 0.50728 0.4073759 0.9149767 0.975777 0.97171 0.596411 0.4073759 0.9149564 0.9149564 0.97077 0.596413 0.591387 0.9149564 0.9149564 0.97077 0.95149 0.591387 0.413607 0.9149564 0.97171 0.552843 0.413657 0.9149566		0.9998	0.609878	0.390122	0.999680	15.425060	
0.9986 0.609146 0.390874 0.997815 0.9976 0.5976 0.591464 0.997816 0.9945 0.608536 0.591464 0.991470 0.9945 0.608536 0.591467 0.991470 0.9925 0.608782 0.591757 0.991470 0.9925 0.6087645 0.5945757 0.991470 0.9976 0.6087682 0.5975777 0.991470 0.9975 0.607682 0.5975777 0.991470 0.99777 0.607682 0.5992777 0.991470 0.99776 0.607682 0.5992772 0.991470 0.99716 0.607777 0.5992772 0.9927777 0.99716 0.599776 0.407176 0.99767777 0.9717 0.591999 0.4108777 0.9767777 0.9717 0.591999 0.4108777 0.976380 0.9717 0.591736 0.4777607 0.9763777 0.9717 0.576757 0.4167877 0.9763777 0.9717 0.576757 0.47384767 0.979347777 0.97777 0.97567777 0.975608 0.97997777 0.99717 0.577777 0.975608 0.9767777 0.997777 0.97567777 0.975608 0.97997777 0.997777 0.97567777 0.975608 0.979977777 0.9977777 0.97567777 0.97597777 0.975977777 0.9977777 0.975727577 $0.9777777777777777777777777777777777777$		+666 • 0	0.609634	0.390366	0.999062	15.415527	
0.9976 0.59783 0.391464 0.996260 0.9945 0.607682 0.391477 0.9944091 0.9945 0.607682 0.391477 0.994405 0.9945 0.607682 0.394575 0.998405 0.9925 0.607447 0.393557 0.998405 0.9925 0.607447 0.393575 0.988405 0.9987 0.6004487 0.397575 0.988405 0.99816 0.504487 0.599272 0.981124 0.99816 0.594487 0.401224 0.976777 0.9781 0.594788 0.401224 0.976777 0.9781 0.594788 0.401224 0.976777 0.9781 0.5949796 0.403177 0.976777 0.9781 0.59183 0.401224 0.97179 0.9711 0.591483 0.403177 0.9495608 0.99555 0.591483 0.413607 0.9413561 0.99565 0.591483 0.413607 0.9138175 0.99555 0.591483 0.4136677 0.9248947 0.995657 0.5913497 0.4136677 0.9248947<		0.9986	0.609146	0.390854	0.997815	15.396285	
0.9962 0.607682 0.5392318 0.994091 0.9945 0.606445 0.393355 0.994405 0.9903 0.606445 0.394575 0.9984405 0.9903 0.606445 0.394575 0.9984405 0.9903 0.607682 0.3995755 0.998174 0.9903 0.604083 0.3995703 0.9981724 0.98478 0.607428 0.3995703 0.9981724 0.9848 0.607683 0.3995703 0.9981724 0.9846 0.97816 0.407174 0.9981724 0.9781 0.97816 0.407177 0.997777 0.9781 0.97816 0.403177 0.997777 0.97777 0.97452 0.4108017 0.9949564 0.95777 0.94556 0.4108017 0.9945668 0.976777 0.976777 0.995608 0.9949564 0.97777 0.976777 0.9955608 0.9949564 0.99777 0.976777 0.9975608 0.9949564 0.997577 0.94736707 0.9979777 </td <th></th> <td>0.9976</td> <td>0.608536</td> <td>0.391464</td> <td>0.996260</td> <td>15.372292</td> <td></td>		0.9976	0.608536	0.391464	0.996260	15.372292	
0.9945 0.606445 0.393355 0.999147 0.9925 0.605425 0.394575 0.988405 0.9925 0.605425 0.394575 0.988405 0.9877 0.605425 0.394575 0.988405 0.9877 0.60728 0.59977 0.981724 0.9877 0.60728 0.539272 0.981724 0.9703 0.597505 0.598776 0.97077 0.9704 0.59776 0.599677 0.97077 0.9714 0.594776 0.599676 0.97077 0.9714 0.594786 0.401224 0.976777 0.9714 0.594786 0.4035616 0.949364 0.9714 0.596393 0.410567 0.949364 0.9714 0.596393 0.413607 0.949364 0.9565 0.580199 0.413607 0.949364 0.9565 0.580171 0.586391 0.9415607 0.9565 0.580171 0.41657 0.921847 0.95773 0.94364 0.956949 0.921847 0.95777 0.94364 0.9569495 0.921681495		0.9962	0.607682	0.392318	0.994091	15.338824	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		0.9945	0.606645	0.393355	0.991470	15.298382	
0.9903 0.604083 0.395917 0.985054 0.9877 0.9877 0.59876 0.397503 0.981124 0.9816 0.59876 0.399272 0.981124 0.981124 0.9816 0.59876 0.39272 0.981124 0.976777 0.9816 0.59876 0.401224 0.96183 0.976777 0.9703 0.596641 0.596641 0.96183 0.96183 0.9703 0.594384 0.40177 0.961500 0.961500 0.9703 0.594384 0.405616 0.961500 0.961500 0.9703 0.558393 0.413607 0.945564 0.945564 0.9511 0.558393 0.413607 0.945564 0.945564 0.9513 0.558393 0.416657 0.9455608 0.9455608 0.9511 0.556593 0.5413607 0.9455608 0.9455608 0.9511 0.9416657 0.416657 0.9455608 0.9455608 0.9336 0.561307 0.5565925 0.9415657 0.941452 0.9337 0.94556 0.5413607 0.94156773 0.9571452		0.9925	0.605425	0.394575	0.988405	15.251089	
0.9877 0.602497 0.397503 0.981124 0.98448 0.600728 0.399272 0.976777 0.9816 0.9816 0.59816 0.972025 0.9781 0.97677 0.972025 0.97677 0.9781 0.97616 0.97677 0.97677 0.9781 0.9781 0.97677 0.97677 0.9781 0.59816 0.97616 0.97677 0.9781 0.59816 0.401224 0.97675 0.9703 0.591883 0.40517 0.961500 0.9703 0.59199 0.413607 0.961500 0.9613 0.59199 0.413607 0.949364 0.9556393 0.413607 0.949364 0.941762 0.9511 0.583343 0.413607 0.913813 0.9777 0.95183 0.417683 0.91452 0.9777 0.928947 0.914527 0.928947 0.97725 0.416783 0.413678 0.9289477 0.97725 0.561505 0.4136495 0.9387773 0.97725 0.561705 0.412765 0.9389405 0.97725 0.977235 0.412765 0.9389405 0.91755 0.561705 0.4128495 0.93809405 0.91755 0.9178495 0.412865 0.9880828 0.91755 0.412765 0.949246 0.9492466 0.9777255 0.4128495 0.99059146 0.91755 0.4128495 0.9492466 0.91755 0.4128495 $0.9880940566666666666666666$		0.9903	0.604083	0.395917	0.985054	15.199383	
0.9848 0.600728 0.399272 0.976777 0.9816 0.598776 0.401224 0.975025 0.9781 0.598776 0.403359 0.975025 0.97203 0.594383 0.405516 0.975025 0.9744 0.594383 0.405516 0.975025 0.9744 0.594383 0.405616 0.956880 0.9703 0.59199 0.405616 0.951508 0.9613 0.583199 0.405616 0.951508 0.9563 0.583199 0.410801 0.949564 0.9563 0.583343 0.411667 0.949564 0.9511 0.586393 0.411667 0.949364 0.9513 0.41667 0.405616 0.9495621 0.9711 0.586393 0.416677 0.995847 0.9337 0.416677 0.424493 0.995949 0.9337 0.561592 0.416677 0.9959495 0.93375 0.561592 0.416783 0.991452 0.93376 0.561595 0.416677 0.99138495 0.933775 0.561595 0.4166479 0.991496		0.9877	0.602497	0.397503	0.981124	15.138743	
0.9816 0.598776 0.401224 0.972025 0.9781 0.596641 0.59784 0.972055 0.9703 0.9703 0.594384 0.966880 0.9703 0.9703 0.594384 0.96616 0.966880 0.9659 0.40517 0.405616 0.966860 0.966880 0.9673 0.9673 0.405616 0.966860 0.966880 0.9673 0.9673 0.410801 0.966780 0.966780 0.9613 0.9586393 0.410801 0.917680 0.949364 0.9511 0.9586393 0.413607 0.9128947 0.942364 0.97773 0.93376 0.5586393 0.416657 0.9289477 0.9289477 0.9272 0.97773 0.926592 0.416783 0.9138177 0.92894777 0.9272 0.556792 0.412765 0.91381777 0.9289405 0.91381777 0.9272 0.97773 0.97773 0.9138495 0.91497777 0.9278495 0.914977777 0.9272 0.975725 0.41384956 0.4138495 0.91381495 0.905914 0.98977775 <t< td=""><th></th><td>0.9848</td><td>0.600728</td><td>0.399272</td><td>0.976777</td><td>15.071669</td><td></td></t<>		0.9848	0.600728	0.399272	0.976777	15.071669	
0.9781 0.596641 0.403359 0.966880 0.9704 0.594584 0.405616 0.961500 0.9703 0.591887 0.408117 0.961500 0.9659 0.9659 0.408177 0.961500 0.9671 0.591887 0.408177 0.961507 0.961500 0.9673 0.589199 0.410801 0.9413607 0.949364 0.9613 0.589199 0.413607 0.9413607 0.942364 0.9563 0.580171 0.413607 0.942364 0.942364 0.9563 0.580373 0.413607 0.942364 0.942364 0.9563 0.580371 0.413607 0.928947 0.928947 0.9777 0.9777 0.416677 0.928947 0.928947 0.9777 0.97774 0.412607 0.928947 0.928947 0.9777 0.97774 0.4126783 0.91496 0.91496 0.97773 0.9777408 0.9128495 0.9149773 0.905914 0.97773 0.9778495 0.412765 0.91381773 0.91381773 0.9063 0.97775 0.9147		0.9816	0.598776	0.401224	0.972025	14.998346	
0.9744 0.594384 0.405616 0.961500 0.9703 0.591883 0.408117 0.955608 0.9659 0.591883 0.408117 0.955608 0.9659 0.589199 0.410801 0.955608 0.9613 0.589199 0.410801 0.94564 0.9563 0.588133 0.410801 0.94564 0.9563 0.586393 0.4116657 0.94224 0.9563 0.586393 0.4116657 0.94564 0.9563 0.586393 0.4116657 0.9138313 0.93397 0.569496 0.4166783 0.9138313 0.93356 0.569496 0.4166783 0.905914 0.93356 0.561505 0.4166783 0.905914 0.9272 0.561505 0.4166783 0.905914 0.9272 0.5552843 0.416783 0.905914 0.9063 0.5552843 0.447057 0.905921 0.9063 0.552843 0.447157 0.877756		0.9781	0.596641	0.403359	0.966880	14.918958	
0.9703 0.59183 0.408117 0.955608 0.9659 0.589199 0.410801 0.949364 0.9563 0.588393 0.410801 0.949364 0.9563 0.588393 0.410801 0.949364 0.9563 0.588393 0.410801 0.949364 0.9563 0.588343 0.416657 0.949364 0.9571 0.9563 0.4116657 0.949364 0.9356 0.583343 0.410657 0.941657 0.949364 0.9337 0.9455 0.410657 0.956021 0.941657 0.9336 0.566755 0.416783 0.97173 0.921452 0.9336 0.565992 0.416783 0.905914 0.905914 0.9272 0.565592 0.438495 0.905914 0.905914 0.9272 0.565725 0.438495 0.905914 0.905914 0.926592 0.557255 0.4434408 0.905914 0.989405 0.99063 0.9135 0.4447157 0.889405 0.889405 0.99063 0.9135 0.4447157 0.8889405 0.8889405		0.9744	0.594384	0.405616	0.961500	14.835945	
0.9659 0.589199 0.410801 0.949364 0.9613 0.586393 0.413607 0.942924 0.9563 0.586393 0.413607 0.942924 0.9563 0.586771 0.413607 0.928947 0.9563 0.586771 0.416657 0.928947 0.9511 0.580771 0.416830 0.928947 0.9513 0.576755 0.413657 0.928947 0.93397 0.576755 0.416783 0.928947 0.93366 0.57737 0.416783 0.973813 0.93356 0.569496 0.4136783 0.973813 0.93376 0.555922 0.412783 0.973813 0.92272 0.561505 0.4136783 0.905914 0.92057 0.4389495 0.4389405 0.9889405 0.92058 0.561505 0.442765 0.8889405 0.92058 0.438495 0.442765 0.8889405 0.92057 0.557235 0.442765 0.8889405 0.9063 0.91387 0.442765 0.8889405 0.9063 0.557235 0.442765 0.888940		0.9703	0.591883	0.408117	0.955608	14.745031	
0.9613 0.586393 0.413607 0.942924 0.9563 0.583343 0.416657 0.936021 0.9563 0.583743 0.416657 0.928947 0.9511 0.580171 0.419830 0.928947 0.9571 0.4965 0.416657 0.928947 0.9571 0.576755 0.419830 0.921452 0.9336 0.576755 0.416783 0.921452 0.9336 0.576755 0.416783 0.93773 0.9336 0.569496 0.43604 0.905914 0.9272 0.561505 0.4136783 0.905914 0.9272 0.561505 0.412783 0.905814 0.9272 0.561505 0.4430408 0.90588405 0.9272 0.552843 0.442765 0.889405 0.9063 0.557235 0.442765 0.880828 0.9063 0.557235 0.442765 0.880828		0.9659	0.589199	0.410801	0.949364	14.648687	
0.9563 0.583343 0.416657 0.936021 0.9511 0.580171 0.580171 0.936947 0.9511 0.580171 0.418657 0.928947 0.9455 0.419830 0.921452 0.921452 0.9356 0.457555 0.416783 0.926913 0.9336 0.557217 0.416783 0.905914 0.9336 0.565592 0.416783 0.905914 0.9272 0.434406 0.434408 0.905914 0.9205 0.434406 0.4384495 0.8889405 0.9135 0.557235 0.442765 0.8880828 0.9063 0.552843 0.447757 0.872775		0.9613	0.586393	0.413607	0.942924	14.549317	
0.9511 0.9580171 0.419830 0.928947 0.9455 0.9455 0.92815 0.921452 0.9337 0.576755 0.416783 0.973813 0.9336 0.576755 0.416783 0.973813 0.9336 0.5569496 0.416783 0.973813 0.9335 0.569496 0.416783 0.975813 0.9272 0.569496 0.416783 0.905914 0.9272 0.438495 0.438495 0.889405 0.9135 0.557235 0.442765 0.880828 0.9063 0.5572843 0.4447157 0.872176		0.9563	0.583343	0.416657	0.936021	14.442804	
0.9455 0.576755 0.423245 0.921452 0.9397 0.9397 0.973813 0.913813 0.9336 0.573217 0.416783 0.913813 0.9336 0.5659496 0.4130504 0.905914 0.9272 0.438495 0.438495 0.889405 0.9205 0.4561505 0.438495 0.8880405 0.9205 0.557235 0.442765 0.8880405 0.9135 0.557235 0.442765 0.880828 0.9063 0.557235 0.447157 0.872176		0.9511	0.580171	0.419830	0.928947	14.333652	
0.9397 0.573217 0.416783 0.913813 0.9336 0.569496 0.430504 0.905914 0.93272 0.569496 0.430703 0.8897773 0.9272 0.565592 0.434408 0.8897773 0.9205 0.434408 0.888405 0.888405 0.9205 0.557235 0.442765 0.88828 0.9135 0.557235 0.442765 0.88828 0.9063 0.5572843 0.442765 0.88828		0.9455	0.576755	0.423245	0.921452	14.218004	
0.9336 0.569496 0.430504 0.905914 0.9272 0.565592 0.434408 0.8897773 0.9272 0.561505 0.434495 0.889405 0.9135 0.561505 0.438495 0.8889405 0.9135 0.557235 0.442765 0.8889405 0.9063 0.557235 0.442765 0.888028 0.9063 0.5572843 0.442765 0.887275		0.9397	0.573217	0.416783	0.913813	14.100135	
0.9272 0.565592 0.434408 0.897773 0.9205 0.561505 0.434495 0.889405 0.9135 0.557235 0.4442765 0.880828 0.9063 0.5572843 0.4442765 0.880828 0.9063 0.552843 0.4447157 0.872176		0.9336	0.569496	0.430504	0.905914	13.978253	
0.9205 0.561505 0.438495 0.889405 0.9135 0.557235 0.442765 0.880828 0.9063 0.552843 0.447157 0.872176		0.9272	0.565592	0.434408	0.897773	13.852637	
0.9135 0.557235 0.442765 0.880828 0.9063 0.552843 0.447157 0.872176		0.9205	0.561505	0.438495	0.889405	13.723519	
0.9063 0.552843 0.447157 0.872176		0.9135	0.557235	0.442765	0.880828	13.591176	
		0.9063	0.552843	0.4447157	0.872176	13.457676	

14.4.4. Lente de revolución para la bocina piramidal.

Para la bocina de tipo piramidal se ha diseñado un lente de tipo normal (sigue la ley de Snell). Por razones ya vistas en el capítulo III se ha escogido un índice de refracción n = 0.6 y una longitud focal de 12.5 λ . En estas condiciones, el espesor del lente sería muy abultado para ángulos grandes por lo cual se ha utilizado el siste ma de zonas. El ancho de cada zona, según la expresión (3.85) está dado por: $\frac{\lambda_0}{1-0.6} = 2.5 \lambda_0$

En la figura 4.9 se indican las ecuaciones de las elipses de c<u>a</u> da una de las zonas y los ángulos indicados determinan los puntos donde cada zona adquiere el espesor $\frac{\lambda_0}{1-n} = 2.5 \lambda_0$ y para encontrarlos basta utilizar la ecuación paramétrica (3.62) que nos da las abcisas de los puntos del contorno elíptico:

$$x = \frac{1 - \cos \theta}{1 - n \cos \theta} f$$

De esta manera se puede obtener el perfil de la lámina localizada justamente al centro del conjunto de láminas verticales separadas una distancia a = 1,875 cms. para tener un n = 0,6.

Los perfiles de las demás láminas del conjunto pueden ser determinados por un método gráfico: Giramos cada punto del contorno elíptico de la lámina central hasta lograr la intersección con las demás láminas. Si conocemos la abcisa del punto, que se mantiene consta<u>n</u> te al efectuar la revolución, se puede determinar las nuevas posiciones del punto sobre los planos de las otras láminas. Si efectuamos este proceso punto por punto, podremos determinar todos los perfiles.

A continuación, la tabla 4-2 que nos dá los radios para diferentes ángulos. De esa tabla se puede observar que para cubrir toda la apertura de la bocina se han requerido tres zonas.

TABLA 4-2

VALORES DEL RADIO DEL CONTORNO ELIPTICO PARA DIFERENTES

θ	$\frac{1-n}{1-n\cos\Theta}$	$\frac{r}{\lambda_0} \begin{pmatrix} PRIMERA \\ ZONA \end{pmatrix}$	M (SEGUNDA)	$\frac{r}{r_{o}} \begin{pmatrix} TERCERA \\ ZONA \end{pmatrix}$
0 1 2 3 4 5 6 7 8 9 10 1 12 3 4 5 6 7 8 9 10 1 12 3 4 5 6 7 8 9 10 1 12 3 4 5 6 7 8 9 10 1 12 3 4 5 6 7 8 9 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3	1.0000 0.9997 0.9991 0.9997 0.9943 0.9943 0.9918 0.9888 0.9856 0.9818 0.9777 0.9731 0.9681 0.9630 0.9573 0.9513 0.9451 0.9384 0.9316 0.9244 0.9316 0.9244 0.9170 0.9094 0.9015 0.8934 0.8051 0.8767 0.8682 0.8594 0.8505 0.8416 0.8326 0.8594 0.8555 0.8416 0.8326 0.8235 0.8143 0.8051 0.7958 0.7866 0.7773 0.7679 0.7587	12.5000 12.4963 12.4888 12.4738 12.4550 12.4288 12.3975 12.3600 12.3200 12.2725 12.2213 12.1013 12.0375 11.9663 11.8913 11.8138 11.7300 11.6450 11.5550 11.4625 11.3675 11.2688 11.1675 11.0638 10.9588	13.5225 13.4010 13.2765 13.1505 13.0230 12.8910 12.7575 12.6240 12.3525 12.2145 12.0765 11.9370	14.5705 14.4113 14.2503 14.0893 13.9265 13.7655 13.6028 13.4383 13.2773

ANGULOS DEL LENTE DE REVOLUCION

CAPITULO QUINTO

RESULTADOS EXPERIMENTALES

-

5.1. INTRODUCCION.

Con el objeto de comprobar las características dadas en la teo ría de los lentes y sus efectos sobre la ganancia y lóbulos de radiación de las bocinas se efectuó la parte experimental de este trabajo, la misma que consta básicamente de tres partes:

- a) Determinación de la relación de ondas estacionarias y de la Impedancia de las bocinas con y sin lentes.
- b) Comparación de los lóbulos de radiación de la bocina cuanto ésta radía con y sin lente.
- c) Determinación del incremento de ganancia que introducen los len---tes.
- 5.2. DETERMINACION DE LA RELACION DE ONDA ESTACIONARIA "S" Y DE LA IMPEDANCIA DE LAS DOS BOCINAS CON Y SIN LENTE.

5.2.1. Equipo Utilizado.

Para efectuar la medición utilizamos el siguiente equipo:

- 1. Generador de microonda SIVERS LAB
- 2. Fuente de alimentación para el generador.

3. Atenuador variable (35 dB) SIVERS LAB

- 4. Guia ranurada con diodo detector
- 5. Medidor de SWR
- 6. Terminación en cortocircuito
- 7. Bocinas y lentes.

El equipo mencionado se le dispuso de acuerdo al arreglo indicado en -

la figura (5.1)

FIG. 5-1

5.2.2. Forma de medición y resultados.

Se utilizó el conocido método que consiste en determinar la dis tancia electromagnética entre un mínimo de voltaje cuando el sistema está terminado en la impedancia a medirse y un mínimo cuando la impe--- dancia se reemplaza por un cortocircuito. El valor de la relación de onda estacionaria se leyó directamente en el medidor de SWR y la lo<u>n</u> gitud de onda dentro de la guía para cada frecuencia, se determinó a partir de la expresión:

$$\lambda_g \stackrel{a = \text{ oncho} \quad de \text{ la guía} = 2.3 \text{ cms.}}{\sqrt{1 - \left(\frac{\lambda_o}{2a}\right)^2}}$$

De esta manera se han calculado los valores de impedancia normalizada, para cada frecuencia, y se indican en las tablas (5.1), (5.2), -(5.3), (5.4) y (5.5) y los correspondientes lugares formados en la -Carta de Smith aparecen en las figuras (5.2), (5.3), (5.4), (5.5) y (5.6)

	TABLA 5.1			
	Valores de S y Z_r /	Z de la bocina	en sector	
No	Frecuencia GHz	S	Z _r /Z _o	
1	9•5	1.29	1.08 - j 0.25	
2	9.6	1.18	0.87 + j 0.09	
3	9•7	1.26 /	1.07 + j 0.23	
4	9.8	1.4	1.36 - j 0.16	
5	9.9	1.25	0.92 - j 0.20	
6	10.0	1.22	0.84 + j 0.08	
7	10.1	1.17	1.01 + j 0.16	
8	10.2	1.26	1.23 + j 0.11	
9	10.3	1.26	0.88 - j 0.18	
10	10.4	1.18	0.85 - j 0.03	

		TABLA 5.2	
Val	ores de S y Z /Z	le la bocina en se ct o	r con lente de "n" variable
NΩ	Frecuencia GHz	S	Z _r /Z _o
1	9.6	1.5	0.72 + j 0.21
2	9•7	1.41	1.00 + j 0.34
3	9.8	1.4	1.40 + j 0.01
4	9•9	1.31	1.15 - j 0.25
5	10.0	1.2	1.08 + j 0.14
6	10.1	1.15	1.06 - j 0.13
7	10.2	1.18	0.89 - j 0.11
8	10.3	1.32	1.05 + j 0.28
9	10.4	1•4	1.31 - j 0.24

		TABLA 5.3	
Val	ores de S y Z Z d	le la bocina con lent	e de "n"constante
۹Q	Frecuencia GHz	S	Z _r /Z _o
1	9.6	1.8	0.67 + j 0.36
2	9•7	2•1	1•97 + j 0•41
3	9•8	1.7	0.82 - j 0.45
ŀ	9.9	1.42	0.78 + j 0.23
;	10.0	1.28	1.24 + j 0.13
	10.1	1.37	0•75 - j 0•10
,	10.2	1.26	1.19 + j 0.15
	10.3	1.33	0.89 - j 0.25
	10•4	1.18	0.90 + j 0.13

Valores de S y Z_r / Z_o de la bocina piramidalNºFrecuencia GHzS Z_r / Z_r 19.51.280.78 +29.61.240.88 +39.71.171.10 +49.81.070.99 -59.91.120.90 -	TABLA 5.4				
NºFrecuencia GHzS Z_r / r 19.51.280.78 +29.61.240.88 +39.71.171.10 +49.81.070.99 -59.91.120.90 -					
1 9.5 1.28 $0.78 +$ 2 9.6 1.24 $0.88 +$ 3 9.7 1.17 $1.10 +$ 4 9.8 1.07 $0.99 -$ 5 9.9 1.12 $0.90 -$	o				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	j 0.00				
3 9.7 1.17 1.10 + 4 9.8 1.07 0.99 - 5 9.9 1.12 0.90 -	j 0 .1 7				
4 9.8 1.07 0.99 - 5 9.9 1.12 0.90 -	j 0.14				
5 9.9 1.12 0.90 -	j 0.06				
	j 0.05				
6 10.0 1.27 0.83 +	j 0.08				
7 10.1 1.08 1.05 +	j 0.05				
8 10.2 1.10 1.08 -	j 0.02				
9 10.3 1.075 1.04 -	j 0.04				
10 10.4 1.035 1.00 -	j 0.03				

	TABLA 5.5				
	Valores de SyZr,	Z de la bocina	piramidal con lente		
NΩ	Frecuencia GHz	S	Z _r /Z _o		
1	9.4	1.76	1.32 + j 0.58		
2	9•5	1.25	0.81 + j 0.07		
3	9.6	1.8	0.67 + j 0.37		
4	9•7	1.2	0 _• 83 + j 0 _• 01		
5	9•8	1.12	0 .90 + j 0 .0 5		
6	9•9	1.65	0.65 - j 0.22		
7	10.0	1.2	0•83 + j 0•02		
8	10.1	1.27	0.87 - j 0.17		
9	10.2	1.45	1.15 - j 0.38		
10	10•3	1.15	1.15 + j 0.03		

5.3. DETERMINACION DE LOS DIAGRAMAS DE RADIACION.

5.3.1. Equipo utilizado.

Los diagramas de radiación de las bocinas con y sin lente fueron determinados para una frecuencia de 9.7 GHz. por no haber disponi ble un generador de 10 GHz. (frecuencia de diseño).

A continuación se indica la lista del equipo utilizado en esta parte práctica.

- 1. Fuente de poder para Klystron marca "Sivers Lab"
- 2. Oscilador de microonda marca "Philips"
- 3. Atenuador tipo guia de onda marca "Sivers Lab"
- 4. Medidor de frecuencia marca "Hewlett Packard"
- 5. Medidor de SWR marca "Hewlett Packard"
- 6. Terminación con diodo detector marca "Sivers Lab"
- 7. Antena de bocina de referencia

٤

8. Antenas de bocina y lentes en prueba con estructura giratoria.

El equipo indicado se dispuso de la manera indicada en la figura (5.7).

 $\tilde{}$

5.3.2. Forma de medición y resultados. (Rodisción disguno?

Las bocinas y lentes en prueba se colocaron en la recepción y para determinar los diagramas de radiación se siguieron los siguientes pasos:

- 1. Se colocó la bocina en prueba en una posición de $\Theta = 0^{\circ}$ y frente a frente a la bocina de transmisión.
- Se determinó una atenuación de referencia en el atenuador varia ble y también una lectura de referencia en el medidor de SWR.

L

- 73. Se giró la bocina en prueba hacia uno y otro lado en pasos de $-\infty$ 2.5°.

De esta manera se podía saber el campo para cualquier ángulo Θ relativos al campo para $\Theta = 0$.

Así se han elaborado las tablas 5.6, 5.7, 5.8, 5.9 y 5.10. Las res-pectivas representaciones se encuentran en los diagramas 5.8, 5.9, 5.10, 5.11 y 5.12.

Se debe indicar que todos los modelos de radiación han sido obteni-dos en el plano H únicamente y debido a impedimentos mecánicos no se pudo obtener en el plano E.

BOCIN	IA PIRAMIDAL CON	LENTE		
Lado	Izquierdo	Lado I	erecho	
• (Grados)	Nivel Relativo	• (Grados)	Nivel Relativo	
0	0	0	0	
2•5	-2	2•5	-1	
5	-9	5	-5	
7•5	-26	7•5	-14	
8.5	-40	9	-34	
10	-24.5	10	21	
11	-24	12	-23	
12.5	-28	12.5	-27.5	
17	-45	15	-35.5	
17•5	-38	17•5	-36	
20	-28	18•5	-45	
21	-25	20	-34.3	
22	-23	22.5	-30	
23	-22	24	-30	
24	-22			
25	-21			
TABLA 5.7				
------------	------------------	--------------	----------------	--
	BOCINA PIRAMIDAL	SIN LENTE		
Lado :	Lado Izquierdo		Lado Derecho	
Q (Grados)	Nivel Relativo	• (Grados)	Nivel Relativo	
0	0	0	0	
2.5	-1	2•5	-0.5	
5	-1	5	- 0•5	
7•5	-1.5	7•5	-1	
10	-3	10	-2	
12.5	_4	15	-4	
15	-6	17•5	-6	
17•5	-9	20	-8.5	
20	-11	22 •5	-11.5	
22.5	-12.5	25	-14-5	
25	-14	27•5	-17-1	
27•5	-16.5	30	-20.5	
30	-28	32.5	-26.5	
35	-19•5	35	-30	
37•5	-19	37•5	-26.5	
40	-26.5	40	-28	

TABLA 5.8				
	BOCINA EN SECTOR SIN LENTE			
Lado	Izquierdo Lado Derecho		recho	
• (Grados)	Nivel Relativo	9 (Grados)	Nivel Relativo	
0	0	0	0	
2.5	-1	2 •5	-0.5	
5	-2.5	5	-2	
7•5	_4	7•5	-3	
10	-4	10	-3	
12.5	-4.5	12.5	- 3•5	
15	-7•5	15	- 6	
17•5	-7•3	17•5	-7	
20	-5•5	20	- 5•5	
22•5	-5•4	22.5	- 5	
25.0	-8.5	25	- 6	
2 7•5	-11	27•5	-8.8	
30	- 14•5	30	- 12	
32•5	-19.6	32.5	-16.9	
35	-28.5	33•5	-20	
37•5	- 19•3	35	-31.5	
<u>3</u> 8	- 18 . 8	37•5	-21	
40	-12.5	40	- 20•5	
42.5	-24	42.5	-23	
45	-38.5	45	-32.5	

TABLA 5.9			
BOCINA EN SECTOR CON LENTE DE "N" CONSTANTE			
Lado Iz	Lado Izquierdo Lado Derecho		
e (Grados) Nivel Relativo	Q (Grados)	Nivel Relativo
0	0	0	0
2.5	-1	2.5	1.5
5	-7.5	5	-8
7•5	-16.9	7.5	-15
10	-15.5	10	- 16
12.5	- 15•5	12.5	-17.5
15	-17.5	15	- 19 . 3
17•5	-25	17•5	-24.5
20	-17.5	20	_ 19 . 1
22	- 16	22•5	-18.5
22.5	-16.5	26.5	-25.5
25	-20	27.5	-27
27•5	-28	30	-22
30	-26.9	32•5	-21
32•5	-23	35	-24.5
35	- 21	37.5	 32
37•5	-22	40	-29
42.5	-23	42.5	-36.9
45	-28.9	43	-33.5
		45	-27.5

.

TABLA 5.10				
BOCIN	BOCINA EN SECTOR CON LENTE DE "N" VARIABLE			
Lado Iz	Lado Izquierdo		Lado Derecho	
⊖ (Grados)	Nivel Relativo	O (Grados)	Nivel Relativo	
0	0	0	0	
2.5	-1.5	2.5	-2	
5	-7.2	5	-7•5	
7•5	-16	7•5	-15	
10	-15.2	10	-15	
12,5	-15.5	12.5	- 16	
15	-18.5	15	-19.2	
17•5	-24.5	17.5	-25.8	
20	-19	2 0	-18	
22	- 16	21	-17	
22.5	-16.5	22.5	-18	
25	-21.5	25	-24	
27.5	-28.5	27.5	-26. 2	
30	-27	30	-20	
32•5	-23	32 •5	-19	
35	-19•5	35	-22	
37•5	-23	37 •5	-27.5	
40	-22.5	40	-27•5	
45	-34	44	-33	
53		45	-29	

· . / ·

En este punto cabe indicar, que como una práctica adicional se diseñó una bocina piramidal de apertura rectangular. Este diseño no se ha mencionado en el capítulo cuarto pero, dado que esta bocina tiene buena ganancia y ha servido para efectuar comparaciones con la otra bocina piramidal, creo conveniente mencionarlo a-quí. Las dimensiones de esta bocina se indican en la figura 5.13, los valores de los niveles de su modelo de radiación se indican en la tabla 5.11 y su representación en la figura 5.14.

FIG. 5-13

TABLA 5.11			
	BOCINA PIRAMIDA	AL - RECTANGULAR	
Lado I	zquierdo	Lado Derecho	
9 (Grados)	Nivel Relativo	e (Grados)	Ni vel Relativo
0	0	0	0
3	+0,5	2.5	+0,1
5	0	5	0
7.5	0	7•5	-1
10	-1	10	-2
12.5	-2	12,5	-3
15	-3.5	15	-6
17.5	6	17.5	-9
20	4 8	20	-11
22.5	11	22.5	-13
25	-13	25	-15
27.5	-16.5	27.5	-15
30	-21	30	-18.5
31	-21.5	32•5	-22
32.5	-23	34	-23
33	-24.5	35	-22.5
35	-23	37•5	-27.5
37•5	-28.5	40	-29.2
39	-25.5	42.5	-36
42.5	-35•5	45	36.5
45	-34		

.

5.4. DETERMINACION DE LA GANANCIA.

No fue posible encontrar la ganancia absoluta de las antenas pero si se determinó el incremento de ganancia que introducen los le<u>n</u> tes sobre la ganancia direccional de las bocinas solas.

Para el efecto se utilizó la misma disposición de equipo indicada en la figura 5.7.

El procedimiento fue el siguiente:

- a) Colocando el lente sobre la bocina en prueba se determinó una lec tura de referencia en el medidor de SWR y se anotó la atenuación del atenuador variable en la parte de transmisión.
- b) Retirado el lente de la bocina en prueba se redujo la atenuación del atenuador variable hasta lograr la misma lectura de referencia en el medidor de SWR.

La diferencia entre las dos lecturas del atenuador en los pasos a) y b) corresponde al incremento de ganancia direccional que aporta el lente.

Es necesario indicar que las antenas de transmisión y recepción deben 1 ser colocadas frente a frente para llevar a cabo este experimento.

191

.

De esta manera se obtuvieron los siguientes resultados:

-.

- a) Incremento de ganancia producido por el lente de revolución sobre la bocina piramidal simétrica igual a 14 dB.
- b) Incremento de ganancia del lente de "n" constante sobre la boc<u>i</u> na en sector = 3 dB.
- c) Incremento de ganancia del lente de "n" variable sobre la bocina en sector = 2 dB.
- d) La ganancia de la bocina piramidal rectangular es 6 dB mayor que la de la piramidal simétrica.

5.5. DISCUSION DE LOS RESULTADOS.

5.5.1. <u>Análisis de los valores de Relación de Ondas Estacionarias</u> <u>e Impedancia obtenidos</u>.-

Para la realización de esta parte experimental se despejó con venientemente el espacio localizado frente a las bocinas y lentes en prueba con el objeto de evitar reflexiones de señal. Debe anotarse que el tamaño de un objeto pequeño resulta comparable a la longitud de onda de frecuencia dentro de la banda X.

Los puntos de Z_r / Z_o , obtenidos para cada frecuencia e indicados en las Cartas de Smith de las figuras 5-2, 5-3, 5-4, 5-5 y 5-6 forman lugares que tienden a cerrarse alrededor del punto correspondiente al acoplamiento ($Z_r / Z_o = 1$). Claramente se puede observar que las curvas de las figuras correspondientes a las bocinas sin lente se aproximan más hacia el centro de la carta demostrando así que el acoplamiento es bueno. En estas condiciones los valores de "S" son inf<u>e</u> riores a 1.4 para la bocina en sector e inferiores a 1.28 para la b<u>o</u> cina piramidal simétrica dentro de la banda de <u>+</u> 0.5 GHz alrededor de la frecuencia de diseño.

Lo anterior confirma uno de los primeros puntos tratados en la teoría en el que se considera a la bocina como acoplador de la im pedancia de onda de la guía de alimentación y la impedancia intrínse

ca del espacio libre.

Los valores de "S" para el caso del conjunto bocina-lente son en promedio mayores que aquellos de las bocinas solas. Es natural que la introducción del lente en un sistema acoplado introduce cierto desacoplamiento debido a la diferencia de Impedancia de onda en el lente y el espacio libre. También las paredes que forman el lente producen reflexiones.

Resulta difícil aplicar cualquiera de las técnicas menciona-das en el capítulo III, conducentes a mejorar el valor de "S", evi-tando u orientando apropiadamente las señales reflejadas. La más fac tible de efectuarla, inclinando el lente un pequeño ángulo, fue posible realizarlo momentáneamente más no de manera continua como para <u>e</u> fectuar mediciones en toda la banda. Más aún, por las característi-cas del lente, una inclinación de éste, da lugar a pérdidas de energía.

Las curvas 5-3, 5-4 y 5-6 muestran curvas más alejadas del punto de acoplamiento debido a mayores valores de "S". La situación no es crítica, sin embargo, y se puede concluir que los lentes metálicos pueden acoplarse con relativa facilidad a una antena de bocina especialmente en ciertas frecuencias.

5.2.2. Diagramas de radiación .-

a) Bocina piramidal simétrica y lente de revolución .-

Tomando en cuenta las dimensiones de la bocina piramidal simé-trica dadas en la figura 4-4, la diferencia máxima de fase en el plano H, de acuerdo a la expresión (2.58) es:

$$\beta_{1} = \frac{2\pi a^{2}}{8 \lambda_{o} L_{h}} = \frac{2\pi \times 27.96}{8 \times 3.1 \times 33.12} = 2\pi \times 0.95$$

De acuerdo a este valor se han calculado los valores teóricos del diagrama de radiación, dentro del rango de ángulos que da la figura 10-4 del libro "Antenna Handbook" de Jasik*. Los valores teóricos están indicado con puntos rojos en la figura 5-9. Se puede notar una coincidencia casi total de los valores teóricos y los experimentales.

L

^{*} JASIK H., "Antenna Engineering Handbook", Mc Graw Hill Book Co. Inc., 1961, pág. 10-5

El diagrama de radiación en el plano H del conjunto bocina <u>p</u>r ramidal-lente de la figura 5-6, se aproxima bastante al teórico dado por la figura 3-33. Si bien es cierto que el campo debe ser teoricamente cero para valores de "v" iguales a $3\pi/2$, $5\pi/2$, $7\pi/2$, - $9\pi/2$, en el experimento se obtuvieron valores mínimos de campo, aunque no iguales a cero, para los correspondientes valores de $9(9 = \arctan 8 - \sqrt{\pi} a)$.

Comparando las figuras 5-8 y 5-9 correspondientes a los modelos de la bocina piramidal simétrica con y sin lente respectivamente claramente se puede concluir que el lente ha logrado cambiar el diagrama primario de poca directividad. Para tener una idea de este aumento de directividad observamos que el ancho del lóbulo principal en los puntos de media potencia ha sido reducido de 25° a 6° con el primer lóbulo secundario a 21 dB bajo el nivel máximo con la utiliza ción del lente de revolución.

Si bien es cierto que las curvas experimentales se aproximan a las teóricas, hay diferencias entre ellas. Las razones de estas diferencias pueden resumirse de la siguiente manera:

 I) La frecuencia de diseño de todos los dispositivos fue 10 GHz, de safortunadamente la falta de un generador de esta frecuencia o--bligó a efectuar la práctica en 9.7 GHz. Naturalmente que esta -frecuencia está localizada dentro de banda de utilización de los - lentes, según se había determinado en el capitulo III.

II) Fallas de construcción. Existen de hecho algunas pequeñas fallas originadas durante la construcción: fallas en las dimensiones de la bocina, fallas en el espaciamiento y perfil de las láminas - del lente y fallas de acoplamiento mecánico de los dos disposit<u>i</u> vos. Tomando en cuenta que la longitud de onda a la frecuencia - de experimentación es 3.1 cms, todos los errores tienen su part<u>i</u> cipación en la alteración de la distribución de campo y su efecto en la radiación.

Cabe indicar que en el lado izquierdo de los diagramas de la bocina con y sin lente existen lóbulos secundarios de mayor nivel que en el derecho posiblemente por una alteración del campo primario por algún defecto de la bocina.

- III) Las sombras formadas por las zonas hace que la distribución de amplitud de campo eléctrico en el plano H, teóricamente consid<u>e</u> rada como sinunsoidal, tenga sus interrupciones que afectan el diagrama de radiación.
- IV) Las propiedades de las ondas electromagnéticas, a estas frecuencias, bastante cercanas a la de la luz, que han hecho posi ble la utilización de los lentes electromagnéticos hacen que estas antenas se encuentren sujetas a aberraciones y fenómenos

similares a los ópticos. Uno de ellos es el fenómeno de la difracción que se produce en las paredes laterales dando lugar a los efectos de borde que, se ha llegado a determinar, son causantes de lóbulos secundarios de mayor nivel e incluso lóbulos traseros.

ĩ

Como la distribución de Amplitud de campo es sinunsoidal en el plano H, el campo es cero en las paredes laterales paralelas al vector eléctrico, sin embargo la distribución uniforme en el plano E hace que este campo no sea cero en las paredes normales al vector eléctrico. Es este campo difractado en las paredes normales al campo eléctrico que afecta el diagrama en el plano H*.

Más aún en el caso de nuestra bocina piramidal se ha colocado un marco metálico alrededor de la bocina para soporte del lente, cualquier campo difractado va a ser reflejado por el marco con la consecuente alteración de los modelos.

 V) Cabe indicar finalmente que la experimentación fue realizada en un espacio cerrado sujeta a reflexiones incluyendo aquellas

^{*} RUSSO P.M., RUDDUCK R.C., PETERS JR., <u>A method for computing E</u> plane Patterns of Horn Antennas., IEEE Transactions on Antenna and Propagation., March 1965, pág. 223.

f producidas por los propios equipos de experimentación. Las reflexiones producidas se suman al campo propagado y dependiendo de su fase van a alterar los modelos.

b) Bocina en sector y lentes respectivos .-

La máxima diferencia de fase que se tiene en la apertura de la bocina en sector, de acuerdo a sus dimensiones es:

$$\beta_1 = \frac{2\pi}{3.1} \cdot \frac{\overline{32.88}^2}{8 \times 40.95} = 2\pi \times 1.06$$

ŗ

Como se ve, la diferencia máxima de fase es ligeramente mayor que en la bocina piramidal simétrica y esto ha originado que el dia grama en el plano H de la bocina en sector tenga un lóbulo princi--pal más ancho que el de la bocina piramidal, confirmando el plantea miento teórico que a mayor error de fase en la apertura corresponde menor directividad y consecuentemente lóbulo principal más ancho.

En las figuras 5-12 y 5-11 podemos observar los diagramas de radiación en el plano H para las bocinas con lente de "n" variable y "n" constante respectivamente. De ellos se puede concluir que el comportamiento de los dos lentes es casi idéntico ya que ambos dan origen a diagramas de radiación iguales.

De la comparación de los diagramas de la bocina en sector con

y sin lentes se concluye que el conjunto bocina-lente es más direc cional que la bocina únicamente.

De acuerdo al modelo teórico generalizado y obtenido en la figura 3-33, deberían existir ceros en $\mathbf{v} = 3\pi/2, 5\pi/2, 7\pi/2$, correspondientes en este caso a $\Theta = 8.2^{\circ}, 13.6^{\circ}, 19.3^{\circ}...$, para el diagrama de la bocina con lente.

Los diagrama obtenidos experimentalmente si bien muestran d<u>i</u> rectividad en cambio no presentan los primeros "ceros" o mínimos que harían al lóbulo principal más fino. Hay dos razones fundamentales por las cuales no se ha logrado obtener precisamente el mod<u>e</u> lo teórico: distribución no uniforme de fase y desacoplamiento.

Hemos visto en los capítulos II y III que solamente una distribución uniforme de fase sobre la apertura de la bocina da lugar a la formación de "ceros" en el diagrama de radiación, cualquier <u>o</u> tra distribución de fase hace que los "ceros" desapare_zcan formándose "valles" e incluso que los primeros lóbulos laterales se junten con el principal formando un lóbulo central más ancho y menos directividad*. Esto justamente es lo que ha sucedido en nuestro c<u>a</u> so al usar la bocina con cada uno de los dos lentes.

^{*} SILVER S., "Microwave Antenna Theory and Design", Dover, 1965, pag. 189.

Las razones de este error de fase existente todavía en el con junto bocina-lente se debe a que el punto en el cual se asumió está localizado el centro de fase no era correcto. Esto lo demuestra el hecho de que ambos lentes tienen efecto similar sobre el diagrama primario.

Este problema se hubiese resuelto determinando experimental--mente el centro de fase por medio de un conjunto de lentes de diferentes distancias focales.

La segunda razón por la cual no hay total concordancia entre los módulos teórico y experimental es el desacoplamiento producido en las paredes del lente. De las tablas 5-2 y 5-3 se puede observar que a la frecuencia de 9.7 GHz los valores de "S" son 1.41 y 2.1 pa ra la bocina en sector con lentes de "n" variable y constante res-pectivamente.

Estos valores de "S" nos dan una idea de las múltiples reflexiones en las paredes de los lentes y bocina que naturalmente afectarían la distribución de campo.

A manera de ilustración presento la figura (5-15) en la que <u>a</u> parecen los diagramas de radiación de una bocina en sector con lente sin acoplar y con lentes acoplados.

٤

El autor* menciona que el valor de "S" antes del acoplamiento era 1.6 y luego del acoplamiento 1.02, logrando reducir los lóbulos laterales en 10 y 14 db.

c) Bocina Piramidal Rectangular .-

Esta bocina tiene el diagrama de radiación indicado en la fi gura 5-14. Los puntos rojos corresponden a los valores teóricos. -Se puede observar que hay concordancia entre la teoría y la práctica.

Comparando los diagramas de las dos bocinas piramidales simé trica y rectangular encontramos que son muy parecidas. Esto confir ma lo expuesto en el capítulo II de que los lóbulos de radiación en el plano H dependen únicamente de la distribución de campo a lo largo de ese plano y de las dimensiones de la bocina en ese plano. Como ambas bocinas tienen dimensiones iguales <u>en el plano H</u>, los lóbulos en ese plano tienen también similitud.

5.2.3. Determinación de la ganancia relativa.

No fue posible determinar experimentalmente la ganancia abso

^{*} JONES E., MORITA T., COHN S.B., "Measured Perfomance of Matched Dielectric Lenses., IRE Transactions on Antenna and Propagation., Enero 1956, pág. 31.

luta de las antenas, debido a la falta de una bocina de referencia de ganancia concida.

Utilizando los dispositivos en prueba en la parte de recep--ción se determinó la ganancia relativa de los lentes definida como la energía óptima recibida en el eje óptico de la combinación boc<u>i</u> na-lente referida a la energía recibida por la bocina únicamente.

Esta ganancia adicional introducida por el lente de revolu-ción fue 14 db.

De acuerdo a las curvas de Schelkunoff se ha calculado que la directividad de la bocina piramidal simétrica a la frecuencia -9.7 GHz. es 13.2 db. Utilizando la expresión (3.117) se ha determi nado que la directividad del conjunto bocina lente es:

$$g = \frac{32}{\pi} \times \frac{27.96^2}{3.1^2} = 828$$

$$G(db) = 29.2 db$$

i,

Esto determina que el lente, teóricante, introduce un incremento de directividad 16 db.

El resultado experimental fue 14 db. Los 2 db de diferencia

se deberían a pérdidas de inserción del lente, errores de construc⁷⁷ ción, sensibilidad de los aparatos de medición y errores en la o--rientación de las partes de transmisión y recepción.

En lo que se refiere a la bocina y lentes en sector no tenemos una referencia teórica correcta por cuanto todo el análisis teórico desarrollado se hizo suponiendo que las dimensiones de las bocinas son de algunas longitudes de onda. En nuestro caso la boc<u>i</u> na en sector y sus lentes fue diseñada con una altura igual a la guía de alimentación disponible y aproximadamente igual a 1/3 .

Experimentalmente se ha determinado que la ganancia relativa de los lentes es 3 db para el lente de indice de refracción cons--tante y 2 db para el lente de indice de refracción variable.

Estos valores experimentales de ganancia relativa de los le<u>n</u> tes son aceptables si tomamos en cuenta que los diagramas de radi<u>a</u> ción no tienen la directividad inicialmente esperada, por razones anteriormente indicadas.

Finalmente hemos visto que la ganancia de la bocina pirami-dal rectangular es mayor que la de bocina piramidal simétrica. A primera vista se podría pensar que el resultado debería ser al con trario en vista que la apertura de la piramidal simétrica es más grande que la de la piramidal rectangular. Analizando los resultados de Schelkunoff podemos ver que la directividad está dada por la expresión:

$$g = \frac{\Pi}{32} \left(\frac{g_m \lambda_o}{b} \right) \left(\frac{g_e \lambda_o}{a} \right)$$

El factor $\frac{\lambda \cdot g_m}{b}$ obtenido de las curvas 2-9 es igual para am bas bocinas, sin embargo el factor $\frac{\lambda \cdot g_e}{a}$ es mayor para la bocina piramidal rectangular debido a que el error de fase en el plano E es menor.

De esta manera, a la frecuencia de 9.7 GHz, la directividad de la bocina piramidal simétrica teóricamente es 13.2 db y de la piramidal rectangular es 20 db. La diferencia teórica de las 2 <u>ga</u> nancias es 6.8 dbs.

Experimentalmente se determino una diferencia de 6 dbs.

~}

L

CAPITULO SEXTO

COMENTARIOS Y CONCLUSIONES

[†] Luego de la discusión de los resultados experimentales puedo concluir que existe mucha relación entre los teóricos y experimentales.

Es importante notar que en los desarrollos teóricos se han \underline{u} tilizado modelos ideales asumiendo conductores perfectos y la no presencia de superficies de reflexión.

Esta idealización se ha hecho a fin de facilitar la aplica--ción de la Teoría Electromagnética. Por ejemplo al asumir metales perfectos, de hecho estamos facilitando la utilización de las condiciones de borde. En la realidad habrá una componente tangencial de campo eléctrico que da lugar a pérdidas de acuerdo a la Ley de Joule.

La inexistencia de superficies de reflexión supone la presen cia de ondas viajeras únicamente sin la formación de ondas estacio narias.

A parte de lo indicado, durante los desarrollos teóricos se han hecho también algunas aproximaciones, especialmente de tipo geométrico, que se han justificado individualmente al momento de <u>e</u> fectuarlas.

En la parte experimental, ya se indicó en el capítulo ante--

rior, se presentaron problemas de construcción y experimentación. Entre estos últimos cabe indicar la falta de estructuras que faciliten la movilización del equipo y antenas en prueba.

Cabe mencionar que se trató de determinar la ganancia absoluta de las antenas por medio de un método propuesto por el autor Silver*. Este método llamado "de Reflexión" no pudo ser llevado a cabo con todo éxito justamente por la falta de estructuras a propósito. En este intento se pudo determinar un valor bastante confiable de la ganancia <u>e</u> fectiva de la bocina piramidal, igual a 12.6 db que se aproxima bas-tante al teórico.

Para finalizar, repito, la experimentación ha justificado la teoría y puedo planter las siguientes conclusiones:

- 1. La bocina por si mismo es una antena direccional.
- Con el uso de los lentes electromagnéticos se puede mejorar notablemente la directividad de las bocinas solas.
- 3. Los diagramas de radiaciδn de aperturas dependen de la distribu--ciδn de amplitud y fase del campo sobre ellas.
- 4. A mayor uniformidad en la distribución de fase corresponde mayor

^{*} SILVER S., "Microwave Antenna Theory and Design", Dover, 1965, pag. 585.

directividad.

5. Los diagramas de radiación en uno de los planos E o H dependen, básicamente, de la distribución del campo en ese plano.

El conjunto bocina-lente es muy directivo y puede usarse con mucha efectividad en sistemas en que se requiere de alta directividad a frecuencias de microonda.

APENDICE "A"

DETERMINACION DEL CAMPO ELECTRICO LEJANO PRODUCIDO POR UN ELEMENTO DE HUYGENS.

En la determinación del campo eléctrico generado por un elemen to de Huygens es importante introducir los conceptos de corrientes y cargas magnéticas ficticias. Además recurriremos a los teoremas de In ducción y Equivalencia como poderosas herramientas en la consecusión de nuestro objetivo.

1. CORRIENTES MAGNETICAS.

Recordamos las ecuaciones de Maxwell:

$$\nabla \times \vec{H} = \vec{D} + \vec{\mu}$$
 (a) $\nabla \times \vec{E} = -\vec{B}$ (A.1)

- donde: $\dot{\overline{D}}$ = primera derivada en el tiempo de la densidad de campo eléctrico o densidad de corriente de desplazamiento eléctrico.
 - i = densidad de corriente de conducción eléctrica.
 - B = primera derivada en el tiempo de la densidad de campo magnético o densidad de corriente de desplazamiento magnético.

Sabemos además que las expresiones anteriores nos sirven para determinar los campos eléctricos y magnéticos así como también el vec-- tor potencial magnético \overline{A} y el potencial eléctrico escalar \bigvee según se indica a continuación:

Estos mismos campos pueden obtenerse, por facilidad en ciertos casos, a partir de una distribución "equivalente" de corriente y cargas magnéticas ficticias.

Comparando las ecuaciones (A.1) (a) y (A.1) (b) se puede obser-var una falta de simetría entre las dos expresiones, debido a la ausencia de una corriente de conducción magnética.

Si incluímos en (A.1) (b) un término ficticio \overline{i}_m que equivaldría a una densidad de corriente de conducción magnética y trabajando en <u>au-</u> <u>sencia</u> de corrientes eléctricas, las ecuaciones (A.1) (a) y (A.1) (b) pueden escribirse:

$$\nabla \times \overline{H}^{m} = \in \stackrel{\bullet}{\overline{E}}^{m} \qquad \nabla \times \overline{E}^{m} = -\left(\mu \stackrel{\bullet}{\overline{H}}^{m} + \overline{\lambda}_{m}\right) \qquad (A.4)$$

Comparando estas últimas expresiones con $(A_{\bullet}1)$ (a) y $(A_{\bullet}1)$ (b) se puede observar que existe una dualidad entre ellas con la única dife rencia de un signo menos que aparece en la expresión lo que indica que la fuerza eléctro-motriz y la corriente magnética siguen una dirección gobernada por la ley de la mano izquierda.

Finalmente se llegan a determinar expresiones similares a las (A.2) (a), (b) y (A.3) (a), (b), en este caso para corrientes y cargas magnéticas:

$$\vec{E}^{m} = -\nabla \times \vec{F} \qquad \qquad \vec{H}^{m} = -\nabla \mathcal{F} - \varepsilon \overset{\bullet}{\vec{F}} \qquad (A.5)$$
(a)

$$\overline{F} = \frac{1}{4\pi} \int_{V_{0L}} \frac{\overline{i}_{m} \left(t - \frac{r}{\upsilon}\right)}{r} dV \qquad G = \frac{1}{4\pi} \int_{V_{0L}} \frac{\int_{m} \left(t - \frac{r}{\upsilon}\right)}{\mu r} dV \qquad (A.6)$$

donde: \overline{F} = vector potencial eléctrico \mathcal{F} = potencial magnético escalar

Sabemos además que la discontinuidad de la componente tangencial de H a través de una lámina de corriente eléctrica está dada por la relación:

$$\overline{J} = \overline{n} \times (\overline{H}_1 - \overline{H}_2)$$
(A.7)

donde: \overline{J} es la densidad lineal de corriente eléctrica \overline{n} es el vector unitario normal a la lámina y \overline{H}_1 y \overline{H}_2 son los componentes tangenciales en cada uno de los dos
medios.

De manera similar se llega a determinar que la componente tangencial de campo eléctrico E es discontínua a través de una lámina de corriente magnética y en la cual se cumple la relación.

$$\vec{\mathbf{M}} = -\vec{\mathbf{n}} \times (\vec{\mathbf{E}}_1 - \vec{\mathbf{E}}_2) \tag{A.8}$$

donde M es la densidad lineal de corriente magnética.

2. TEOREMAS DE INDUCCION Y EQUIVALENCIA.

El teorema de inducción dice: "Los campos reflejados y transmitidos pueden ser generados por una apropiada distribución de corrien-tes eléctricas y magnéticas distribuídas sobre la superficie de reflexión. Las densidades lineales de estas corrientes, estarán dadas por las componentes tangenciales del campo incidente".

A continuación aplicaremos este teorema para el caso específico de una bocina.

Considerando la figura (A.1), suponemos una superficie plana S localizada sobre la apertura radiante de la bocina. Dicha superficie separa dos medios homogenos: el 1 conteniendo un sistema de fuentes F y el 2 libre de ellas.

El campo incidente Eⁱ, Hⁱ es aquel que existiría en el caso que la bocina fuese de longitud infinita, es decir no habría supe<u>r</u> ficie S.

El momento en que se considera una bocina de longitud finita aparece la superficie S de reflexión y el campo incidente establece un campo reflejado E^{r} , H^{r} y uno transmitido E^{t} , H^{t} . De esta manera los campos netos serán:

 $E^{i} + E^{r}, H^{i} + H^{r}$ en el medio uno (a) (A.9) E^{t}, H^{t} en el medio dos (b)

Por su parte las condiciones de borde para campos electromagnéticos establecen que:

216

$$E_{s,tan}^{i} + E_{s,tan}^{r} = E_{s,tan}^{t}$$
(a)

$$H_{s,tan}^{i} + H_{s,tan}^{r} = H_{s,tan}^{t}$$
(b)
(A.10)

de donde:

$$E_{s,tan}^{i} = E_{s,tan}^{t} - E_{s,tan}^{r}$$
(a)

$$H_{s,tan}^{i} = H_{s,tan}^{t} - H_{s,tan}^{r}$$
(b)
(A.11)

El subíndice s, tan indica que el campo es tangencial a la super ficie S.

Los campos reflejados y transmitidos conocidos como "inducidos" pueden considerarse como uno solo generado por una distribución apropia da de fuentes secundarias localizadas sobre S a manera de láminas de co rrientes eléctricas y magnéticas. El momento que consideramos la presen cia de láminas de corriente sobre S, se producen discontinuidades en las componentes tangenciales que según se vió en la sección anterior es tán dadas por:

$$\overline{J} = \overline{n} \times (\overline{H}_{s,tan}^{t} - \overline{H}_{s,tan}^{r}) = \overline{n} \times \overline{H}_{s,tan}^{t} \quad (a)$$

$$\overline{M} = -\overline{n} \times (\overline{E}_{s,tan}^{t} - \overline{E}_{s,tan}^{r}) = -\overline{n} \times \overline{E}_{s,tan}^{t} \quad (b)$$
(A.13)

3. ELEMENTO DE HUYGENS.

En la figura (A.2) se puede observar un elemento infinitesimal

dx dy que forma parte de un frente de onda plana que viaja en la di rección z y que coincide con la apertura radiante de la bocina.

En la apertura existe una distribución determinada de campo E_y y magnético H_x (para una excitación TE 1,0) y en cada elemento dx dy se tiene intensidades que las denominaremos $E_{0,y}$ y H_{0,x}, las cuales serán funciones de su posición en la apertura como se puede observar en el estudio realizado en la sección 2.3.

Por los teoremas vistos las intensidades mencionadas estarán dadas por las siguientes relaciones:

 $J_y = -Ho_x$ (a) $y M_x = Eo_y$ (b) (A.14)

A su vez, de acuerdo al estudio efectuado en la sección (2.3.3),

la relación entre el campo eléctrico y la componente transversal de campo magnético en la boca de la bocina es la Impedancia Intrínseca del espacio libre, por lo tanto podemos escribir:

Eo, y / Ho,
$$x = -120 \text{ T}$$
 (A.15)

Ahora bien, tomando en cuenta que los potenciales escalares tienen efecto despreciable sobre los campos lejanos, las ecuaciones (A.2) (b) y (A.5) (b) pueden escribirse únicamente en función de los potenciales vectores \overline{A} y \overline{F} :

$$\overline{E} = -j\omega\mu_{\circ}\overline{A}$$
 (A.16)

$$\overline{H} = -j\omega\epsilon_{o}\overline{F}$$
 (A.17)

Los vectores \overline{A} y \overline{F} tienen los mismos sentidos de \overline{J} y y $\overline{M}x$ respectivamente según lo determinan las expresiones (A.3) (a) y (A.6) (a) y las vamos a calcular a continuación.

Considerando variaciones en el tiempo del tipo $i_0 e^{j\omega t} y$ utilizando la expresión (A.3) (a) tenemos:

$$A_{y}\overline{j} = \frac{1}{4\pi} \int_{VOL} \frac{\overline{j}i_{o}e^{j\omega(t-\frac{r}{\omega})}}{r} dV = \frac{\overline{j}}{4\pi} \int_{VOL} i_{o}e^{j(\omega t - \beta r)} dV$$

$$H_{\Theta}^{m} = H_{x} \cos \phi \cos \Theta = -j \frac{\omega \varepsilon}{4\pi r} E_{o,y} dx dy e^{-j\beta r} \cos \phi \cos \Theta \quad (a)$$

$$H_{\phi}^{m} = -H_{\infty} \operatorname{sen} \phi = j \frac{\omega \varepsilon_{o}}{4\pi r} \operatorname{E}_{o,y} dx dy \tilde{\mathcal{C}}^{d\beta r} \operatorname{sen} \phi \qquad (b)$$
(A.23)

Reemplazando (A.15) en (A.22) (a) y (b) llegamos a:

$$\mathbb{E}_{\Theta}^{e} = \frac{j}{2\lambda_{r}} E_{o,y} \, dx \, dy \, \sin \phi \, \cos \Theta \, \overline{\Theta}^{-j\beta r} \tag{a}$$

$$E_{\phi}^{e} = \frac{j}{2\lambda_{r}r} E_{o,y} dx dy \cos \phi e^{-d\beta r}$$
(b)
(A.24)

A su vez, sabiendo que en un punto P del espacio libre se cumple $E_Q = \int H_{gg} y E_{gg} = - \int H_Q$ podemos escribir (A.23) (a) y (b) como:

$$E_{\Theta}^{m} = \frac{\dot{d}}{2\lambda_{o}r} E_{o,y} dx dy seu \not \Theta e^{\dot{d}/3r}$$
(a)

$$E_{g}^{m} = \frac{j}{a \lambda_{o} r} E_{o, y} dx dy \cos \phi \cos \theta e^{-j\beta r}$$
(b) (A.25)

Las componentes totales en Θ y \emptyset del campo eléctrico estarán dadas por la suma de los efectos de las corrientes eléctricas y mag néticas. Por lo tanto de (A.24) y (A.25) se concluye

$$\mathbb{E}_{\Theta} = \mathbb{E}_{\Theta}^{\bullet} + \mathbb{E}_{\Theta}^{m} = \frac{j \mathbb{E}_{\Theta,y} \, dx \, dy}{2 \, \lambda_{\bullet} r} \Big(\cos\Theta + 1 \Big) \, \operatorname{sen} \varphi$$
(A.26)

$$E_{\phi} = E_{\phi}^{e} + E_{\phi}^{m} = \frac{j E_{0,y} dx dy}{2\lambda r} \left(\cos \Theta + 1 \right) \cos \phi$$
(A.27)

En cualquiera de los planos principales ($\emptyset = 0$ y $\emptyset = \pi /2$) se anula una de las componentes y el campo total se reduce a:

$$E = j \frac{E_{0,y} dx dy e^{-j\beta r}}{2 \lambda r} (\cos \Theta + 1)$$
(A.28)

Para campos lejanos se puede aproximar $\cos \Theta = 1$ de manera que la expresión para el campo de un elemento de Huygens queda:

$$E = j \frac{E_{0,y} dx dy}{\lambda_{o} r}$$
(A.29)

,

BIBLIOGRAFIA

JORDAN E.C., <u>Electromagnetic waves and Radiating Systems</u>, Prentice Hall, Inc., Englewood Cliffs, N.J., 1950.

SCHEIKUNOFF S., <u>Antenna Theory and Practice</u>, John Wiley & Sons, Inc., New York, 1952.

THOUREL L., The Antenna, Chapman & Hall, Londres, 1960. /

SOUTHWORTH G., <u>Principles and Applications of Waveguide Transmission</u> D-Van Nostrand Company, Inc., New York, 1961.

SILVER S., <u>Microwave Antenna Theory and Design</u>, Dover Publications Inc., New York, 1965.

HOJAS GUIA DE LABORATORIO, <u>Experimentos para medición de Impedancias</u> <u>en la región de Microondas</u>, Escuela Politécnica Nacional, Quito, 1968.

JASIK H., <u>Antenna Engineering Handbook</u>, Mc Graw Hill Book Co. Inc. New York, 1961.

TERMAN F., Electronic and Radio Engineering, Mc Graw Hill Book Co.,

Kogakusha Co. Ltda., Tokyo, 1955.

BORGNIS F. Y PAPAS CH., Electromagnetic Waveguides and Resonators, (copias sin referencia).

MC LACHLAN., <u>Bessel Functions for Engineers</u>, Segunda Edición, Oxford University Press, London, 1955.

- JAHNKE, LOSCH F., <u>Tables of Higher Functions</u>, Sexta Edición, Mc Graw Hill Book Co., New York, 1960.
- KOCK W.E., <u>Metal Lens Antennas</u>, Proceedings of the IRE and Waves and Electrons, Noviembre de 1946., Pág. 828 - 836.
- RHODES., <u>An Experimental Investigation of the Radiation Patterns of</u> <u>Electromagnetic Horn Antennas.</u>, Proceedings of the IRE, Septiembre de 1948, Pág. 1101 - 1105.
- BARROW W. Y LEWIS F., <u>The Sectoral Electromagnetic Horn</u>, Proceedings of the IRE, Enero de 1939, Pág. 44.
- MORITA T. Y COHN S.B., <u>Microwave Lens Matching by Simulated Quarter</u> <u>Wave Transformers</u>, IRE Transactions on Antennas and Propagation, Enero 1959, Pág. 31.

RUZE J., <u>Wide-Angle Metal-Plate Optics</u>., Proceedings of the IRE., Enero de 1950, Págs. 53 - 59.

LAWRIE R.E. Y PETERS ., <u>Modifications of Horn Antennas for Low</u> <u>Sidelobe Levels</u>, IRE Transactions on Antennas and Propagations, Septiembre de 1966, Págs. 605 - 610.

RUSSO P.M., RUDDUCK R.C., y PETERS L., <u>A Method for computing</u> <u>E-Plane Patterns of Horn</u> <u>Antennas</u>, IEEE Transactions on Antennas and Propagation Marzo 1965, Pág. 223.

JONE E., MORITA Y COHN S.B., <u>Measured Perfomance of Matched Die-</u> <u>lectric Lenses</u>, IRE Transactions on Antennas and Propagation, Enero de 1956, Påg. 31.