
A Framework for Implementing Intelligence in Embedded Controls

S. Commuri, Member, IEEE

Abstract—This paper presents a framework for the
realization of intelligent embedded systems for control
applications. Requirements on system intelligence are
translated into requirements on the system hardware and
software. The hardware and software components of the
design and their impact on system performance are
discussed. Software and hardware architectures are
presented that enable the realization of these requirements.
Recent trends in the hardware-software co-design and
hardware reconfigur-ation are utilized to design systems
that are fault-tolerant and have higher reliability under all
operating conditions. The design approach is validated by
means of a case study.

I. INTRODUCTION

 In recent years, performance specification for
control systems has grown to include the requirements
for system intelligence. These systems are typically
distributed in nature, require a high degree of fault
tolerance, and have to function under varying operating
conditions. These systems also have to support
intelligent sensor selection and sensor fusion, remote
monitoring and operation, and be capable of
implementing sophisticated algorithms for adaptive
behaviors. Ultimately, the design should support system
evolution, provide paths for migration of capabilities and
result in lower acquisition and lifecycle costs. Design of
such systems cannot be accomplished by the simple
integration of smart controllers or transducers [1,2].
Embedding intelligence into systems requires a new
design paradigm that takes into account the hardware and
software complexities involved in the design of
embedded systems [3],[4]. Thus, it is necessary to
design the systems ground-up in order to meet the system
requirements [5], [6].
 Researchers have addressed the problem of
controlling intelligent systems from many perspectives.
Efficient use of resources was accomplished using a
centralized planning approach [7], [8]. An approach
based on distributed controls was adopted to meet the
requirements of fault tolerance and fault recovery [9],
[10].

This work is supported in part by the U.S. Department of Defence,
Army Research Office, under grant # DAAD 19-03-1-0142.

S. Commuri is with the School of Electrical and Computer
Engineering, University of Oklahoma, Norman, OK 73019, USA
(e-mail: scommuri@ou.edu)

 As real time requirements for such embedded systems
grew more stringent, researchers considered both
centralized and distributed architectures in their design
[11]. Distributed systems make possible the development
of sophisticated systems with complex behaviors. In such
systems, time-critical reactive behaviors of the system
can be implemented locally, while generalized system-
level behaviors can be abstracted out and implemented
on a central resource that communicates with all the
distributed nodes in the system. Such implementations
encourage modularity in the design and facilitate fault-
tolerant design. Crucial in the design of such systems is
the selection of the appropriate hardware and software
components and the architecture for their integration.
 While the component technologies have
matured in the past few years, the design of these
systems is not a matter of simple system integration.
Often, it is necessary to design these systems ground-up
in order to meet the overall requirements. In the
conventional design process, the functionality expected
from the overall system is specified during the
specifications stage of the project. These specifications
then drive the design of the system. The performance
targets specified are used to allocate hardware resources
and determine the software requirements. Once the
hardware allocation is made, system performance can be
altered only by modification of the software. Thus, plug-
and-play capability of sensors/actuators, fault tolerance,
changing the system functionality, etc. can be achieved
only by planning redundancies in the hardware and
reconfiguring the software during run-time to meet the
changing requirements. Therefore, the key design issue
to be addressed in this approach is the compromise
between the system performance and its cost and
flexibility [5], [6].
 An alternate approach is to use reconfigurable
hardware components, like Field Programmable Gate
Arrays (FPGAs), to allow for both hardware and
software reconfiguration [12] - [15]. By systematically
partitioning the system, functionality requiring changing
execution paths or those that impact performance can be
assigned resources that allow both hardware and
software reconfiguration. Successful implementation of
this technique requires the development of new system
architectures for Reconfigurable Computing.
Reconfigurable Computing is the ability of the software
to reach through to the hardware and alter the data path
for execution thereby optimizing the performance. In this
paper, a hierarchical architecture that allows for plug-

0-7803-9419-4/05/$20.00 ©2005 IEEE

Fig. 1. Architecture for the implementation of embedded controllers for intelligent control applications.

and-play and fault tolerance at the lowest level and for
learning and adaptive behaviors at the highest level is
proposed. The features of this architecture are then
exploited in the design of reconfigurable hardware and
software modules that aid in the implementation of
embedded controllers for intelligent systems.
 The rest of the paper is organized as follows:
Section 2 presents the architecture for the
implementation of an embedded controller for an
intelligent system. The requirements on system
intelligence are then translated into requirements on the
system hardware and software. In Section 3, the design
methodology is discussed in light of the recent trends in
the hardware-software co-design and hardware
reconfiguration that enable the realization of these
requirements. Examples are provided in Section 4 to
illustrate the design approach.

II. SYSTEM REQUIREMENTS AND ARCHITECTURE

 Recent advances in computers and computer
networks have resulted in the proliferation of low cost,
distributed systems. The impact of these advances on the
embedded controllers has been significant and their
performance specifications now include the need for
remote operation, coordination with other controllers,
and built-in provision for system upgrades. These
systems must also support intelligent sensor selection,
sensor fusion, increased fault tolerance, and adaptive
behaviors. Designing such systems is substantially more
complex than the simple integration of smart sensors and
actuators. In fact, such integration may impose severe
restrictions in the communication between the different
modules in the system and will likely lead to degradation
in the performance. Therefore, embedding intelligence
into a system involves developing design paradigms that
takes into account hardware and software complexities
[3], [4].

 Embedded controllers are characterized by
stringent real-time requirements. On the other hand,
system intelligence is distributed in nature, requires
modular components that allow for plug-and-play,
modification-on-the-fly, etc., all of which are not
amenable to tight real-time behavior. To overcome this
contradiction, an architecture is presented that is
hierarchical in nature and allows system intelligence to
be incorporated at all levels of the hierarchy. The design
methodology developed in this paper enables the design
of simple components whose performance can be
rigorously analyzed. Complex hierarchical systems can
them be constructed using these low-level building
blocks. The proposed architecture is shown in Fig. 1.
 In Fig. 1, the lowest layer, i.e. Layer 1 (L1) in
the system consists of the sensing, actuation and control
functions. In this layer, an embedded controller will
typically have a control agent (CA), an actuator agent
(AA), and a sensor agent (SA). The control agent is
responsible for attaining the commanded system
performance at the lowest level. It can command the
sensor agent to override its output values, recalibrate its
signal, as well as perform rudimentary signal processing
like filtering. The AA and SA have the lowest level of
autonomy and are completely controlled by the control
agent. This layer is characterized by low intelligence,
stringent real-time requirements and fault-tolerant
behavior.
 Layer 2 (L2) of this framework provides higher
level of abstraction within the system. At a very
fundamental level, this design is adequate for an
embedded controller to function and perform simple
control tasks in a structured environment. Note that,
because of our distributed communication infrastructure,
the sensor, actuator, and control resources (and the
corresponding sub-agents) for a single system need not
be present on the same physical platform.

…

SA CA AA

EA WM PA

Robot_Agent 1

SA CA AA

EA WM PA

Robot_Agent 2

SA CA AA

EA WM PA

Robot_Agent n

WMEA PA

Controller Group n

…

SA CA AA
EA W M PA

Robot_Agent 1

SA CA AA

EA WM PA

Robot_Agent 2

SA CA AA

EA WM PA

Robot_Agent n

WMEA PA

Controller Group 2

EA WM PA

…

WMEA PA

Controller Group 1

L1
L2

L3

L4

SA CA AA
EA WM PA

Deliberative Controller 1

Reactive Controller 1
SA CA AA

EA WM PA

Deliberative Controller 2

Reactive Controller 2
SA CA AA

EA WM PA

Deliberative Controller n

Reactive Controller n

 In order to meet the requirements of fault
tolerance, uncertainty in the system model and the
environment, we propose a distributed architecture
wherein the higher layer (L2) incorporates elements that
instill higher-level intelligence in the system. In this
layer, the sensory signals from Layer L1 are processed
by the Estimator Agent (EA). The output of the
Estimator is then used to modify/update the local
representation of the World Model (WM) and as input to
the Control Agent. The distributed intelligence paradigm
that is proposed means that EA can now include
algorithms for fault detection, dynamic sensor
reconfiguration, and sensor fusion. The WM entity
maintains information about the environment that is
necessary for the successful tasking of the system. The
Planning Agent (PA) utilizes the information from the
local model of the world (WM) and the high-level task
requirements to generate a plan that is communicated to
the control agent in layer L1. Level L2 is characterized
by increased autonomy and less stringent real-time
requirements. It is to be noted that the architecture
specified is independent of hardware and software
implementations and individual elements in L2.
 A network of distributed controllers may consist
of a number of individual controllers possibly with
differing sensor/actuator suites and capabilities. The
coordination between these controllers is managed by the
PA entity at the level of the controller group (L3).
Information sharing between L2 entities is controlled by
the entities in L3. This increases the security of the
implementation because the L2 entities can function
independently of each other, while still functioning in a
coordinated manner. The primary function of the entities
in Layer 3 is to coordinate the working of the individual
controllers in the group. L3 handles all reassignments of
tasks between different controllers in L2. Introduction of
new controllers or sensor suites, etc., are the exclusive
domain of L3. The outputs of all the EAs in layer L2
provide the input to the EA module in L3. Team-level
sensor fusion amongst the different controllers is
accomplished by the EA at L3. This EA module is used
to update the world model (WM) in Layer 3. This WM
also manages the information sharing among the
different controllers in L2. The planning agent (PA) in
this layer does the task decomposition from the overall
system requirements and updates the individual PAs in
L2. It is to be noted that the architecture specified is
independent of hardware and software implementations
and individual elements in L2. Layer 4 (L4) manages the
coordination between groups of robot agents. The
highest level of intelligence and autonomy and the
lowest level of real-time criticality characterize L4.
Dynamic reassignment of the responsibilities of each
group is handled by L4.
 The proposed architecture will enable the
development of groups of distributed controllers that are
“intelligent.” The architecture is flexible and is not

dependent on the type of controllers or algorithms
implemented in any given layer.

III. HARDWARE AND SOFTWARE ARCHITECTURES FOR
INTELLIGENT SYSTEMS

 In this section, we develop the features of the
embedded controllers that are suited for use in the
framework proposed in Section II. Embedded controllers
are typically implemented as specialized algorithms
running on a microprocessor based system. While
general purpose microprocessors afford flexibility in the
design of the software, this advantage is usually offset by
inefficiencies in the implementation. For tasks requiring
high degrees of efficiency, Application Specific ICs
(ASICs) that are specifically designed for the application
can be used. However, this performance comes at the
price of flexibility and makes it harder to meet the
system objectives like reconfigurability and fault
tolerance. Software modules allow for changing system
functionality but the performance obtained is restricted
by the choice of the hardware platform. We propose a
solution based on reconfigurable hardware and software
modules to meet the system requirements.

A. Hardware for Reconfigurable Computing

 Reconfigurable Computing is the ability of the
system to reach through the hardware layer and change
the data path for execution. Such reconfigurable
elements can adapt dynamically to be compatible with an
ad-hoc network of associated components or adapt to
changes in associated components. In order to harness
the power of hardware reconfiguration, the system
should be partitioned to tasks executable in software and
hardware. Any task requiring high computations and real
time execution can be implemented in hardware while
tasks for general purpose computing can be implemented
in software. Field Programmable Gate Arrays (FPGAs)
offer an attractive method for implementing hardware
that can be configured to meet the needs of the
application. Advances in FPGA fabrication technology
and availability of millions of gates in a single chip
allows for building hardware solutions that were earlier
realized only in software. The types of reconfiguration
possible with these devices and the specific system
requirement met are now discussed.

Full vs. Partial Reconfiguration:
 Built in Self Test is the first task executed on system
startup to verify proper functionality. On successful
completion of the startup sequence, the system
transitions into an operational mode. Traditionally, the
type of test sequences that could be run was limited by
the functionality of the hardware. This limitation can be
addressed by harnessing the power of reconfigurability
of a FPGA. Here, a first configuration is loaded for self
test and on successful completion a run-time

configuration is loaded onto the FPGA device. This type
of reconfiguration is called Full Reconfiguration. Since
the system can be optimized for every task separately,
the overall performance is increased. Often, a system
requires only a portion of its functionality to be changed,
especially during fault recovery where there might be a
need to reconfigure only the sensor module or simply
bypass the sensor. This can be done using Partial
Reconfiguration. Partial Reconfiguration is supported by
some FPGAs where a portion of the circuitry is
reconfigured while the rest of the device is unaffected
and still in operation.

Static vs. Dynamic Reconfiguration:
 Static Reconfiguration is the process where the
system has to be taken offline and configured before it
goes into operation. On the other hand, dynamic
reconfiguration can take place while the system is under
operation. However, care has to be exercised to prevent
changing portions of the hardware during execution to
prevent unforeseen outcomes. Dynamic reconfiguration is
essential when it is not feasible to take the system off-line
to implement changes. Depending on the system
requirements, partial reconfiguration can be static or
dynamic.

B. Software Implementation for Reconfigurable
Computing

The implementation of the Layer 1 entities is shown in
Fig. 2. The controller, sensing and actuation functions
are abstracted out and implemented as separate packages
with well defined interfaces. The controller
communicates with the sensing module and the actuator
module through the interface provided and is
independent of the actual implementation within these
modules. Providing standardized interfaces makes
possible the implementation of distributed sensors and
actuators. Further, by encapsulation of the sensing and
actuation functions, system requirements such as plug-
and-play of sensors, and fault accommodation can be
achieved. Exposing the interface to these packages also
aids in system diagnostics and testing of the low level
functionality. The generalization of the sensor class is
shown in Fig. 3.

Actuator Agent
Package

Control Agent
Package

Interfaces to
Layer 1

Sensor
Interface

Sensor Agent
Package

Sensor
Interface

Controller
Interface

Actuator
Interface

Fig. 2. UML Implementation of the Layer 1entities

SensorAgent
sensorID : int
sensorName : String
staticGain : Double
staticDCBias : Double
rawValue : Double
convValue : Double
filtValue : Double
status : Boolean

getSensorID(sensorID : int) : int
setSensorID(newSensorID : int) : int
getSensorName(sensorName : String) : String
setSensorName(newSensorName) : String
getSensorStatus() : Boolean
setSensorStatus(status : Boolean)() : Boolean
getSensorValue() : Double
setSensorGain(gain : Double)() : Integer
setSensorDCBias(bias : Double)() : Integer
setFilterBandwidth(bandwidth : Double)() : Double

FilterAgent
rawValue : Double
filtValue : Double
bandwidth : Double

filterRawValue(rawValue:Double) : Double()
setBandwidth(bandwidth: Double) : Double()

<<uses>>

positionSensor velocitySensor accSensortempSensor presSensor

Fig. 3. Generalization of the sensor class

Fig. 4. Implementation of PWM motor control with dynamic reconfiguration for fault accommodation.

IV. CASE STUDY

 The proposed framework is tested by implementing
the L1 layer on the Xilinx Virtex-II Pro platform [16].
This platform was selected based on its capability in
implementing reconfigurable architectures, and the
excellent development tools and product support. The
Virtex-II Pro XC2VP4 has a PowerPC core, 6768 logic
cells, 504 KBits BRAM, 4 3.125 Gbps RocketIO
transceivers, and 3.01 Mbits configuration space.
 The Xilinx Virtex-II Pro device is a user
programmable gate array with embedded PowerPC
processor and embedded high-speed serial transceivers.
The Xilinx Virtex architecture is coarse grained and
consists of a number of basic cells called configurable
logic blocks (CLBs). These logic blocks are arranged in
rows and columns, with each CLB consisting of four
logic cells arranged in two slices. Each CLB also
contains logic that implements a four-input look up
tables (LUTs) [13]. Each slice contains two function
generators, two storage elements, arithmetic logic gates,
large multiplexers, wide function capability, fast carry
look ahead chain, and horizontal cascade chains. The
function generators are configurable as four input look
up tables (LUTs), sixteen bit shift registers, or as sixteen
bit selective RAM memory. Each CLB also has fast
interconnect and connects to a generalized routing matrix
(GRM) to access general routing resources. The Virtex-II
Pro has SelectIO-Ultra blocks (IOBs) that provide the
interface between the package pins and the internal

configurable logic. Active Interconnect Technology
connects all these components together. The overall
interconnection is hierarchical and is designed to support
high speed designs [16].
 The programmable elements in the Virtex-II
Pro, including the routing resources, are controlled by
values stored in the static memory cells. The device is
configured by loading the bitstream into the internal
configuration memory. These values can be reloaded to
change the functions of the programmable elements. The
Xilinx Virtex family of FPGAs supports both partial as
well as dynamic reconfiguration. Partial reconfiguration
can be achieved in one of the two ways, namely Module-
based partial reconfiguration and difference-based
reconfiguration. In the module-based reconfiguration, the
entire module can be reconfigured. The height of the
reconfigurable module is the height of the device and the
module can cover one or more columns. In difference-
based reconfiguration, the reconfiguration is done by
making a small change in the design, and then generating
a bit-stream based only on the differences in the two
designs. Switching the configuration from one
implementation to another is easy and very quick. The
process of full reconfiguration is demonstrated in Fig. 4.
The system is designed with PPC405 processor core,
SDRAM controller connected to Processor Local Bus
(PLB) and GPIO devices like Leds, Push buttons, UART
and dip switches are connected to its On-chip Peripheral
Bus (OPB). These are the components available on the
board, so the first step is to verify the proper

functionality of all these components. To do this, the
processor boots up with a configuration file to test all the
components. On successful completion of built in self
test, the processor fetches the second configuration file to
configure itself and the board, switching into operational
mode. If subsequent reconfiguration of the system
requires additional components, say serial
communication, then a different module can be
generated with a UART device added to the OPB.
Module based reconfiguration will then result in
enhanced system capability. Since the reconfiguration
can be done in real time while the system is operational,
system components can be added in real time to address
changing needs during the retasking of the system.
 In the second design example, a PWM generator
is implemented in the hardware to control the drive
motors of the robot. Timer 1 (pwmTimer) is configured
to generate the PWM signal while Timer 2 (opbTimer) is
configured in the “capture” mode to sense the feedback
signal. If a fault is detected during operation, then (a
new) timer (myTimer) is activated and the output of this
timer is switched to the output pins. The changes
involved in the reconfiguration between the two designs
are relatively small and small-bit manipulation is ideal
for this type of reconfiguration. The control cycle in this
example was executed in real time with a sampling rate
of 20 msecs. The time for reconfiguration was of the
order of a few micro-seconds showing that dynamic fault
accommodation was achieved in real time.

V. CONCLUSIONS

 In this paper, an architecture was presented that
facilitates the implementation of intelligent embedded
controllers. The system requirements were analyzed and
the impact of these on the selection of hardware and
software components was discussed. The design of
reconfigurable hardware and software modules to
implement “intelligence” at all levels of the system was
developed. The application of these concepts to control
problems was demonstrated through a case study.

ACKNOWLEDGMENT

 The authors gratefully acknowledge the assistance of
the U.S. Department of Defence, Army Research Office
in supporting this work through grant # DAAD 19-03-1-
0142.

REFERENCES

[1] IEEE 1451.1, “Standard for smart transducer interface for
sensors and actuators – Network-capable application processor
(NCAP) information model,” 1999.

[2] IEEE 1451.2, “Standard for a smart transducer interface for
sensors and actuators – Transducer to microprocessor
communication protocols and transducer electronic data sheet
(TEDS) format,” 1997.

[3] J. S. Albus, “Features of intelligence required by unmanned
ground vehicles,” Proc. Performance Metrics for Intelligent
Systems Workshop, 2000.

[4] J. S. Albus and A. M. Meystel, Engineering of Mind: An
Introduction to the Science of Intelligent Systems, Wiley Series
on Intelligent systems, 2000.

[5] F.M. Proctor, B. Damazo, C. Yang, and S. Frechette, “Open
architectures for control,” National Institute on Standards and
Technology, Internal report, NISTIR-5307, 1993.

[6] L. Wills, S. Kannan, S. Sander, M. Guler, B. Heck, J.V.R.
Prasad, D. Schrage, and G. Vachtsevanos, “An open platform for
reconfigurable control,” IEEE Control Systems Magazine, pp.
49-64, Jun. 2001.

[7] R. P. Bonasso, R. J. Firby, Erann Gat, David Kortenkamp,
David P. Miller, Mark G. Slack., “Experiences with an
architecture for intelligent, reactive agents,” J. of Experimental
and Theoretical Artificial Intelligence, 9(2-3): pp237-256, 1997.

[8] D. P. Schreckenghost, P. Bonasso, D. Kortenkamp, and D. Ryan,
“Three tier architecture for controlling space life support
systems”, Proc. IEEE Int. Joint Symposia on Intelligence and
Systems, pp. 195-201, 1998.

[9] T. Balch, and R. Arkin., “Behavior-based formation control for
multirobot teams,” IEEE Trans. on Robotics and Automation,
14(6): pp 926-939, 1998.

[10] L. E. Parker, “ALLIANCE: An architecture for fault tolerant
multi-robot cooperation,” IEEE Trans. on Robotics and
Automation, 14(2):pp220-240, 1998.

[11] R. Simmons, T. Smith, M. B. Dias, D. Goldberg, D.
Hershberger, A. Stentz, R. Zlot, “A layered architecture for
coordination of mobile robots,” in Multi-Robot Systems: From
Swarms to Intelligent Automata,” Proc. from the 2002 NRL
Workshop on Multi-Robot Systems, A. Schultz and L. Parker
(eds.), Kluwer, pp. 103-112, 2002.

[12] S. Commuri, J. Sarangapani, “Smart Embedded Systems for
Control,” Workshop – IEEE Intl. Symposium on Intelligent
Control, Houston, Texas, 2003.

[13] S. Donti, and R. L. Haggard, “A survey of dynamically
reconfigurable FPGA devices, “ Proc. IEEE., vol. 8, pp. 422-
426, 2003.

[14] J. Harkin, T. M. McGinnity, and L.P. Maguire, “Partitioning
methodology for dynamically reconfigurable embedded systems,
“IEE Proc. Comput. Digitial Technology, vol. 147, no. 6, pp.
391-396, 1996.

[15] D. Mesquita, F. Moraes, J. Palma, L. Moller, N. Calazans,
“Remote and partial reconfigurationof FPGAs: tools and trends,”
Proc. Intl. Parallel and Distributed Processing Symposium,
2003.

[16] Xilinx, Inc., Virtex-II Pro: Platform FPGA Handbook, UG012,
v 2.0., 2002.

