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   Abstract -The  main objective of our research is to 
develop several unscented transform techniques (UTT) 
to estimate the state of the nonlinear processes such as 
an improvement of an Extended Kalman Filter (EKF) 
approach. The Extended Kalman Filter  (EKF) has 
become a standard nonlinear estimation technique in 
control systems and parameter estimation for nonlinear  
system identification. The Unscented Kalman Filter 
(UKF)  developed in this paper is a superior alternative 
to the Exdended Kalman Filter  for the most of 
estimation and control applications. We will try to 
figure out in this paper that the UKF algorithm 
performs slightly superior compared to EKF algorithm 
based on the state estimation of the nonlinear vinyl  
acetate reactor developed well in [1]. These results are  
encouraging for us and we want to explore  the 
possibility of extension  of its applicability to the other 
possible applications  such as state and parameter 
estimation, neural network identification,  and Fault 
Detection, Diagnosis and Isolation  (FDDI) of the 
nonlinear control systems [5] - [6]. 
 

I.   INTRODUCTION 
 

In the last thirty years the Extended Kalman Filter (EKF) 
has become a standard technique for state and parameter 
estimation of nonlinear systems by simply linearizing the 
nonlinear model of the process: 
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such that the traditional  linear Kalman Filter (KF) 
approach can be applied. However, even if the EKF still 
remains a widely used filtering strategy, the experience 
accumulated with it application during this period reveals 
some fleas such as its difficulties in implementation, tuning, 
and its reliability for systems which are almost linear on the 
time scale of the update interval. To eliminate such 
inconvenience we try in our research to find another 
alternative methods that may improve the performance of 
EKF algorithm. In our paper we develop the unscented 
transform technique such as the Unscented Kalman Filter 
(UKF) to show the superiority of this algorithm compared 
to   EKF algorithm.  
 

II. The EKF  Algorithm Review 
 

In this section we try to make a short review of the EKF 
algorithm. Given  the  noisy  observation ,  a  recursive  

state estimation for  is  given by  
ky

kx
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This recursive equation provides the optimal minimum 

mean-squared error (MMSE) estimate for  based on the 

assumption that the prior estimate  and current 

observation  are Gaussian random variables. Also the 
process and measurements noises w(k), v(k)  are assumed 
independent, zero mean and of covariance matrices Q

kx

1−kx

ky

w and 
Rv respectively. At this stage the   linearity assumption of 
the model. is not demanded. The optimal terms in this 
recursive  equation are given by [2]:  
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where  the optimal prediction of  is designated by , 
and represents the expectation of a nonlinear function of the 
random variables 

kx kx̂

1ˆkx −  and ; similar interpretation for 

the optimal prediction 
1kw −

ˆky− . The optimal Kalman Filter gain 

kK  is expressed as a function of posterior covariance 

matrices (with   ˆk ky y y−k= − ).  
The Kalman Filter (EKF) calculates these quantities 

similar to the linear case, and can be viewed as an efficient 
method for analytically propagating a Gaussian random 
variable through linear system dynamics. For nonlinear 
models the EKF can be viewed as approximating the 
optimal terms as: 
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where predictions are approximated as simply the function 
of the prior mean value for estimates, and the covariance 
are determined by linearizing the dynamic state equations. 
In other words, in the EKF the state distribution is 
approximated by a Gaussian Random Variable which is 
then propagated analytically through the first-order 
linearization of the nonlinear system. Therefore EKF can be 
viewed as providing first-order approximations to the 
optimal terms. These approximations, however, can 
introduce large errors in the true posterior mean and 
covariance of the transformed Gaussian random variable, 
which may lead to suboptimal performance and sometimes 
divergence of the filter. 
 

III. UNSCENTED TRANSFORM TECHNIQUES 
(UTT) 

 

 Compared to EKF the UKF addresses the 
approximation issues presented in the Section 2. The state 
distribution is similar represented by a Gaussian Random 
Variable, but now it is specified using a minimal set of 
carefully chosen sigma points. These sigma points 
completely capture the true mean and covariance of the 
Gaussian random variable, and when propagated through 
the true non-linear system, capture the posterior mean and 
covariance accurately until the 3rd order (Taylor series 
expansion) for any nonlinearity.  

The Unscented Transformation (UT) [3]-[4], is a method 
for calculating the statistics of a random variable, which 
undergoes a nonlinear transformation. Consider 
propagating a random variable x (dimension L ) through a 
nonlinear function, . Assume ( )y g x= x  has mean x  and 
covariance xP . To calculate the statistics of , we form a 
matrix 

y
X  of 2 1L+  sigma vectors iX (with corresponding 

weights ), as follows iW
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where the  parameter λ is selected in  deterministic manner  
 

2 ( )Lλ α κ= × + − L         (10) 
 
and represents a scaling   parameter. 
α  is a constant which determines the spread of the sigma 
points around mean  state value x  and is usually set to a 
small positive value.  

κ  is a secondary scaling parameter which is usually set to  
0, β  is used to incorporate prior knowledge of the 
distribution of x (for Gaussian distribution, β =2 is 

optimal), and ( ) )x iL Pλ+  is the i-th row of the matrix 
square root, calculated by using a stable numeric algorithm 
such as  Choleski decomposition [3]-[4],[7]-[8].   

The Unscented Transform determine the mean and 
covariance of  system output y by approximation, using a 
weighted sample mean and covariance of the posterior 
sigma points.  

A simple example is shown in Figure 1 for a two-
dimensional system. 
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The left plot shows the true mean and covariance 

propagation using Monte-Carlo sampling [3]-[4],[8]; the 
center plots show the results using a linearization approach 
as would be done in the Unscented Transform (UT); the 
right plots show the performance of the UT (note only 5 
sigma points are required). The superior performance of the 
UT is obviously. 

 
Fig. 1 Two-dimensional example of  the Unscented 

Transform 

 
IV. VINYL ACETATE REACTOR MODEL 

 

To establish the model of the Vinyl Acetate Reactor we 
start from the material balance and the energy balance of 
the reactor described by a chemical reaction of the type: 

     A B D+ →                
where A, B, D  represent the acetylene, acetic acid  
reactants, and the vinyl acetate product  respectively. 
 

(i) Material Balance 



              
0 0( ) exp( )A

A A A
dC EV F C C K C
dt RT

= − − − BC  

              
0 0( ) exp( )B

B B
dC EV F C C K C
dt RT

= − − − A BC  

              0 exp( )D
D A

dC EV FC K C
dt RT

= − + − BC  

 
(ii) Thermal Balance 
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where  V is the reactor volume [m3], CA, CB, CD  are the 
reactant and final product concentrations, CA0, CB0  are the 
initial concentrations of the reactants, T, T0  are the inside  
and the output temperatures [0K] of the vinyl acetate,  F is 
the supply mixed reactant flow [m3/h], Tam  is the average 
temperature of the thermal agent at the input and the output  
of  the reactor [0K], ρ, ρa are the densities of the supply  
mixed reactant  and thermal agent [kg/m3], c, ca represent 
specific heat of the mixed reactant  and thermal agent 
[Kcal/kg 0K], and S represents the reactor surface [m2], E = 
5600 [cal/mol], K0 = 105 [m3/h],  R=2 [cal/mol 0K], 
H=20.800 [Kcal/Kg mol]. 

After some manipulations the vinyl acetate reactor 
model could be described by the following equations [1] 
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where 1 2 3[ Tx x x x=  is the vector state of the acetylene 
concentration CA, acetic acid concentration CB, and vinyl 
acetate  temperature T,  represents the input 
vector. For the simulation the coefficients a,  have 
been chosen with respect to the reactor geometry and have 
the following values: 

1 2[ ]Tu u u=

1 7k k−

a = 2800, ,  1 2 32.31, 0.083, 95.56k k k= = =
k4 = 0.77, k5 = 556870, k6 =1096.2, k7 = 4480. 

The set of  the equations (11) is completed with the 
linear observation equation: 
  

11y x= − − 2x                                   (13) 
 
that represents the concentration of the vinyl acetate. To 
apply the UKF algorithm to this highly nonlinear model 
firstly we have to convert it in a discrete model, let assume 
the sampling time Ts=1[s].   

 
V.  THE  UNSCENTED KALMAN FILTER 

ALGORITHM (UKF) 
 

Step 1:  Initialization 
 
         0 0ˆ [ ]x E x=  
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Step 2: Computations 
 
For 1,2...k = , n  compute the  sigma points matrix 
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Step 3: Time update 
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Step 4: Measurement update   
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VI.   SIMULATION   RESULTS 

 

Based on the both EKF and UKF algorithms, we 
simulate the evolution of the true value and  the estimated 
values. The results of these simulations are represented in 
Figures 1-3. In Figure 1 are represented the true value and 
the estimated values of the Acetylene concentration using 
the EKF and UKF algorithms. Similar in Figure 2 are 
represented the true value and estimated values of the 
Acetate Acid concentration, and in Figure 3 are 
represented the true value and estimated values of the 
temperature inside the reactor. Since for UKF algorithm, 
we don’t need the linear model of the process, but only 
developing the sigma points from the initial assumptions. 
Hence UKF algorithm is more practical and accurate than 



EKF algorithm and the  program implementation  is more 
simple.  In the Figures 1-2 we could observe the good 
tracking and convergence of the UKF algorithm   
compared to the EKF algorithm, and in Figure 3 we could 
see a good behavior of the both algorithms, for a bad 
guess of the initial condition for the reactor temperature. 

 
VII.   CONCLUSIONS 

 

In this paper, we develop the UKF algorithm to estimate 
the concentrations and the temperature of the Vinyl Acetate 
reactor and we compare these values with the results given 
by the EKF algorithm.  The simulation results reveal a 
superior performance of the UKF algorithm compared to 
EKF algorithm. This approach is very interesting because 
doesn’t need the linear model of the process that means 
time consuming and increasing  the risk to reduce the 
accuracy in capturing the appropriate dynamics of the 
process. 
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Fig. 1 The Acetylene Concentration 
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Fig. 3 The Vinyl Acetate Temperature 
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Fig. 2 The Acetate Acid Concentration
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