
 
 

 

  

Abstract—In this paper an adaptive fuzzy decentralized 
control algorithm for trajectory tracking of robot manipulators 
is developed. The proposed decentralized control algorithm 
allows the overall closed-loop system to be stabilized while 
making the tracking error to be uniformly ultimately bounded 
(UUB), without having any prior knowledge of the robot 
manipulator dynamics. The interconnections in the dynamic 
equations of each subsystem are considered with unknown 
nonlinear bounds. The adaptive fuzzy neural networks 
(AFNNs) are proposed to model the unknown nonlinear 
dynamics of the robots and the interconnection terms. Using 
Lyapunov method, the stability of the overall system is 
investigated. 

 
I.  INTRODUCTION 

The control of robot manipulators is challenging due to 
the inherent high nonlinearity in their dynamics. In classical 
control theory, it is assumed that the control actions are 
undertaken by a single controller that has all the available 
information about the system. Although significant 
achievements to improve the tracking performance of robots 
by using centralized schemes have been gained, [1]-[2], but 
when the degree of freedom  (D.O.F) of robots is large they 
encounter time consuming computations and complexity of 
the controller structure. Therefore we seek for control 
methods that reduce these problems by changing the 
problem to control smaller scale systems by using the 
decentralized controllers that have the advantage of 
computation simplicity and low-cost hardware setup. 
Therefore improving the performance of the tracking 
problem of robots through decentralized control is an 
interesting topic. 

Earlier literature on the decentralized control methods 
were focused on control of large-scale linear systems. These 
works consider subsystems which are linear in a set of 
unknown parameters [3]-[7]. The others were focused on 
systems with first order interconnections [3]-[10]. But their 
results can not guarantee stability when interconnections are 
of higher order as depicted in [11]. These methods are not 
applicable to the control of robot manipulators which have 
highly nonlinear interconnection terms, so we seek for 
efficient methods that consider the interactions as unknown 
nonlinear functions and design suitable decentralized 
controllers to eliminate the effects of these terms in dynamic 
equations of each subsystem. 

In this paper, robust fuzzy decentralized control laws are 
proposed for the tracking problem of robot manipulators. 

 
 

The AFNNs are used here as a tool to model the unknown 
nonlinear dynamics of each mechanical subsystem and 
eliminate the effects of interaction terms on each subsystem 
resulted from decomposing the overall robotic system into 
multiple smaller scales mechanical systems. The main 
advantage of the proposed approach is that, the 
interconnections could be considered with arbitrary 
unknown nonlinear bounds.  

The structure of this paper is as follows. In Section II we 
formulate the dynamics of the overall robotic system and the 
smaller scale subsystems. Also we define the bounds on 
interconnections. In Section III we propose a brief review of 
the AFNNs that we have used them in the paper, then in 
Section IV we introduce a control input including the 
outputs of two AFNNs, one for estimating the unknown 
local dynamics of each subsystem and the other for the 
unknown nonlinear interactions. In Section V of the paper 
the effectiveness of our method is shown by an application 
example. The paper concludes in Section VI. 
 

II. PROBLEM STATEMENT 

Consider a robotic system with degree of n  described by 
the following equation 

τ=+++ ),,()(),()( tqqdqGqqqCqqM &&&&&   (1) 
where q  is the generalized coordinate of the system, (.)M is 
the inertia matrix, (.)C is related to the coriolis/centrifugal 
torques, (.)G is the gravity vector of the system, 

(.)d denotes the disturbance vector and τ  is the generalized 
force applied to the system. 
Now, according to difficulties of a centralized control 
algorithm, a large-scale robotic system can be decomposed 
into N  subsystems, each having degree of in  such that 
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. So we can write (1) as 

iiiiiiiiiiiiii tqqqqdqGqqqCqqM τ=∆++++ ),,(),()(),()( &&&&&&

  (2) 
here ),( iii qqd &  represents the disturbance term of 
subsystem i and ),,( tqq iii∆  is the interaction term of 
other subsystems on the thi  one. We can consider one joint 
or multiple joints as a subsystem to be controlled by a 
decentralized controller. 

Assumption 1: The unknown interconnection vectors 
satisfy the following inequality  
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where 0iξ 's are unknown positive constants and (.)ijξ 's are 

unknown smooth functions with 0)0( =ijξ . Now by 

assumption that all the joints are revolute the following 
properties can be resulted [13]. 

Property 1: The inertia matrix )( ii qM  is symmetric and 
positive definite, satisfying the following relation 

22 xxMxx ii
T

i λλ ≤≤   
where iλ  and iλ  denote the maximum and minimum 

eigenvalues of iM , respectively. For other matrices ( ).λ  

and ( ).λ  denote the maximum and minimum eigenvalues of 
( ). , respectively. Also the Euclidean norm is described by 

xxx T=2  . 

Property 2: ),(2)( iiiii qqCqM && −  is skew-symmetric. 

III. ADAPTIVE FUZZY NEURAL NETWORKS 
The basic configuration of a fuzzy logic system consists 

of a fuzzifier, some fuzzy IF-THEN rules, a fuzzy inference 
engine and a defuzzifier. The fuzzy inference engine uses 
the fuzzy IF-THEN rules to perform a mapping from an 
input vector ( )T

rxxxx ,...,, 21=  to an output y . The 
thi  fuzzy rule is written as 
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where i
r

ii AAA ,...,, 21  are fuzzy variables and iy  is the 
center of the thi  output membership function. By using 
singleton fuzzifier, product inference and center-average 
defuzzifier, the output of the fuzzy system can be expressed 
as 
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where )( jA xi

j
µ  is the membership function value of the 

fuzzy variable jx , p  is the number of fuzzy rules, 

[ ]TpyyyB ...21=  is the adjustable parameter vector 
( composed of consequent parameters ), and  
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is the fuzzy basis function (FBF).  
Given a fuzzy neural network, it is possible to 

approximate a wide variety of functions simply by making 

different choices for B . In particular if there is a sufficient 
number of rules within the network, then there exist some 

*B  such that 

xM
T SxxfxB ∈∀≤− ,)()(sup * ρξ  

where xS is a compact set and 0>Mρ   is a finite constant 
provided )(xf  is continuous [12].  So we can express 

)()()( xxBxf T ρξ +=  with Mx ρρ ≤)(  when xSx ∈  
Note that even though AFNNs are linear in a set of 
adjustable parameters, a function which is not linear in an 
independent set of parameters could be approximated. It 
should be noted that any universal approximator which is 
linear in adjustable parameters may be considered such as 
RBF neural networks, Takagi-Sugeno fuzzy systems, 
CMAC networks, etc,. 

IV. CONTROLLER DESIGN 

Assuming the desired trajectory for the thi  subsystem to 
be twice differentiable, define the following relations 

diii qqq −=~   (4-1) 
iidiri qqq ~Λ−= &&   (4-2) 

iiiriii qqqqs ~~ Λ+=−= &&&   (4-3) 
where iq~  is the tracking error, riq&  is the reference velocity 
and is  is the residual error for the thi  mechanical 
subsystem. Now substituting (4) into the dynamic equation 
of the subsystem i , described by (2), results in 
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Here we assume the dynamics of the robot manipulator are 
unknown, so according to the general approximation 
property of the AFNNs we can write 
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 (6) 
where iw 's are the minimum approximation errors of the 
fuzzy neural networks which can be made sufficiently small 
by choosing the appropriate fuzzy basis functions (.)iΦ . 
Also assume that iMi ww ≤ . 

Now, consider the control law to be given as follows 

ii
T

iiii rWsK −Φ+−= (.)τ   (7-1) 

iiiii
T

ii sssZr θη += )(   (7-2) 
where the design matrices sKi ' are positive definite and the 
constants 0>iθ  are chosen to be sufficiently large. 

)( ii
T

i sZ η  are the outputs of the second AFNNs with 

basis functions (.)iη  and inputs is . The effect of this 
term and the related details would be discussed in the proof 
of the following theorem. 



 
 

 

Note that the control law (7) is apparently in a decentralized 
manner and its performance can be summarized using the 
following theorem. 

Theorem: Consider the n  degree of freedom robotic 
system described by (1) and decompose it into N  
subsystems with dynamics given by (2). Now choosing the 
control input for the thi  subsystem given by (7), the 
solution )(tsi  is uniformly ultimately bounded. Moreover 
the ultimate bound can be made arbitrary small choosing 
appropriate gains. For a desired bound iβ , there exist 
controller gains and suitable update laws for the AFNNs 
such that for a finite time irt : 

If   ii as ≤)0(  then   ir
i

i
ii tts ≥∀≤

λ
λ

β      (8) 

Proof: Consider the Lyapunov function of the system to 
be given by 
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also s'iΓ  and s'iγ  are positive definite matrices and 

positive constants, respectively. Define  *~
iii WWW −=  and 

similarly *~
iii ZZZ −= . 

Now taking the first derivative of iV , by using (6) and (7) 
and assumption 1, we obtain 

∑ ∑

∑∑

= =

==

+

+++Φ+−≤

N

i

N

j
ijii

i
T

iiMi

N

i
ii

T
i

T
iii

T
i

N

i
i

ss

rswsWssKsV

1 1

0
11

1

))((

))((.)~(

ξ

ξ&

 

Considering the last term of the right hand side of the above 
inequality we get 
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Here we have used the property that for the smooth function 
)( jji sξ there exists another smooth function 

)( jji sε such that )()( jjijjji sss εξ = . Also 

in the above inequality the fact that 222 baba +≤  has 
been used. 

We can estimate the unknown nonlinear function 
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where szi '  are the minimum approximation errors of this 
AFNN with iMi zz ≤ . Now substituting ir from (7) and 
using (9) we obtain 
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Differentiating 2iV  and substituting in the overall derivative 
of V and choosing the update laws for the weights of the 
AFNNs in the form of  

T
iiii sW (.)ΦΓ=&   (10) 

2(.) iiii sZ ηγ−=&   (11) 
we get 
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(12) 
iMz  is the bound on the minimum approximation error that 

could be eliminated in the above inequality by choosing 
sufficient large values for iθ 's so that 0>≈− iiMi z θθ  . 

Thus for iis β≥  we have 0)( 2 <−≤ iii sKV λ& , 
where 

i
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 (13) 
Note that )(tV&  in (12) is bounded as a function of is , 

thus in view of the Appendix I, this results that iMi ss ≤  

for all t , where iMs  is defined in (15) and is  will 

eventually be smaller than or equal to 
i

i
i λ

λ
β . 

Now we show that is  will satisfy (8) in a finite time. If 

iiiiis λλββ ≤≤)0( , then 0=irt . The reason is 

that V& is negative whenever ii ts β≥)( so that the 

maximum value that is  may reach is defined by 

iii λλβ , thus .,)( tts iiii ∀≤ λλβ   



 
 

 

If  iii s αβ ≤≤ )0( , then one has from (12) and property 
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value for irt can be found.   
Q.E.D. 

Remark 1) It is obvious that by choosing the larger 
values for iθ , the maximum bound on is  would be 
decreased. Although this improves the tracking 
performance, it is clear that in return we must apply larger 
values for control inputs that is not desirable from practical 
point of view. 

 

V. SIMULATION RESULTS 

In order to demonstrate the performance of the proposed 
adaptive fuzzy decentralized controller, for simplicity we 
consider a two link planar robot for numerical simulations, 
as shown in Fig. 1. It is obvious that the proposed method is 
applicable to any large-scale robotic manipulator. 
The dynamic matrices and vectors are defined as 
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where 
)(cos)(cos)()( 212221211 qqamqammqg +++= and 

)(cos)( 21222 qqamqg +=  with  [ ]Tqqq 21= . The 
values of the parameters in the above dynamic vectors and 
matrices are defined by  

kg.80,kg1,m.80,m1 2121 ==== mmaa . 
The simulations have been performed by 20=iθ and 

)15,15(diag=iK  with the initial conditions for the joint 
variables to be  

0)0(,2.0)0(,0)0(,0)0( 2211 ==== qqqq && . 
Also the desired trajectory for the joints of the robot is given 
by 
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By applying the control input (7) to each joint of the planar 
robot, the joint 1 is shown to follow the desired trajectory 
with good performance in Fig. 2. The residual error for joint 

1 is shown to decrease to a small value near zero in Fig. 3 
but it could be decreased by choosing a larger value for iθ . 
The simulation result in Fig. 4 shows that the joint 2 has a 
very good performance in transient response of the tracking. 
In Fig. 5 the residual error for joint 2 is shown to decrease 
into a small value that can be reduced by increasing the 
value of iθ . Fig. 6 and Fig. 7 show that the decentralized 
control inputs for both joints are in a desirable range of 
variations. 

 
Fig. 1. Two link planar robot. 

 

VI. CONCLUSION 

In this paper a fuzzy neural network decentralized control 
scheme for robotic manipulators is presented which can be 
effectively applied to large-scale robot manipulators. It is 
assumed that the interconnections have unknown nonlinear 
bounds. It is shown how by using a fuzzy neural network the 
effects of these interconnections on the performance of each 
mechanical subsystem have been eliminated. The nonlinear 
dynamics of each subsystem is also modeled by another 
fuzzy neural network. The simulation results show that the 
proposed approach outperforms the decentralized method 
suggested in [7]. This is mainly because of having a more 
general structure to model the interconnections. 
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       Fig. 2.  Trajectory tracking for joint 1; ( ) ( )..., 11 dqq − . 
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            Fig. 3.    Residual error for joint 1. 

APPENDIX 
For carrying out the mathematical development of the 

proof of the proposed theorem, consider the following 
discussion. For the Lyapunov candidate function )(tV  given 
in the proof of the theorem and using  property 1, if 

0)( ≤tV&  for 0tt ≥ , with 00 ≥t , then the norm of is is 
bounded by 

)( 0tss iiii λλ≤   (14) 
In other words, as long as )(tV& is negative or zero, 

is will be bounded as a function of )( 0tsi . In 

particular, if ( ) ii as ≤0 , the maximum value of is  
which may take can be given by 

i

i
iiM as

λ
λ

=  
 (15) 

However, for some values of is , )(tV& may become 

positive. The key point is that even in this case, is  must 

not become larger than iMs , and )(tV& must be bounded for 

all t . Furthermore, is  must not be larger than 

iii λλβ  for some finite time 0≥irt . This equivalently 

means that is  will satisfy (8). So it must be rendered that 

iMii sstV ≤≤< βif,0)(&   (16) 
If is is smaller than iβ , )(tV& may become positive, and 

thus is  may increase its value. If )(tV& is bounded for all 

t , then is  cannot have a finite escape time. Thus, since 

for iis β≡  , )(tV& is negative, according to (14) the 

maximum value of is  which may take is given by 

iiiis λλβ≤   (17) 
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                Fig. 4.    Trajectory tracking for joint 2; ( ) ( )..., 22 dqq − . 

 
Note that one must choose iMi s≤β , so that the maximum 

value of  is  can be computed from the chosen ia in (8). 

In conclusion, if (16) holds with ii as ≤)0( and )(tV& is 
bounded for all t , then the Theorem can be proven. We 
show in the proof of the theorem that positive gain iθ  can 
be selected to achieve this goal. 
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                   Fig. 6.    Joint 1 control input ( 1τ ). 
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                    Fig. 7.    Joint 2 control input ( 2τ ). 

 


