

The Design and Implementation of a General Reduced TCP/IP Protocol
Stack for Embedded Web Server

Chong FU1, Zhi-liang ZHU2, Xiao-xing GAO2 and Pei-rong WANG1

1 School of Information Science and Engineering, Northeastern University,
Shenyang 110004, China

email: fu_chong@sohu.com
2 School of Software, Northeastern University, Shenyang 110004, China, email: zzl@mail.neu.edu.cn

Abstract -- The embedded web server technology is the

combination of embedded device and Internet technology, which
provides a flexible remote device monitoring and management
function based on Internet browser and it has become an advanced
development trend of embedded technology. In this paper, a design
and implementation scheme of a general reduced web server
protocol stack which aims at the limited resources characteristic
that the embedded system has was proposed based on AT90S8515
single chip that uses RISC technology and RTL-8019 network
interface controller hardware platform. The overall design issue
was thoroughly discussed and the implementation methods of core
protocols in protocol stack such as 802.3, ARP, IP, TCP and HTTP
were analyzed in detail.

I. INTRODUCTION
Embedded system is a special computer system that

focuses on application, bases on computer technology,
software and hardware customizable, suitable for the strict
requirement of application system on function, reliability,
cost, volume and power. It is widely used in military, civil
electronics, household appliances and consumption
electronic products in recent years. But most of the
embedded systems are used independently at current stage,
the communication protocols are relatively less and their
coverage is limited, which cause it very difficult to perform
flexible remote access and management. The Internet has
become one of the most important basic information
facilities in the world, the WWW service it offers has
become one of the fastest growing and widest applied service,
which have a great deal of advantages such as visualization,
easy remote accessing, multi data format supporting,
platform independent and thin client, etc. Connecting the
embedded device to the Internet, implementing perfect Web
service on it, and thus realizing a flexible remote monitoring
and management through Internet browser has already
become an inevitable development trend of embedded
technology[1-3].

Although some embedded system such as Embedded
Linux, VxWorks and WinCE had already provided TCP/IP
protocol stack support, they are not suitable for applying in
most of the low cost area due to their relative high hardware
and software costs. So how to utilize the limited resource of
the embedded system to design a reduced and application
oriented protocol stack is the key technology of
implementing an embedded web server. In this paper, the
design and implementation process of a general reduced
TCP/IP protocol stack was analyzed based on AT90S8515

single chip that uses RISC technology and RTL-8019
network interface controller hardware platform.

II. PROTOCOL STACK ARCHITECTURE DESIGN
It has significant differences of developing web server on

embedded system from common machines. The embedded
system is resource restricted, the single chip used in this
paper has only 8kb programming space and 512 bytes data
storage space, while any of the TCP, IP or HTTP protocol is
too large to be implemented. The embedded system does not
have enough storage resource to realize a completed protocol
stack. So we must evaluate the protocols in standard TCP/IP
protocol stack carefully to decide which parts are necessary
in the stack and which parts can be saved, using different
implementation method for different protocols. The
following principles must be fully considered in protocol
stack design: (1) follows the protocol hierarchy architecture,
constructing clear interfaces between adjacent layers; (2) the
content of the protocol must be reduced; (3) guarantee the
reliability and security of the system.

If an embedded system can provide WWW service and
uses Ethernet technology as its lower layer standards, then
the protocol stack should at least contain: HTTP protocol in
application layer responses for Web page request and
response; TCP protocol in transport layer responses for
reliable end to end message transmission; IP protocol in
Internet layer responses for IP packet transmission; ARP
protocol in Internet layer responses for the address resolution
from IP to MAC and the NIC driver in the data link layer
responses for controlling the operation of network adapter.
Ping is the most commonly used network diagnosis tool, so
the relational protocol ICMP should also be provided. From
above discussion, a general reduced protocol stack for
embedded web server can be designed as that shown in Fig.1.

The embedded web server is constructed by AT90S8515
single chip that uses RISC technology, RTL-8019 NIC and
reduced protocol stack that composed of 802.3, ARP, IP,
ICMP, TCP, and HTTP protocol. RTL-8019 is the most
widely used Ethernet control chip, which provides the
completed function of IEEE802.3 MAC sublayer for the
reduced TCP/IP protocol stack. AT90S8515 single chip is the
control heart of embedded server, the driver of RTL-8019
NIC and above protocols and all implemented in 8kb
programming space.

0-7803-9419-4/05/$20.00 ©2005 IEEE

Ping application HTTP

TCP

ICMP IP

ARP

Hardware
Interface

Ethernet

Application
Layer

Transport
Layer

Internet
Layer

Data link
Layer

Fig.1 A general reduced TCP/IP protocol stack for embedded web server

III. THE IMPLEMENTATION OF CORE PROTOCOLS IN
PROTOCOL STACK

A. The Lower Layer IEEE 802.3 Protocol Support Based
on RTL-8019 NIC
TCP/IP protocol stack does not define or even mention the

specification of data link layer and physical layer. It only
provides a Host-to-Network layer that allows the developer
to select the lower layers standard follows the interface
specification at their will. The Ethernet (IEEE 802.3)
protocol is the most mature and widely used protocol in
lower layer constructions. The inner double DMA channels
and FIFO perform the frame sending and receiving function
efficiently at 100Mbps. NIC encapsulates the data into
frames according to RFC 849 standard[4] as shown in Fig.2.

Destination Source Type Data FCS

46 - 1500 46 26

SFDPreamble

62 2

Strip off by NIC Transmit by DMA
Receving

Sending

Bytes

Add by NIC Transmit by DMA Add by NIC

Fig.2 Ethernet frame structure defined by RFC 894

RTL-8019 NIC implements frame sending and receiving
operation through 16 bits local and remote DMA channels.
The frame sending and receiving function can be done
flexibly by programming the inner registers of DMA
controller. The data transmission principle of local and
remote DMA channels is shown in Fig. 3. When the
embedded web server have data to be send, the data in the
main memory first be encapsulated into Ethernet frames and
the remote DMA controller fetches them into the sending

buffer ring inside NIC. The local DMA controller brings the
frames in the buffer into FIFO where the frame is injected
into cables. When NIC decides to accept a frame, the local
DMA controller accepts it and buffers it into receiving
buffer ring inside NIC, and then the remote DMA controller
transmits it to system memory where it is further processed
and passed to upper layer under the control of program, thus
completing the frame receiving process.

16 BYTE FIFO

LOCAL DMA

DMA

16K BUFFER

MEMORY

MAIN

CPU

SYSTEM

DMA

CONTROLLER

MAIN

MEMORY

REMOTE DMA

LOCAL

PROCESSOR

SYSTEM

DATA

SYSTEM

I/O PORT

CONTROLLER

NETWORK

DATA

LOCAL BUS SYSTEM BUS

Fig.3 Data transmission principle of local and remote DMA channels

B. The Implementation of Reduced ARP protocol
ARP protocol provides a dynamic address mapping

function from 32 bits Internet layer IP address to 48 bits data
link layer MAC address. The request and response packet
format of ARP used in Ethernet is shown in Fig. 4. ARP
request is send as broadcast and all the machines in the
subnet can receive it. When NIC receives a broadcast frame
and confirms that it is an ARP request, it would further
check whether the destination IP address is identical with
itself, if it is, an ARP response will be send back, otherwise,
the frame is just discarded.

Embedded web server usually works passively. It always

receives the service request from the clients and sends back
response but seldom send data frames to certain IP address
forwardly. The Embedded web server needs not send ARP
request to any other machines and what needs to do is only
processing received ARP request and send back response,
so only the response part of ARP need to be implemented in
reduced protocol stack. If the storage space is sufficient, the
ARP buffer can be constructed. Once the buffer is
constructed, it would first seek in the buffer whether there is
already an IP to MAC mapping when sending a frame, if it
exists, the request-response process is just skipped.

Hardware
Type

Protocol
Type

Hardware Address Length
Protocol Address Length

OP Source MAC
Address

Source IP
Address

Destination
MAC Address

Destination
IP Address

2 2 11 2 4 6 46

Fig.4 ARP request/response packet format used in Ethernet

C. The Implementation of Reduced IP protocol
IP is one of the core protocols of TCP/IP protocol stack,

which provides unreliable connectionless datagram
transmission service. All of the TCP, UDP, ICMP and IGMP
messages are encapsulated in IP packet for transmission.
Implementation a completed IP protocol is relatively
complex, but for the special requirements of implementing
an embedded web server, only the following two issues
needs to be considered: (1) processing the received packets,
delivering them to upper layers; (2) encapsulating TCP and
ICMP messages into IP packets, delivering them to data link
layer for further process. The above two functions are basic
functions of IP protocol and the necessary functions the
embedded web server must have.

When NIC receives a frame, it first checks the data type
field in the frame header, the value 0x0800 indicates that the
data field contains IP packet, then the data field is passed to
Internet layer for further processing. IP protocol first checks
if the destination IP address in the packet header is identical
with local settings, if not, the packet just discarded,
otherwise it examines the checksum field in packet header,
after confirming that the packet was not damaged in
transmission, stripping off IP header, delivering the data
field in IP packet to upper layers for further processing. It is
delivered to TCP or ICMP is based on the protocol field in
IP packet. Besides, the IP protocol needs to listen whether
the upper layer have data to be sent, if it have, it should
encapsulate the data into IP packets and deliver then to data
link layer.

D. The Implementation of Reduced TCP protocol
TCP is a transport layer service, which implements a

connection oriented and reliable end-to-end byte stream
transmission. It is a full-duplex service and each TCP
connection supports a pair of byte stream, each stream a
direction. It contains a flow control mechanism for each
stream that allows the receiver to restrict the amount of data
that the sender sends in a certain time interval and allows
multiple applications on any machines exchanging with its

own peer entities simultaneously. When establishing a TCP
connection, the client executes an open command to the
server initiatively, after a connection established
successfully, the two sides begin to transmit messages.
Similarly, when one side finishes data transmission, it will
close the connection on its side.

Generally, TCP determines its connection state based on
state transition map[5]. This means we must maintain an
independent state machine for each TCP connection. But for
embedded system, the RAM space is insufficient to do so.
To solve this problem, notice that embedded web server
always responses the client’s request, it never connects
other machines forwardly. So the TCP protocol can be
largely reduced with the precondition that the embedded
web server just needs response to TCP request correctly.
The TCP state is “LISTEN” when there is no request. When
receiving a TCP connection request, the web server
executes open operation passively, sending “SYN/ACK”,
and then changing state to “SYN_RCVD”. When receiving
correct “ACK”, the establishing connection process is
finished, the states of two sides all changes to
“ESTABLISHED”. From above analysis we can see, only
the “LISTEN” and “SYN_RCVD” states need to be
provided for the web server during the connection
establishing period. Although the “CLOSED” and
“SYN_SENT” states are absence, the “LISTEN” and
“SYN_RCVD” states are enough to describe the state when
the web server establishes connection. The “FIN” state is set
when the web server sends the last packet to release the
current connection. The active or simultaneous close may
happen, so only the states related to active and simultaneous
close need to be provided for the web server.

TCP state map maintenance is very import for
implementation of complex TCP protocol. According to the
characteristics of embedded web server, discarding the state
that would not happen and implementing any possible state
changing are important rules of maintaining TCP state. The
maintenance of two states used by the embedded web server

TCP state machine when establishing connection is shown in Fig.5, other state maintenances are similar.

Start

Find Socket

TCP_STATE=LISTEN

SNY Message

Create New Socket
TCP_STATE=LISTEN

SYN Messgae

Send SYN_ACK
TCP_STATE=RCVD

TCP_STATE=RCVD

Send Ack
TCP_STATE=Established

End

Other States Determine

No

Yes

Yes

Yes

No

No

No

No

Yes

Fig.5 The state transition diagram of connection establishing process

E. The Implementation of Reduced HTTP protocol
HTTP protocol is the foundation of WWW technology.

The web client (browser) uses one or more TCP connection
communicates with web server through port 80. The client
process establishes TCP connection with web server and
then sends requests and reads the response from the server.
The connection close operation of web server indicates the
end of response. There are two types of HTTP1.0 message:
request and response, as shown in Fig.6 (a) and (b).

HTTP uses request-response mechanism to fetch web
pages on web server. HTTP1.0 supports the following three
kinds of request: (1) GET request; (2) HEAD request; (3)
POST request. Browser sends HTTP request to web server
using multiple line string format. The first line is command
line with parameters follows it. In order to reduce the
storage space usage to minimum, the web server does not
care the browser type information and even the HTTP
version is not necessary because the limited resource could
not offer a read-write log. So the portion after file name can
be discarded while the main function of the web server
would not be affected.

The HTTP response message is constructed as Fig.6 (b).
The first line is status line that starts with HTTP version, 3
numbers follows it representing response message code, and
the last is the readable response phrase. The next part is the
information type and web server information and the last
part is the HTML body of the requested web page. When the
web server receives a HTTP request, it first analyzes the
request information and then passes the required file
location to TCP protocol for processing. The request web
page files are stored in the outer storage space, the data that
the HTTP protocol passes to TCP protocol is not HTTP
message (web page) but the location where the web page

file at. Neither TCP nor IP reads HTTP messages to data
storage space until NIC transmits the frames, then the web
page data are read into NIC buffer according to file pointer.

Connection: Keep-Alive

User-Agent: Modzilla/4.76 [en] (x11; U, SunOS 5.8 sun4u)

Host: 192.168.0.1:8088

Accept:image/gif,image/x-bitmap, image/jpg, image/pjpg, image/png, */*

Accept-Encoding: gzip

Accept-Language: en

Accept-Charset: iso-8859-1,*,utf-8

GET /IP Address/index.html HTTP/1.0

HTTP
method

HTTP
file

HTTP
version

Browser

Accepted
MIME
types

(a)

Content-Type: text/html

Date: Tur, 10 Feb 2005 20:38:52 GMT

Server: Embedded Webserver/1.0-b1 (HTTP/1.1 Connector)

Connection: close

HTTP/1.0 200 ok

Response
message #

Text version
of the response

message

Information
type

Web
server and

version

HTTP
version

<HTML>
<HEAD>
<TITLE>Hello</TITLE>
</HEAD>
<BODY BGCOLOR=抴hite?
Hello World
</BODY>
</HTML>

Requested
file HTML

body

(b)

Fig. 6 (a) HTTP request message format, (b) HTTP response message
format

IV. CONCLUSIONS
The advantages of shifting traditional scheme to “using

embedded web application as center” are the low cost of
thin client, visualization, platform independent, flexible
deployment, excellent remote accessing and
troubleshooting ability, etc. The equipments can be
configured and controlled flexibly in web pages through
CGI interface on embedded web server. In industry control
field, the using of embedded web server on intelligence
device, instrument and sensor to realize flexible remote
control has very high theoretical and application value.

V. REFERENCES
[1] Hong J W, Kong J Y, Yun T H, et al. “Web-based intranet services and

network management,” IEEE Communications Magazine, vol.35,
no.10, Oct, 1997, pp. 100–110.

[2] Ju H T, Choi M J, Hong J W. “Ews-based management application
interface and int–egration mechanisms for web-based element
management,” Journal of Network and Systems Management, vol.9,
no.1, Jan, 2001, pp. 31–50.

[3] Ju H T, Choi M J, Hong J W. “An efficient and lightweight embedded
web server for web-based network element management,”
International Journal of Network Management, vol.10, no.5, May,
2000, pp. 261–275.

[4] Douglas E. Comer, Computer Networks and Internets, New York:
1998, pp. 76–78.

[5] Andrew S. Tanenbaum, Computer Networks, New York: 1999, pp.
532–535.

	INTRODUCTION
	Protocol Stack Architecture Design
	The Implementation of Core Protocols in Protocol Stack
	A. The Lower Layer IEEE 802.3 Protocol Support Based on RTL
	B. The Implementation of Reduced ARP protocol
	C. The Implementation of Reduced IP protocol
	D. The Implementation of Reduced TCP protocol
	E. The Implementation of Reduced HTTP protocol

	Conclusions
	References

