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Abstract—This paper presents a framework for the 
realization of intelligent embedded systems for control 
applications. Requirements on system intelligence are 
translated into requirements on the system hardware and 
software. The hardware and software components of the 
design and their impact on system performance are 
discussed. Software and hardware architectures are 
presented that enable the realization of these requirements. 
Recent trends in the hardware-software co-design and 
hardware reconfigur-ation are utilized to design systems 
that are fault-tolerant and have higher reliability under all 
operating conditions. The design approach is validated by 
means of a case study.  

I.  INTRODUCTION 

 In recent years, performance specification for 
control systems has grown to include the requirements 
for system intelligence. These systems are typically 
distributed in nature, require a high degree of fault 
tolerance, and have to function under varying operating 
conditions. These systems also have to support 
intelligent sensor selection and sensor fusion, remote 
monitoring and operation, and be capable of 
implementing sophisticated algorithms for adaptive 
behaviors.  Ultimately, the design should support system 
evolution, provide paths for migration of capabilities and 
result in lower acquisition and lifecycle costs. Design of 
such systems cannot be accomplished by the simple 
integration of smart controllers or transducers [1,2].  
Embedding intelligence into systems requires a new 
design paradigm that takes into account the hardware and 
software complexities involved in the design of 
embedded systems [3],[4].  Thus, it is necessary to 
design the systems ground-up in order to meet the system 
requirements [5], [6]. 
 Researchers have addressed the problem of 
controlling intelligent systems from many perspectives. 
Efficient use of resources was accomplished using a 
centralized planning approach [7], [8]. An approach 
based on distributed controls was adopted to meet the 
requirements of fault tolerance and fault recovery [9], 
[10].  
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 As real time requirements for such embedded systems 
grew more stringent, researchers considered both 
centralized and distributed architectures in their design 
[11]. Distributed systems make possible the development 
of sophisticated systems with complex behaviors. In such 
systems, time-critical reactive behaviors of the system 
can be implemented locally, while generalized system-
level behaviors can be abstracted out and implemented 
on a central resource that communicates with all the 
distributed nodes in the system. Such implementations 
encourage modularity in the design and facilitate fault-
tolerant design. Crucial in the design of such systems is 
the selection of the appropriate hardware and software 
components and the architecture for their integration. 
  While the component technologies have 
matured in the past few years, the design of these 
systems is not a matter of simple system integration. 
Often, it is necessary to design these systems ground-up 
in order to meet the overall requirements. In the 
conventional design process, the functionality expected 
from the overall system is specified during the 
specifications stage of the project. These specifications 
then drive the design of the system. The performance 
targets specified are used to allocate hardware resources 
and determine the software requirements. Once the 
hardware allocation is made, system performance can be 
altered only by modification of the software. Thus, plug-
and-play capability of sensors/actuators, fault tolerance, 
changing the system functionality, etc. can be achieved 
only by planning redundancies in the hardware and 
reconfiguring the software during run-time to meet the 
changing requirements. Therefore, the key design issue 
to be addressed in this approach is the compromise 
between the system performance and its cost and 
flexibility [5], [6]. 
 An alternate approach is to use reconfigurable 
hardware components, like Field Programmable Gate 
Arrays (FPGAs), to allow for both hardware and 
software reconfiguration [12] - [15]. By systematically 
partitioning the system, functionality requiring changing 
execution paths or those that impact performance can be 
assigned resources that allow both hardware and 
software reconfiguration. Successful implementation of 
this technique requires the development of new system 
architectures for Reconfigurable Computing. 
Reconfigurable Computing is the ability of the software 
to reach through to the hardware and alter the data path 
for execution thereby optimizing the performance. In this 
paper, a hierarchical architecture that allows for plug- 

0-7803-9419-4/05/$20.00 ©2005 IEEE



 
Fig. 1. Architecture for the implementation of embedded controllers for intelligent control applications. 
 
and-play and fault tolerance at the lowest level and for 
learning and adaptive behaviors at the highest level is 
proposed. The features of this architecture are then 
exploited in the design of reconfigurable hardware and 
software modules that aid in the implementation of 
embedded controllers for intelligent systems.
 The rest of the paper is organized as follows: 
Section 2 presents the architecture for the 
implementation of an embedded controller for an 
intelligent system. The requirements on system 
intelligence are then translated into requirements on the 
system hardware and software. In Section 3, the design 
methodology is discussed in light of the recent trends in 
the hardware-software co-design and hardware 
reconfiguration that enable the realization of these 
requirements. Examples are provided in Section 4 to 
illustrate the design approach. 
 

II. SYSTEM REQUIREMENTS AND ARCHITECTURE 
 
 Recent advances in computers and computer 
networks have resulted in the proliferation of low cost, 
distributed systems. The impact of these advances on the 
embedded controllers has been significant and their 
performance specifications now include the need for 
remote operation, coordination with other controllers, 
and built-in provision for system upgrades. These 
systems must also support intelligent sensor selection, 
sensor fusion, increased fault tolerance, and adaptive 
behaviors. Designing such systems is substantially more 
complex than the simple integration of smart sensors and 
actuators. In fact, such integration may impose severe 
restrictions in the communication between the different 
modules in the system and will likely lead to degradation 
in the performance. Therefore, embedding intelligence 
into a system involves developing design paradigms that 
takes into account hardware and software complexities 
[3], [4]. 

  Embedded controllers are characterized by 
stringent real-time requirements. On the other hand, 
system intelligence is distributed in nature, requires 
modular components that allow for plug-and-play, 
modification-on-the-fly, etc., all of which are not 
amenable to tight real-time behavior. To overcome this 
contradiction, an architecture is presented that is 
hierarchical in nature and allows system intelligence to 
be incorporated at all levels of the hierarchy. The design 
methodology developed in this paper enables the design 
of simple components whose performance can be 
rigorously analyzed. Complex hierarchical systems can 
them be constructed using these low-level building 
blocks. The proposed architecture is shown in Fig. 1. 
 In Fig. 1, the lowest layer, i.e. Layer 1 (L1) in 
the system consists of the sensing, actuation and control 
functions.  In this layer, an embedded controller will 
typically have a control agent (CA), an actuator agent 
(AA), and a sensor agent (SA). The control agent is 
responsible for attaining the commanded system 
performance at the lowest level. It can command the 
sensor agent to override its output values, recalibrate its 
signal, as well as perform rudimentary signal processing 
like filtering.  The AA and SA have the lowest level of 
autonomy and are completely controlled by the control 
agent. This layer is characterized by low intelligence, 
stringent real-time requirements and fault-tolerant 
behavior.  
 Layer 2 (L2) of this framework provides higher 
level of abstraction within the system. At a very 
fundamental level, this design is adequate for an 
embedded controller to function and perform simple 
control tasks in a structured environment. Note that, 
because of our distributed communication infrastructure, 
the sensor, actuator, and control resources (and the 
corresponding sub-agents) for a single system need not 
be present on the same physical platform.   
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 In order to meet the requirements of fault 
tolerance, uncertainty in the system model and the 
environment, we propose a distributed architecture 
wherein the higher layer (L2) incorporates elements that 
instill higher-level intelligence in the system. In this 
layer, the sensory signals from Layer L1 are processed 
by the Estimator Agent (EA). The output of the 
Estimator is then used to modify/update the local 
representation of the World Model (WM) and as input to 
the Control Agent.  The distributed intelligence paradigm 
that is proposed means that EA can now include 
algorithms for fault detection, dynamic sensor 
reconfiguration, and sensor fusion.  The WM entity 
maintains information about the environment that is 
necessary for the successful tasking of the system. The 
Planning Agent (PA) utilizes the information from the 
local model of the world (WM) and the high-level task 
requirements to generate a plan that is communicated to 
the control agent in layer L1. Level L2 is characterized 
by increased autonomy and less stringent real-time 
requirements. It is to be noted that the architecture 
specified is independent of hardware and software 
implementations and individual elements in L2.  
 A network of distributed controllers may consist 
of a number of individual controllers possibly with 
differing sensor/actuator suites and capabilities.  The 
coordination between these controllers is managed by the 
PA entity at the level of the controller group (L3). 
Information sharing between L2 entities is controlled by 
the entities in L3. This increases the security of the 
implementation because the L2 entities can function 
independently of each other, while still functioning in a 
coordinated manner.  The primary function of the entities 
in Layer 3 is to coordinate the working of the individual 
controllers in the group. L3 handles all reassignments of 
tasks between different controllers in L2. Introduction of 
new controllers or sensor suites, etc., are the exclusive 
domain of L3. The outputs of all the EAs in layer L2 
provide the input to the EA module in L3. Team-level 
sensor fusion amongst the different controllers is 
accomplished by the EA at L3. This EA module is used 
to update the world model (WM) in Layer 3. This WM 
also manages the information sharing among the 
different controllers in L2. The planning agent (PA) in 
this layer does the task decomposition from the overall 
system requirements and updates the individual PAs in 
L2.  It is to be noted that the architecture specified is 
independent of hardware and software implementations 
and individual elements in L2. Layer 4 (L4) manages the 
coordination between groups of robot agents. The 
highest level of intelligence and autonomy and the 
lowest level of real-time criticality characterize L4. 
Dynamic reassignment of the responsibilities of each 
group is handled by L4.  
 The proposed architecture will enable the 
development of groups of distributed controllers that are 
“intelligent.”  The architecture is flexible and is not 

dependent on the type of controllers or algorithms 
implemented in any given layer. 
 

III. HARDWARE AND SOFTWARE ARCHITECTURES FOR 
INTELLIGENT SYSTEMS 

 
 In this section, we develop the features of the 
embedded controllers that are suited for use in the 
framework proposed in Section II. Embedded controllers 
are typically implemented as specialized algorithms 
running on a microprocessor based system. While 
general purpose microprocessors afford flexibility in the 
design of the software, this advantage is usually offset by 
inefficiencies in the implementation. For tasks requiring 
high degrees of efficiency, Application Specific ICs 
(ASICs) that are specifically designed for the application 
can be used. However, this performance comes at the 
price of flexibility and makes it harder to meet the 
system objectives like reconfigurability and fault 
tolerance. Software modules allow for changing system 
functionality but the performance obtained is restricted 
by the choice of the hardware platform. We propose a 
solution based on reconfigurable hardware and software 
modules to meet the system requirements.  
  
A. Hardware for Reconfigurable Computing 
 
 Reconfigurable Computing is the ability of the 
system to reach through the hardware layer and change 
the data path for execution. Such reconfigurable 
elements can adapt dynamically to be compatible with an 
ad-hoc network of associated components or adapt to 
changes in associated components. In order to harness 
the power of hardware reconfiguration, the system 
should be partitioned to tasks executable in software and 
hardware. Any task requiring high computations and real 
time execution can be implemented in hardware while 
tasks for general purpose computing can be implemented 
in software. Field Programmable Gate Arrays (FPGAs) 
offer an attractive method for implementing hardware 
that can be configured to meet the needs of the 
application. Advances in FPGA fabrication technology 
and availability of millions of gates in a single chip 
allows for building hardware solutions that were earlier 
realized only in software. The types of reconfiguration 
possible with these devices and the specific system 
requirement met are now discussed. 
 
Full vs. Partial Reconfiguration: 
 Built in Self Test is the first task executed on system 
startup to verify proper functionality. On successful 
completion of the startup sequence, the system 
transitions into an operational mode. Traditionally, the 
type of test sequences that could be run was limited by 
the functionality of the hardware. This limitation can be 
addressed by harnessing the power of reconfigurability 
of a FPGA. Here, a first configuration is loaded for self 
test and on successful completion a run-time 



configuration is loaded onto the FPGA device. This type 
of reconfiguration is called Full Reconfiguration. Since 
the system can be optimized for every task separately, 
the overall performance is increased. Often, a system 
requires only a portion of its functionality to be changed, 
especially during fault recovery where there might be a 
need to reconfigure only the sensor module or simply 
bypass the sensor. This can be done using Partial 
Reconfiguration. Partial Reconfiguration is supported by 
some FPGAs where a portion of the circuitry is 
reconfigured while the rest of the device is unaffected 
and still in operation. 
 
Static vs. Dynamic Reconfiguration: 
  Static Reconfiguration is the process where the 
system has to be taken offline and configured before it 
goes into operation. On the other hand, dynamic 
reconfiguration can take place while the system is under 
operation. However, care has to be exercised to prevent 
changing portions of the hardware during execution to 
prevent unforeseen outcomes. Dynamic reconfiguration is 
essential when it is not feasible to take the system off-line 
to implement changes. Depending on the system 
requirements, partial reconfiguration can be static or 
dynamic. 

B. Software Implementation for Reconfigurable 
Computing 
 
The implementation of the Layer 1 entities is shown in 
Fig. 2. The controller, sensing and actuation functions 
are abstracted out and implemented as separate packages 
with well defined interfaces. The controller 
communicates with the sensing module and the actuator 
module through the interface provided and is 
independent of the actual implementation within these 
modules. Providing standardized interfaces makes 
possible the implementation of distributed sensors and 
actuators. Further, by encapsulation of the sensing and 
actuation functions, system requirements such as plug-
and-play of sensors, and fault accommodation can be 
achieved. Exposing the interface to these packages also 
aids in system diagnostics and testing of the low level 
functionality. The generalization of the sensor class is 
shown in Fig. 3. 
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Fig. 2. UML Implementation of the Layer 1entities 

SensorAgent
sensorID : int
sensorName : String
staticGain : Double
staticDCBias : Double
rawValue : Double
convValue : Double
filtValue : Double
status : Boolean

getSensorID(sensorID : int) : int
setSensorID(newSensorID : int) : int
getSensorName(sensorName : String) : String
setSensorName(newSensorName) : String
getSensorStatus() : Boolean
setSensorStatus(status : Boolean)() : Boolean
getSensorValue() : Double
setSensorGain(gain : Double)() : Integer
setSensorDCBias(bias : Double)() : Integer
setFilterBandwidth(bandwidth : Double)() : Double

FilterAgent
rawValue : Double
filtValue : Double
bandwidth : Double

filterRawValue(rawValue:Double) : Double()
setBandwidth(bandwidth: Double) : Double()

<<uses>>

positionSensor velocitySensor accSensortempSensor presSensor

 
Fig. 3. Generalization of the sensor class  

 



 
 
Fig. 4. Implementation of PWM motor control with dynamic reconfiguration for fault accommodation. 

IV. CASE STUDY 
 
 The proposed framework is tested by implementing 
the L1 layer on the Xilinx Virtex-II Pro platform [16]. 
This platform was selected based on its capability in 
implementing reconfigurable architectures, and the 
excellent development tools and product support. The 
Virtex-II Pro XC2VP4 has a PowerPC core, 6768 logic 
cells, 504 KBits BRAM, 4 3.125 Gbps RocketIO  
transceivers, and 3.01 Mbits configuration space. 
  The Xilinx Virtex-II Pro device is a user 
programmable gate array with embedded PowerPC 
processor and embedded high-speed serial transceivers. 
The Xilinx Virtex architecture is coarse grained and 
consists of a number of basic cells called configurable 
logic blocks (CLBs). These logic blocks are arranged in 
rows and columns, with each CLB consisting of four 
logic cells arranged in two slices. Each CLB also 
contains logic that implements a four-input look up 
tables (LUTs) [13]. Each slice contains two function 
generators, two storage elements, arithmetic logic gates, 
large multiplexers, wide function capability, fast carry 
look ahead chain, and horizontal cascade chains. The 
function generators are configurable as four input look 
up tables (LUTs), sixteen bit shift registers, or as sixteen 
bit selective RAM memory. Each CLB also has fast 
interconnect and connects to a generalized routing matrix 
(GRM) to access general routing resources. The Virtex-II 
Pro has SelectIO-Ultra blocks (IOBs) that provide the 
interface between the package pins and the internal 

configurable logic.  Active Interconnect Technology 
connects all these components together. The overall 
interconnection is hierarchical and is designed to support 
high speed designs [16]. 
 The programmable elements in the Virtex-II 
Pro, including the routing resources, are controlled by 
values stored in the static memory cells. The device is 
configured by loading the bitstream into the internal 
configuration memory. These values can be reloaded to 
change the functions of the programmable elements. The 
Xilinx Virtex family of FPGAs supports both partial as 
well as dynamic reconfiguration. Partial reconfiguration 
can be achieved in one of the two ways, namely Module-
based partial reconfiguration and difference-based 
reconfiguration. In the module-based reconfiguration, the 
entire module can be reconfigured. The height of the 
reconfigurable module is the height of the device and the 
module can cover one or more columns. In difference-
based reconfiguration, the reconfiguration is done by 
making a small change in the design, and then generating 
a bit-stream based only on the differences in the two 
designs. Switching the configuration from one 
implementation to another is easy and very quick. The 
process of full reconfiguration is demonstrated in Fig. 4. 
The system is designed with PPC405 processor core, 
SDRAM controller connected to Processor Local Bus 
(PLB) and GPIO devices like Leds, Push buttons, UART 
and dip switches are connected to its On-chip Peripheral 
Bus (OPB). These are the components available on the 
board, so the first step is to verify the proper 



functionality of all these components. To do this, the 
processor boots up with a configuration file to test all the 
components. On successful completion of built in self 
test, the processor fetches the second configuration file to 
configure itself and the board, switching into operational 
mode. If subsequent reconfiguration of the system 
requires additional components, say serial 
communication, then a different module can be 
generated with a UART device added to the OPB. 
Module based reconfiguration will then result in 
enhanced system capability. Since the reconfiguration 
can be done in real time while the system is operational, 
system components can be added in real time to address 
changing needs during the retasking of the system.  
 In the second design example, a PWM generator 
is implemented in the hardware to control the drive 
motors of the robot. Timer 1 (pwmTimer) is configured 
to generate the PWM signal while Timer 2 (opbTimer) is 
configured in the “capture” mode to sense the feedback 
signal. If a fault is detected during operation, then (a 
new) timer (myTimer) is activated and the output of this 
timer is switched to the output pins. The changes 
involved in the reconfiguration between the two designs 
are relatively small and small-bit manipulation is ideal 
for this type of reconfiguration. The control cycle in this 
example was executed in real time with a sampling rate 
of 20 msecs. The time for reconfiguration was of the 
order of a few micro-seconds showing that dynamic fault 
accommodation was achieved in real time.  
 

V. CONCLUSIONS 
 

 In this paper, an architecture was presented that 
facilitates the implementation of intelligent embedded 
controllers. The system requirements were analyzed and 
the impact of these on the selection of hardware and 
software components was discussed. The design of 
reconfigurable hardware and software modules to 
implement “intelligence” at all levels of the system was 
developed. The application of these concepts to control 
problems was demonstrated through a case study.  
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