ESTUDIO TEORICO-EXPERIMENTAL DE UN ARREGLO DE DIPOLOS ALIMENTADOS CON FASE DISTINTA, EN EL RANGO DE UHF

Tesis previa a la obtención del título de Ingeniero en la especialización de Electrónica y T<u>e</u> lecomunicaciones de la Escuela Politécnica Nacional

JOSE LUIS HIDALGO B.

QUITO Julio de 1971 Certifico que este trabajo ha sido realizado en su totalidad por el señor José Luis Hidalgo B.

Kan JUSIE

Dr. Kanti Hore CONSULTOR DE TESIS

Quito, Julio de 1971

dedico este trabajo a:

÷-

SEÑOR VICTOR HIDALGO Y SRA. EMERITA BAUTISTA DE HIDALGO

PROLOGO

El propósito del presente trabajo a más de cumplir con un requisito previo a la obtención del título de Ingeniero en la especialización de Electrónica y Telecomunicaciones de la Escuela Politécnica Nacional, trata de fomentar en las futuras generaciones la inquietud de la invest<u>i</u> gación y su aplicación en beneficio de la humanidad. El – principio de colaboración conjunta con Instituciones ajenas a la Escuela Politécnica Nacional ha impulsado la realización de esta tesis.

Dejo constancia expresa de mi eterno agradecimiento a quienes han sabido inculcar en mí el espíritu de trabajo en beneficio de los demás y guiarme durante mi formación académica en las aulas de la Escuela Politécnica Na cional; así como también a quienes en una u otra forma me han ayudado y colaborado para que el presente trabajo cumpla con sus objetivos.

En especial a mi consultor de Tesis Dr. Kanti Hore, al Ingeniero Efraín Del Pino; a los personeros y compañe ros de la Dirección Nacional de Frecuencias así como tam bién al Asesor de Unión Internacional de Telecomunicaciones señor Johannes Berger y a mi gran amigo Helmuth Reyes.

IV

Por último vaya mi perdurable gratitud a toda mi f<u>a</u> milia: Marco, Milton, Rosita, Florencio, Marianita que con su abnegación y colaboración constantes supieron ser el so<u>s</u> tén en todos los momentos difíciles y alegres de mi vida e<u>s</u> tudiantil. INDICE GENERAL

			Página
	PROLOGO		IV-V
	INTRODUC	CION	1
	Capítulo	Primero: EXPOSICION DEL PROBLEMA	6
/	1.1	Método convencional para calcular el campo	
		eléctrico.	8
	1.2	Método del vector de Poynting.	9
	<u>Capítulo</u>	Segundo: ANALISIS TEORICO DEL ARREGLO	11
	2.1	Análisis general del arreglo	12
	2.1.1	Aproximaciones necesarias	16
	2.2	Elementos alimentados en fase o caso broa <u>d</u>	
		side	23
	2.2.1	Configuraciones de Campo	23
	2.2.2	Análisis de la ecuación (31)	25
	2.2.3	Programa para la computación del factor	
		del arreglo	26
	2.2.4	Análisis de la ecuación (34)	31
	2.2.5	Ganancia del Arreglo	35
	2.3	Elementos alimentados en fase distinta	42
	2.3.1	Configuraciones de Campo	42

.

.

. ,

. .

2.3.2	Análisis del Factor del Arreglo	43				
2.3.3	Ganancia del Arreglo Tipo "End-fire"	44				
<u>Capítulo</u>	Tercero: VERIFICACION EXPERIMENTAL	85				
3.1	Introducción	86				
3.1.1	Mediciones en las Antenas					
3.1.2	Imp e dancia de la Antena					
3.1.3	Configuración de radiación					
3.1.4	.1.4 Distancia permisible para tomar medici <u>o</u>					
3.2	Criterios para el diseño y construcción	00				
	de la antena	93				
3.3	Mediciones Realizadas	96				
3.3.1	Estación Receptora	100				
3.3.2	Estación Transmisora	102				
3.4	Mediciones del Diagrama de radiación p <u>a</u>					
	ra arreglos tipo "end-fire" y "broad -					
	side".	104				
3.4.1	Factores que deben ser tomados en cuenta	104				
Capítulo	Cuarto: CONCLUSIONES	116				
4.1	Comparación entre los valores medidos y calculados	117				
4.2	Explicación de las diferencias obteni- das entre la teoría y la verificación-					
	experimental	118				

4.2.1	Justificación de las diferencias obten <u>i</u> das para el caso "broadside"	119
4.2.2	Justificación de las diferencias obten <u>i</u> das para el caso "end-fire"	120
APENDICE	Α	
	Campo de Radiación de un dipolo simé - trico	123
APENDICE	B Análisis de $F_o(\theta, \beta h)$	128
APENDICE	c	
	Análisis del Factor del Arreglo	132
APENDICE	D	
	Estación Auxiliar Móvil	140
APENDICE	E El Balún	145
BIBLIOGRA	AFIA	151

VIII

INDICE DE TABLAS

Tabla 2.1	Valores de NFo $(\theta, \pi/2)$ para 2-10 ele- mentos.	34	
Tabla 2.2	Valores de Resistencia de Radiación caso "Broadside"	40	
T a bla 2.3	Valores de la Ganancia Relativa en la dirección de su máxima Radiación (Directividad Relativa).	41	
Tabla 2.4	Valores de Resistencia de Radiación caso "End-fire".	47	
Tabla 2.5	Valores de la Ganancia Relativa en la dirección de su máxima Radiación (Directividad Relativa)	48	
Tabulación de	e Computación 4	9 y	84
Tabla 3.1	Valores calculados en la parte e <u>x</u> perimental.	105	

INDICE DE GRAFICOS

Fig.	3-12	Diagrama	de	Radiación	Caso	"Broad-	
		side" con	n 2	elementos			107

- Fig. 3-13 Diagrama de Radiación con 3 eleme<u>n</u> tos Caso "Broadside" 108
- Fig. 3-14 Diagrama de Radiación con 4 elemen tos Caso "Broadside" 109
- Fig. 3-15 Diagrama de Radiación con 5 elemen tos Caso "Broadside" 110
- Fig. 3-16Diagrama de Radiación con 2 elementos Caso "End-fire"111
- Fig. 3-17 Diagrama de Radiación con 3 elemen tos Caso "End-fire" 112
- Fig. 3-18Diagrama de Radiación con 4 elementos Caso "End-fire"113
- Fig. 3-19 Diagrama de Radiación con 5 elemen tos Caso "End-fire" 114
- Fig. 3-20Diagrama de Radiación con 6 elementos Caso "End-fire"115

х

INTRODUCCION

En los sistemas de telecomunicaciones las antenas desempeñan un papel muy importante en la transmisión y r<u>e</u> cepción de datos. Convierten la energía entregada por la línea de alimentación en una onda electromagnética que – pueda ser radiada a través del espacio sin auxilio de co<u>n</u> ductores.

El Estudio Teórico-Experimental de un Arreglo de Dipolos Alimentados con Fase Distinta, en el Rango de UHE, que constituye el tema de este trabajo es un tópico de i<u>n</u> terés en la teoría de antenas.

Se ha creído necesario realizar primero un estu dio teórico y luego la verificación experimental de los resultados obtenidos anteriormente. A fin de que de este modo se pueda realizar una comparación entre ambos análisis y de esa manera llegar a conclusiones que permitan e<u>s</u> tablecer una valoración de las mismas.

El análisis teórico se ha hecho en base del método clásico de las ecuaciones de Maxwell.

La parte experimental fue factible de realizarse gracias a la cooperación de la Dirección Nacional de Frecuencias, Institución que permitió la utilización de su -

"estación auxiliar móvil para comprobación técnica." Además haciendo uso de los equipos disponibles en el laboratorio del Departamento de Electrónica de la Facultad de -Ingeniería Eléctrica de la Escuela Politécnica Nacional.

Se empieza el presente trabajo con una exposi ción en el primer capítulo que da una idea general del problema a tratarse.

El capítulo segundo contiene el estudio teóriconecesario para encontrar las configuraciones de campo yganancia del arreglo. Se comienza con un análisis general para luego especificar los casos de interés: radia ción normal al eje del arreglo "caso broadside" y radiación paralela al eje del arreglo "caso end-fire."

En esta sección se han realizado varias aproxim<u>a</u> ciones a fin de simplificar los cálculos. La utilización de una computadora facilitó el procedimiento de operaci<u>o</u> nes y tabulación de los resultados.

Se incluye además el programa FORTRAN secuencial y las tablas obtenidas al compilar y resolver dicho programa en la computadora 1130 existente en la Universidad Central del Ecuador.

El tercer capítulo contiene una descripción gen<u>e</u> ral de los diferentes métodos de medida. Algunos de ellos fueron ensayados en el laboratorio de acuerdo con las posibilidades existentes. Por último se expone una revisión del método empleado y de los aparatos utilizados.

Las diferentes mediciones fueron llevadas a cabo en un lugar seleccionado que cumplía con las características técnicas de no interferencias, carencia de obstáculos, y otras. Las cercanías de la Parroquia San Ant<u>o</u> nio de Pichincha fueron escogidas para este propósito.

Una vez que se terminó con las mediciones, se procedió a tabularlas para grafizar los resultados corres pondientes y de esta manera tener una base de juicio para establecer una comparación.

En la experimentación se utilizó una frecuencia de 600 MHz, la que corresponde a la banda nueve.

Finalmente, en el capítulo cuarto se expone una comparación de los resultados obtenidos en la parte teórica y en la verificación experimental a fin de poder o<u>b</u> tener las conclusiones, puesto que uno de los propósitos de esta tesis es establecer la necesidad de la experimen

tación siempre y cuando se realice un estudio teórico.

CAPITULO PRIMERO

EXPOSICION DEL PROBLEMA

El ingeniero debe tener un conocimiento general sobre los diferentes componentes constitutivos de los si<u>s</u> temas de Telecomunicaciones.

La antena constituye una de esas partes. Este hecho involucra utilizar, según sea el compromiso de planificación o distribución de canales de acuerdo a los Regl<u>a</u> mentos Nacionales y Convenios Internacionales, la radia ción dada por la misma.

Las radiocomunicaciones que establecen contactosentre dos puntos utilizan antenas que radían la energía electromagnética requerida desde el transmisor a variasdirecciones fijas en el espacio (ángulo acimut determinado). Por tanto la noción de la configuración de radia ción junto con la ganancia tienen una importancia funda mental.

Este trabajo tiene el propósito de exponer como v<u>a</u> ría el campo eléctrico de un arreglo lineal de dipolos s<u>e</u> gún el número de sus elementos para las dos formas de al<u>i</u> mentación utilizadas en la práctica.

En la parte teórica se presenta el análisis gene ral de la variación de campo de acuerdo con el número de-

elementos y la separación entre los mismos.

El método utilizado para este análisis se basa, asumiendo a priori una distribución espacial de corriente (usualmente sinusoidal) para cada elemento del arreglo.

Esta asunción es válida solamente para los casos en que se consideren dipolos de longitudes cercanas a la longitud de resonancia.

A fin de calcular la ganancia directiva, se util<u>i</u> zó el método del vector de Poynting para encontrar la resistencia de radiación y luego poderla relacionar direct<u>a</u> mente con una antena dipolo de referencia.

1.1 METODO CONVENCIONAL PARA CALCULAR EL CAMPO ELECTRICO

Este método consiste en obtener la configuración de campo producida por una antena utilizando la determina – ción del vector de intensidad de campo magnético y luegosumando vectorealmente los efectos producidos por cada – elemento (principio de superposición). De este modo se o<u>b</u> tiene el campo total. Las condiciones ideales que se nec<u>e</u> sitan hacen que este sea un método aproximado, En las aproximaciones utilizadas se cuentan entre otras que el conductor constitutivo de la antena tiene – que ser infinitamente delgado y además poseer una conductibilidad perfecta. También es necesario asumir que exista una línea de vista sin obstáculos entre el transmisory el receptor y finalmente el medio de propagación tieneque ser homogéneo y sin ningún obstáculo que produzca reflexiones indeseadas.

En la experimentación que se llevó a cabo se trató de conseguir al máximo estas condiciones ideales. Sin embargo no fue posible cumplir con las mismas y quizás esto sea una de las causas de las diferencias obtenidas entrelos resultados teóricos y los resultados medidos. Cabe aquí sin embargo recalcar que la teoría de cualquier problema físico constituye unicamente un modelo matemático de la realidad y que los métodos, equipos, técnicas de m<u>e</u> dición involucran siempre aproximaciones y adolecen de errores intrínsecos.

1.2 METODO DEL VECTOR DE POYNTING

Consiste en la integración del vector de flujo de po tencia por unidad de superficie, sobre una superficie ce-

rrada que envuelva a la antena. De esta manera si I (o) es la corriente terminal, la potencia radiada vendría dada por:

$$P = R I^{2}(0) = \frac{\mu}{4\pi} \oint_{S} (\overline{E} \times \overline{H}). d\overline{S}$$

Siendo R la resistencia de radicación

La precisión del método consiste en el grado de apr<u>o</u> ximación entre la distribución de corriente asumida y lareal. Mientras mayor sea ésta, los resultados serán más exactos.

CAPITULO SEGUNDO

ANALISIS TEORICO DEL ARREGLO

2.1 ANALISIS GENERAL DEL ARREGLO

La primera parte de este análisis, servirá para dete<u>r</u> minar la configuración absoluta del campo de radiación para un arreglo de antenas. Debido a que los únicos términos que intervienen en el flujo de potencia promedio son aquellos que dependen en forma inversamente proporcional a ladistancia.

Considérese un arreglo de N antenas (dipolos) idénticas, alimentadas en su centro, orientadas de la siguiente manera geométrica:

- (a) Están situadas en el mismo plano.
- (b) Se encuentran paralelas al eje Z con sus centros so bre el eje X.
- (c) Se hallan igualmente distanciadas.

La fig. 2.1 da una idea del arreglo

La longitud de cada elemento es 2h.

El término "elemento" se considera como una antena básica con la cual se constituye el arreglo. Además se as<u>u</u> me que cada elemento es infinitamente delgado. La distancia entre dos elementos sea "d".

Primeramente se llevará a cabo un análisis para un arreglo constituído por un número impar de elementos y a - continuación se tratará el caso de un número par.

Se escoge el sistema de coordenadas de tal forma que el origen coincida con el elemento central, y se numeran los elementos de la forma siguiente:

> 1,2,3,4,.... n para el semieje positivo "X" 1,2',3',4',... n' para el semieje negativo "X"

Se asume que el arreglo está en el espacio libre a una distancia suficientemente grande desde la tierra u otro objeto que pueda causar reflexiones. La distribución espacial de corriente en cada elemento es sinusoidal $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ y tiene la siguiente forma:

^{*}Las diferentes citas bibliográficas, se encuentran al final del trabajo, indicadas por los números entre cor chetes a lo largo del texto.

para m=1,2,3,4,,,,,,n

 $K_{m} \times K'_{m} =$ Constantes de magnitud arbitraria.

 $\delta m \gamma \delta m =$ Angulos de fase

- I_{m} = Amplitud de la corriente compleja que fluye en el elemento considerado.
- β = Constante de propagación en radianes por me tro.

Se define como arreglo lineal uniforme "aquel en el cual los elementos están alimentados con corrientes de igual magnitud y que tienen una fase progresiva a lo largo del eje." [2] entonces:

$$Km = K'm = 1$$

$$\delta m = -\delta'm \qquad (2)$$

Según la fig. 2.1; el campo eléctrico en un punto P que cumpla con la condición de:

$$R_o^2 \gg h^2 \tag{3}$$

es la suma vectorial del campo eléctrico debido a cada ele mento.

$$E_{\theta T} = E_{\theta o} + \sum_{m=1}^{n} (E_{\theta m} \cos \psi_m + E'_{\theta m} \cos \psi'_m) \quad (4)$$

 ψ_{rm} : Angulo formado entre $E_{\theta o} \ \gamma \ E_{\theta m}$ ψ'_{rm} : Angulo formado entre $E_{\theta o} \ \gamma \ E'_{\theta m}$ $E_{\theta o}$: Campo eléctrico en el punto P debido al elemento "O" $E_{\theta m}$: Campo eléctrico en el punto P debido al elemento "m"

$$E_{\theta o} = -j\eta \frac{Im}{2\pi R} \frac{e^{-j\beta R}}{e^{2\pi R}} \left[\cos\beta h - \cos\left(\beta h\cos\theta\right) \right]$$
(5)

La deducción de la ecuación $(5)^{*}$ se encuentra en el apéndi - de A.

Se define la función $F_{m}(\theta_{m}, \beta_{h})$ como:

$$F_{mn}(\theta_{mn},\beta_{h}) = \frac{\cos(\beta h \cos \theta_{mn}) - \cos \beta h}{A\theta n \theta_{mn}}$$
(6)

El campo eléctrico para el elemento m es entonces:

$$E_{\theta m} = j \eta \frac{I_m e^{-j \beta R_m}}{2\pi R_m} F_m(\theta_m, \beta h)$$
(7)

ya que

 Para facilitar el desarrollo secuencial se traslada este estudio al final de la tesis. la ecuación (7) se transforma:

$$E_{\theta m} = j ? \frac{I_0 e^{-j\beta R_m}}{2\pi R_m} \frac{F_m(\theta_m, \beta_h)}{\beta e_{n\beta h}}$$
(7-a)

$$\frac{F_{m}(\theta_{m},\beta_{h})}{sen\beta_{h}} = \frac{\cos(\beta_{h}\cos\theta_{m}) - \cos\beta_{h}}{sen\theta_{m}} = F_{0}(\theta_{m},\beta_{h})$$
(8)

La función $F_o(\theta_{mn}, \beta_{n})$ caracteriza el campo eléctrico de un elemento alimentado en el centro. El cual tiene una distr<u>i</u> bución espacial de corriente sinusoidal. ^[3]

$$E_{\theta m} = j \eta I_0 \frac{e^{-j\beta R_m}}{2\pi R_m} F_0(\theta_m, \beta h)$$
(7-b)

2.1.1 Aproximaciones necesarias

Las distancias entre los centros de los elementos al punto P pueden deducirse desde la fig. 2.1 y son:

$$R_0 = \sqrt{X^2 + y^2 + z^2}$$
(9)

$$Rm = \sqrt{(x - md)^2 + y^2 + z^2}$$
(10)

$$R'_{m} = \sqrt{(x+md)^{2} + y^{2} + z^{2}}$$
 (11)

Si se considera un punto P suficientemente alejado entonces:

$$\mathcal{R}_{o}^{2} \gg md$$
 (12-a)

Considerando la desigualdad (12 a) las ecuaciones (10) y (11) llegan a transformarse aproximadamente en:

$$R_m \stackrel{\sim}{=} R_o - \frac{md_x}{R_o}$$
 (10-a)

$$\mathcal{R}'_{m} \stackrel{\simeq}{=} \mathcal{R}_{o} + \frac{md \times}{\mathcal{R}_{o}}$$
 (11-a)

Las relaciones anteriores referidas a un sistema de coord<u>e</u> nadas cilíndricas se cambian a:

$$X = r \cos \phi$$
 Y $\tau = R_0 sen \theta$

por tanto: $X = Ro \, sen \, \theta \, \cos \phi$

$$R_m \stackrel{\sim}{=} R_0 - md \, sen \theta \, \text{ros} \phi \equiv R_0 - Sm \tag{10-b}$$

$$R'_m \stackrel{\sim}{=} R_0 + md$$
 send $Los \phi \equiv R_0 + Sm$ (11-b)

donde: $Sm = md sen \theta \cos \phi$

De la figura 2.1 y teniendo presente la ley de los cosenos resulta:

$$\cos \psi_m = \frac{R_o^2 + R_m^2 - (md)^2}{2 R_o R_m}$$
(13-a)

Considerando la ecuación (10 b) $\cos \psi_{mn} = \frac{2R_0^2 - 2R_0 5m + 5m^2 - m^2 d^2}{2R_0 (R_0 - 5m)}$ (13-b)

con (12-a) se puede deducir que: $R_o^2 \gg S_m^2$ y reemplazando en (13-b) resulta:

$$\cos \gamma_{m} \cong \frac{R_{0}^{2} + R_{0}^{2}}{2 R_{0} R_{0}} = 1$$
 (13-c)

similarmente con:

$$\cos\psi_{nn} \cong 1 \tag{14}$$

las ecuaciones (13-c) y (14) indican que en un punto P muy alejado se puede considerar que los vectores de campo \overline{E} están en la misma dirección.

$$\mathcal{T}_m = \mathcal{R}_m \, \mathcal{S}^m \, \Theta_m \, \stackrel{\simeq}{\simeq} \, \mathcal{T}_- \, md \, \cos \phi \tag{15}$$

$$\tau'_{m} = \mathcal{R}'_{m} \text{ sen } \theta'_{m} \cong \tau + md \cos \phi \tag{16}$$

siendo 7mm la distancia desde el elemento m hasta la proye<u>c</u> ción del punto P sobre el plano XY.

Si z tiene un valor determinado, entonces:

$$R_{m} \cos \theta_{m} = R_{0} \cos \theta = R'_{m} \cos \theta'_{m}$$
(17)

Reemplazando (10 a); (10 b) y teniendo presente (12-a) se ve que: $\operatorname{cos} \Theta_m \cong \operatorname{cos} \Theta \cong \operatorname{cos} \Theta'_m$ Los inversos de las ecuaciones (15) y (16) son:

$$\frac{1}{R_m} \stackrel{\sim}{\underset{sen \theta_m}{=}} \frac{1}{r - m d \cos \phi}$$
(15-a)

$$\frac{1}{R_{m}^{\prime}} \sup_{s \in \mathcal{N}} \theta_{m}^{\prime} \stackrel{\simeq}{=} \frac{1}{\tau + md \cos \phi}$$
(16-a)

Desarrollando en una serie binomial y seleccionando los dos primeros términos de la misma se llega a:

$$\frac{1}{\tau - md\cos\phi} \stackrel{\sim}{=} \frac{1}{\tau} \left(1 + \frac{md\cos\phi}{\tau} \right) \qquad (15-b)$$

$$\frac{1}{\tau + md \cos \phi} \stackrel{\simeq}{=} \frac{1}{\tau} \left(1 - \frac{md \cos \phi}{\tau} \right). \quad (16-b)$$

El campo lejano exige la siguiente restricción:

$$r >> md$$
 (12 b)

con la ecuación (12-b),(15-a) y (16a) se convierten en:

$$\frac{\frac{1}{R_{m}}}{\frac{1}{R_{m}}} \stackrel{\sim}{\stackrel{\sim}{\stackrel{\sim}{\stackrel{\sim}}}} \frac{1}{r}$$

luego se puede escribir:

Considerando las ecuaciones (12), (14), (18), (19) la ecu<u>a</u> ción (4) se transforma en:

$$E_{\theta T} = j \eta \frac{T_0 e^{-j\beta R}}{2\pi R} F_0(\theta,\beta h) \left\{ 1 + \sum_{m=1}^{V_2(N-1)} (k_m e^{-j(\delta m - \beta S_m)}) + \frac{j(\delta m + \beta S_m)}{2\pi R} \right\}$$
(20)

Es interesante notar que la ecuación (l2-b) convierte a - (20) en una ecuación no válida para pequeños valores de r, aún si se considera distancias grandes R_0 desde el centro

del arreglo al punto de cálculo.

Debido a que $F_o(\theta, \beta h)$ desaparece en $\theta = 0$ (ver Apéndice B) la ecuación (20) necesariamente tiene un valor cero para la componente de campo eléctrico sobre el eje z. Esta afi<u>r</u> mación no es correcta, el campo eléctrico es pequeño pero no cero para r=0 y R_o muy grande.

Por esta razón la ecuación (20) no es estrictamente corre<u>c</u> ta para ángulos pequeños alrededor del eje z, sin embargo el campo eléctrico en estos puntos no tiene significado – práctico.

El factor
$$1 + \sum_{m=1}^{\frac{1}{2}(k_m e^{-j(\delta_m - \beta S_m)} + k_m e^{-j(\delta_m + \beta S_m)})$$
 (21)

se define como el factor del arreglo "A".

En el caso de que el número de elementos sea par el factor del arreglo puede ser obtenido omitiendo los elementos – asignados con números pares y considerando la unidad cen – tral sólo para el primer análisis.

Con estas especificaciones los elementos se hallan espaci<u>a</u> dos por una distancia 2d.

Si se quiere expresar en función de "d" se tiene que dividir por dos los términos que forman el exponente del arreglo. Por las siguientes razones:

a.- Si las unidades son movidas conjuntamente a un espa ciamiento do entre elementos y

b.- La corriente es referida a Io: $I_{om} = I_{o} k_{mn} e^{-j d^{m}/k}$ entonces:

$$A(\theta, \phi) = \sum_{m=1,3,5}^{N-1} \left[k_m e^{-j(\delta m - \beta S m)/2} + k'_m e^{-j(\delta' m + \beta S m)/2} \right]$$
(22)

Se realiza muchas simplificaciones para el caso de importa<u>n</u> cia práctica de arreglos uniformes cuyas condiciones se hallan especificadas en la ecuación (2).

Por tanto:

$$k_m = k_m = 1 \qquad (23)$$

$$\int \delta_m = \delta_m = 2\pi m t \, .$$

También se tiene que la distancia de separación entre ele mentos "d" referida a longitudes de onda, denominada "separación normalizada" es:

$$m = \frac{d}{\lambda} = \frac{\beta d}{2\pi}$$
(24)

Con las ecuaciones (23) y (24), (21) y (22) se transforman por medio de la relación de Euler $e^{jx} = \cos x + j \sin x$ en:

$$A(\theta, \phi, m, t) = 1 + 2 \sum_{m=1}^{\frac{1}{2}(N-1)} \cos 2\pi m(n \sin \theta \cos \phi - t)$$
 (25)

siendo N un número impar,

У

$$A(\theta, \phi, n, t) = 2 \sum_{i=1,3,5}^{N_{\pm} *} \cos 2\pi (\pi i/2) (n \text{ sen} \theta \cos \phi - t)$$
 (26)

cuando N es un número par,

Teniendo presente que: $\dot{L} = 2m - 1$ la última ecuación puede ser escrita de la siguiente manera:

$$A(\theta,\phi,\eta,t) = 2 \sum_{m=1}^{\frac{1}{2}N} \cos \pi (2m \cdot 1)(\eta \operatorname{sen} \theta \cos \phi \cdot t) \quad (26-a)$$

donde m= 1,2,3,4,....

Las expresiones (25) y (26) se convierten en:

$$A(\theta,\phi,\eta,t) = \frac{sen N\pi(\eta sen \theta \cos \phi - t)}{sen \pi(\eta sen \theta \cos \phi - t)}$$
(27)

Consecuentemente el factor del arreglo por elemento o factor normalizado del arreglo es:

$$\alpha(\theta,\phi,\eta,t) = \frac{Sen N\pi(\eta Sen\theta cos\phi - t)}{N Sen \pi(\eta Sen\theta cos\phi - t)}$$
(28)

Se ha creído conveniente llevar a cabo un análisis de este factor y se lo puede encontrar en el Apéndice C.

Los dos casos más importantes de arreglos lineales paralelos son:

- <u>a.-</u> <u>Caso de radiación normal al eje del arreglo (Broadside</u>)
 Aquel que "eléctricamente requiere flujo de corrien tes de igual amplitud y la misma fase en los termina les de entrada." ^[4]
- b.- <u>Caso de radiación paralela al eje (End-fire</u>)

Si la fase de la corriente de base entre elementos su

cesivos es igual a la distancia eléctrica, ^[5] entonces la fase de las corrientes es igual a la separación normalizada entre los elementos.^{*}

2.2 ELEMENTOS ALIMENTADOS EN FASE O CASO BROADSIDE

De la definición de este caso se tiene que t=0 debido a que: $\delta m = -\delta m' = 0$,

luego el factor del arreglo por elemento según la ecuación (28) se transforma en:

$$\Omega_{B}(\theta,\phi,\eta) = \frac{Sen N\pi (\eta Sen \theta cos \phi)}{N_{Sen} \pi (\eta Sen \theta cos \phi)}$$
(28-a)

2.2.1 Configuraciones de Campo

Es conveniente obtener dos expresiones para las co<u>n</u> figuraciones de campo. Una en el plano horizontal y otra en el plano vertical. Ordinariamente las configuraciones -

 En general para el caso de elementos alimentados con fase distinta, "δm" puede tener cualquier valor. De pendiendo del mismo para que se produzca la máxima radiación en un ángulo Ø determinado. El caso de mayor importancia práctica es el denominado "end-fire" que ocurre cuando:

$$\delta m = -\beta dm$$

$$2\pi m t = -\frac{277}{\lambda} m d; \quad t = -n$$

o sea:

relativas son suficientes pero en esteanálisis se consideran configuraciones absolutas.

Considerando la ecuación (27) en la (20) se obtiene:

$$E_{\theta \tau} = j \, \eta \, I_{\theta} \, \frac{e^{-j\beta R}}{2\pi R} \, F_{\theta}(\theta, \beta h) \, A(\theta, \phi, \eta, t) \,, \qquad (29)$$

y si los elementos son dipolos de media longitud de onda,

$$\beta h = \frac{\pi}{2} ;$$

(29) se convierte en:

$$E_{\theta T} = j \eta I_{\theta} \frac{e^{-J\beta R}}{2\pi R} \frac{\cos(\pi/2\cos\theta)}{\lambda e n \theta} \frac{\beta e n N \pi (n \delta e n \theta \cos \phi - t)}{\beta e n \pi (n \delta e n \theta \cos \phi - t)}$$
(30)

La configuración en el plano horizontal para el caso Broa<u>d</u> side se la puede analizar si se reemplazan las siguientes condiciones en la ecuación (30):

t=0 y $\theta=\pi/2$ con lo cual

$$/E_{\theta T} = j \, \gamma \, \frac{I_o \, e^{-j\beta R}}{2\pi R} \, \frac{sen \, N\pi(n \cos \phi)}{sen \, \pi(n \cos \phi)} \, , \qquad (31)$$

y en magnitud:

$$|E_{\theta T}| = K_{I} \left| \frac{Sen(N\pi(n\cos\phi))}{Sen(Tr(n\cos\phi))} \right|$$
(32)

de donde:

$$K_{1} = \frac{m I_{0}}{2\pi R} = \frac{30 I_{0}}{R}$$

Esta expresión puede ser llamada configuración absoluta de campo en el plano horizontal. El campo eléctrico en todos los puntos sobre este plano está polarizado verticalmente.

2.2.2 Análisis de la ecuación (31)

a.- Simetría con respecto al eje polar

Al reemplazar ϕ por ϕ se tiene que:

$$E_{\Theta T}\Big|_{+\phi} = E_{\Theta T}\Big|_{-\phi}$$

por lo cual la curva es simétrica con respecto al eje polar.

b.- Simetría sobre la línea de noventa grados con rela ción al eje polar.

Si se reemplaza ϕ por π - ϕ se tiene:

$$E_{\Theta T} |_{\phi} = E_{\Theta T} |_{\pi - \phi}$$

ya que:

$$\frac{\operatorname{sen} \operatorname{NT}\left[\operatorname{n} \cos\left(\operatorname{T}-\phi\right)\right]}{\operatorname{sen} \operatorname{T}\left[\operatorname{n} \cos\left(\operatorname{T}-\phi\right)\right]} = \frac{\operatorname{sen}\left(\operatorname{NT} \cos\phi\right)}{\operatorname{sen}\left(\operatorname{T} \cos\phi\right)},$$

por tanto existe simetría con respecto a la línea de noventa grados. 001591 c.- Valores extremos

Según la ecuación (c-8) del Apéndice C se puede ver que la máxima radiación ocurre cuando:

NTT n cos
$$\phi = 0$$

Es decir si $\phi = \pi/_2$. Por esta razón es conocido como - "broadside." ^[6]

Los máximos secundarios ocurren cuando

$$\pi(n\cos\phi) \equiv \pm \pi q$$

y tienen un valor de: $Aen \theta \cos \phi = \frac{q}{n}$, q = 0, 1, 2, ...Los ceros ocurren cuando

NTT
$$\omega_{3}\phi = \pm pTT$$
 donde p=1,2,3,4, o sea $\omega_{3}\phi = \pm \frac{p}{Nn}$

2.2.3 <u>Programa para la computación de</u>: $\underline{sen(N\pi n \cos \phi)}$

De la ecuación (31) se puede distinguir claramente – que la configuración horizontal depende específicamente del factor del arreglo: $\frac{Se\pi (N\pi n \cos \phi)}{Se\pi (\pi n \cos \phi)}$

Con esta condición se cree necesario realizar un programa que permita un cálculo inmediato de este factor por medio de una computadora. Este programa consta de dos lazos principales: el uno que permite el cálculo de la configuración relativa en el plano horizontal, y el otro que -
da la resistencia de radiación.

A fin de poder usar la computadora 1130 disponible en la "Universidad Central del Ecuador", se utilizó el idioma FORTRAN y se unificó los casos "broadside["], ^end-fire" con sus variaciones propias.

er.

Se incluye además un diagrama de flujo previo al programa con el objeto de clarificar el desarrollo. Este diagrama se muestra en las páginas 28, 29 y 30.

La intensidad $E_{\theta T}$ como función de θ desde el arreglo a una distancia R₀ en el plano vertical (plano y-z en la Fig. 2.1) viene dada por la ecuación (30) al reemplazar $\phi = \pi/_2$ y t=0

$$E_{\theta T} = \lim_{\phi \to T/2} \left\{ j K_{1} e^{-J/3R} \frac{\cos(T/2\cos\theta)}{\sin\theta} \frac{\sin N\pi(n \sin\theta\cos\phi)}{\sin\theta} \right\}$$
(33)

con la Regla de L'Hôspital se tiene:

$$\overline{E}_{\theta T} = j K I e^{-j \beta R} N \frac{\cos(\pi/2 \cos\theta)}{\sin\theta}$$
(34)

Como se puede ver, la forma de esta configuración es independiente del ángulo ϕ . Puede ser por tanto denominada – configuración absoluta de campo en el plano vertical. Esta configuración tiene la misma forma que la configuración – vertical de un sólo elemento (dipolo de media longitud de onda) y es independiente de la separación "d".

2.2.4 Análisis de la ecuación (34)

Considerando la ecuación (8), la magnitud de (34) puede ser escrita de la siguiente manera:

$$\left| E_{\theta T} \right| = K_1 N \left| F_0(\theta, T/2) \right|$$
 (34 a)

donde

$$F_{0}(\theta, \pi/2) = \frac{\cos(\pi/2 \cos\theta)}{\sin\theta}$$
(35)

Se puede tener una buena aproximación para esta última ecu<u>a</u> ción descomponiendo en un sumatorio en forma de una serie de Fourier y escogiendo unicamente el primer término. ^[7] Esto da como resultado:

$$F_{0}\left(\theta, \pi/2\right) \stackrel{\simeq}{\simeq} 0.954 \text{ sen}\theta \tag{36}$$

por tanto:

$$E_{\theta T} = j \kappa_{1} e^{-j\beta R} N \left(\beta \cdot 954 \text{ sen } \theta \right)$$
 (34-b)

La configuración del campo depende directamente de la función sen θ y posee las siguientes características:

- a.- Simetría con respecto al eje polar
 Dado que la función seno es una función impar, la ecu<u>a</u>
 ción (34-b) no es simétrica con respecto al eje polar.
- b.- Simetría sobre la línea de 90 grados:

ya que sen $Aen(\pi - \theta) \equiv Aen \theta$

se tiene que existe simetría con respecto a una línea que pase por el polo (punto cero) y sea perpendicular al eje polar.

c.- Valores extremos

El máximo ocurre cuando $\theta = \pi/2 \gamma \theta = 3\pi/2 \gamma$ depende del núm<u>e</u> ro de antenas que se consideren en el arreglo. Cuando $\theta = 0, \theta = \pi$ el valor de la configuración de campo - es cero.

La ecuación $NF_{0}(\theta, \pi/2)$ se encuentra tabulada en la tabla -(2.1) para valores de N comprendidos entre 2 y 10. Se han dibujado las configuraciones horizontales para los casos de N=2,3,4,5 (Figs. 3.12, 3.13, 3.14, 3.15)

TABLA 2.1. VALORES DE N Fo $(\theta, T/2)$ CON Fo $(\theta, T/2) \stackrel{\sim}{=} 0.954$ sen θ

	#	₩. ₽.₩₩₩₩ ₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩			N	646600 966 84 - 765 - 66	ann in miù-anglean	an a	a Nindi Cargorin Marine ang ka
GRADOS	2	3	4	5	6	7	. 8	9	10
0	0	0	0	0	0	0	0	0	0
5	0.1663	.2494	•3326	.4158	•4989	•5821	.6652	.7484	.8315
10	.3313	.4970	.6626	.8283	.9940	1.1596	1.3253	1.4909	1.6566
15	.4938	.7407	.9877	1.2346	1.4814	1.7284	1.9753	2.2222	2.4691
20	•6526	.9789	1.3051	Í.6314	1.9577	2.2840	2.6103	2.9366	3.2628
25	.8064	1.2095	1.6127	2.0159	2.4190	2.8223	3.2254	3.6286	4.0318
.30	.9540	1.4310	1.9080	2,3850	2.8620	3.3390	3.8160	4.2930	4.770
35	1.0944	1.6416	2.1888	2.7360	3.2832	3.8304	4.3776	4.9248	5.4720
40	1.2264	1.8397	2.4529	3.0661	3.6793	4.2926	4.9058	5.5189	6.1322
45	1.3492	2.0237	2.6983	3.372₽	4.0474	4.7220	5•3967	6.0712	6.7458
50	1.4616	2.1924	2.9232	3.6540	4.3848	5.1156	5.8464	6.5772	7.3080
55	1.5629	2.3444	<u>3</u> .1259	3.9073	4.6888	5.4703	6.2518	7.0332	7.8147
60	1.6524	2.4786	3.3048	4.1310	4.9572	5.7833	6.6095	7.4357	8.2619
65	1.7311	2.5966	3.4621	4.3276	5.1932	6.0587	6.9242	7.7897	8.6553
70	1.7929	2.6894	3.5859	4.4823	5.3788	6.2752	7.1717	8.0682	8.9646
7 5 ·	1.8430	2.7645	3.6860	4.6075	5.5290	6.4505	7.3720	8,2935	9.2150
80	1.8790	2.8185	3.7580	4.6975	5.6371	6.5766	7.5161	8.4556	9.3951
85	1.9007	2.8511	3.8015	4.7518	5.7022	6.6526	7.6029	8.5533	9.5036
90	1.908	2.862	3.816	4.770	5.724	6.678	7.632	8.586	9.54
			``			• •			

34

2.2.5 Ganancia del arreglo

Se define como ganancia de una antena: "la relación entre la potencia necesaria a la entrada de una antena de referencia y la potencia suministrada a la entrada de la antena en cuestión, a fin de que ambas produzcan en una d<u>i</u> rección dada el mismo campo a la misma distancia. Salvo i<u>n</u> dicación contraria, la cifra que expresa la ganancia de una antena se refiere a la dirección del lóbulo principal de radiación."

Generalmente la antena de referencia se toma a la a<u>n</u> tena isotrópica, dipolo de media longitud de onda o la antena vertical corta.

Ganancia isotrópica o absoluta de una antena: "ganancia (G_{15}) de una antena en una dirección dada cuando la antena de referencia sea una antena isotrópica aislada en el espacio." Ganancia relativa de una antena: "ganancia -(Gd) de una antena en una dirección dada, cuando la antena de referencia sea un dipolo de media longitud de onda sin pérdidas aislado en el espacio y cuyo plano ecuatorial contenga la dirección dada." Ganancia con relación a una antena vertical corta: "ganancia (Gv) de una antena en una dirección dada, cuando la antena de referencia sea una antena vertical ideal, de longitud mucho menor que un cuar to de longitud de onda y situada en la superficie de una tierra plana perfectamente conductora." ^[8]

De acuerdo con las definiciones indicadas anterio<u>r</u> mente y teniendo presente el caso práctico se analizará la ganancia relativa del arreglo. Para este análisis es necesario encontrar la potencia de radiación.

La potencia total de radiación se obtiene por int<u>e</u> gración de la componente normal del vector de Poynting " \overline{S} " sobre una esfera de gran radio del valor R.

$$W = \int_{0}^{2\pi} \int_{0}^{\pi} SR^{2} sen \theta \, d\theta \, d\phi \tag{37}$$

$$\overline{S} = \overline{E} \times \overline{H}$$
(38)

la componente normal de \overline{S} vale:

$$Sr = E_{\theta} H \phi = \frac{1}{2} E_{\theta}^{2}$$
 ya que $\frac{E_{\theta}}{H_{\phi}} = 2$ (39)

para los componentes de radiación de campo. Introduciendo $E_{\theta T}$ dado por (30) en (37) se tiene:

$$S_r = \frac{30 I_o^2}{\pi R^2} \left[F_o(\theta, \pi/2) A(\theta, \phi, n, t) \right]^2$$
, de donde (39-a)

$$W = \frac{30 L_0^2}{\pi R^2} \int_0^{2\pi} \int_0^{\pi} F_0^2(\theta, \pi/2) A^2(\theta, \phi, \pi, t) se \pi \theta \, d\theta \, d\phi \qquad (37-a)$$

El vector de Poynting es justamente el producto de los valores máximos en el tiempo de las intensidades de – campo E_{θ} y $\#\phi$. El valor promedio (en tiempo) del vector – de Poynting será pues la mitad del valor máximo, o sea:

$$W_{AV} = \frac{30 I_o^2}{2\pi} \int_0^{2\pi} \int_0^{\pi} F_o^2(\theta, \pi/2) A^2(\theta, \phi, \eta, t) sen \theta d\theta d\phi \quad (37-b)$$

La expresión (37-b) luego de integrada [9] toma la forma de:

$$W_{AV} = \frac{30 I_{p}^{2}}{2 \pi} (0.945)^{2} \left[\frac{8\pi N}{3} + 4\pi \sum_{\tau=2}^{2N-2} (2N-\tau) \cos(\tau \pi t) \Lambda(\tau \pi \tau) \right] \quad (37-c)$$

donde $r = 2, 4, 6, 8, \dots$ entero par y la función \land queda definida por:

$$\wedge (\tau, \pi, n) = \frac{sen(\tau \pi n)}{\tau \pi \eta} - \frac{sen(\tau \pi n)}{(\tau \pi n)^3} + \frac{cos(\tau \pi n)}{(\tau \pi n)^2}$$

Para el caso "broadside" se tiene que t=0, entonces:

$$W_{AV} = \frac{30 I_0^2}{2\pi} (0.945)^2 \left[\frac{8\pi N}{3} + 4\pi \sum_{r=2}^{2N-2} (2N-r) \wedge (r\pi n) \right] \quad (37-d)$$

La resistencia externa o de radiación, referida a la corriente sinusoidal máxima viene dada por

$$R_{0} = \frac{60}{2\pi} (0.945)^{2} \left[\frac{8\pi N}{3} + 4\pi \sum_{r=2}^{2N-2} (2N-r) \wedge (r\pi n) \right]$$
(40)

Luego para este caso particular se tiene que:

$$R_0 = \frac{2W}{I_0} \tag{40-a}$$

La ganancia relativa de una antena en la dirección de su máximo (llamada directividad relativa Dr) viene dada por:

ya que el máximo principal ocurre cuando: $\phi = \pi/2$. La potencia suplida por el arreglo (considerando al arreglo como una sóla antena con iguales características de radiación) es: $P_N = 4/2 I_0^2 R_{in}$

donde Rin es la resistencia de entrada.

"En la práctica la resistencia ohmica de la antena puede ser completamente despreciada en comparación con su resistencia de radiación. Es decir que se puede considerar a la antena con una conductividad infinita". [10]

"La resistencia de radiación de una antena en fun ción de su diámetro es constante, siempre que el diámetro sea pequeño comparado con la longitud de la antena." [11] Por tanto $Rin \cong Ro$

La potencia suplida por un elemento aislado es:

$$P_1 = \frac{1}{2} IIR_1$$

donde R_1 es la resistencia de una antena aislada, que para el caso de un dipolo de media longitud de onda tiene un valor de 73 Ω .^[12] Para una potencia constante $P_N = P_1$ tal que:

$$I_{1/I_{0}} = (R_{0}/R_{1})^{4/2}$$
 (42)

Considerando la ecuación (42) en la (41) se tiene que:

$$Gd = \frac{R_{1}}{R_{0}} A^{2} (\pi/2, \pi/2, n) = \frac{R_{1}}{R_{0}} N^{2}$$
(41-a)

debido a que

$$A^{2}(\pi/2,\pi/2,m) = N^{2}$$

La ganancia en decibeles es:

$$G = 10 \log Gd$$
 (43)

o sea:

$$G = 10 \log \left\{ \frac{R_1}{R_0} N^2 \right\}$$
(43-a)

La resistencia de radiación se ha calculado para N=2 a -N=10 por medio de la computadora IBM 1130 y se halla tab<u>u</u> lada conjuntamente con la ganancia relativa en las tablas (2.2) (2.3).

El programa FORTRAN necesario para que trabaje la computadora se incluye en el programa general que se ilu<u>s</u> tra en las páginas 28, 29 y 30.

TABLA 2.2VALORES DE LA RESISTENCIA DE RADIACION MEDIDA
EN OHMIOS.

	Reistencia de radiación "Caso Broadside"										
N⊙		γ° = .050	२ =0.75	? =1.00							
2	224.02	121.16	99.451	148.31							
3	354.89	176.32	125.04	226.54							
4	442.33	229.06	165.73	305.37							
5	535.20	283.16	207.01	384.54							
6	654.91	336.39	239.22	463,92							
7	772.21	390.23	271.15	543.46							
8	870.18	443.62	309.58	623.11							
9	969.51	497.35	348.16	702.84							
10	1083.90	550.81	381.69	782.64							

TABLA 2.3 VALORES DE LA GANANCIA RELATIVA EN

LA DIRECCION DE SU MAXIMA RADIACION.

5

"DIRECTIVIDAD RELATIVA".

	Directivad caso Broadside en dB										
NQ	η =0.25	η =0.50	η =0.75	<i>η</i> = 1.00							
2	1,153	3.82	4.677	2.940							
3	2.674	2.712	7.205	4.624							
4	4.224	7.075	8.480	5.825							
5	5,33	8.092	9.453	6.763							
6	6.035	8 .93	10.408	7.531							
7	6.66	9.621	11.202	8.183							
8	7.229	10.225	11.787	8.749							
9	7.853	10.751	12.299	9.249							
10	8.462	12,222	12.818	9.697							

1

2.3 ELEMENTOS ALIMENTADOS EN FASE DISTINTA

De la definición del caso "end-fire" se sabe que -t=n En el presente trabajo se considera unicamente t=90. Considerando t=tE en (28) se tiene que el factor del arr<u>e</u> glo por elemento está dado por la siguiente expresión:

$$Q_{E}(\theta, \phi, t_{E}, t_{E}) = \frac{S \ell n \left[N \pi t_{E} \left(s un \theta \cos \phi - I \right) \right]}{N s \ell n \left[\pi t_{E} \left(s un \theta \cos \phi - I \right) \right]}$$
(28-b)

2.3.1 Configuraciones de campo

La configuración en el plano horizontal (plano – ecuatorial) se obtiene, si $\theta = \frac{\pi}{2}$ y depende del factor – del arreglo.

Por tanto la ecuación (30) se convierte en:

$$E_{\theta T} = j K_{I} \frac{\text{sem } [N \pi t_{E} (sem \theta \cos \phi - I)]}{sem [\pi t_{E} (sem \theta \cos \phi - I)]} e^{-J\beta R}$$
(44)

y en magnitud:

$$\left| E_{\theta T} \right| = \kappa_{1} \frac{sem \left[N\pi t_{E} \left(sem \theta \cos \phi - 1 \right) \right]}{sem \left[\pi t_{E} \left(sem \theta \cos \phi - 1 \right) \right]}$$
(45)

2.3.2 Análisis del factor del arreglo

- a.- Simetría respecto al eje polar
 Ya que la función coseno es par, resulta que el arreglo es simétrico con respecto al eje polar.
- b.- Simetría sobre la línea de noventa grados
 El factor del arreglo no es simétrico con respecto al eje de noventa grados.

Esto se deduce porque:

 $\cos (\pi - \phi) = -\cos \phi$ y entonces cambian la magnitud y el signo de la ecuación (28-b).

c.- Valores extremos

El máximo principal ocurre cuando:

 $N\pi t_E (sen \Theta \cos \phi - 1) = 0;$ entonces $\Theta = \pi/2$, $sen \Theta \cos \phi = 1$

Es siempre conveniente localizar los valores princip<u>a</u> les en el plano ecuatorial $\theta = \pi/2$.

por tanto $\cos \phi = \pm i$; $\phi = 0$

La máxima radiación sucede en el plano ecuatorial y sobre el eje paralelo al elemento central (eje y). Los valores secundarios se consiguen si

 $\pi t_{E} (sem \Theta \cos \phi_{-1}) = \pm \pi q$, q = 1, 2, ...

luego $\beta en \theta \cos \phi = 1 \pm \frac{9}{t_E}$

considerando el plano de $\theta = \frac{\pi}{2}$

٩.

43

Los ceros están definidos por

$$N\pi t \in (sen \theta \cos \phi - 1) = \pm p\pi \qquad p = 1, 2, \dots$$

$$\theta = \pi/2 \qquad \cos \phi = 1 \pm P/Nt =$$

El factor del arreglo se ha programado, calculado, y los resultados se muestran en las tablas indicadas en las pág<u>i</u> nas: 48......84.

La configuración absoluta de campo en el plano vertical es obtenida cuando ϕ toma el valor de $\pi/_2$ Con esta condición la ecuación (30) se convierte en

$$E_{\theta T} = j \eta \frac{I_0 e^{-j\beta R}}{2\pi R} \frac{\cos(\pi/2\cos\theta)}{\sin\theta} \frac{sem(N\pi t_E)}{sem(\pi t_E)}$$
(46)

En la ecuación (46) se puede notar claramente que $\frac{Aerr(N\pi te)}{Aerr(\pi te)}$ es una expresión que en ningún caso depende de θ y para c<u>a</u> da número de elementos tiene un valor determinado. Por esta razón es considerada constante y el análisis pertinente de la ecuación (46) es similar al presentado para el caso "broadside" en el numeral 2.2.4.

2.3.3 Ganancia del arreglo tipo "end-fire"

Se puede encontrar la potencia total radiada a partir de la ecuación (37-c) con las siguiente condiciones: luego:

$$Way = \frac{30I_0^2}{2\pi} (0.945)^2 \left[\frac{8\pi N}{3} + 4\pi \sum_{r=2}^{2N-2} (2N-r) \cos(r\pi t_e) \Lambda(r\pi t_e) \right]$$
(47)

Para este caso la resistencia de radiación queda determinada en una forma similar a la que se llevó a cabo para el caso "broadside", por lo tanto:

$$R_{0} = \frac{60}{2\pi} \left[(0.945)^{2} \left[\frac{8\pi N}{3} + 4\pi \sum_{r=2}^{2N-2} (2N-r) \cos(r\pi t_{e}) \wedge (r\pi t_{e}) \right]$$
(48)

El cálculo de la resistencia de radiación para este tipo de arreglo se halla tabulada en forma aproximada, debido a que (48) es también una fórmula aproximada, en la tabla (3.5).

Si se considera que la dirección de máxima intensidad de campo para el caso "end-fire" ocurre cuando ϕ es c<u>e</u> ro, o 180 grados, la ecuación (41) se transforma en:

$$Gd = \frac{R_1}{R_0} A^2 \qquad [\pi/2, \{\frac{0}{\pi}\}, t_E, t_E]$$
(49)

(43) por tanto es

$$G = 10 \log \frac{R_1}{R_0} A^2 |_{\pi/2}, \{ \begin{array}{c} n \\ m/2 \end{array}, \{ \begin{array}{c} n \\ m/2 \end{array}, t \in t \in t \in t \in t \in t \in t \\ (50) \end{array} \right)$$

ı.

Las tabulaciones de las ecuaciones (49) y (50) de encuentran en las tablas ilustradas en las páginas 47 - 48 para un número de elementos desde N=2 hasta N=10. Y los grá ficos obtenidos se muestran en las figuras 3.16, 3.17, 318 y 3.19, y 3.20.

16.10

TABLA 2.4. VALORES DE LA RESISTENCIA DE RADIACION MEDIDA EN OHMIOS.

Resistencia de Radiación "Caso End-fire"										
No	≈ =0.25	2=0.50	2 =0.75	2=1.00						
2	142.88	186.31	142.88	153,74						
3	257.76	312.04	219.15	238.75						
4	372.62	442.59	295.42	324.97						
5	498.36	575.86	372,89	411.87						
6	624.09	710.87	450.37	499.20						
7	754.65	847.08	528.38	586.83						
8	885.20	948.17	606.39	674.69						
9	1018.47	1121.95	684.70	762.71						
10	1151.74	1260/27	763.01	850.87						

TABLA 2.5VALORES DE LA GANANCIA RELATIVA EN LADIRECCION DE SU MAXIMA RADIACION. "DIRECTIVIDAD RELATIVA".

	Directivad	relativa "Cas	so End-fire"	en dB
N≌	¶=0•25	¶=0.50	¶ =0.75	η̃ = 1.00
2	3.103	1.965	3.103	2.935
3	4.028	3.218	4.813	4.624
4	4.946	4.229	6.041	5.826
5	5.562	4.994	6.989	6.763
6	6.232	5.627	7.766	7.531
7	6.784	6.126	8.424	8.184
8	7.203	6.942	8.992	8.749
9	7.654	7.203	9.489	9.230
10	8.048	7.608	9.948	9.688

LOBULO DE RADIACION DE ARREGLOS BROADSIDE Y ENDFIRE

JOSE LUIS HIDALGO B.

ETA = 0.25

BROADSIDE

A

Ν	Ŧ	2	R1	ŧ	224.02719	OHMIOS	R2	2 =	142.88424	OHMIOS
		5			1.41843				1.99	999
		10			1.43098				1.99	985
		15			1.45154				1.99	928
		20			1.47958				1.99	775
		25			1.51435				1.99	458
		30			1.55492				1.98	893
		35			1.60016				1.97	986
		40			1.64880				1.96	633
		45			1.69941				1.94	731
		50			1.75049				1.92	180
		55			1.80046				1.88	888
		60			1.84774				1.84	776
		65			1.89082				1.79	787
		70			1.92826				1.73	884
		75			1.95881				1.67	061
		80			1.98142				1.59	338
		85			1.99531				1.50	765
		95			1.99531				1.31	420
		100			1.98143				1.20	884
		105			1.95883				1.09	963
		110			1.92828				0.98	820
		115			1.89085				0.87	622
		120			1.84777				0.76	541
		125			1.80049				0.65	741
		130			1.75052				0.55	382
		135			1.69944				0•45	607
		140			1.64883				0.36	547
		145			1.60019				0.28	316
		150			1.55494				0.21	009
		155			1.51437	•			0.14	707
		160			1.47960				0.09	472
		165			1.45156				0.05	354
		170			1.43099				0.02	388
		175			1.41844				0.00	598

ETA = 0.25

BROADSIDE

ENDFIRE

.

Ν	2	3	R1 =	354.89740	OHMIOS	R2	£	257.75653	OHMIOS
		5		1.01195				2.99	996
		io		1.04772				2.99	943
		15		1.10699				2.99	713
		20		1.18917				2.99	103
		25		1.29327				2.97	838
		30		1.41778				2.95	587
		35		1.56052				2.91	984
		40		1.71854				2.86	646
		45		1.88800				2.79	205
		50		2.06422				2.69	335
		55		2.24166				2.56	788
		60		2•41418				2.41	424
		65		2.57522				2.23	234
		70		2.71821				2.02	359
		75		2.83695				1.79	095
		80		2.92603				1.53	886
		85		2.98127				1.27	303
		95		2.98129				0.72	713
		100		2.92608				0•46	129
		105		2.83701				0.20	920
		110		2.71829				− 0•02	345
		115		2.57531				-0.23	222
		120		2.41428				-0•41	414
		125		2.24177				-0.56	779
		130		2.06432				-0.69	328
		135		1.88811				-0.79	199
		140		1.71864				-0.86	642
		145		1.56061				-0.91	981
		150		1.41786				-0+95	585
		155		1.29334				-0.97	836
		160		1.18923				-0.99	102
		165		1.10703				-0.99	713
		170		1.04775				-0.99	942
		175		1.01197				-0.99	996

ETA = 0.25

BROADSIDE

Ν	121	4	R1 =	442•33545	OHMIOS	R2	Ħ	372.62915	OHMIOS
		5		0:01696				3.99	991
		10		0.06829				3.99	857
		15		0.15530				3.99	284
		20		0.27990				3.97	760
		25		0.44412				3.94	605
		30		0.64962				3.89	012
		35		0.89693				3.80	103
		40		1.18473				3.67	009
		45		1,50909				3.48	969
		50		1.86290				3+25	429
		55		2.23557				2.96	156
		60		2.61305				2.61	320
		65		2.97847				2.21	560
		70		3.31317				1.77	987
		75		3.59825				1.32	137
		80		3:81630				0.85	861
		85		3:95326				0•41	164
		95		3.95332				-0.35	859
		100		3.81640				-0.65	120
		105		3.59840				-0.86	959
		110		3.31336				-1.01	138
		115		2.97868				-1.07	970
		120		2.61328				-1.08	240
		125		2.23580				-1.03	070
		130		1.86313				-0•93	777
		135		1.50929				-0.81	728
		140		1.18491				~ 0•68	213
		145		0.89709				-0.54	362
		150		0.64975				-0.41	091
		155		0.44423				-0.29	096
		160		0.27998				-0.18	859
		165		0.15537				-0.10	692
		170		0.06833				-0.04	774
		175		0.01698				-0.01	197

ETA = 0.25

BROADSIDE

N	=	5	R1 =	535.20202	OHMIOS	R2	×	498.35894	OHMIOS
		5		-0.98789				4.999	782
		10		-0.94999				4.99	715
		15		-0.88155				4.985	568
		20		-0.77503				4.95	524
		25		-0.62071				4.892	237
		30		-0.40767				4 • 78	133
		35		-0.12528				4.60	566
		40		0.23484				4 • 350	017
		45		0.67656				4.003	349
		50		1.19678				3.560	079
		55		1.78339				3.020	516
		60		2.41408				2.414	434
		65		3.05654				1.75	102
		70		3.67047				1.07:	134
		75		4.21135				0.416	556
		80		4.63566				-0.170	075
		85		4.90672				-0.652	241
		9 5 ·		4.90684				-1.198	340
		100		4.63588				-1.248	350
		105		4.21164				-1.16	543
		110		3.67082				-0.97	599
		115		3.05693				-0.713	384
		120		2•41447				-0.414	434
		125		1.78377				-0.109	980
		130		1.19712				0.17	391
		135		0.67685				0.41	925
		140		0.23508				0.61	712
		145		-0 .12 509				0.76	588
		150		-0.40752				0.869	952
		155		-0.62060				0.93	557
		160		-0.77496				0.973	316
		165		-0.88150				0.993	140
		170		-0.94996				0.99	528
		175		⊷ 0∙98788				0.999	989

ETA = 0.25

BROADSIDE

Ν	3	6	R1 ≃	654.91455	OHMIOS	R2	±	624.08923	OHMIOS
		5		-1.41823				5 • 9 9 9	968
		10		-1.42772				5.99	501
		15		-1.43493				5.974	+96
		20		-1.42663				5.92	177
		25		-1.38410				5.81	221
		30		-1.28352				5.619	966
		35		-1.09741				5.31	754
		40		-0.79752				4.88	378
		45		-0.35932				4.300	539
		50		0.23205				3.58	386
		55		0.97537				2.75	450
		60		1.84757				1.84	795
		65		2.80092				0.93	252
		70		3.76447				0.08	302
		75		4.65100				-0.62	546
		80		5.36892				-1.13	070
		85		5.83719				-1.39	526
		95		5.83739				-1.210	535
		100		5.36928				∽0 ∎85	303
		105		4.65150				-0.41	196
		110		3.76505				0.046	589
		115		2.80151				0•454	421
		120		1.84813				0•76	525
		125		0•97586				0.95	851
		130		0.23246				1.03	409
		135		-0.35901				1.00	549
		140		-0.79730				0.90	767
		145		-1.09726				0.76	049
		150		- 1•28343				0+59	360
		155		-1.38406				0.42	855
		160		-1.42662				0.280	078
		165		-1.43493				0.16	001
		170		-1.42773				0.07	158
		175		-1.41823				0.01	796

ETA = 0.25

BROADSTDE

D	R	Un	ω	3	7	ν	5	

Ň	8	7	R1 =	772:21423	OHMIOS	R2	=	754•64453	OHMIOS
		5		-1.02377				6 4 9 9 9	50
		10		-1.09306				6.993	203
		15		-1.20131				6.950	
		20		-1.33570				6.87	503
		75		-1.47531				6.700	159
		30						6.30	593
		25		-1.63075				5.022	222
		40		-1.54979				5.252	208
		45		-1.29721				4.383	242
		45 50		-1-20721				2.234	L-72
		50		+0.02727				2.174	551
		55		0.00077				2.0110	272
		60		2,23052				-0.074	447
		70		2.58844				-0.07-	407
		70		4,80010				-0.920	147
		80		6.00243				=1.630	188
		25		6.74031				-1.45	116
		05		6.74052				-0.400	113
		100		6.00301				-0.71	126
		105		4.80085				0.71	249
		110		3.58027				1.021	242
		115		2.24022				1.11	297
		120		1.00047				1.000	104
		120		-0.02672				0.73	
		120		-0.79019				0.391	878
		130		-1.28498				0.040	140
		100		-1.54040				-0.28	528
		140		-1.534909				-0.20	556
		180		-1-58815				-0.74	481
		155		-1.47539				-0.87	254
		160		→1.33587				-0.94	556
		165		-1.20139				-0.98	284
		170		→1.09311				-0.99	557
		175		-1.02379				-0.99	978

LOBULO DE RADIACION DE ARREGLOS BROADSIDE Y ENDFIRE

JOSE LUIS HIDALGO B.

ETA = 0.25

BROADSIDE

.

Ν	=	8	R1 =	870.18371	OHMIOS	R2	ŧ	885•20044	OHMIOS
		5		-0.03392				7.999	25
		10		-0.13643				7.988	304
		15		-0.30884				7.939	97
		20		-0.54978				7.812	286
		25		-0.85004				7.552	271
		30		-1.18585				7.10	L26
		35		-1.51205				6.401	783
		40		-1.75778				5.445	533
		45		-1.82817				4.22	758
		50		-1.61595				2.822	290
		55		-1.02448				1.357	120
		60		-0.00024				0.000	25
		65		1.43361				-1.066	641
		70		3.15500				-1.694	+89
		75		4.94542				-1.816	509
		80		6.52445				-1.46	791
		85		7.61183				-0.792	259
		95		7.61229				0.690)49
		100		6.52528				1.113	342
		105		4•94648				1.195	537
		110		3.15609				0.963	338
		115		1.43459				0.520	001
		120		0.00051				0.000	21
		125		-1.02399				-0.472	205
		130		-1.61571				-0.813	323
		135		-1.82814				-0.989	93
		140		-1.75788				-1.011	198
		145		-1.51224				-0.916	38
		150		-1.18606				-0.750	08
		155		-0.85024				-0.556	88
		160		-0.54994				-0.370)44
		165		-0.30896				-0.212	263
		170		-0:13651				-0.095	538
		175		-0.03396	1			-0.023	394

AASE FAIS UINERA DU	JO	SE	LUIS	HIDAL	GO B.
---------------------	----	----	------	-------	-------

ETA = 0.25

BROADSIDE

Ν	#	9	R1 =	969.51001	OHMIOS	RŻ	=	1018.47009 OHMIOS	
		5		0.97565				8.99892	
		10		0.89783				8 • 98292	
		15		0.75302				8.91430	
		20		0.52233				8.73316	
		25		0.18804				8.36396	
		30		-0.25580				7.72813	
		35		-0.78879				6 • 76429	
		40		-1.34843				5.45436	
		45		-1.81961	•			3.85002	
		50		-2.03813				2.08877	
		55		-1.81727				0.38680	
		60		-1.00022				-0.99976	
		65		0.47119				-1.84280	
		70		2.49524				-2.02018	
		75		4.78807				-1.57251	
		80		6.92526				-0.70806	
		85		8.44768				0.25619	
		95		8.44834				1.30759	
		100		6.92642				1•13469	
		105		4.78946				0.60205	
		110		2.49659				-0.07032	
		115		0.47227				-0.65619	
		120		-0.99952				-0.99991	
		125		-1.81696				-1.05028	
		130		-2.03815				-0.84917	
		135		-1 .81984				-0.49217	
		140		-1.34876				-0.08446	
		145		-0.78913				0:29105	
		150		-0.25610				0•58722	
		155		0.18780				0.79064	
		160		0.52216				0.91147	
		165		0.75290				0.97145	
		170		0.89776				0.99430	
		175		0.97562				0•99964	

ETÁ = 0.25

BROADSIDE

N	=	10		R1	=	1083.92090	OHMIOS	R2	Ħ	1151.740	48	OHMIOS
			5			1.41782				9.	998	352
			10			1.42121				9.	976	552
			15			1.40188				9.	882	224
			20			1.32263				9.	633	388
			25			1.13480				9.	129	993
			30			0.78809				8.	269	953
			35			0.24986				6.	984	+52
			40			-0.46551				5.	279	75
			45			-1.26410				3.	269	965
			50			-1.95178				1.	191	131
			55			-2.24744				-0.	626	557
			60			-1.84792				-1.	841	758
			65			-0.54266				-2•	246	571
			70			1.65649				-1.	817	790
			75			4•43351				-0.	810	97
			80			7.19743				0.	339	969
			85			9.24394				1.	178	385
			95			9.24484				1.	027	794
		1	00			7:19896				0.	258	323
		1	05			4.43527				-0.	533	333
		1	10			1.65805				-1.	032	287
		1	15			-0.54158				-1.	Ö94	+99
		1	20			-1.84741				-0.	765	35 6
		1	25			-2.24743				-0.	218	342
		1	30			−1 ₀95211				0.	347	294
		1	35			-1.26458				0•	76	546
		1	40			-0:46599				0.	98:	111
		1	45			0.24948				0.	998	380
		1	50			0.78782				0.	873	345
		1	55			1.13465				0.	673	316
		1	60			1.32255				0.	45(578
		1	65			1:40186				0.	264	464
		1	70			1.42121				0•	119	913
		1	75			1.41783				0.	029	993

ETA = 0.50

BROADSIDE

N	#	2	R1 =	121.16897	OHMIOS	R2	E	186.31399	OHMIOS
		5		0.01195				1.99	996
		10		0.04772				1.99	943
		15		0.10699				1.99	713
		20		0.18917				1.99	103
		25		0.29327				1.97	838
		30		0.41778				1.95	587
		35		0,56052				1.919	984
		40		0.71854				1.86	546
		45		0.88800				1.79	205
		50		1.06422				1.69	335
		55		1.24166				1.56	788
		60		1.41418				1.41	424
		65		1.57522				1.23	234
		70		1.71821				1.02	359
		75		1.83695				0.79	295
		80		1.92603				0.53	386
		85		1.98127				0.27	303
		95		1.98129				-0.27	286
		1.00		1.92608				-0.53	870
		105		1.83701				-0.79	079
		110		1.71829				-1.02	345
		115		1.57531				-1.23	222
		120		1.41428				-1. •41	414
		125		1.24177				-1.56	779
		130		1.06432				-1.69	328
		135		0.88811				-1.79	199
		140		0.71864				-1.86	642
		145		0.56061				-1.91	981
		150		0.41786				-1.95	585
		155		0.29334				-1.97	837
		160		0.18923				-1.99	102
		165		0.10703				-1.99	113
		170		0.04775				-1-99	943
		175		0:01197				… 1.€99	330

F	т	۵	-	۵.	50
L.		~	_	. U I	

BROADSIDE

N	=	3	R1 ≖	176.32455	OHMIOS	R2	2	312.04315	OHMIOS
		5		-0.99985				2.999	985
		10		-0.99772				2.99	772
		15		-0.98855				2.988	355
		20		-0.96421				2.964	+21
		25		-0.91398				2.913	399
		30		-0.82545				2.825	545
		35		-0.68581				2.685	581
		40		-0.48369				2.483	370
		45		-0.21144				2+211	44
		50		0.13256				1.867	743
		55		0.54173				1•458	327
		60		0 • 99990				1.000	09
		65		1.48132				0.518	368
		70		1.95226				0.047	774
		75		2.37439				-0.374	+39
		80		2.70962				-0.709	62
		85		2.92545				-0-925	45
		95		2.92554				-0.92	554
		100		2.70979				-0.709	80
		105		2.37463				-0.374	+63
		110		1.95253				0.047	145
		115		1.48161				0.518	337
		120		1.00019				0.999	79
		125		0.54199				1•457	199
		130		0.13279				1.867	719
		135		-0.21125				2.211	125
		140		-0.48355				2•483	355
		145		-0.68570				2.685	570
		150		-0.82538				2.82	538
		155		-0.91394				2.913	395
		160		-0.96419				Z•964	+20
		170						2.988	556
		170		-0.99771				Z•997	(/ 3
		1/5		-0.99985				Z • 999	785

ETA = 0.50

BROADSIDE

Ν	Ħ	4	R1	¥	229.06756	OHMIOS	R2	÷	442.59741	OHMIOS
		5			-0.02391				3.999	964
		10			-0.09534	•			3.994	+30
		15			-0.21276				3.971	L41
		20			-0.37157				3.910	081
		25			-0.56132				3.786	560
		30			-0.76264				3.570	037
		35			-0.94493				3.230	550
		40			-1.06609				2.769	928
		45			-1.07577				2.170	97
		50			-0.92314				1.468	388
		55			-0.56901				0.718	351
		60			-0.00013				0.000	013
		65			0.75819				⊷0 •593	315
		70			1:63618				-0.974	¥72
		75			2.52470				-1.08	708
		80			3.29281				-0+92	125
		85			3.81485				-0.52	571
		95			3.81507				0.52	540
		100			3.29321				0+92	107
		105			2.52522				1.08	706
		110			1.63673				0.974	488
		115			0.75870				0.59	347
		120			0.00027				0.000	228
		125			-0.55873				-0.718	904
		130			-0.92299				-1e468	541 Dee
		135			m1.07573				-201/0	
		140							-26/0	594
		140			-0.76376				-2.57	0 ∠ 4 010
		150			-0.56144				-305/0	519
		140			-0.37149				30 / 01	175
		165			-0-21285				-3.07	128
		170			-0-21205					429
		176			-0-07394				-3.00	264
		T (D								

ETA = 0.50

BROADSIDE

N	=	5	R1	=	283.16754	OHMIOS	R2	*	575.86572	OHMIOS
		5			0.99957				4.999	28
		10			0.99317				4.988	61
		15			0.96578				4.942	289
		20			0.89391				4.822	235
		25			0.74936				4.577	735
		30			0.50683				4.157	76
		35			0.15614				3 • 527	778
		40			-0.28233				2.685	507
		45			-0.74384				1.679	205
		50			-1.11499				0.619	89
		55			-1.24825				-0.331	171
		60			-1:00009				-0.999	90
		65			-0.28699				-1.249	65
		70			0.85906				-1.045	546
		75			2.26336				-0.485	543
		80 -			3.63245				0.213	319
		85			4.63282				0•781	.91
		95			4.63326				0.782	218
		100			3.63320				0.213	62
		105			2.26424				-0.485	501
		110			0.85985				-1.045	520
		115			-0.28642				-1.249	66
		120			-0.99980				-1.000	20
		125			-1.24823				-0.332	224
		130			-1.11516				0.619	23
		135			-0.74411				1.678	337
		140			-0.28261				2.684	+47
		145			0.15590				3.527	730
		150			0.50665				4.157	742
		155			0.74925				4.577	715
		160			0.89385				4.822	223
		165			0.96575				4.942	284
		170			0.99316				4.988	366
		175			0.99957				4.999	28

LOBULO DE RADIACION DE ARREGLOS BROADSIDE Y ENDFIRE

JOSE LUIS HIDALGO B.

ETA = 0.50

BROADSIDE

N	1 1	6	R1	Ħ	336.39917	OHMIOS	Ŕ	2 *	710.87072	OHMIOS
		5			0.03586				5.99	874
		10			0.14274				5.98	008
		15			0.31610				5.90	022
		20			0.54068				5.69	064
		25			0.78109				5.26	914
		30			0.97439				4.56	170
		35			1.03246				3.53	630
		40			0.86322				2.24	232
		45			0.41522				0+83	797
		50			-0.26345				-0.41	918
		55			-0.98090				-1.23	861
		60			-1.41418				-1.41	424
		65			-1.21028				-0.94	685
		70			-0.16013				-0.09	541
		75			1.63299				0.70	312
		80			3.70344				1.03	613
		85			5.36405				0.73	920
		95			5.36480				-0.73	883
		100			3.70464				-1.03	614
		105			1.63423				-0.70	351
		110			-0.15924				0.09	483
		115			-1.20991				0.94	639
		120			-1•41428				1.41	414
		125			-0.98129				1.23	894
		130			-0.26390				0.41	987
		135			0.41487				-0.83	708
		140			0.85304				-2.24	144
		145			1.03244				~3.53	554
		150			0.97447				-4.56	113
		155			0.78123				-5.26	879
		160			0.54083				-5.69	046
		165			0.31622				~5.90	018
		170			0.14282				~5.98	009
		175			0.03591				-5+99	874

ETA = 0.50

BROADSIDE

ENDFIRE

.

N	3	7	R1	=	390.23376	OHMIOS	R2	Ħ	847.08178	OHMIOS
		5			-0.99914				6.998	300
		10			-0.98635				5.968	315
		15			-0.93196				5.840	065
		20			-0.79163				6.50	791
		25			-0.52028				5.84	702
		30			-0.09975				4.764	436
		35			0.42257				3.263	138
		40			0.90260				1.500	015
		45			1.11257				-0.17	736
		50			0.83461				-1.329	972
		55			0.03030				~1.61 (28
		60			-0.99981				-1.000	019
		65			-1.61946				0.082	280
		70			-1.13421				0.94	780
		75			0.73636				1.041	157
		80			3:50052				0.34	514
		85			5.99484				-0.580	008
		95			5.99601				-0.580	058
		100			3.50225				0.344	455
		105			0.73786				1.04:	134
		110			-1.13348				0•941	314
		115			-1.61956				0+083	349
		120			-1.00039				-0.999	959
		125			0.02969				-1.610	016
		130			0.83427				-1.330	020
		135			1.11256				-0+178	832
		140			0.90283				1•499	900
		145			0.42289				3 • 26	029
		150			-0.09945				4.76	351
		155			-0.52008				5+84(545
		160			-0.79151				6+50	762
		165			-0.93190				6+84(752
		170			-0.98634				6+96	520
		175			-0.99914				5+9 9'	799

LOBULO DE RADIACION DE ARREGLOS BROADSIDE Y ENDFIRE

JOSE LUIS HIDALGO B.

ETA = 0.50

BROADSIDE

N	=	8	R1 =	443.62548	OHMIOS	R2	÷	984.17883	OHMIOS
		5		-0.04781				7.996	599
		10		-0.18981				7.952	225
		15		-0.41581				7.76	149
		20		-0.69044				7.260	583
		25		-0.93368				6.298	349
		30		-1.01606				4.750	582
		35		-0.79560				2.72	305
		40		-0.21467				0.55	766
		45		0.57274				-1.155	381
		50		1.15167				-1.83	249
		55		1.01852				-1.286	513
		60		0.00026				-0.000	27
		65		-1.34073				1.048	389
		70		-1.78868				1.06	55 7
		75		-0.28031				0.120	071
		80		3.03870				-0.850	015
		85		6.51338				-0.89	758
		95		6.51508				0.89	725
		100		3.04098				0.850	53
		105		-0.27875				-0.119	998
		110		-1.78842				-1.06	522
		115		-1.34141				-1.049	27
		120		-0.00055				-0.000	57
		125		1.01816				1.28	547
		130		1.15185				1.83	252
		135		0.57321				1.150	563
		140		-0.21422				-0+550	535
		145		-0.79535				-2.72	363
		150		-1.01603				-4.75	563
		155		-0.93379				~6 •29'	768
		160		-0.69061				-7.260	535
		165		-0.41597				-7.76	126
		170		-0.18992				-7.95	217
		175		-0.04787				-7.996	598
ETA = 0.50

BROADSIDE

N	8	9	R1	z	497•35607	OHMIOS	R2	2	1121.95337	OHMIOS
		5			0.99857				8.00	. 7 1
		10			0.97730				8.021	191
		15			0.88747				8.660	110
		20			0+66101				7.960	158
		25			0.24646				A.613	380
		30			-0.32474				4.530	240
		35			-0.86852				1.970	130
		40			-1:05685				-0.459	229
		45			-0.60396				-1.893	391
		50			0.39101				-1.773	334
		55			1.23437				-0.406	523
		60			1.00018				0.999	980
		65			-0.49249				1.209	979
		70			-1.93912				0.142	291
		75			-1.25130				-0.946	509
		80			2.35213				-0.803	326
		85			6.90996				0.335	501
		95			6.91231				0.335	575
		100			2:35494				-0.802	273
		105			-1.24994				-0.946	546
		110			-1.93954				0.142	206
		115			-0.49358				1.209	944
		120			0.99960				1.000	240
		125			1.23463				-0.40	519
		130			0.39167				-1.772	277
		135			-0.60348				<u>-1.894</u>	436
		140			-1:05678				-0+460	62
		145			-0.86878				1.968	359
		150			-0.32510				4+53	783
		155			0.24615				6.612	268
		160			0.66082				7.959	991
		165			0.88738				8+659	82
		170			0.97727				8+931	177
		175			0.99856				8.995	569

LOBULO DE RADIACION DE ARREGLOS BROADSIDE Y ENDFIRE

JOSE LUIS HIDALGO B.

ETA = 0.50

BRÓADSIDE

Ν	=	10		R1	ŧ	550.	81909	OHMIOS	R2	=	1260.26465	OHMIOS
			5			0 • 0	5975				9.99	410
			10			0.2	3645				9.90	529
			15			0.5	1077				9.53	391
			20			0.8	1549				8.58	296
			25			1.0	0596				6.78	612
			30			0.8	8039				4.12	168
			35			0.3	0877				1.05	762
			40			+0.5	4471				-1.41	492
			45			-1.1	0907				=2.23	R 18
			50			-0.7	3554				-1.17	039
			55			0.5	1414				0.64	920
			60			1.4	1418				1.414	424
			65			0.5	6495				0.44	199
			70			-1.5	4315				-0.91	929
			75	•		-2.0	1826				-0.86 ³	903
			80			1.4	9160				0.41	730
			85			7.1	7716				0.98	905
			95			7.1	8028				-0.98	886
		ĩ	00			1.49	9482				-0+41	810
		i	05			+2:0	1741				0.86	844
		1	10			-1.54	4429				0.91	982
		1	15			0.50	6385				-0.44	103
		1	20			1.4	1428				-1.41	414
		1	.25			0.5	1497				-0.65	020
		1	30			-0.7:	3498				1.16	928
		1	35			-1.10	0918				2.23	805
		1	40			+0.54	4522				1.41	506
		1	45			0.30	0830				-1.05	570
		1	50			0 . 81	8018				-4.11	973
		1	55			1.00	0600				-6+78	465
		1	60			0.83	1566				~ 8•58:	206
		1	65			0.5	1096				⊷9 •53:	349
		1	70			0.23	3659				⊷ 9∙900	527
		1	75			0.0!	3982				~9.994	408

ETA = 0.75

BRCADSIDE

Ν	ŧ	2	R1	ŧ	99.45184	OHMIOS	R	22	Ħ	142.88439	OHMIOS
		5								1.000	301
		10			-1:40147					1.00	771 771
		10			-1.30423					1.999	
		12			-1429023					10993	252
		20			-1019908					109/3	784
		25			-1.07023					1095.	146
		30			-0.90530					1.90.	118
		35			-01/0323					1082.	
		40			-0.40400					1.703	376
		45			-0.19092					1+54	237
		50			0:42511					1.33	248
		22			0849911					1.07	20/
		6U								0 • / 6:	240
		65			1.08/84					0.41	(/ 5
		70			1.38490					0.04	102
		75			1.63943					-0+34	23
		80			1.83487					-0.734	+70
		85			1.95795					-1.09	501
		95			1.95800					-1.67	280
		100			1:83497					-1+860	004
		105			1:63957					-1.969	922
		110			1.38507					-1.999	958
		115			1.08783					-1.95	593
		120			0.76550					-1.84	781
		125			0.43531					-1.68	812
		130			0.11260					-1.49	160
		135			-0.19014					-1.27	335
		140			-0.46391					-1.04	760
		145			-0.70309					-0.82	678
		150			⊷0 •90519					-0.62	101
		155			-1.07014					-0.43	803
		160			-1.19961					-0.28	332
		155			-1.29619					-0.16	046
		170			-1.36266					-0:07	162
		175			-1.40145					-0.01	796

JUSE LUIS MIDALGO B	
---------------------	--

ETÁ = 0.75

BROADSIDE

N	±	3		R1	=	125.04911	OHMIOS	R2	*	219.15197	OHMIOS
			- 5			0.96412				2.99	967
			10			0.85693				2.99	487
			15			0.68023				2.97	427
			20			0.43924				2.91	978
			25			0.14539			-	2.80	822
			30			-0.18042				2.61	449
			35			-0.50546				2.31	666
			40			-0.78464				1.90	281
			45			-0.96377				1.37	892
			50			-0.98736				0.77	552
			55			-0.81067				0.15	063
			50			-0.41431				-0.41	410
			65			0.18297				-0.82	550
			70			0.91797				-0.99	831
			75			1.68775				-0.87	803
			80			2.36677				-0.46	012
			85			2:83358				0.20	125
			95			2.83377				1.79	827
		1	100			2.36713				2•45	977
]	105			1.68820				2.87	786
		1	110			0.91844				2.99	833
		3	115			0.18338				2.82	568
		1	120			-0:41400				2.41	442
		1	125			-0.81050				1.84	975
		1	130			-0.98731				1.22	487
			135			-0.96384				0.62	143
]	140			-0.78478				0.09	748
]	145			-0.50565				-0.31	643
]	150			-0.18062				~0.61	433
			155			0 14520				-0.80	812
			190			0.43908				-0.91	972
]	105			0.02020				-0.97	420
]				0.85684				~0.99	480
			1/5			0#96408				-0.99	967

ETA = 0.75

BROADSIDE

N =	4	R1 =	165•73062	OHMIOS	R2 =	295.42004	OHMIOS
	5		0.05027			3.999	919
	10		0.19495			3.987	19
	15		0.41449			3.935	383
	20		0.67272			3.800	86
	25		0:91462			3.528	68
	30		1.06864			3.069	45
	35		1.05869			2.397	786
	40		0+82819			1.538	318
	45		0.37374			0+584	+44
	50		-0.22341			-0.299	910
	55		-0.78784			-0.911	.09
	50		-1.08237			-1.082	240
	65		-0.88863			-0.762	256
	70		-0.11360			-0.081	.98
	75		1:12752			0 • 6 5 5	587
	80		2.50785			1.072	284
	85		3 • 59006			0.875	44
	95		3.59054			~1.335	35
	100		2:50865			-2071:	24
	105		1.12836			~3.69	93
	110		-0.11296			~3.995	84
	115		-0.88834			-3.5/0	994
	120		⇔I•08242			-2.613	60
	125		-0.78813			~1043ª	+49
	130		-0.22379			-0.33	941
	135		0007341			0.482	204
	140		0.82/95			0.94	948
	140		1.06862			1.088	540
	150					1.002	253
	100		0.6714/4			0.4/94	
	166		0407200			0.214	
	170		0.10607			0.544	
	175		0.05033			0.029	100
	1/2						196

ETA = 0.75

BROADSIDE

N	12	5	R1	£	207.01507	OHMIOS	R2	372.	89398	OHMIOS
		5			-1.03458				4.998	339
		10			-1.12260				4.974	+41
		15			-1.21751				4.87	203
		20			-1.24630				4.60	534
		25			-1.12425				4.07	789
		30			-0.78701				3.22	110
		35			∽0 •23904				2.05	025
		40			0.40029				0.71	789
		45			0.89264			•	-0.47	748
		50			0:96224				-1.17	408
		55			0.46787			•	-1.12	794
		60			-0.41403				-0.41	440
		65			-1.14949				0.50	595
		70			-1.07529				0.99	495
		75			0.16075				0.64	397
		80			2.23483				-0.32	316
		85			4+19559			•	-1.160	274
		95			4.19652				0.43	550
		100			2.23617				2+59	570
		105			0.16183				4.404	422
		110							4899	168
		. 115			~1e14975				4.15	385
		120			~U+41439				-26413 - A - 673	505
		120			0640742				0.57	184
		130			0.90211					497 195
		140			0.40067				-1-09	709
		145			-0.23944				-1000	244
		150			-0.29000					947 834
		155			=1.12412				0.46	119
		160			m1_24628				0.76	562
		165			~1.21756				0.92	341
		170			-1.12266				0.98	463
		175			-1.03462				0.00	203
					2000-0L					

ETA = 0.75

BROADSIDE

Ν	1	6	R1 =	239.22000	OHMIOS	RŹ	=	450.36846	OHMIOS
		5		1.39967				5.99	718
		10		1.33480				5.955	525
		15		1.16369				5+776	584
		20		0.82244				5.316	599
		25		0.28859				4 • 429	919
		30		-0.35615				3.054	+45
		35		-0.89059				1.33	399
		40		-1.01396				-0.31	306
		45		-0.54363				-1.320	91
		50		0.33159				-1.26	534
		55		0.99142				-0+298	381
		60		0.76551				0.765	320
		65		-0.36160				0.974	433
		70		-1.37559				0.122	280
		75		-0.86397				-0.882	252
		80		1.59279				-0.831	171
		85		4.62471				0.396	75
		95		4.62626				0.600	583
		100		1:59468				-2.10	358
		105		-0.86302				-4.974	498
		110		⊷1•37586				~5•98!	545
		115		-0.36240				-4.56	351
		120		0•76505				-1.84	893
		125		0.99160				0.46	914
		130		0.33213				1•41	517
		135		-0.54318				1.090	087
		140		-1.01386				0.194	429
		145		-0.89081				-0.60	602
		150		-0.35654				-0+99	740
		155		0.28822				-0+99	404
		160		0.82218				-0.76	081
		165		1.16354				-0.46	498
		170		1.33473				-0.21	341
		175		1.39965				-0.05	386

LOBULO DE RADIACION DE ARREGLOS BROADSIDE Y ENDFIRE

JOSE LUIS HIDALGO B.

ETA = 0.75

BROADSIDE

ENDFIRE

r

N =	7	R1 =	271.15686	OHMIOS	RŻ	索	528.37866	OHMIOS
	5		-0.92701				6.99	549
	10		-0.69631				6.92	845
	15		-0.29091				6.54	445
	20		0:25962				5.92	148
	25		0.81539				4.56	552
	30		1.10944				2.58	596
	35		0.86533				0.38	282
	40		0.07024				-1.25	469
	45		-0.78917				-1.55	985
	50		-0.92496				-0.51	198
	55		-0.03649				0.80	740
	60		0.99988				1.00	012
	65		0.75619				-0.09	993
	70		-0.82976				-0.98	991
	75		-1.57719				-0:34	076
	80		0.68774				0.93	928
	85		4.85937				0.72	589
	95		4.86172				-1+45	061
	100		0.69001				1.32	205
	105		-1.57683				5.39	265
	110		-0.83077				6.97	664
	115		0.75551				4.76	709
	120		1.00024				1.00	146
	125		-0.03576				-1.36	382
	130		-0.92471				~1.38	780
	135		-0.78955				-0.15	382
	140		0.05967				0.88	443
	145		0.86499				1.08	449
	150		1010948				0.62	765
	100		0.25008				-0.02	
	145		-0.20061					007
	170		-0.49413				-0.04	017
	176		-0.007012					7 <i>3</i> 7 986
	115						-0499	000

LOBULO DE RADIACION DE ARREGLOS BROADSIDE Y ENDFIRE

JOSE LUIS HIDALGO B.

ETA = 0.75

BROADSIDE

N ≖	8	R1 =	309•58514	OHMIOS	R2	Ħ	606.38928	OHMIOS
	5		-0.10048				7.99	324
	10		-0.38592				7.89	279
	15		-0.78660				7.46	924
	20		-1.13392				6.40	560
	25		-1.16125				4.48	028
	30		-0.64822				1.86	194
	35		0:28206				-0.63	880
	40		0.98136				-1.82	263
	45		0.69383		;		-1.08	497
	50		-0.43557				0+58	314
	55		-1.00730				1.16	490
	60		-0.00030				0.00	032
	65		1.18407				-1.01	608
	70		0.22643				-0.16	341
	75		-1.72172				1.00	153
	80		-0.33087				0.14	156
	85		4.88971				-1.19	235
	95		4.89300				1.81	976
	100		-0.32851				~ 0∙35	550
	105		-1.72230				-5.64	438
	110		0.22517				-7.96	511
	115		1.18428				-4+76	063
	120		0.00063				-0.00	158
	125		-1.00717				1.83	315
	130		-0.43626				- 0+65	387
	135		0.69331				-0+89:	500
	140		0.98153				-1.12	083
	145		0.28264				-0.29	061
	150		-0.64775				0.60	762
	155		-1.16112				1.00	532
	160		~1.13406				0.91	666
	165		-0.78685				0+60	118
	170		-0.38614				0.28	285
	175		-0.10060				0.07	179

ETA = 0.75

BROADSIDE

N	¥	9	R1 :	*	348•16375	OHMIOS	R2	#	684•70105	OHMIOS
		5			1.06783				8.99	035
		10			1.222.22				8 • 84	701
		15			1.31054				8.24	593
		20			1.10072				6.76	260
		25			0.42742				4.17	759
		30			-0.52260				0.95	393
		35			-1.06368				-1.54	619
		40			-0.52566				-1.85	064
		45			0.65712				-0.11	358
		50			0.87600				1.28	900
		55			-0.40178				0.44	215
		60			-1.00011				-0.99	987
		65			0.53166				-0.32	451
		70			1.14336				0.98	320
		75			-1.24547				-0.00	900
		80			-1.29485				-1.04	330
		85			4.71446				0.58	093
		9 5			4.71880				~1 ∗59	349
		100			-1.29283				-0.66	080
		105			-1.24701				5.72	242
		110			1.14266				8 • 95	008
		115			0.53278				4.54	441
		120			-0.99975			-	-0.99	853
		125			-0.40266				-1.73	076
		130			0.87558				0.41	248
		135			0.65772				1•29	348
		140			-0.52502				0 • 28	977
		145			-1.06372				~ 0•84	421
		150			-0.52314				-1.00	499
		155			0 • 42688				-0.41	460
		160			1.10045				0 • 29	035
		165			1.31052				0.75	232
		170			1.22231				0•94	908
		175			1.06791				0.99	677

LOBULO DE RADIACION DE ARREGLOS BROADSIDE Y ENDFIRE

N = 10

				.,		JOSE	LUIS	HIDALGO	8.
		FTÁ = 0.4	75						
			, ,						
		BROADSIDE					END	FIRE	
R 1	12	381+69201	OHMIOS		P2	763	01221		
		301007201	011/12/00		NZ -	1001	10100	U UHMIUS	
		-1.39606					9.98	8674	
		-1.27958					9.78	8990	
		-0.91217					8 • 9 (6949	
		-0.18659					6.9	B229	
		0.70381					3.6	7215	
		1.12134					-0.04	4833	
		0.46595					-2.1	7708	
		-0.73741					-1.32	3043	
		-0.62405					0.90	0717	
		0.83248					L • L .	2447 5041	
		-0.76508					-0.0	5001	
		-0.60581					0.8	8052	
		1.35701					0.20	0375	
		-0.32014					+0.99	9838	
		-2.04502					0.6	2501	
		4.34097					0.5	5563	
		4.34642					0.84	4583	
		-2.04380					1.5	8462	
		-0.32226					-5.6	2438	
		1.35750					~9•9 :	3152	
		-0.60469					-4.1	2795	
		-0.76595					1.84	4668	
		0.83189					1.0	8859	
		0.01000					-1.20	6913	
		-UiB1838					-0.7	200	
							0.0	1/2/	
		U # 40727 1 * 1 21 20					0.00	0077 1440	
		.0.70429					-0-8	2371	
		-0.18606					-0-9	9893	
		-0.91183					-0.7	2191	
		-1:27945					-0.3	5083	

-0.08969

-1.39603

ETA = 1.00

BROADSIDE

N =	2	R1 =	148.31259	OHMIOS	R2	2	153.74118 OHMIOS
	5						1.99985
	10		-1.99772				1.99772
	15		~1.98855				1.98855
	20		-1.96421				1.96421
	25		-1.91398				1.91399
	30		-1.82545				1.82545
	35		-1.68581				1.68581
	40		-1.48369				1.48370
	45		-1.21144				1.21144
	50		-0.86743				0.86743
	55		-0:45826				0.45827
	60		-0.00009				0.00009
	65		0.48132				-0+48131
	70		0.95226				-0.95225
	75		1.37439				-1.37439
	80		1.70962				-1.70962
	85		1.92545				-1.92545
	95		1.92554				-1.92554
	100		1.70979				-1.70980
	105		1.37463				-1.37463
	110		0.95253				-0.95254
	115		0.48161				-0.48162
	120		0.00019				-0.00020
	125		-0.45800				0+45799
	130		-0.86720				0.86719
	135		-1.21125				1.21124
	140		-1.48355				1.48355
	145		-1.68570				1.68570
	150		-1.82538				1.52535
	155		-1.91394				1.06430
	160		-100084				1.090419
	170		-1.00771				1 - 00771
	175		-1.00085				1.00045
	エ / ラ		-T022200				T # A A A 2 2

ETA = 1.00

BROADSIDE

ENDFIRE

.

Ν	Ħ	3	R1 =	226•54016	OHMIOS	R2	#	238•75433	OHMIOS
		5		2.00042				2.000	343
		10		2.990.92				2.000	
		15		2.95433				2.05/	24
		20		2.85812				2072-	112
		20		2.66335				2.000	136
		20		2.00999	-			2.001	20
		25		1.84104				1.941	
		55		1.20124				1.201	L ヲ / L ヨ ブ
		45		0.46759				0.46	740
		50		-0.24755				=0.24	754
		55		=0.78999				-0.789) 0 A
		60		-1+00000				-1-000	00
		65		-0.76832				-0.768	133
		70		-0.09319				-0.093	321
		75		0.88897				0+886	195
		80		1.92282				1.922	81
		85		2.70737				2.70	737
		95		2.70772				2.70	772
		100		1.92341				1.923	342
		105		0.88961				0.889	962
		110		-0.09267				-0.09	266
		115		-0.76804				-0.768	303
		120		-1.00000				-1.000	000
		125		-0.79023				-0.79	024
		130		-0.24795				-0.24	796
		135		0.46713				0.46	712
		140		1:20093				1.200	092
		145		1.84161				1.84	160
		150		2.33204				2.33	203
		155		2.66320				2.66	319
		160		2.85804				2.85	805
		165		2:95430				2.954	432
		170		2.99088				2.99	090
		175		2.99950				2.999	942

ETA = 1.00

BROÁDSIDE

N ≕	4	R1 =	305.37072	OHMIOS	R2	=	324.97351	OHMIOS
	E		- 2 . 00257				1.00	6 c 4
	2		-2077527				28770	
	10		-3871123				2691	122
	15						30000	1001
	20		-2049/0				2004	9//
	25		m3e18364				3018	355
	30		-2040204				2.43	206
	35		-1+41938				1.41	941
	40		-0.29876				0+29	877
	45		0.64498				-0.64	496
	50		1.08217				-1•08	217
	55		0.82029				-0.82	030
	60		0.00018				-0.00	019
	65		-0.85114				0.85	113
	70		-1.04101				1.04	101
	75		-0.15260				0.15	261
	80		1.57769				-1+57	766
	85		3.28746				~ 3∙28°	745
	95		3.28829				-3.28	830
	100		1.57884				-1.57	886
	105		-0.15174				0.15	172
	110		-1.04081				1.04	080
	115		-0.85152				0.85	153
	120		-0.00039				0.00	040
	125		0.81992				-0.81	992
	130		1.08223				-1.08	223
	135		0.64543				-0.64	544
	140		-0.29810				0.29	808
	145		-1.41871				1 • 4 1	869
	150		-2.43150				2.43	148
	155		-3.18328				3.18	326
	160		-3.64956				3.64	955
	165		-3.88621				3.88	620
	170		-3.97722				3.97	722
	175		-3.99856				3.99	856

ETA = 1.00

BROADSIDE

Ν	 5	R1 ≠	384•54034	OHMIOS	R2	=	411.87072	OHMIOS
	5		4.99714				4.997	714
	10		4.95456				4.954	+56
	15		4.77377				4.773	379
	20		4.31079				4.310	080
	25		3.43011				3.430	014
	30		2.10730				2.107	733
	35		0.55086				0.550	89
	40		-0.75809				-0.758	307
	45		-1.24895				-1.248	395
	50		-0.69115				-0.691	117
	55		0.41407				0.414	+06
	60		0.99999				1.000	000
	65		0.35864				0.358	366
	70		-0.89311				-0.898	310
	75		-1.09870				-1.098	371
	80		0.77444				0.774	+40
	85		3.62249				3.622	246
	95		3.62402				3.624	+05
	100		0.77609				0.776	513
	105		-1.09820				-1.098	319
	110		-0.89873				-0.898	374
	115		0.35793				0.357	791
	120		1.00000				1.000	000
	125		0.41470				0.414	+72
	130		-0.69055				-0.690)54
	135		$-1 \cdot 24892$				-1.248	39 <u>1</u>
	140		-0.75868				-0.758	370
	145		0 • 54993				0 • 5 4 9	989
	150		2.10639				2.106	535
	155		3.42944				3.429	941
	160		4.31039				4.310)37
	165		4.77359				4.773	359
	170		4.95450				4.954	+55
	175		4.99721				4 • 997	713

EĩA = 1.00

BROADSIDE

ENDFIRE	E٨	NDF	FIR	ξE
---------	----	-----	-----	----

•

Ν	**	6	R1	2	463.92694	OHMIOS	R2	×	499.20196	OHMIOS
		5			-5,00400				5 - 99/	000
		10			-5.92042				5-020	+77 150
		10			-5-50660				28720	
		20			-4.91754				20000	757
		20			-4.01/04				4001	
		20			-1.41472				3038.	197 170
		35							10414 -0.404	+/Q \ 7 1
		55			0047074 1 40054				-0.490	
		40			1+42354				-1+423	353
		45			0.86805				-0.868	305
		50			-0.48264				0•482	262
		55			-1.01005				1.010	005
		60			-0.00027				0.000	29
		65			1.02376				-1.023	375
		70			0.18577				-0.185	579
		75			-1.35745				1.35	744
		80			-0.25368				0.253	372
		85			3.68748				-3.68	743
		95			3.68993				-3.689	998
		100			-0.25187				0.25	183
		105			-1.35788				1.35	789
		110			0.18473				-0•184	471
		115			1.02391				-1.023	391
		120			0.00058				÷0.000	060
		125			-1.00986				1.009	86
		130			-0.48337				0.483	339
		135			0.86733				-0.86	730
		140			1.42365				→1•423	365
		145			0.49169				-0.49	173
		150			-1.41348				1:41:	342
		155			-3.38049				3.380	044
		160			-4.81687				4.810	584
		165			-5.60628				5.600	530
		170			-5.92047				5.920	050
		175			-5.99514				5.994	498

.

ETA = 1.00

BROADSIDE

N	2	7	R1	=	543•46411	OHMIOS	R2	Ħ	586.834	22	OHMIOS
		5			6.99199				6.	99	200
		10			6.87312				6.	87:	311
		15			6.37524				6.	37	527
		20			5.15188				5.	15	193
		25			3.04213				3.	04	220
		30			0•47524				0.	47	530
		35			-1.37815				-1.	37	813
		40			-1.35401				-1.	35	403
		45			0.19735				0.	19	733
		50			1.10981				1.	10	981
		5 5			0.04879				0.	04	881
		60			-1.00000				-0.	99	309
		65			0.13411				0.	13-	409
		70			1.07501				1.	07	502
		75			-0.76698				-0.	76	594
		80			-1.20815				-1.	208	318
		85			3.47758				3.	47	750
		95			3.48110				3.	48	118
		100			-1.20675				-1.	20	672
		105			-0.76838				-0.	76	841
		110			1.07470				1.	07.	469
		115			0.13520				· O •	13	522
		120			-0.99999				-0.	999	999
		125			0.04781				0•	04	778
		130			1.10974				1.	10	974
		135			0.19836				0.	19	839
		140			-1.35338				-1.	35:	336
		145			-1.37878				-1.	37	881
		150			0.47376				0.	47:	369
		155			3.04065				3•	04(058
		160			5.15087				5•	15	081
		165			6.37475				6.	37	472
		170			6.87294				6•	87:	302
		175			6.99221				6.	99	197

ETA = 1.00

BROADSIDE

ENDFIRE

Ν	=	8	R1 =	623.11193	OHMIOS	R2 =	674.68774	OHMIOS
		5		-7.98799			7.988	300
		10		-7.80997			7.810	000
		15		-7.07089			7.070	94
		20		-5.30185			5.30	193
		25		-2.44107			2.44	116
		30		0.54719			-0.54	713
		35		1.83257			-1.832	257
		40		0.58540			-0.585	544
		45		-1.10713			1.10	712
		50		-0.48005			0•480	007
		55		0.98769			-0.98	768
		60		0.00037			-0.000	39
		65		-0.95921			0.959	722
		70		0.83792			-0.83	790
		75		0.30331			-0.303	335
		80		-1.81180			1.811	L81
		85		3.00843			-3.008	334
		95		3.01308			-3.013	318
		100		-1.81143			1.81	142
		105		0.30163			-0.301	160
		110		0.83895			-0.838	397
		115		-0.95879			0+958	378
		120		-0.00078			0.000	080
		125		0.98796			-0.98	797
		130		-0.47900			0.478	397
		135		-1.10759			1.10	761
		140		0.58416			-0.584	413
		145		1.83253			-1.832	253
		150		0.54867			-0.548	373
		155		-2.43916			2.43	907
		160		-5.30041			5.300	333
		165		-7.07016			7.070	010
		170		-7.80974			7.809	72
		175		-7.98796			7.98	795

.

ETA = 1.00

BROADSIDE

Ν	¥	9	R1 =	702•84411	OHMIOS	R2	Ħ	762.71032	OHMIOS
		5		8.98285				8.982	285
		10		8.72910				8.729	909
		15		7.68560				7.685	567
		20		5.26208				5.262	219
		25		1.63005				1.630	015
		30		-1.47413				-1.474	+08
		35		-1.71121				-1.71	24
		40		0.48544				0.485	540
		45		1.14387				1.143	389
		50		-0.69340				-0.693	338
		55		-0.50141				-0.501	44
		60		0.99999				0.999	999
		65		-0.59581				-0.595	578
		70		-0.27709				-0.277	713
		75		1.18386				1+183	387
		80		-1.88935				-1.889	33
		85		2.31503				2.314	+91
		95		2.32073				2.320	85
		100		-1.89042				-1.890)44
		105		1.18302				1.183	300
		110		-0.27555				-0.275	553
		115		-0.59697				-0. 591	700
		120		0.99999				0.999	999
		125		-0.50030				-0.500	27
		130		-0.69435				-0.694	+38
		135		1.14321				1•143	320
		140		0•48674				0•486	577
		145		-1.71033				-1.710)30
		150		-1.47531				-1.475	36
		155		1.62776				1.62	765
		160		5.26016				5.260	005
		165		7.68458				7.684	+51
		170		8.72873				8.728	375
		175		8.98288				8.982	280

LOBULO DE RADIÁCION DE ARREGLOS BROADSIDE Y ENDFIRE

a man in a second second

JOSE LUIS HIDALGO B.

ETA = 1.00

BROADSIDE

N	*	10	R1	#	782.64331	OHMIOS	R 2	=	850.86670	OHMIOS
		5			-9.97642				9.970	543
		10			-9.62328				9.628	331
		15			-8.21232				8.21	242
		20			-5.03400				5.034	414
		25			-0.67382				0.678	393
		30			2.14376				-2.14	374
		35			1.05221				-1.05	2.26
		40			-1.30566				1:30	564
		45			-0.27860				0.278	364
		50			1.08153				-1.08;	154
		55			-0.75790				0.75	788
		60			-0.00046				0.000	049
		65			0.67243				-0.672	245
		70			-1:10179				1.10	179
		75			1.32377				-1.323	375
		80			-1.41829				1.418	324
		85			1.44904				-1.448	391
		95			1.45557				-1•455	572
		100			-1.42081				1.420	086
		105			1.32458				-1:324	460
		110			-1.10144				1.10	143
		115			0.67128				-0.67	125
		120			0.00097				-0.00	101
		125			-0.75883				0+758	385
		130			1.08114				-1.08:	113
		135			-0.27713				0.27	708
		140			-1.30627				1.306	529
		145			1.05059				-1:050	53
		150			2.14434				-2:144	÷37
		155			-0.67631				0.675	519
		160			-5.03156				5.031	140
		165			-8.21094				8.210	84
		170			-9.62782				9.62	787
		175			-9.97652				9.976	535

CAPITULO TERCERO

VERIFICACION EXPERIMENTAL

•

.

3.1 INTRODUCCION

3.1.1 Mediciones en las antenas

El objeto de llevar a cabo mediciones en las antenas es obtener datos para el diseño y verificar el com portamiento de los sistemas ya instalados.

Los tipos de medición que se efectúan son:

- 1) Determinación de la impedancia
- 2) Diagrama direccional
- 3) Ganancia de potencia

Los métodos empleados para los distintos tipos de medición dependen de la frecuencia de trabajo. Así, para alta frecuencia (UHF, microondas), la resistencia de pérdidas asociada es por lo común muy pequeña si se la com para con la resistencia de radiación y por lo mismo puede ser despreciada. En este rango la antena tiene dimensiones físicas pequeñas y en muchos casos los efectos de tierra son insignificantes. El diagrama de radiación es altamente direccional.

En frecuencias bajas hay un contraste con las características descritas anteriormente. Las dimensiones - físicas son grandes y ya existe una influencia muy notoria de la tierra. El diagrama de radiación se presenta moderadamente direccional y no puede despreciarse la resistencia de pérdidas.

Una antena receptora actúa como un generador equivalente de tensión interna V (determinada por las características de la misma y la intensidad de campo incidente) que tenga una impedancia interna Za, tal como se ilustra en la figura (3.1 b). Esta impedancia equivalente Za es igual a la que presentaría cuando fuese exitada por un transmisor (Figura 3.1 c). De un modo similar el diagrama direccional es el mismo cuando dicha antena radíe energía o cuando actúe como receptora con idéntica polarización. De estas propiedades se pueden deducir las características si se la ensaya como elemento receptor o transmisor según la facilidad de experimentación.

3.1.2 Impedancia de la antena

Una característica muy importante de una antena es la impedancia que presenta ésta a determinada tensión apl<u>i</u> cada. Tiene las dos componentes: resistiva y reactiva.

<u>Componente resistiva</u>: Es la suma de las resistencias de radiación y de pérdidas. Como se e<u>x</u> plicó antes y considerando que la frecuencia de experimentación en la presente tesis está en el rango UHF se puede despreciar la resistencia de pérdidas y por tanto la comp<u>o</u> nente resistiva se reduce exclusivamente a la resistencia de radiación. La potencia radiada será la potencia disipada por dicha resistencia al paso de la corriente de entrada a la antena.

<u>Componente reactiva</u>: Esta componente indica la naturaleza de la impedancia. Si es nula se tiene el punto de resonancia, cuando sea inductiva la frecue<u>n</u> cia es mayor que la resonancia y si es capacitiva es menor.

3.1.3 Configuración de radiación

Se define para el caso de transmisión como la radi<u>a</u> ción relativa que la antena produce en direcciones difere<u>n</u> tes (diversos ángulos con referencia a un punto fijo).

88

El diagrama de radiación (diagrama direccional)^[13] puede ser expresado en niveles de tensión, de potencia o el equivalente en decibeles comparados a un nivel determinado.

Los diagramas direccionales se representan genera<u>l</u> mente en coordenadas polares. Sin embargo se puede prefe rir la utilización de coordenadas rectangulares a fin de d<u>e</u> tallar los lóbulos secundarios.

Un procedimiento típico para obtener estos diagra mas consiste en radiar determinada potencia con la antena en prueba y detectar con un equipo medidor de campo la intensidad producida en diversas direcciones. Esto no impide que el procedimiento a usarse sea el contrario, esto es exitar la antena de rastreo y recibir la muestra del campo producido en la antena de prueba.

La orientación relativa puede conseguirse moviendo la antena móvil alrededor de la fija o simplemente mante – niendo ambas antenas fijas y girando el eje de una de ellas de acuerdo a un graduador. Esta última posibilidad requiere que exista un trayecto libre a cualquier tipo de obstáculos que puedan producir interferencias perjudiciales.

89

La determinación experimental completa exige una cantidad de puntos a considerarse. Se acostumbra general mente en la práctica, en los sistemas altamente direccion<u>a</u> les obtener solamente diagramas en un plano que contenga al eje del lóbulo principal y sea paralelo al plano de polarización del campo eléctrico. Este diagrama se conocer como diagrama E ^[14]

En muchos casos el plano de polarización del campo radiado varía apreciablemente con la dirección. Este efecto es debido a una polarización cruzada (polarización mixta vertical y horizontal). Se nota más en los lóbulos se cundarios debido a que la polarización principal es pequeña y de magnitud comparable con la otra polarización.

3.1.4 <u>Distancia permisible para tomar mediciones para el</u> diagrama de radiación

La distancia entre la antena transmisora y la recep tora debe ser suficientemente grande de lo contrario apar<u>e</u> cen efectos que impiden que los resultados obtenidos sean los valores propios del campo de radiación. La distancia mínima para obtener resultados aceptables debe ser tal que el campo de inducción sea despreciable en comparación con el término de radiación. Existen dos factores prácticos que son necesarios tomarse en cuenta:

- a) La antena de recepción tiene que recibir un campo compuesto de ondas planas.
- b) Es indispensable considerar la atenuación que presenta la onda por efecto del medio físico de separación en tre la antena transmisora y la receptora.

Con estos criterios la distancia de separación debería ser mayor que algunas longitudes de onda. En las fr<u>e</u> cuencias comprendidas en la banda nueve (300 a 3000 Mhz) a una distancia de 5 a 6 longitudes de onda se consiguen estos propósitos siempre que las dos antenas sean compara bles en sus dimensiones físicas.

Si alguna de las antenas es más grande que una lo<u>n</u> gitud de onda y la distancia de separación entre las mis mas es pequeña, suceden generalmente tres errores:

 <u>Error de fase</u>: Hay una diferencia de longitudes entre el camino recorrido por las ondas desde el foco de exitación hasta el extremo de la antena receptora "R", que aquel al punto medio "R," según se indica en la Fig. 3.2.

Fig. 3.2 Geometría de un sistema formado por una pequeña antena transmisora y una antena receptora de gran abertura.

Por dicha razón la onda se atrasa hasta llegar a los extr<u>e</u> mos de la abertura de la antena receptora. Este error no tiene efecto cuando la distancia es suficientemente grande y por tanto las ondas que llegan tienen un frente plano -(igual fase) al incidir en D.

2) <u>Error de amplitud</u>: Si una de las antenas es direccional se observa lo siguiente:

Fig. 3.3 Ilustración del error de amplitud

Debido precisamente a la característica direccional de la antena, si la distancia R es pequeña habrá una amplitud distinta cuando el frente de onda llegue a D, siendo mayor en la parte central y menor en los extremos.

3) Errores debido a la interacción, o realimentación: Es

tos errores no sólo dependen de la distancia pequeña, también suceden debido al mal acoplamiento de impedancia. Consisten en que una parte de la potencia radiada por la antena transmisora es captada por la receptora. De esta po tencia, una porción es vuelta a radiar por la receptora. A su vez, parte de la potencia rerradiada es recibida por la antena transmisora la que vuelve a radiar hacia la recept<u>o</u> ra y así sucesivamente.

3.2 CRITERIOS PARA EL DISEÑO Y CONSTRUCCION DE LA ANTENA

Una vez terminado el estudio teórico es necesario ll<u>e</u> var a cabo la parte experimental.

Considerando la facilidad práctica en cuanto a las d<u>i</u> mensiones y manejo de la antena se escogió la frecuencia de 600 MHz. Esta frecuencia se encuentra en el rango de -UHF y tiene una longitud de onda de 50 cm. en el espacio libre. Las antenas fueron construídas con alambre de co bre, de diámetro 4.115 mm. (alambre # 6 AWG), el criterio que primó para esta selección fue:

La consideración de la relación D/λ

 $D_{\lambda} = \frac{4.115}{500} = 0.0082$,

indica que cada elemento puede ser aproximado a un radia dor de diámetro pequeño en comparación con λ y por tanto se acerca mucho a la condición asumida en la parte teórica.

Se construyeron arreglos de antenas para los dos casos "broadside" y "end-fire".

Para el primero se utilizó 5 elementos con un esp<u>a</u> ciamiento entre los mismos de media longitud de onda. El gráfico 3.4 da una idea clara de la forma como se construyó y alimentó el arreglo.

Con la separación de media longitud de onda se tiene una variación de fase de 180 grados entre cada uno de los el<u>e</u> mentos y si se los conectan en la forma indicada, la fase de la corriente en los elementos será la misma.

Los elementos fueron cortados con dimensión de 0.2452λ .^[15] a fin de tener impedancias puramente resistivas. Para la alimentación se utilizó alambre de cobre # 12 AWG y los puntos de suelda se hicieron con el tipo autógena con fundente de plata. El soporte de las antenas fue de madera de 2 x 2 pulgadas de sección transversal y los respectivos elementos de la antena fueron aislados del sopo<u>r</u> te con pequeños rectángulos de baquelita.

La experimentación se realizó con 2, 3, 4, 5 elementos respectivamente.

En el caso "end-fire" se tenía una separación de un cuarto de longitud de onda lo que permitió un defasamiento progresivo entre los elementos de 90 grados. Se experimentó con 2, 3, 4, 5, 6 elementos. La figura 3.5 indica la e<u>s</u> tructura experimental llevada a cabo para este arreglo.

95

Fig. 3.5 Caso de radiación paralela al eje del arreglo "end-fire"

3.3 MEDICIONES REALIZADAS

Se experimentó con tres métodos descritos a continuación. Los dos primeros no resultaron muy útiles por su poca sensibilidad y estabilidad. El último presentó gran se<u>n</u> sibilidad pero existía la dificultad de inestabilidad de la medida por razones de interferencias e interrupciones en la línea de vista entre la transmisión y recepción, factores que dificultaron la utilización del laboratorio propio de la Escuela Politécnica Nacional para las medidas.

Por este motivo fue preciso buscar un sitio plano, l<u>i</u> bre de cualquier obstáculo y donde no existan señales arm<u>ó</u> nicas o espúreas que imposibiliten la realización de las - medidas.

Se seleccionó la Parroquia de San Antonio de Pichi<u>n</u> cha y allí se pudo llevar a cabo la parte experimental de este trabajo.

El primer método consistió en utilizar una antena dipolo cuya salida fue rectificada por medio de un diódo de alambre de oro que responde con su característica li neal a las frecuencias altas y esa señal fue medida en un voltimetro electrónico. Esquemáticamente el método está ilustrado en la Fig. 3.6. Se tenía en esta frecuencia una estación de telegrafía que quizá debido a combinación de armónicas y mezclas con las frecuencias de sintonía en los aparatos de medición producían un desplazamiento irregular de las agujas de los equipos de medida.

Fig. 3.6 Método de medición rectificando la señal de entrada. Debido a los siguientes factores las mediciones no fueron confiables:

- La sensibilidad del voltímetro fue muy pequeña y a la distancia especificada en la sección 3.1.4 practicamen te no había indicación.
- 2. La señal de ruido se encontraba en el orden de magni tud de la señal a medirse de modo que era inconveniente tratar de amplificar esta última.

A continuación se intentó medir la intensidad de campo utilizando los circuitos de sintonía de un receptor (se usó un aparato de T.V. que tenía canales en el rango -UHF). Para este fin se alimentaba el receptor por medio de una antena dipolo de media longitud de onda, según se ind<u>i</u> ca en la figura 3.7.

También en este caso se presentaron las mismas dificultades anotadas anteriormente.

98

Finalmente se logró la experimentación con los e quipos de "UHF" disponibles en la Escuela Politécnica Na cional y constituídos por los siguientes:

- 1. Balun "General Radio" Tipo 874-UB
- Amplificador de frecuencias intermedia con una unidad de detección ensamblada "General Radio" Tipo 1216-A.
- 3. Generador de señal "General Radio" Tipo 1209-C.
- 4. Oscilador Local "General Radio" Tipo 1215-C.
- 5. Una Fuente de Poder "General Radio" Tipo 1267-A.
- Filtro pasabajos de 1000 MHz "General Radio" Tipo 874
 F-1000-L.
- 7. Mezclador "General Radio" Tipo 874-MRL.
- Unidad terminal para 300 ohmin "General Radio" Tipo -874-UB-P1.
- 9. Cable coaxial de 50.2 Tipo 874 R-22 L-A con conectorés "General Radio" Tipo 874-CA.

Con estos equipos se instalaron dos estaciones: una r<u>e</u> ceptora y otra transmisora, de la manera ilustrada en la figura 3.8.

Fig. 3.8 Diagrama en bloques de los circuitos empleados.

3.3.1 Estación receptora

Se buscó el mejor lugar donde debía fijarse la est<u>a</u> ción receptora, dentro o fuera de la "estación móvil auxiliar".

Fue conveniente hacerlo dentro de la estación móvil por el blindaje total que presentaba y la facilidad para -

100

La estación móvil auxiliar es una camioneta con insta laciones necesarias para diversas mediciones en el campo. El anexo D da un ligero resumen del montaje existente.
poder anotar los datos observados.

Las fotos siguientes, (Fig. 3.9 y 3.10) dan una in dicación de la distribución de los instrumentos así como del mástil que sostenía la antena.

Fig. 3.9 Instalaciones realizadas dentro de la estación auxiliar móvil Fig. 3.10 Instalaciones sobre el techo de la estación auxiliar móvil.

Se mezcla la señal recibida por la antena (antena a pruebas) con otra de un generador auxiliar (oscilador l<u>o</u> cal) y como resultado se obtiene una señal que tiene una - componente de frecuencia igual a la diferencia de las frecuencias de las dos señales anteriores. La señal diferen cia (llamada frecuencia intermedia) se amplifica, rectifica y finalmente se indica en un instrumento.

3.3.2 Estación transmisora

Esta estación se encontraba localizada a una dista<u>n</u> cia de 20 metros de la receptora y constaba del equipo siguiente:

Una antena dipolo de media longitud de onda alimentada por un generador con la frecuencia de 600 MHz. A través de un sistema de acoplamiento y desbalanceamiento (Ver anexo E), se utilizó un filtro pasabajos de 1000 MHz. para evitar las armónicas del generador. La distribución de las diversas partes se indican a continuación en la foto (Fig.3.11)

El método de operación total fue el siguiente: Al funcionar la estación transmisora la antena respectiva radiaba una onda electromagnética y a la distancia pres crita antes ésta se transformaba en una onda plana que era captada por la estación receptora (antena a prueba). Y por el sistema especificado para esa estación se indic<u>a</u> ba un valor del campo en el aparato de medida. La antena a prueba podía girarse según indicaba el graduador acopado al soporte de antenas propio de la estación auxiliar m<u>ó</u> vil.

Fig. 3.11 Instalaciones necesarias en la estación transmi sora.

Las condiciones especiales del terreno permitían que nin gún obstáculo causara reflexiones y se pudiere utilizar b<u>a</u> jo las necesidades previstas en 3.1.3.

Para poder sintonizar exactamente la frecuencia de trabajo se utilizó un oscilador de 1000 Hz como modulador en la estación transmisora y por medio de audífonos dis - puestos en la receptora se pudo controlar dicha sintoniza ción.

3.4 MEDICIONES DEL DIAGRAMA DE RADIACION PARA ARREGLOS -TIPO "END-FIRE" Y BROADSIDE"

3.4.1 Factores que deben ser tomados en cuenta

En las mediciones fue necesario sintonizar exactamente la frecuencia de transmisión. Se debía lograr en cada medida un ajuste preciso del am -

plificador de F.I., cualquier desequilibrio causaba lect<u>u</u> ras falsas.

En los lóbulos pequeños tiene mucha influen cia el cable de 300 Ω que alimentaba la antena de recep ción debido a que cualquier rozamiento con el soporte pr<u>o</u> ducía un efecto no deseado de reflexiones y radiaciones espúreas. Finalmente fue conveniente asegurar la antena al soporte.

En el sistema de transmisión se llevó a cabo el mejor acoplamiento posible entre la antena y el cable de alimentación a fin de evitar ondas estacionarias que influyesen desfavorablemente. Procediendo de la manera expuesta se consiguieron los valores indicados a continuación en la tabla 3.1.

Tabla 3.1

BROADSIDE

END-FIRE

GRADOS	N₽	DE	ELEMENTOS			N۷	DE ELEN	ELEMENTOS	
	2	3	4	5	2	3	4	5	6
0	5	10	16	22	30	32	33	33	34
10	15	20	20	22	30	32	33	33	34
20	15	21	23	20	30	31.	5 32	32.5	33.5
30	16	21	26	15	29.5	30	31	32	32
40	20	21	27	22	28.5	28	27	30	26
50	26	12	26	23	27	26	23	27	16
60	28	22	24	21	25	23	18	23	12
70	31	26	31	29	18	16	12	13	14
80	34	28	34	33	14	11	8	15	19
90	36	34	36	35	10	~0	8	15	15
100	34	28	34	33	~ 0	5	14	21	15
110	32	26	32	29	8	18	16	13	14
120	29	22	24	21	9	20	19	12	17
130	26	11	26	22	13	22	19	17	20
140	20	21	26	22	13	24	9	20	18
150	15	21	26	15	15	25	9	21	17
160	15	21	23	20	16	25	18	21	16
170	15	20	20	22	16	25	17	21	15
180	5	20	16	22	16	25	17	21	15
19 0	5	20	20	22	16	25	17	21	15
200	16	21	23	20	16	25	17	21	15
210	16	21	26	15	15	25	9	21	15
220	20	21	27	22	12	24	8	21	18
230	27	12	27	23	13	22	19	18	20
240	29	22	24	21	8	19	18	12	16
250	32	26	31	29	8	16	16	13	14
260	35	28	34	33	~0	5	14	20	15
270	36	34	36	35	9	~ 0	8	15	14
280	34	28	34	32	13	10	9	15	19
290	31	27	32	28	18	16	13	13	15
300	28	22	25	21	25	22	18	22	13
310	26	12	26	23	27	27	24	27	10

		-							
320	20	21	26	23	28.5	28	28	71	00
330	16	21	26	15	29.5	30	20	70	20
340	14	20	23	20	30	31 5	70	32 -	31
350	15	20	20	00	70	01.0	52	32.5	33.5
	10	20	20	44	30	32	33	33	34

La representación gráfica de estos resultados se indican en las mismas figuras grafizadas con los valores obtenidos en la parte teórica. Figs. 3.12, 3.13, 3.14, 3.15, 3.16 3.17, 3.18, 3.19, 3.20.

Fue necesario introducir dos escalas para este prop<u>ó</u> sito, una lineal normalizada (factor del arreglo normalizado) con indicación máxima de l y otra expuesta en dB de atenuación, ya que el instrumento de medida indicaba los valores recividos en dB.

CAPITULO CUARTO

CONCLUSIONES

4.1 COMPARACION ENTRE LOS VALORES MEDIDOS Y CALCULADOS

Una vez terminado el estudio teórico y la correspondiente experimentación respecto al tema propuesto se debe entonces establecer la comparación correspondiente entrelos valores obtenidos en los dos casos. Si se observan los gráficos 3.12 y 3.20 se encuentran diferencias.

En las cuatro primeras figuras referentes al caso -"Broadside" se puede ver que los diagramas de radiación coinciden aproximadamente en ambos casos. La diferencia es mayor para el arreglo compuesto de dos elementos.

En cuanto al caso "end-fire", a pesar de que tienenla misma forma las dos curvas se nota mayor diferencia. -Acentuándose más ésta para arreglos compuestos de pocos elementos (2 y 3).

Es interesante anotar que en todos los casos los diagramas de radiación presentan una forma muy parecida en cuanto al lóbulo principal. Sin embargo en la verificación experimental los valores obtenidos son algunos DB menores que aquellos del estudio teórico.

En lo concerniente a los lóbulos pequeños (secunda -

rios) el arreglo "end-fire" difiere en mayor proporción que el "broadside" pues existe un incremento de los valores relativos.

Las curvas obtenidas teóricamente tienen una simetría completa, mientras que las experimentales presentan una simetría relativa, siendo así que algunos valores no coinciden exactamente. Se nota esta última observación especialmente en los valores mínimos (15 a 20 dB por ejemplo) y no resulta preciso dibujar dichos puntos.

En el diagrama de radiación caso "end-fire" para dos y tres elementos aparece un lóbulo pequeño no previsto en el desarrollo, mientras que con más dipolos se aumenta solamente la magnitud de los lóbulos secundarios.

4.2 EXPLICACION DE LAS DIFERENCIAS OBTENIDAS ENTRE LA TEO RIA Y LA VERIFICACION EXPERIMENTAL

A fin de poder dar una explicación de las diferencias halladas se efectuará un análisis separado para los dos ca sos estudiados anteriormente.

4.2.1 <u>Justificación de las diferencias obtenidas para el</u> caso "Broadside"

Las diferencias obtenidas en el diagrama de radia ción se deben principalmente a las siguientes causas:

a) En el estudio teórico realizado anteriormente (sección 2) se introducen algunas aproximaciones tales como di<u>á</u> metro infinitesimal para los radiadores, propagación – en un medio completamente homogéneo libre de toda clase de obstáculos, constantes dieléctrica de la tierra y del medio verdaderamente fijas, distribución de co – rriente considerada sinusoidal, alimentación estrictamente en la misma fase, etc. Estas consideraciones hacen que los resultados no coincidan con la realidad f<u>í</u> sica.

Si hubiese sido posible conseguir características igu<u>a</u> les se habría notado que las diferencias quizá serían menores.

- b) Al recortar el material de las antenas para ir elimi nando el número de elementos quedó una superficie no muy pulida que por causa del efecto pelicular aumentó
 la resistencia y por ende la impedancia total.
- c) Para realizar la alimentación de los diferentes dipolos fue necesario emplear soldadura. Considerando la fre cuencia utilizada aumentó la resistencia intrínseca -

del conductor, la cual, a pesar de ser pequeña influye en la resistencia de radiación.

- d) Si se considera que las antenas fueron colocadas so bre el techo de la camioneta a una distancia aproxim<u>a</u> da de 1.80 metros se producían ciertas reflexiones que aumentaban o disminuían según una suma vectorial la magnitud y variaban la dirección del campo recibido.
- e) El soporte para la antena (eje perpendicular al techo del carro) produce el mismo efecto que otro radiador.
- f) La misma "estación móvil auxiliar" produce perturbaciones en el campo.
- g) Se utilizó alambre que tiene un diámetro y conductibilidad finitos.
- h) Cuando se realizaba el seccionamiento de los elementos a fin de variar su número, el soporte de madera donde estaban fijados no fue recortado y por tanto pudo te ner efectos extraños que intervenían en la medición.

4.2.2 <u>Justificación de las diferencias obtenidas para el</u> caso "end-fire"

A más de las diferencias anotadas anteriormente y que influyen en igual forma a este caso, se pudo observar claramente la variación que causaba el cable de alimenta - ción de 300 Ω en las mediciones. Este cable presentaba el efecto de radiación y considerando que cada elemento se alimenta con un atraso de fase con respecto al anterior al variar el eje de giro del arreglo se producían reflexiones que se sumaban o restaban según las circunstancias. Se nota mucho este efecto en los lóbulos pequeños. En dichos c<u>a</u> sos también tiene una influencia notoria el ruido existente en el medio ambiente. Esto puede ser la causa de la ap<u>a</u> rición de los lóbulos extraños no previstos en el cálculo.

En general todos los factores que se obtienen en la experimentación se ven afectados en mayor o menor por centaje por muchos errores no especificados como son: erro res debidos a la medición, errores de la lectura, errores producidos por el viento que hacía variar el ángulo del graduador, errores en el mismo graduador y la no exactitud en el trabajo de los equipos.

Sin embargo se puede concluír, a pesar de las dif<u>e</u> rencias anotadas que existe una concordancia bastante buena entre la teoría y la práctica, ratificando de esta man<u>e</u> ra el hecho de que toda investigación científica debe considerar por igual ambos métodos. El modelo matemático que describe un fenómeno físico involucra idealizaciones y si<u>m</u> plificaciones necesarias e inherentes. Los resultados obt<u>e</u>

121

nidos de esta manera deben corregirse según las influencias y posibilidades que ofrece la experimentación.

APENDICE A

. .

CAMPO DE RADIACION DE UN DIPOLO SIMETRICO

Este apéndice describe el campo eléctrico distante para el dipolo simétrico de iguales corrientes de brazo.

Si asumimos que la distribución espacial de corrie<u>n</u> te es sinusoidal y de la siguiente forma:

 $I_{iz_i} = I m \operatorname{Sen} \beta (h - iz_i) \quad \text{para} \quad -h \leq z \leq h \quad (A-1)$

- y donde $Im = \frac{I_o}{Sen/3h}$
 - β = constante de propagación en radianes por metro.
 - $I_{(z)}$ = amplitud de la corriente en amperios que fluyen por el elemento dz.
 - Z = distancia desde el origen de referencia en el cen tro de la antena al elemento dz (Ver Fig. A.1).
 - h = media longitud de la antena.

Fig. A.1 Dipolo alimentado en elcentro con corriente sinusoidal asumida.

forma: $R = \tau - \neq \cos \theta$

Con estas aproximaciones (A-2) se transforma en:

$$A_{\neq} = \frac{\mu e^{-j\beta r}}{4\pi r} \operatorname{Im} \int_{-h}^{h} \operatorname{sen} \beta(h - |z|) e^{j\beta z \cos\theta} dz \qquad (A-4)$$

Debido a que la corriente fluye unicamente en la dirección z, la expresión $\mathcal{M}\overline{H} = \nabla x\overline{A}$ se reduce a:

$$\mathcal{M} H \phi = - sen \theta \frac{\partial Az}{\partial r}$$

cuando solamente se considera el campo distante.

La expresión para el campo magnético será:

$$H\phi = -\frac{Im}{4\pi} \operatorname{sen} \phi \int_{-h}^{h} \operatorname{sen} \beta(h-1zl) e^{j\beta z \cos \theta} \left[\frac{r(-j\beta \bar{e}^{-j\beta r} - e^{-j\beta r})}{r^2}\right] dz \quad (A-5)$$

Considerando que el campo de radiación es inverso a la di<u>s</u> tancia (A-5) llega a:

$$H\phi = j \frac{Im}{4\pi r} \frac{\beta e^{-j\beta r}}{4\pi r} Aen \theta \int_{-h}^{h} Aen \beta (h-1zl) e^{j\beta z \cos \theta} dz \qquad (A-5a)$$

El campo eléctrico tendrá un valor dado por: $E_{\theta} = \gamma H \phi$ [17] y será:

$$E_{\theta} = j \frac{Im \eta \beta e^{-J\beta T}}{4\pi r} sen \int_{-h}^{hern} \beta(h-1\neq l) e^{j\beta \neq 0d\theta} d\neq \qquad (A-6)$$

En función de la frecuencia (A-6) es:

$$E\theta = \int \frac{\omega \,\mu \,e^{-J\beta t}}{4\pi \,\tau} \,Im \, \text{sen} \, \theta \int_{-h}^{h} \frac{\sin \beta (h-1z_{1}) e^{j\beta z \cos \theta}}{h} \, dz$$

debido a $\beta \eta = \omega \mu$ ya que el origen es fijo, las corrientes en los brazos de la antena son iguales. Luego $Im_1 \equiv Im_2 \equiv Im$

Anotando que $|\mathcal{Z}| = \mathcal{Z}$ para $o \leq \mathcal{Z} \leq h$ y que $|\mathcal{Z}| = -\mathcal{Z}$ para $-h \leq \mathcal{Z} \leq o$ el campo eléctrico es evaluado y

$$E_{\theta} = -j \eta \frac{Im}{2\pi r} \left[\frac{\cos\beta h - \cos(\beta h \cos\theta)}{\sin\theta} \right]$$
 (A-7)

Siendo γ la impedancia intrínseca o característica del espacio libre, con un valor de aproximadamente 120 π ohmios

La ecuación (A-7) se transforma en:

$$E \theta = \frac{j 60 Im e^{-j\beta r}}{r} \left[\frac{\cos(\beta h \cos \theta) - \cos(\beta h)}{\beta e n \theta} \right] \quad (A-7a)$$

en función de I se tiene finalmente:

$$\bar{E}\theta = \frac{j60 I \circ e^{-j\beta r}}{r} \left[\frac{\cos(\beta h \cos\theta) - \cos\beta h}{\sin\theta \sin\beta h} \right] \quad (A-7b)$$

APENDICE B

ANALISIS DE Fo(0, Bh)

$$Fo(\theta, \beta h) = \frac{\cos(\beta h \cos \theta) - \cos \beta h}{\sin \theta \sin \beta h}$$
(B-1)

Las propiedades direccionales de los campos eléc tricos y magnéticos en la zona lejana de una antena alime<u>n</u> tada en el centro y muy delgada están contenidas en la fu<u>n</u> ción definida en (B-1).

Esta función depende unicamente de heta debido a que la antena es rotacionalmente simétrica y por tanto el campo es independiente de ϕ

Un gráfico de la magnitud de (B-1) como función de θ , demuestra las propiedades direccionales de los campos. Tal gráfico se conoce con el nombre de "configuración de campo" en un plano que contiene la antena.

Este gráfico puede ser representado en forma rec tangular si se considera θ como abscisa y $F_o(\theta, \beta h)$ como ordenada; o alternativamente en forma polar si θ es medido como ángulo y $F_o(\theta, \beta h)$ radialmente hacia afuera.

Para el caso de dipolos de media longitud de onda

$$F_{o}(\theta, T_{2}) = \frac{\cos(T/2 \cos\theta)}{Aem\theta}$$
(B-2)

Los gráficos rectangular y polar de la ecuación – (B-1) se indican en la figura B-1 para valores de $\beta oh = \pi/2, \pi, 3\pi/2, 2\pi$,

en el primer cuadrante, debido a que existe simetría para el resto de cuadrantes.

Los valores extremos y ceros de (B-1) son de impor tancia especial. Los valores de θ para los cuales ellos ocurren son facilmente determinables; a saber: para los ceros:

$$cos(Bh cos \theta) - cos(Bh) = 0$$
 (B-3)

transformando en producto de sumas se tiene:

$$\operatorname{sem}\left[\frac{1}{2}\left(3h\left(1+\cos\theta\right)\right)\right]\operatorname{sem}\left[\frac{1}{2}\left(Bh\left(1-\cos\theta\right)\right)\right]=0 \quad (B-4)$$

para que se cumpla (B-4) es necesario que:

$$\frac{1}{2}\beta h(1+co1\theta) = \gamma \pi$$
 siendo n=0,1,2,

o sea:
$$\theta_{1} = arc \cos \left[\frac{2\pi\pi}{\beta h} - 1\right]$$
 (B-5)

Y $\frac{1}{2}\beta h(1-\cos\theta) = \eta \pi$ siendo n=0,1,2,...

o sea: $\theta_2 = arc \cos\left[1 - \frac{2m\pi}{\beta h}\right]$ (B-6)

teniendo presente que θ_i y θ_2 están en el primer cuadrante. Ya que la función cos (x) es par resulta entonces:

$$\theta = are \cos \left| \frac{2\pi\pi}{\beta h} - 1 \right|$$
 (B-7)

con n=0,1,2,...

En el caso particular de dipolos de media onda se tiene que:

$$\theta = arc \cos |4\eta - 1|; \eta = 0, 1, 2.... (B-8)$$

la cual se cumple unicamente para n=0, o sea $\theta = 0.77$.

Cuando n=O se indetermina (B-1) pero se puede ha llar el valor de (B-1) utilizando la regla de L'Hôspital.

