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Abstract— The appropriate use of fractional order holds
(B —FROH) of correcting gains 3 € [-1,1] as an alternative
to the classical zero and first order -holds (respectively, g2 = Z [hB (s) p(s)]
ZOH, FOH) is discussed related to the positive realness — gs(2)+d
of the associate discrete transfer functions obtained from B B e
a given continuous transfer function. It is proved that the _ . S
minimum direct input-output gain (i.e. the quotient of the hﬁ (s) 1-B+B T Mo(8) | o(S) (1)
leading coefficients of the numerator and denominator of
the transfer function) needed for discrete positive realness ~ where Z[-] stands for the z-transform. The transfer
may be reduced by the choice of compared to that function hg is obtained directly [5], [4] since the out-
required for discretization via a ZOH . put of the hold device being injected as input to the

continuous transfer function is

I. INTRODUCTION

o _ _ ut) = w+ E (Uk —Uk_1) (t—KT) (2)
A description about Fractional Order-Holds and intro- T

ductory background on positive realness are given. They KT, (k+1)T] with u = u(kT) any sample-
realizable continuous transfer function_ p(s) = Q(S)/n(_ﬁ)dicator integek > 0 with T being the sampling period.

= p’(s) + d of numerator and denominator polynomigte thathg(s) may be directly synthesized with two
als , q(s) and n(s) with p’(s) being strictly proper, i5oH's and a simple linear network. It has been proved
positive real (pe€ {PR}) if p(s) € R (the set of real [2] that go(2) is discrete positive rea, € {PRy} if p(s)
numbers),vs € R and Re(p(s)) > 0 for 0 = Re(s) >0, is stable (or, in particular, positive real) and biproper
vs€C [1], [2] (the set of complex numbers). POSitVgj e of zero relative degree) with and a sufficiently large
realness is a very common property of transfer functioRgsgciated direct input-output gaily = d > dmin > O.
arising in electrical circuitry and can be synthesized 3g,;s implies that ifd = 0 (i.e. p(s) = p’(s) is strictly
drivc_en point aglmittances. A necessary conditic_)r_l for itoper) theng, ¢ {PRy} even if p € {PR} with unity
realizable continuous transfer function to be positive reglative degree. Positive realness under discretization via

is that it is stable with zero or unity relative degre%_FROH is now discussed by first defining positive
and with eventually critically stable poles being simplg,5iness with prescribed margins.

with nonnegative residuals. Positive realness also implies

stability of zeros [2], [3] and it is a key feature in I
achieving asymptotic hyperstability via feedback for all
nonlinear/time-varying device satisfiying a Popov’s -type Definition 1: It is said thatgpeta € {PRy(€)}, some
inequality [4].The scalar d is the direct input/outpu¢ >0, if Reg(z) > ¢,Vze UC:={zecC: |z = 1} .Note
gain, with d=0 if and only if p(s) = p'(s) is strictlythat {PRy(0)} = {PRy} and gg € {PRy(¢)} =
proper. Consider the class BEFROH [including Zero- gge {PR4(€')}, Ve € [0,€) andgg € {SPRy}; i.e. gg(2)
Order Holds- ZOH B = 0) and First-Order Holds FOH is strictly positive real (sinceninzcuc (Regs(z)) > 0).

(B = 1)] of transfer functionhg(s) leading to theB- Positive realness ofgg(z): Direct simple calculatios
dependent discrete transfer functions: allow rewriting the first equation in (1) as,
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somef-FROH, B € [Bmin, Bmax C [—1,1] if some of the
subsequent items hold:

062 = (1-BzY) (d(@+ds)+ (@ o a0,

1 <pB<1

BT 'z Hz-1)g1(2) T ’ =P= _

_ _ ) ) provided thate — & > Adg > max(—eo, —@ ) if
if p(s) = P/(s) +dg With goa(2) = (1—-27)Z(s “p(s)) M # 0 or € — & > Adg > —& if My >0 andify 0.

what implies go(z) = (1 — Bz 1)(g,(2) + do). Simple
calculations with (3) lead to,

2) 0<p < max(| =572 | 1)

provided that—n’q; >Adg > €—& if m #0 or
Adg > £ — & if m <0 andy =0.

95(2 = (1+B4(2) <g:)(z)+dﬁ> 3) B<0, |B\max< £+Adg—go 71)
6z = % [11_ ?101((22)) B 1} @) provided thatAds > max(s— so,—’%) if Ms#0

or Adg > £ — & if mg> 0 andms # 0.

sincegor (2)/9o(2) = Go1(2)/ ((2— 1) do(2)) With Go1(2) ~ 4) B <0, 1> |B| > |ZE%—°
and go(z) being the respective numerator polynomials _ .
of go1(2) and go(2) since their respective denomina-  Provided thate —é& > Adg > mfx(_sm—ﬁ%) IS
tor polynomialsny (z) and ny(z) satisfy the constraint Ms7# 0 0r & —& > Adg > —& if Ms<0andms# 0.
No1(2) = (z—1)no(2) from direct calculations involving By using (6) withe = &, the following result stands,
the Z-transforms. Theorem 2:(Positive realness vig3-FROH by in-
Since p'(s) is strictly proper then gs(z) = creasing/decreasing direct input/output gains)gdfe

Z[hg(s)p(s)] is strictly proper of unity relative (PR;(g,)} with do = do+ & then s € {PRu(&)} if
degree and ordategn(s)) if B =0and(1+degn(s))) ds = do + Ady with Adg > max<—€o,—1f?m) it B e

if B#0.
Let real constantsn, ms > my; 1My, Ms > M be such [0,1] with B # —mi; and Adg > max(—so,%) if
that, B € [—1,0] with |B| # &.

Re{i(2)} € [, My (5) Remark 1:Note that the margin of positive realness,
Rel(d ’ ze UC compared to that achieved with a ZOH, is improved with
e{§(2%(@)} € [m,mdvze smaller positive value® < dB < do, since for positive
Direct calculations usign the worst lower-bound minealness of discrete transfer functions the relative degree
imum bound forRe{gs(2)} from (4) via (5) lead to is required to be zero, the direct input-output gain from
Theorem 2 if < 0 satisfying|3| < min (1,ﬁ> pro-
Regy 02 > &-+0ds+ 6) vided thatmin(g,,Ms)0. This also holds ifl > 3 > ﬁlﬂ
> - (0]
- - . ~ ~ —_— . . i
B [M + (do+ &+ Adpg) ] v]:nTrNI r’n <10if|mh| >1 arlldm < 0,':‘;0<[31§13n.|n (m,l)d
Re A > &+ Ada— if M| < 1. If the usual constrainB € [—1,1] is remove
Bi<0(?) = fotAds the several alternative solutions witf| > 1 are useful

B [ms+ (d0+£0+Adﬁ)m5] for such a purpose of achieving positive realness for

which hold respectively, fop > 0 and for8 < 0. The 0<dg <do.
technical subsequent assumption is then used. Example 1:Note that Theorems 1 and 2 are based
Assumption on obtaining the worst case positive lower bounds of

Go € {PRi(£)} (= go € {PRy})anddg > (do — &) for the R.e(gB(z')) vyhgrg eachG-depen'd'ent right-hand-sid_e
some realg, > 0, all B-FROH. Now, define auxiliary termin (6) is minimized.However, it is possible to obtain
real constantsny from m, M from (5) asm :=m + fefinements from positive lower bounds via numerical
(do+ &) M (I =i,9). evaluation of the relation:

From this assumption and the constraint in (6), the
following result holds.

Theorem 1:(Discrete positive realness via design of d(B) > dmin(B)

B): If the prior assumption holds thegg € {PRy(¢)}
with Reg(z) > € for some sufficiently smalk > 0 and

MR




i

mir

145 N

D1t

poer

0.06

0.04 |

08

—|minZ|

zeUC

hg(s)p(s)]

REFERENCES

[1] M. de la Sen, “A method for general design of positive real
functions,”IEEE Trans. CASIvol. 45, no. 7, pp. 764-769, 1988.

[2] ——, “Relationships between positive realness of continuous
transfer functions and their digital counterpart&lec. Lett,
vol. 35, no. 16, pp. 1298-1299, 1999.

[3] S. Liang and M. Ishitobi, “The stability properties of zeros of
sampled models for time-delay systems in fractional order hold
case,’Dyn. Cont. Dis.Ser. Bvol. 11, no. 3, pp. 299-312, 2004.

[4] M. de la Sen, “On the asymptotic hyperstability of dynamic
systems with point delaysfEEE Trans. CASIvol. 45, no. 11,
pp. 1486-1488, 2003.

[5] S. Liang, M. Ishitobi, and Q. Zhu, “Improvement of stability
of zeros in discrete multivariable systems usign fractional order
hold,” I3C, vol. 76, no. 17, pp. 1699-1711, 2003.

which is non-negative. Proceed in that way with
p(s) = 11 € {PR}. Figures below display the threshold
dmin(B) to be used in the continuous transfer function to
achieve positive realness withfaFROH for six distinct
values of the sampling period ranging from 0.001 to 10
secs. Note that the smaller values of such a threshold are
highly dependent on the sampling period and achieved
for a range of negative values @f which improve the
thresholddnmin(0) required forf = 0.
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