
 

 

 

  
Abstract— This paper contains a synthesis to model an 

electromagnetic levitation system using a direct evaluation 

method of electromagnetic and electromotive forces, taking the 

Maxwell equations that relate electric and magnetic fields. The 

aim of this work is to contribute to researches focussed on 

developing and optimising mechanisms to provide solutions for 

applications where mechanical friction must be reduced or 

eliminated. A prototype is also presented; it will support 

experimental requirements for curses on automatic control 

and physical experimentation principles as well as models 

related with electrostatics and magnetodynamics. 

 
Index terms— Electromagnetic levitation, Eddy currents, 

Maxwell equations, state space. 

I. INTRODUCTION 

HEN a conductor material is reached by a time 

varying magnetic field 
→

B , an electric field 
→

E  is 

induced, according to Faraday’s Law 
t
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which generates an electric current given by Ampere’s Law 
→→

= EJ σ . In Fact, this is the basic principle on which all 

Eddy-current devices are based. 

 

When the current 
→

J flows through a closed path, the 

following phenomena are presented [14]:  First, they 

produce heat because of ohmic losses of the material 

(inductive heating); second, a magnetic field is generated, 

which opposes to the incident  field; and third, repulsive 
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forces are created by the interaction of the incident and 

induced magnetic fields, 

→→

= BxJf . 

 

Neglecting the inductive heating and considering 

repulsion forces and magnetic fields, a dynamic model for 

an aluminum disc levitation system is deduced [9], as 

shown in Fig. 1.  

 

A non-linear mathematical description is obtained  using 

a direct evaluation method of mechanic and electromagnetic 

forces [10] and rules that relate electric and magnetic fields 

(synthesis of Maxwell equations) [8][11]. 

 

Energy loss due to friction is one of the problems that 

appear when objects are moved over a surface. Friction 

produces, among other problems, noise, dust and wearing 

down of surfaces.  

 

Hence, research and technological developments are 

important in order to reduce or eliminate friction.  

 
Fig.  1.  Scheme for the levitation system 

 

Fig. 1 shows an electromagnetic levitation system. It is 

designed to research in clean environments, and with a 

minimum of mechanical contact [1][2]. 
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 From an academic point of view, levitation systems 

satisfy experimental requirements for teaching automatic 

control, modern control [3][4][5][12] and electromagnetic 

principles [14][20], among others. 

  

This work also intends  to motivate researches into 

technological solutions for mechanical contact free 

applications. 

II. MATHEMATICAL MODEL 

 

First, we introduce following assumptions in order to 

derive a nominal model [13]: 

 

• Uniform magnetic induction through the air gap. 

• Absence of  magnetic dispersion flows. 

• Losses caused by Eddy currents and hysteresis are 

ignored. 

• Iron core concentrates magnetic flow and limits 

the degrees of freedom of the disc. 

• Relative permeability of the core, rµ , is 

considered constant and linear. 

 

In order to lift up the disc to an equilibrium position oZ , 

electromagnetic force emF  is applied to the disc and should 

be equal to gravitational force gF  acting on the disc but in 

the opposite direction. 

 

gem FF =  (1) 

 

Gravitational force is calculated as the product of the 

mass of the disk m  multiplied by gravitational acceleration 

g: 

 

gmFg ⋅=  (2) 

 

According to Lorentz’s force, electromagnetic force 

acting on the disc is: 
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Alternating current through the coil coilI  generates the 

external electromagnetic field coilB
→

. Using Biot-Savart’s 

law, the electromagnetic field at a point outside the core in 

direction Z caused by a coil with N turns, and radius R  

and a current coilI  is [8]: 
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According to Lenz’s law, the current induced in the disc 

generates a magnetic field opposite to the field created by 

the induced current as shown in Fig. 2. 

 

 
Fig.  2. Current and fields 

 

With (3) and considering directions of the 

electromagnetic field caused by the coil and the induced 

current, it is deduced that the force that lifts the disk results 

from the interaction of the current through the disc and the 

radial component of the inducer’s electromagnetic field so 

the electromagnetic force is: 
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Using Newton’s second law, the dynamic equation of 

movements is:  
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The aluminium disc can be considered as a circuit with 

inductance discL  and resistance discR , when an induced 

current discI  flowing through it, due to a voltage originated 

by the incident field coilB
→

. According to Faraday’s law, the 

induced voltage is: 
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The relation between the current through the coil and the 

voltage source tVo .sin ω is: 
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An expression for the current DiscI  is:  
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Using the previous equations, a space-state 

representation is generated, taking as state variables the 

current through the coil, the current through the disc, height 

of the disc and its relative vertical velocity. 
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III. SIMULATION AND ANALYSIS 

 

Table 1 presents the parameters and values for 

simulation. The non-linear space state model used for 

simulations is shown in (17), (18), (19) and (20). 

 

 

 

 

 

TABLE I 

MODEL PARAMETERS  

Symbol  Quantity Value (SI) 

µ permeability 4π × 10−7 Wb/(A·m) 

D  External radius disc 0.062125 m 

Q Internal radius disc 0.0131 m 

h  Thickness disc 0.0016 m 

N Number of Turns   450 

R Radius coil 0.06 m 

m Mass 0.0565 Kg 

g  Acceleration  due to 

Gravity 

9.8 m/s2 

µr  Relative permeability 5500 Wb/(A⋅m) 

Lcoil  Coil inductance 0.0470 H 

Rcoil  Coil Resistance 10.7 Ω 

ρ Resistivity 2.75e-8 Ω⋅m 

Acore  Core area 0.0121 m2 

Rdisc  Disc Resistance  6.9380e-5 Ω 

Ldisc  Disc inductance 9.0062e-9 H 

f  Source frequency 60 Hz 

V0 Voltage peak V 

Icoil  Coil Current  A 

Idisc Induced current A 

Z Disc height m 

v Disc velocity m/s 
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From simulations, is deduced the following: 

 

In Figure 3, the induced current through the disc and the 

current through the coil are not in phase. The angle depends 

on the resistance and inductance of the disc, but this angle 

is always between 90 and 180 degrees. This is due to two 

factors: first, the induced voltage on the disc is 90 degrees 

out of phase with respect to the current in the coil (this may 

be explained by applying Faraday and Lenz’s laws), and 

second, the disc behaves as an RL circuit so its current lags 

the voltage. 
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Fig.  3. Disc and coil currents 

 

The system is the interaction of two subsystems located 

at the coil and the disc, which act as two magnets created by 

AC currents so their poles will also be alternately. In Fig. 3, 

dark zones correspond to the time intervals that the currents 

through the disc and coil turn in the same direction and 

therefore they are attracted. The opposite phenomenon is 

shows in the white zones. 

 

It is also observed that in just one attraction cycle of the 

disc current, an attraction-repulsion cycle is generated. This 

is the reason for which, the instantaneous force that acts on 

the disc, oscillates to twice the frequency of the current in 

the coil (Figure 4). This result can be explained 

mathematically as the product of two sine waves, one 

lagging the other, as shown in (21),  notice that the constant 

term (an average value) this related with the lag angle of the 

currents. 
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Fig.  4. Instantaneous force 

 

Although the instantaneous force has positive and 

negative values (Fig. 4), exists an average force (Fig. 5) that 

lift up the disc. The average value of the force is directly 

related to the lag angle between the voltage in the disc and 

its current. 

 
Fig.  5. Average force 

 

The signal corresponding to the height of the disc (Fig. 

6) presents oscillations at two different frequencies. The 

first,  at 17.083 rad/s (2.7189 Hz), fades, and the second 

one, at 757.01 rad/s (120.48 Hz), remains in a stationary 

state. 

 
Fig.  6. Disc height 

 

Fig. 7 shows a comparison between the height of the disc 

at 60 Hz and at 350 Hz. At 60 Hz the angle of impedance of 

the disc is 2.8017 degrees while at 350 Hz it is 15.93 

degrees. 

 

At 350 Hz the disk gets higher in a stationary state 

(0.088 meters) than at 60 Hz (0.080 meters), but it 

oscillates more during the transient time. Height changes 

with respect to frequency because of the changes in 
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impedance, and changes in transient time and oscillations 

are due to inductive effects that increase as the frequency 

does, causing the damping factor to decrease. 

 
Fig.  7. Comparison of the height of the disc at 60 Hz and 350 Hz 

IV. CONCLUSION 

 

In this paper we have presented a mathematical model 

for a levitation system using repellent forces, described by 

parameters that are easy to obtain since they correspond to 

the geometry of the materials and their physical constants. 

 

Also we verified that the mathematical description in the 

space state is effective, since it offers an easy way to 

describe non-linear systems and use computational tools to 

simulate and solve. 

 

The levitation mechanism for eddy currents, presents 

interesting dynamics for evaluation of linear and non-linear 

controllers. 
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