
Integration of real-time hardware and TCP/IP communications
for teleoperation systems

Ollin Peñaloza-Mej́ıa∗, Luis A. Márquez-Martı́nez∗∗ and JaimeÁlvarez-Gallegos∗

Abstract— This paper describes the development of an expe-
rimental platform for robotic teleoperation via Internet. It is ob-
tained by adding Internet capabilities to an industry-standard
DSP board, available in many universities and research centers.

Index Terms— Teleoperation, Internet, TCP/IP, real-time
hardware.

I. I NTRODUCTION

The use of Internet as a communication medium can
provide cost-effective, flexible and easy-to-access control
systems that are not limited to any geographical region.
As a consequence, it is natural to think in applications of
telecontrolled systems operating in different environments.
However, long distance control of systems (independently of
the transmission media being used) causes two main techni-
cal problems: limited bandwidth and transmission delays due
to the propagation. These constraints result on one hand in
difficulties for the operator to securely control the remote
system and, on the other hand, that the use of classical
control schemes may result in poor performance or even
instability.

Although the implementation of real-time control algo-
rithms over the Internet involves random time delay in the
control loop, many approaches have been proposed in recent
years to either eliminate or to mitigate its detrimental effect
on the stability of the system. The foremost approach to ma-
nage the varying network-induced delay is the introduction
of buffers and to consider a greater constant time delay [1].

The problem of controlling a real-time telerobotic system
using the Internet as the link has been extensively studied
over the past few years. Most researches have tended to
use TCP/IP protocol (with its inherent shortcomings in the
ability of deliver data in a timely fashion), seemingly without
considering other Internet protocols available [2]. This could
be owing to TCP’s features of reliable data transfer and
its automatic retransmission mechanism for recovering lost
packets and quality improving. Besides, it has been shown
that a slight change to TCP can make it suitable for real-time
applications [3].

The aim of our project is building and configuring a
reliable setup for bilateral teleoperation over the Internet,
in which new control algorithms will be implemented and
evaluated. It will also be used for implementing virtual

∗ CINVESTAV-IPN, Depto. de Ingenierı́a Eléctrica, Sección de
Mecatrónica. Ap. Postal 14-740, 07600 Mexico, D.F., MEXICO.
{openaloz, jalvarez}@cinvestav.mx

∗∗ CICESE, Depto. de Electrónica y Telecomunicaciones. Km 107 Carr.
TIJ-ENS, 22860 Ensenada, B.C., MEXICO.lmarquez@cicese.mx

laboratories in engineering education to train students in
performing experiments for the classical control courses.It
is based on an industry-standard controller board, with the
advantage of its very intuitive and easy-to-use graphic user
interface. In addition, the same approach can be used for
other boards from the same company.

The overall setup consists of two workstations connected
to a communication channel (Internet) which induces a time
delay in the information transport (Fig. 1). Each of the
stations has an electromechanical system which is locally
controlled by real-time hardware. The one used by a human
operator to generate the desired velocity, position and force
variables is named the master mechanism while the one
that uses this information to perform a task in a remote
environment is named the slave mechanism.

A methodology to integrate real-time hardware and
TCP/IP communications for applications of remote robotic
manipulation is presented and validated in this work. Such
integration is achieved within the MATLAB [4] environment
by means of implementing special functions that can send
and receive data via a TCP/IP connection while accessing
real-time hardware to control the teleoperation system.

The rest of the paper is organized as follows. Section
II describes the methods and materials considered to make
the integration. Section III presents the selection of certain
libraries and the way they are integrated. Section IV shows
experimental results of the teleoperation platform, and finally
in section V concluding remarks are given.

II. M ATERIALS AND METHODS

A. Real-time hardware

A platform for Rapid Control Prototyping with Internet
capabilities is required in the project. For this a digital signal
processor (DSP) controller board from dSPACE (DS1104)
[5] has been used. The reason of selecting this hardware
is because of its easy-to-use features and rapid design of
control algorithms from SIMULINK. Unfortunately, this
board does not supply SIMULINK blocks to establish an
Internet connection within a control loop, nor accepts the
ones available for SIMULINK.

B. Sockets

One problem was the lack of Internet capabilities of the
selected DSP board. For this the solution required: (1) the
implementation of a TCP/IP socket from the MATLAB
workspace which can communicate both workstations and
(2) the use of the exchanging data to access and modify

0-7803-9419-4/05/$20.00 ©2005 IEEE

Human

Operator

Master

System

Slave

SystemNetwork Environment

Local station Remote station

Fig. 1. Block diagram of the overall setup for teleoperation.

control parameters or variables in the real-time processor
(which is currently controlling the mechanical device).

As it was shown in [6], this can be achieved by means
of using a dSPACE library called CLIB with a Common
Gateway Interface program. In this work, an alternative
methodology by using the dSPACE MLIB/MTRACE inter-
face libraries is explored.

The dSPACE interface libraries give access to the real-
time processor hardware from the MATLAB workspace.
This is done by the MLIB/MTRACE functions (implemented
as MEX DLL files) which provide real-time data capture
capabilities making them suited to modify parameters online,
generating interrupts, setting the processor state and getting
processor status information.

The way the workstations exchange data is based on a
client/server architecture and it is performed by opening an
Internet connection. The following options based on free
software to add TCP and/or UDP sockets from the MATLAB
workspace were considered:

• DODS [7]. DODS/OPenDAP is a software framework
that allows simple access to remote data through a web
server via URL. This software has an utility named
DODS MATLAB GUI for accessing and transporting
data directly from the MATLAB workspace.

• TCP/IP SIMULINK Blocks [8]. These server and client
blocks can be added to any SIMULINK model to
exchange data between computers. These blocks are
implemented using C MEX S-functions and Winsock2.

• TCP/IP/UDP Toolbox [9]. This toolbox can be used to
set up TCP/IP connections or to send/receive UDP/IP
packets in MATLAB. It can transmit data over the
Intranet/Internet between MATLAB processes or other
applications. It is possible to act as server and/or client
and to transmit textstrings, arrays of any datatype, files
or MATLAB variables.

• IOLIB [10]. This library allows port and memory IO
for MATLAB and SIMULINK. It also has several
functions to install and execute different commands
such as timers, interrupts and TCP/IP communications
to perform soft real-time applications.

C. Software

The software utilized for implementing the teleoperation
setup is the following:

• SIMULINK 4 and 5: For graphically programming the
control algorithms.

• MATLAB 6.1.0.45(R12.1) and 6.5.0.180(R13): For im-
plementing the Internet connection (by installing a
TCP/IP socket) and accessing the real-time processor.

Fig. 2. Architecture of the proposed solution for each workstation.

• RTI 4.3: For generating and installing the real-time code
in the DSP.

• ControlDesk 2.2: For displaying real-time information.

III. SELECTION AND INTEGRATION

After reviewing and testing the foregoing tools for imple-
menting sockets from the MATLAB workspace, it has been
decided to use in the integration the IOLIB set of functions.
This is because the other tools have some restrictions for im-
plementation purposes, such as non interactive data exchange
in a real-time fashion (DODS and TCP/IP/UDP Toolbox) or
because they cannot be installed on the real-time processor
(TCP/IP SIMULINK Blocks) for limitations to a simulation
environment.

Exchange of data online between both workstations is
done through the network connection by installing a TCP/IP
socket within the MATLAB environment. The key is to
deploy the TCP/IP communication and timer tools from
the IOLIB set of functions (tcp.m and itimer.m) together
with the MLIB/MTRACE functions in a pair of M-files. By
doing this, communication and control for both stations in a
soft real-time fashion is achieved. The architecture for each
workstation is shown in Fig. 2.

The controller for the mechanism is designed from
SIMULINK considering the information to be received and
transmitted as data variables. Then the RTI generates the
real-time code which is uploaded to the DSP. The MTRACE
library allows these variables to be shared by the MAT-
LAB workspace and the real-time processor. Therefore,
the complete integration is achieved within the MATLAB
workspace by installing the TCP/IP socket and using the
MLIB/MTRACE libraries to identify and modify these va-
riables online.

The reader should refer to the appendix for an overview
of the use of the IOLIB and MLIB/MTRACE functions
to update (read and write) the variables in the real-time
processor at the same time that M-variables are sent to the
remote workstation (client) and N-variables are received at
the local workstation (server).

It is important to notice that IOLIB functions work using
multithreading. However, MATLAB’s command windows
and graphical user interfaces are not intended for this oper-
ation mode, which results in a software crash. To avoid this,
MATLAB must be started without the Java Virtual Machine
(using the -nojvm option when invoking it from the command
line).

IV. EXPERIMENTAL RESULTS

A simple teleoperation system consisting of a couple of
identical 1-degree-of-freedom nonlinear mechanisms (pen-
dulums) has been regarded to show the experimental per-
formance of the integrated setup in a local network. At
the local station (master side configured as the server) a
physical pendulum is controlled by the real-time hardware
from dSPACE (DS-1104 board) and at the remote station
(slave side configured as the client) a virtual pendulum is
simulated in real-time (Fig. 3).

A. Plant

The plant considered is a mechanical pendulum (manu-
factured by Mechatronics Systems Inc), whose motion is
governed by the equation

α1ẍ(t) + α2 sin(x(t)) = τ(t), (1)

with physical parametersα1 = 0.0143 Kgm2 and α2 =
0.9976 Nm.

Considering for the master system the new variables

xm
1 = x, xm

2 = ẋ, τm = τ, (2)

the following state equations are obtained

ẋm
1 (t) = xm

2 (t) (3)

ẋm
2 (t) =

1

α1

[τm(t) − α2 sin(xm
1)]. (4)

The state equations for the slave system are defined in a
similar vein using the variablesxs

1(t), xs
2(t) andτs(t).

Defining

τm(t) = α2 sin(xm
1) + α1[u

m(t) + uh(t)] (5)

τs(t) = α2 sin(xs
1) + α1[u

s(t) + ue(t)], (6)

then the simplified master/slave model is obtained

ẋm
1 (t) = xm

2 (t) (7)

ẋm
2 (t) = uh(t) + um(t) (8)

ẋs
1(t) = xs

2(t) (9)

ẋs
2(t) = ue(t) + us(t), (10)

where um(t) and us(t) are the new control inputs while
uh(t) andue(t) are the inputs caused by the human and the
environmental force, respectively.

Lo
ca

l n
et

w
or

k

physical pendulum

(virtual pendulum)

DSP

����
����
����
����
����
����

����
����
����
����
����
����

����
����
����
����
����
����

����
����
����
����
����
����

Fig. 3. The teleoperation setup used for experimentation purposes.

B. Control scheme

Although all the control schemes reported in [12] were
tested in the teleoperation platform proposed in this docu-
ment, due to space reasons only one of them is presented: the
so-called Force Reflection (FR) in which position informa-
tion is transmitted from master to slave and force information
flows in the opposite direction. The control equations are [12]

um(t) = us(t − ∆), (11)

us(t) = −kp[x
s
1(t) − xm

1 (t − ∆)], (12)

where kp is the control gain and∆ is the network time-
delay, which under our approach is considered to be constant,
assumption that is justified later in this document.

C. Implementation

Several experiments for teleoperation were conducted
within an Intranet environment (100Mbs Ethernet network)
for the workstations depicted in Fig. 3. The local station is
mainly composed by the physical pendulum controlled by the
dSPACE board DS1104 in a Pentium IV PC with Win2000
Pro and MATLAB 6.1(R12.1), while at the remote station
the dynamics of a virtual pendulum is simulated (using a
standard fixed-step 4th-order Runge-Kutta method [11]) in a
Pentium IV Laptop Toshiba with WinXP Pro and MATLAB
6.5(R13). The control gainkp was set to 50.

The maximum period for sending or receiving data that
can be achieved in the platform is 1ms. This is because within
the tested local network, the TCP/IP protocol needs a mean
time of 0.458ms to transport one packet from one station to
the other. However, when transporting information over the
Internet for long distances, this period must be greater than
the time needed for the network to transport packets in one
direction.

As it has been shown in [1], the implementation of buffers
in the data transmission allows to use a greater constant delay
in the network for developing teleoperation experiments
over the Internet even when a lost of packages could exist.
Obviously, this constant delay could be used for setting the
period of data exchange. Another way for setting this period
is by using a Round Trip Time (RTT) tool.

In the experiments presented in this work, it has been
considered the case when partial information at each ex-
change period is available, so buffers are not used. The
sampling period was set to 1ms at each workstation and
they were programmed to exchange data every 40ms (greater
than the RTT needed to transport a packet over the Internet
from Ensenada to Mexico City). Notice that the delay in
the network does not matter as long as the information
(transmitted or received) is available at each period of data
exchange. This delay in the network could be varying but
as the information is being updated periodically, the delay
could be regarded as constant.

After initialization, the server opens the Internet connec-
tion and waits for the remote station to connect. If the con-
nection is established, the control runs at both stations while
accessing the real-time hardware and exchanging data online
in accordance with the desired trajectories that the human
operator is currently generating. Eventually, if an external
force acts at the slave side, it is reflected to the operator
resulting in an increase of the telepresence sensation. Below
are summarized the steps needed to perform the experiment.

Server

• Program the control scheme (11) from SIMULINK.
• Generate the corresponding real-time code and upload

it to the DSP board by using the RTI.
• Run MATLAB without the Java machine.
• Initialize the server by running from the MATLAB

workspace its M-File (see the appendix). At this point,
the server has already identified the variables to be
exchanged and start to listen to the remote connection.

• Once the client is connected, the human operator ma-
nipulates the pendulum.

• The Internet connection is closed once the experiment
is finished.

Client

• Run MATLAB without the Java machine.
• Program the control scheme (12) and the dynamics of

the pendulum in a M-File.
• Connect the client to the server by running from the

MATLAB workspace its M-File (see the appendix). At
this point, the client has already identified the variables
to be exchanged and waits for the first packet to begin
the simulation.

• The client disconnects once the experiment is finished.

D. Results

For the FR control scheme, Fig. 4 shows the positions and
torques of the pendulums. It can be seen that the slave tracks
accurately the master just before that an external constant
force (also simulated) acts at the slave (Fig. 5, lower diagram)
at t = 15, causing that position drift appears. It is also shown
that during the experiment, apparent inertia appeared. As it
is well known in teleoperation, these features are typical of
the FR control scheme.

0 5 10 15 20 25

−2

−1

0

1

2

M
a

st
e

r/
sl

a
ve

 p
o

si
tio

n
s

[r
a

d
]

Time [s]

 x
m

 x
s

0 5 10 15 20 25
−1.5

−1

−0.5

0

0.5

1

1.5

M
a

st
e

r/
sl

a
ve

 t
o

rq
u

e
s

[N
m

]

Time [s]

 τ
m

 τ
s

Fig. 4. Positions and torques for the master and slave pendulums.

0 5 10 15 20 25

−50

−40

−30

−20

−10

0

10
H

u
m

a
n

/s
la

ve
 in

p
u

ts

Time [s]

 u
h

 u
s

0 5 10 15 20 25

0

10

20

30

40

50

M
a

st
e

r/
e

n
vi

ro
n

.
in

p
u

ts

Time [s]

 u
m

 u
e

Fig. 5. Control inputs for the master and slave pendulums.

Notice thatus tracksuh while um tracksue (Fig. 5, upper
diagram) showing that some typical control objectives for
this kind of teleoperation systems are being satisfied as much
in free movement as in constrained movement.

V. CONCLUSIONS

In this work, Internet capabilities has been added to
the industry-standard DSP board DS1104 from dSPACE to
develop a teleoperation Rapid Control Prototyping platform,
with the easy-to-use graphical user interface included with
such board. This platform can be used for testing tele-
operation schemes over networks (Internet/Intranet) and for
distance teaching.

VI. A CKNOWLEDGMENTS

This work was partially supported by CONACYT Mexico
(first author’s scholarship 175135) and the French-Mexican
Laboratory on Automatic Control (LAFMAA) through the
project PRODIGE.

REFERENCES

[1] P. Berestesky, N. Chopra and M. W. Spong, Theory and experiments
in bilateral teleoperation over the Internet,in Proceedings of the IEEE
International Conference on Control Applications, Taiwan, 2004.

[2] L. Bate and C. Cook, The feasibility of force control overthe
Internet,in Proceedings of the Australian Conference on Robotics and
Automation, 2001, Sydney, pp. 146-161.

[3] S. Liang and D. Cheriton, TCP-RTM: Using TCP for real time
applications,in Proceedings of the IEEE International Conference on
Network Protocols, 2002.

[4] MATLAB and SIMULINK for technical Computing, web site:
http://www.mathworks.com

[5] dSPACE, Solutions for Control, web site:
http://www.dspaceinc.com

[6] A. Strivastava and W. Kim, Internet-based supervisory control and
stability for time delay, in Proceedings of the American Control
Conference, Denver, CO, 2003, pp. 627-632.

[7] DODS/OPenDAP,Distributed Oceanographic Data System and Open-
source project for a network data access protocol, available at
http://www.unidata.ucar.edu/packages/dods/, 2004.

[8] C. Jadhav,TCP/IP Blocks for Simulink, available at the MATLAB
Centralhttp://www.mathworks.com/matlabcentral/
fileexchange/loadFile.do?objectId=4934&object
Type=FILE, 2004.

[9] P. Rydesäter,TCP/UDP/IP Toolbox 2.0.5, available at the MATLAB
Centralhttp://www.mathworks.com/matlabcentral/
file-exchange/loadFile.do?objectId=345&object
Type=file, 2001.

[10] W. Zimmermann, IOLib library for Matlab, available at
http://it.fht-esslingen.de/ zimmerma/software/
IOlib.htm, 2003.

[11] R. Beckett,Numerical calculations and algorithms, Mc Graw Hill,
New York, NY; 1997.

[12] P. Arcara and C. Melchiori, Control schemes for teleoperation with
time delay: a comparative study,Journal of Robotics and Autonomous
Systems, vol. 38, 2002, pp. 49-64.

APPENDIX

In this section, the use of the IOLIB and MLIB/MTRACE
functions in a pair of M-files to exchange data online is
presented.

A. Server

%=========== Listing of client.m ===========
% Array where the received N-variables will be stored
r=zeros(1,N);
% Selection of the dSPACE board
mlib(‘SelectBoard’,‘DS1104’);
%Identify the shared variables (N+M) in the DSP
variables ={‘Model Root/var1/Value’;,...

...
‘Model Root/varN+M /Value’};

[var1 . . . varN+M] = mlib(‘GetTrcVar’,variables);
% Auxiliar variables to read and write
escribe=‘write’; lee=‘read’; datos=‘data’;
% Write the received N-variables down to the DSP
receivevar=mlib(escribe,var1,datos,r(1));,...

...
mlib(escribe,varN ,datos,r(N));

% Read from the DSP the M-variables to send
sendvar=[mlib(lee,varN+1) . . . mlib(lee,varN+M)];
% Open the Internet connection, receive and send data
tcp(1,‘ ’,port,‘r’,‘receivevar; tcp(2,[1 . . . M],sendvar);’);
% Wait to finish the experiment
disp(‘Press any key to stop the TCP/IP server’); pause;
% Close the Internet connection
tcp(0);

B. Client

%=========== Listing of client.m ===========
% Time and exchange period of data
t=0; h=0.040;
% Array where the received M-variables will be stored
r=zeros(1,M);
% Selection of the dSPACE board
mlib(‘SelectBoard’,‘DS1104’);
%Identify the shared variables (N+M) in the DSP
variables ={‘Model Root/var1/Value’;,...

...
‘Model Root/varN+M /Value’};

[var1 . . . varN+M] = mlib(‘GetTrcVar’,variables);
% Auxiliar variables to read and write
escribe=‘write’; lee=‘read’; datos=‘data’;
% Write the received M-variables down to the DSP
receivevar=mlib(escribe,varN+1,datos,r(1));,...

...
mlib(escribe,varN+M,datos,r(M));

% Read from the DSP the N-variables to send
sendvar=[mlib(lee,var1) . . . mlib(lee,varN)];
% Connect to the server and receive M-variables
tcp(1,‘serverIP address’,port, ‘r’,‘receivevar ;’);
% Install timer to exchange variables
itimer(1,1,round(h/0.001),‘addclient’);

%========= Listing of add client.m =========
% If time exceeds the experiment duration, close connec-
% tion; else, send N-variables through N-channels over
% the network. Increase time.
if t>=ts

tcp(2,[1 . . . N], zeros(1,N));
itimer(0); tcp(0);

else
tcp(2,[1 . . . N],sendvar);

end
t=t+h;

