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Abstract— The purpose of this paper is to marry the
two concepts of multiple model adaptive control and safe
adaptive control. In its simplest form, multiple model
adaptive control involves a supervisory switching among
one of a finite number of controllers as more is learnt
about the plant, until one of the controllers is finally
selected and remains unchanged. Safe adapative control
is concerned with ensuring that when the controller is
changed the closed-loop is never unstable. This paper
introduces a receding horizon multiple model, switching
and tuning control scheme based on an on-line redesign of
the controller.. This control scheme has a natural two-stage
adaptive control algorithm: identification of the closest
model and design of the control law. The computational
complexity aspects of this approach to adaptive control are
discussed briefly. A nonlinear system is used to illustrate
the ideas.

I. INTRODUCTION

Adaptive control systems has been investigated for
over four decades. Since the begining, for the sake
of mathematical tractability, adaptive control theorists
confined their attention to time invariant systems with
unknown parameters or slow drifts in the parameters [1],
[12]. The accepted philosophy was that if an adaptive
system was fast and accurate when the plant parameters
were constant but unknown, they would also prove satis-
factory when parameters varied with time, provided the
latter occurred on a rather slower time-scale. Based on
these general principles, adaptive control was extensively
studied and numerous robust adaptive control algorithms
were derived [7].

In this framework, the problem of selecting the best
controller according to the performance index J can be
addressed, along a dual control approach, by introducing
a state variable representing the unknown parameter
vector, and solving the resulting optimal control prob-
lem on the augmented state—space representation of
the process. The optimal controller incorporates a self—
adjusting mechanism, in that it selects a control input
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that compromises the control objective versus estima-
tion needs (dual action, see e.g. [6]). However, such
an optimal dual control approach is generally difficult
to implement because it is computationally excessive..
Besides, extensive computer simulations have revealed
that when there are large errors in the initial parameters
estimates, the system exhibits a poor performance during
the transient phase, exhibiting oscillatory behaviour with
large amplitude.

A computationally feasible, though sub-optimal, ap-
proach to the design of self-adjusting controllers is the
so called switching control design method originally
introduced in [9] and further developed in e.g. [5], [11],
[13]. The switching control scheme consists of an inner
loop, where a candidate controller is connected in closed-
loop with the process. There is also an outer loop where
a supervisor decides which controller to select and when
to switch to a different one, based on the input-output
data.

The switching times are chosen so as to avoid switch-
ing that is too fast with respect to the system settling
time, thus causing instability. As for the controller se-
lection, it is based on an ‘estimator-based’ procedure
[11] typically. Specifically, at any switching time, a per-
formance signal is computed for each admissible model
parameter. The supervisor then selects the candidate
controller associated with the model that minimizes the
performance signal. Implementation and analysis of the
switching control scheme is simplified by considering a
finite number of candidate controllers. This set is called
a “finite controller cover” [2].

In standard switching control schemes, the compro-
mise between robustness and performance is made off-
line when the controller cover is designed. If the con-
troller cover consists of a large number of controllers,
each one stabilizing a wide set of models, then stability
is generally rapidly achieved, even before a large amount
of information has been accrued, but in the long run



the resulting performance is low typically. In contrast,
if the controller cover consists of a large number of
controllers, each one tailored to a narrow set of models, a
high performance control system is potentially achieved,
but poor performance will possibly occur until there
is sufficient data to obtain an accurate estimate of the
process model.

In this paper, a new multiple models, switching and
tuning control strategy, based on a receding horizon
technique is proposed. The proposed control algorithm
exploits the advantage of superstable systems to derive
a linear optimization problem that designs the controller
every sample. This problem is convex in the controller’s
parameter and allows to include constraints on the sys-
tem states.

The paper is structured as follow: the class of super-
stable system is introduced and some properties of this
class of system are analysed in Section II. The main
property of this class of systems is that they admit non-
asymptotic estimates for the outputs for arbitrary initial
conditions. An optimization design procedure based on
this bound is proposed in Section III. One key advantage
is that the proposed performance index is quasi convex
with respect to the controller coefficients. Robustness
issues in the optimization problem are also considered
in this section. Finally, the objective function is analysed
from the multiobjective point of view. In Section IV the
multiple models, switching and tuning control approach
is suggested by modifying the objective function and
the constraints employed by the predictive feedback
controller. Section V shows the results obtained from
the application of the proposed algorithm to a nonlinear
continuous stirred tank reactor. Finally, the conclusions
are presented in Section VI.

II. SUPERSTABLE SYSTEMS
Given that the local approximation to the process
model is given by its state-space discrete model
x(k+1) = Ax(k) +Bw(k) x(0) =2, (1)

where x(k) € R", w(k) € R™, A € R™" and B € R,
The « and 1 norms for the vectors x € R" and matrices
A € R™™ are given by

n
k)|, = max |x(k)|,||A]l; = max
()l = max ()l 1AL ie[l’m]j;\au\

Definition 1: The system (1) is superstable if ||A]|; <
1.
The superstability of the system implies its stability

p(A) <[All; <1,

where p(A) = max;e , |Ai(A)| is the spectral radius of
A.

Discrete—time superstable systems enjoy numerous
important properties [14]. The main one is that they ad-
mit simple non—asymptotic estimates for arbitrary initials
conditions. For instance, there exists a constant 17 such
that if initial conditions are less than or equal to u, and
inputs are bounded in /. norm, then the outputs do not
exceed 7 for all time steps.

Lemma 1: Assume a closed-loop system, described
by (1) with the initial conditions ||x(0)]|,, < pu and
bounded disrtubances ||w(k)||., < 1. Suppose that the
system is superstable and the equalized performance of
the system [3] is given by

no= |Bl/(=[Al) 2

Then, the closed-loop system responses are bounded by

@)l < n+lAljmax{o,u—n}  Vk>003)
In particular, if ||B||; = 0 then
k
(K)o < (Al 1 )

Proof: We have |x(k+ 1), < [All, [x(k)]., +
HBH}c |lw(k)||.., by induction this implies ||x(k)||., <N+
IA[f; ([x(0)[l., — 1) and hence (3). =
For superstable systems, the output can be estimated for
all time steps, not only its asymptotic values. Besides,
for any ¢ > 1 a ko can be found such that |x(k)| < cn
Vk > ko. In contrast, for stable systems only asymptotic
estimates of the output can be guaranteed, while the
effect of non-zero initial conditions may be very large.

An additional additional advantage of superstable
systems is their robustness with respect to outliers in
inputs. Suppose that the disturbance w(k) is bounded
for all samples except one, |w(k)| <1 Vk # N and
|[w(N)| = o > 1. Then, if the system is superstable and
|x(0)]|.. < u, the effect of the outlier is attenuated after
enough steps (see Theorem 2 [3])

Ing—Ino B,
Al

The inputs and outputs can be written as w(k) = w; (k) +
wa(k), x(k) = x1(k) 4+ x2(k) where wy(k) =0 Vk # N,
w2 (N) =0, x2(k) =0 Yk # N. Then ||x;(k)||., <n and
lea(k+N)|l.. < [[AlJT < VE >0

These results can be easily extended to time—varying
and nonlinear systems by analyzing the behavior of the
so called frozen systems. The superstability of frozen
LTI systems implies superstability of LTV system

x(k+1) = Agx(k) + Byw(k)

Vk> 1+

e(k+N) <2p ®)

||oo



and guarantees equalized performance 1 of the LTV
system. It is well known that this does not hold for
the more general class of stable systems. Besides, the
convergence x(k) — 0 for any LTV system, with no
external disturbances, has been shown [15].

A. Properties of equalized performance 1N

The equalized performance 11 has been employed as
a closed-loop system performance index for controller
design [3], [14]. Assuming that the closed—loop system
¢(z) = (z —A)~'B is superstable, it is easy to show that:
1) n(¢) is an upper bound for the H. norm
B(e/? maxg |B(e/®
”(p”oo = maXg |1’+£\(e/3‘)’)| — minw|l‘+i(ej3")| S 77(¢)
The sharpness of this estimate depends on the sign
of coefficients, for example when all coefficients
are positive 1(¢) is a very conservative.
2) n(¢) is an upper bound for the /; norm: Indeed, the
function ¢ (z) is analytic in the unit disk, therefore

[o1l; = X0 |9:] and
10(g~ " Yw(k)| < |8l Iw(k)| = n(e) [w(k)|,
thus, ||o(g~ )|, <n(¢).

In the next section a quasi-convex optimization program
based on the equalized performance 1, for design of
controllers, will be proposed.

III. THE CONTROLLER DESIGN

Consider a discrete-time system described by

x(k+1) = Ax(k)+Bu(k)+Dw(k),
y(k) = Cx(k) + Daw(k),

there is a variety of problem formulations for this system.
In this work the static output feedback stabilization
problem will be consider (u(k) = 2#’y(k)). Depending
on the system output, the transfer can be of the form

(6)

x(k) =
u(k) =

(2l —A—B#C)" " (D) 4+ B D) w(k)
KC(zI—A—BX'C)"' (D1 +BX# D)w(k)
then, it is required that the closed-loop system matrix

A+ B C to be superstable and minimize the desired
performance index, or a mixture of them,

|\D1 + B Dy,
(A , 7
(A7) 1A+ BAC|, )
|.# CD, + % CBA D, ||
u % == . 8
u(H) 1—[A+BACl, ®

The main feature of the above optimization problem is
its reductibility to a one parameter family of linear or

Pole
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Fig. 1. Effect of $\sigma$ on the pole placement region

quadratic programming problems. In the following the
Nx(#") will be employed.

The minimization of (7) is equivalent to a parametric
linear programming problem

min0§6<1 minl/ ﬁ ||D1 +B<%/D2H1

IA+BXC|, <o ©)

Proof: First, minimization of a fraction of the form
a(x)/(1— B(x)) subject to 0 < B(x) <1, over x, is
obviously equivalent to minimization of &(x)/(1 —pu)
subject to 0 < u < 1, where &(x) is a solution of
mina(x)/(1—B(x)) s.t. 0 < B(x) < 1. Second, note the
problem (9) is linear programing for a fix o. Indeed,
the coefficients of Dy +B.¥ D, and A+ B.J# C are affine
functions of the parameters of .. In the deterministic
case (D, = 0) the optimization problem (9) is equivalent
to

mli/nHA—i—B%/CHr (10)

|
The parameter ¢ defines the boundaries of the region
where the eigenvalues of the closed-loop system can be
placed (see Figure 1). This means that the eigenvalues
will be located in a the circle of radius 6. When ¢ =1,
the eigenvalues can be placed inside of the unitary
circle. This parameter can be employed to improve the
robustness of the optimization procedure against the
uncertainties.
The performance index (7) and the LP-like design
problem (9) have been introduced in the works [3],



[14]. It guarantees the optimal rejection of bounded
disturbances for non—zero initial conditions and provides
an opportunity for direct optimization in the space of
controller coefficients, in contrast with all other tech-
niques (H.,l,etc.) where the solution is sought in the
Youla parameter space. These problems can be solved
on-line, based on a receding horizon technique, such that
the information available in the system output is included
in the design of the control law. Due to this fact, the
controller will act as regulator, driving the system from
its current state, x(k), to the next one, x(k+ 1). In this
way, the constraints can be rewritten as in (3inf(k)rh})
leading to linear constraints of the type

k
|A+BAC|, < (%) , (11)

where x is the constraint value and .

A. Robust Design
Assuming that a set %, of M plants
xi(k+1)= Aux(k)+Buk) [1=1,....M,
yi(k) = Cix(k),

is able to represent the behaviour of system in a given
operating region. The problem is to find a controller
K which stabilizes all the plants simultaneously. This
simultaneous stabilization problem is known to be NP-
hard for m > 2 [4], and there are no effective algorithms
to solve it. The problem can be solved in this framework
by considering a set of stability inequalities for each
model

HA[ +Blc%/ClH] <O (12)

This is a system of linear inequalities with respect to
coefficients of the gain .#". Hence, the problem of si-
multaneous super stabilization has a solution if and only
if the system of linear inequalities (12) is non-empty.
If the set of solutions is non—empty, a N—optimization
problem can be solved. For instance,the optimal control
design problem can be solved through the following
linear programming problem

ming YM A ||1B1# ||
lA+BACll <o, I=1,....M

such that YY ;=1 and 4; >0 Vi.

This type of problem can also arise for the optimal
control design of a single plant when several objectives
are considered simultaneously during the controller de-
sign. For example minimize the error while the control
energy is bounded or minimize the sensitivity function
of the system S(z), while the complementary sensitivity
function 7'(z) is bounded or minimized.

I=1,....M.

(13)

IV. MULTIPLE MODELS, SWITCHING AND
TUNING

In adaptive control, the system is assumed to be linear
with unknown parameters that have small variations..
However, simulation studies and industrial applications
[8] have also revealed that the transient error of these
adaptive systems are significantly larger than in the
linear case, due to large and abrupt variations of the
parameters, so that the multiple models, switching and
tuning approach is relevant.

This control strategy is based on the idea of describing
the dynamics of the system, using different models for
different operating regimes. It also requires a suitable
strategy for finding the model that is closest (in some
sense) to the current plant dynamics. This model is
used to construct the control law for the current sample
that achieve the desired control objective. The suggested
approach is to consider the control assembled in two
stages: first, the closest models to the current dynamic
model is identified, followed by a control design based
on this model. The identification is defined via a finite
optimization problem, while the design is defined via an
infinite horizon. The objective of this work is the control
design stage, therefore in the following the switching
variables . (k) = [ Si(k) Su(k) | are assumed be
given. The structure of the resulting MMST controller
is showed in Figure 2. The switching variables .7 (k),
which are external inputs of the optimiser, are calculated
independently of control law every sample of the control
design.

To introduce the switching into the control design
problem (13), the objective function and design con-
straints are modified by replacing the weight A; with
the switching variables S;(k)

YLy Sik) 1B ||
and including them in the design constraints

8z (Sl(k)’x(k)v%/) <0

Z=Xx,u,y

In this way, the control law is designed, only employing
the closest model to the current plant dynamic, which
is used to measure the performance and evaluate the
constraints, while the superstability of the set # is
guaranteed. Thus, a better closed-loop performance than
a robust approach is obtained because a less conservative
model is used to design the control law. However,
note that the stability of the nonlinear system is also
guaranteed because the control law satisfies the super
stability condition for all models of % simultaneously.
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Fig. 2. Controller structure

Thus, the resulting control law will stabilise the system
in the whole-operating region and will obtain the best
performance for the current operating point.

V. SIMULATIONS AND RESULTS

Consider the problem of controlling a continuous
stirred tank reactor (CSTR) in which an irreversible
exothermic reaction A — B occurs in a constant volume
reactor. This nonlinear system was originally used by
Morningred, Paden, Seborg and Mellichamp [10] for
testing discrete control algorithms. The system is mod-
elled by the following equations

dCa — 4 [Cay—Ca] — koCaexp (7Z),

I —T] - kgf:Ca exp (72)
+%QC [1*CXP< )][TCO*T],
the nominal values of the variables and parameters can be
found in Morningred’s paper [10]. The objective is con-
trolling the output concentration, Ca, using the coolant
flow rate, g¢, as the manipulated variable, and the inlet
coolant temperature, T, and the feed concentration,
Cayg, are the disturbances. The output concentration has
a measured time delay of 7; = 0.5 min.

The nonlinear nature of the system is shown in figure
3, for the open-loop response to changes in the ma-
nipulated variable. It shows the dynamic responses to
the following sequence of changes in the manipulated
variable gc: +10 It min~',—10 Itmin~',—10 ltmin~".
Besides, the CSTR becomes uncontrollable when gc¢ is

—hA
qc PcCpe

Temperature [ °K ]

0

0.16 F T T T T 3
0.14 |- 4
012 |- 4

0.10 - —

0.08 - B

Concentration [ mol It ]

0.06 & L 1 L 1 L 1 n s =

0 10 20 30 40 50
Time [ min ]
Fig. 3. Open-loop responses of the CSTR

TABLE 1
VERTICES OF THE POLYTOPIC MODEL

Change Model Obtained
— 0.185910 3z 5
Model 1 Gp1(2) = 277 5835010 6406
qc = I]O,ch =10
_ 02156107377
Model 2 Gpa(z) = 17272707793
qc = 1 lO,AqC =-10
_ 01153107377
Model 3 Gp3(2) = 221 Fioar 07547
gc = 110,Agc = —10
0.8305 10475
Model 4 Gpa(2) = 2170770 5001

gc = 110,Agc = 10

bigger than 113 It min~'. Four linear models were deter-
mined from the composition of responses shown in figure
3, using a subspace identification algorithm [16]. Notice
that these changes imply three different operating points
corresponding to the following stationary manipulated
flow-rates: 100 Ir min~', 110 It min_], and 90 It min~!.
Table I shows the four process transfer functions that
define the polytopic model associated to the nonlinear
behavior in the operating region being considered. Like
in Morningred’s work, the sampling time period was
fixed in 0.1 min, which gives about four sampled-data
points in the dominant time constant when the reactor is
operating in the high concentration region.

The controller must be able to follow the reference and
keep the system’s controllability over the whole opera-
tional region. Hence, assuming a hard constraint is used
on the coolant flow rate at 110 Itmin~"', an additional
restriction for the more sensitive model (Model 1) must
be considered for the deviation variable u(k):



uk+1) < 10 Vi>0 (14)

In addition, a settling time of 5 min are demanded
(the error must be lower than 10~3 mol It~1), thus the
following constraints are included

le;(k)] <1073 Vk >N, +50. (15)

where N, is the time instant when the setpoint change
happens. This assumes that the nominal absolute value
for the manipulated variable is around 100 It min~'and
that the operation is kept inside the polytope whose
vertices are defined by the linear models. The constraints
(14) and (15) are then included in the optimization
problem (13).

A traditional MMST controller was developed using
the models showed in table I, therefore four linear
controllers were obtained. Each controller was developed
using robust tuning methods employing two models si-
multaneously: the model corresponding to the operating
region and the previous in order to guarantee the stability
of the system.

The switching criterion employed by both adaptive
controller is

k
Si(k) = aei(k)+B Y. pFIel(j)

J=No

(16)

with parameters given by

a=07,B=04p=02. (17)

The indexes S;(k)i =1,2,3,4 are initialise each time that
a setpoint happens.

A robust MPC based on the worst—case minimization
was developed to compare the closed—loop responses.
The predictor was built using the model 2 assuming
that the parameters are corrupted by some error &;
i=0,1,...,p due to modelling error, i.e. o; = Oc,-2 + &
i=20,1,...,p, such that o; C [Ociz—ei,ai2+€i]. The
uncertainty bound g was calculated form the vertex of
the polytopic models

& = max (‘a{—aﬁ‘).
j=1,3,4

The noise for the remaining parameters of the model
have been computed in a similar way. Here it is assumed
that the parameters’ noise is an independently identical
uniform distributed variable. The remaining tuning pa-
rameters (the optimization horizon N, the control horizon

0.13 T T T T

012 - Reference T
—— Adaptive predictive
MMS 7]

Robust MPC

0.11 |

0.10
' ' A\
0.09 : R Wy

0.08

0.07

Concentration [ mol It" ]

0.06

0.05 1 1 1 1

Time [ min ]

Fig. 4. Closed-loop responses to setpoint

Ny, control weight R, and the error weight Q) were
setting to

N =200,Ny =5,R=510"1,0=1.

The optimization problem was solved, at each step, using
a min—max algorithm.

The simulation tests are similar to Morningred’s work
[10] and consists of a sequence of step changes in the
reference value. The set point was changed in intervals
of 10 min. from 0.09 mol It~! to 0.125, returns to 0.09,
then steps to 0.055 and finally returns to 0.09 mol
It~!. Figure 4 shows the closed—loop simulation results
sustained by the controller described in the previous
paragraph. As can be seen in this figure the adaptive
controller provides a response without overshoot and
faster settling time for all the operating region. The
robust MPC always provides a slower response without
overshoot, and in some cases it fails to achieve the
setpoint value in the time of setpoint changes. Finally,
the switching controller always achieves the setpoint but
with an overshot and a bigger settling time than the
predictive feedback controller. The reason for this result
is that the adaptive controller: (a) employes more to
compute the control actions it is able to adapt it to each
operating region, by changing the model, and (b) include
the feedback information available at each sample in the
design the control law.

The good performance of the adaptive controller pro-
posed in this work is due to the combination of a switch-
ing scheme with the on-line design of the controller. In
this way, the adaptive controller is able to identify the
local model and to optimize the closed-loop response
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whilst at the same time satisfying the constraints by
modifying the controllers gains (Figure 6-upper figure).
The parameters of the adaptive controller are modified
with changes in the reactors operating region. They
revealed an initial transient behavior, after each change,
before achieving their steady state values. The major
changes happen during the transitions from and to model
1 because it is the different behavior (see Figure 3). This
fact can be appreciated in the behavior of the switching
variables S(k)(Figure 6 -lower figure), which show jitter
during the first, third and fourth reference changes. These
transitions correspond to switches between models 21;
23 and 34; which have similar dynamics and only differ
in the gain.

The switching controller has a better performance than
the MPC and a poorer one than the adaptive controller.
The adaptive nature of the controller leads to a better
global performance than a worst—case design whilst
guaranteeing the robust stability of the system. However,
the response shows an overshoot in one operating region
(first model) and a bigger settling time in other (third
model). The reason for this is that the controller has
fixed its parameters for each operating region. The MPC
controller has a poorer performance than the predictive
feedback and the fixed—structure controller because the
worst—case scenario is considered all the time. The
conservative nature of the min—max, added to the dif-
ference in the models, results in a slower response with
a consequential loss of performance.

VI. CONCLUSIONS

A simple framework for the design of robust adaptive
controllers with multiple models was presented. The

E 06 F T T =
& 100 ]
g 04 , 0 ]
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E 02 LI | | 95(k) j
& 00 )l ‘ &
o g L _ 4
» 06F q,(k) ]
§ ot -
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£ 09F 450 E
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50 YO
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@ ) 5,0
. | l
0 10 20 30 40 50

Time [ min ]

Fig. 6. Controller gains sequences (upper figure) and the switching-
indices sequences(lower figure)

approach was to relate the control law performance to
the prediction of performance. The resulting controller
identifies, at each sample, the closest linear model to the
actual operational point of the controlled system, and
reconfigures the control law such that it ensures robust
stability of the closed-loop system. The reconfiguration
of the controller is carried out by switching the function
used to measure the closed-loop performance and the
constraints.
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