
 
 

 

  

Abstract—An efficient optimization algorithm based on 
reduced sequential quadratic programming (rSQP) and 
automatic differentiation (AD) is presented in this paper. With 
the characteristics of sparseness, relatively low degrees of 
freedom and equality constraints utilized, the nonlinear 
programming problem was solved by improved rSQP solver. In 
the solving process, AD technology was used to obtain accurate 
gradient information. The numerical results show that the 
combined algorithm, which is suitable for large-scale process 
optimization problems, can calculate more efficiently than 
rSQP itself. 

I. INTRODUCTION 
ver the past 20 years, the successive quadratic 
programming (SQP) algorithm has been especially 
useful for a wide variety of processing applications. In 

particular, the reduced space SQP (rSQP) algorithm has seen 
many applications to large-scale engineering models. 
Designed for large NLP problems with few degrees of 
freedom, this approach has been implemented and applied to 
engineering problems ranging from flowsheet optimization, 
on-line process optimization, dynamic systems and even 
applications with PDE models [1,2]. 

One difficulty with large and complex optimization 
problems is the derivation. This is an essential requirement 
for using an efficient optimization algorithm. Not only rSQP 
but also other NLP algorithms require the calculation of the 
gradient vector of the first derivatives, and (depending on the 
method) perhaps the Hessian matrix of second derivatives as 
well. If the derivatives are calculated incorrectly, even in only 
one component, then the optimization method may either 
converge slowly (perhaps too slowly for practical use) or, 
more commonly, may fail to converge to a solution [3]. 
Hence it is essential to have accurate derivative calculations 
to solve optimization problems effectively. 
  The current Newton and quasi-Newton optimization 
software uses finite-difference approximation for computing 
the derivatives. When the model function is ill-conditioned, 
these approximation can be poor, and cause the optimization 
to fail. To evaluate the derivatives in rSQP algorithm 
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efficiently, we use an automatic differentiation (AD) 
approach, the forward mode of which was first proposed by R. 
E. Wengert [4] and the reverse mode was first published by G. 
M. Ostrowski [5]  
  This research applies AD with rSQP and shows how the 
combined algorithm can improve the quality of optimization 
of large-scale nonlinear programs by computing the 
derivatives reliably and more accurately. 

The introductory material and algorithm of rSQP is 
presented in Section 2. The description of automatic 
differentiation and corresponding algorithm used in rSQP is 
in Section 3, based on the introduction of four differentiation 
methods. In Section 4, the numerical results and conclusions 
are presented.  

II. REDUCED SEQUENTIAL QUADRATIC PROGRAMMING 
  The optimization algorithm developed by Schmid and 
Biegler [5] is designed to solve large process optimization 
problems of the form: 
    min ( )

nx R
f x

∈
                                                                       (1) 

    . .  ( ) 0s t c x =                                                                    (2) 
    L Ux x x≤ ≤                                                                    (3) 
where : nf R R→  and : n mc R R→  are assumed to be 
smooth functions with n, ( )m n m× − , and the first 
derivatives of f and c are available. The successive quadratic 
programming (SQP) method for solving (1)-(3) generates, at 
an iterate xk, a search direction dk by solving 

    1min ( ) ( )
2n

T T
k k

d R
g x d d W x d

∈
+                                          (4) 

    . .  ( ) ( ) 0T
k ks t c x A x d+ =                                                (5) 

    L U
kx x d x≤ + ≤                                                           (6) 

where g denotes the gradient of f, W(x) denotes the Hessian of 
the Lagrangian function ( , ) ( ) ( )TL x f x c xλ λ= + . A denotes 
the n m×  matrix of constraint gradients 
    1( ) [ ( ),..., ( )]k mA x c x c x= ∇ ∇                                        (7) 

For brevity, we denote A(xk) as Ak, g(xk) as gk, etc. A new 
iterate is then computed as 
    1k k k kx x dα+ = +                                                           (8) 

where kα  is a steplength parameter chosen so as to reduce 
the value of the merit function. A merit function is used to 
balance the two goals of decreasing the objective function (1) 
and satisfying the constraints (2) of the NLP. 
  The quadratic programming (QP) subproblem (4)-(6) can be 
reduced to solving a smaller QP in the space of the 
independent variables. This is done by introducing a 
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nonsingular matrix of order n, given by [ ]k kY Z  where 
n m

kY R ×∈  and ( )n n m
kZ R × −∈ , and 0T

z kA Z = . Thus, kZ  is a 
basis of the tangent space of the constraints. The solution to 
(4)-(6), can then be expressed as 
    k k Y k Zd Y p Z p= +                                                          (9) 

for some vectors m
Yp R∈  and n m

Zp R −∈ . From above, the 
linear constraints (5) become 
    0T

k k k Yc A Y p+ =                                                            (10) 

If we assume that kA  has full column rank then the 
nonsigularity of [ ]k kY Z  implies that the matrix T

k kA Y  is 

nonsingular, so that Yp  is determined by 
    1[ ]T

Y k k kp A Y c−= −                                                          (11) 
  To form the basis matrices Y and Z, we induce the partition 
    [ ]( ) ( ) ( )TA x N x C x=                                                  (12) 

where the m m×  basis matrix ( )C x  is assumed to be 
nonsingular. Z(x) and Y(x) are now defined to be  

    
1( )

( ) ( )
I

Z x
C x N x−

 
=  − 

, 0
( )Y x

I
 

=  
 

                            (13) 

  This choice is particularly popular and advantageous when 
A(x) is large and sparse, because a sparse LU decomposition 
of C(x) can be computed efficiently. 
  The QP subproblem can then be expressed exclusively in 
terms of the variables Zp . Substituting (9) into (4)-(6) with 

k YY p  determined, gives the QP: 

    1min ( )
2n m

Z

T T T
k k k Z Z k Z

p R
Z g w p p B p

−∈
+ +                                (14) 

    . .  L U
k k Y k Z k k Ys t x x Y p Z p x x Y p− − ≤ ≤ − −                           (15) 

where kB  approximates T
k k kZ W Z  and kw  approximates 

T
k k k YZ W Y p . Comparing the second-order terms kB  and kw  

form (14) and kW  from (4) shows that this decomposition 
reduces the matrix sizes in the QP from n n×  to 
( ) ( )n m n m− × − .  
  We can now outline the sequential quadratic programming 
method, but the above algorithm has been left in a very 
general form. We consider the choice of basis matrices Yk and 
Zk, the correction terms kw  and kw , the conditions under 
which BFGS updating takes place, the choice of the damping 
parameter kζ , and the procedure for updating the weight kµ  
in the merit function. So the detailed description of algorithm, 
which is used in this research and mainly based on [1], is 
given as follows.  
Algorithm Ⅰ 

1. Choose constants (0,1/ 2)η ∈  and , 'τ τ  with 
0 ' 1τ τ< < < , and positive constants Γ  for conditions 

1/ 2

1/ 2

if 

:

otherwise

k k Y
Y

k
Y

k
k

w w p
p

w
p

w
w

Γ ≤
= 

Γ



            (16) 

and fdγ  for conditions 
1/ 2

Y fd Zp pγ σ≤                                                    (17) 

For 
if 

:
otherwise

k k k Y k

k k Y
k

k k

w w p
w p

w
w

α γ
α
γ

 ≤
= 



                     (18) 

and 2
Y k Zp pγ≤                                                               (19) 

select a summable sequence of positive numbers { }kγ . 
Set : 1k = , and choose a starting point x1, an initial value 1µ  
for the penalty parameter, an ( ) ( )n m n m− × −  symmetric and 
positive definite starting matrix B1 and an ( )n m n− ×  starting 
matrix S1. 

2. Evaluate fk, gk, ck, and Ak, and compute Yk and Zk. 
3. Set findiff=false and compute pY by solving the system 

    ( )T
k k Y kA Y p c= − .  (range space step)                               (20) 

4. Calculate wk using Broyden's method, from 
k k k Yw S Y p=  and 1k k k k Yw S Y pα +=  and (16). 
5. Choose the damping parameter kζ  from  

1 1
1

[2cos ]T T T T
k k k k k k k k k k k k k kg Z w w B Z g w B w cζ θ ζ ρ− −+ + ≤   (21) 

and  
min{1, }k kζ ζ=                                                          (22) 

and compute pZ from  
    [ ]T

k Z k k k kB p Z g wζ= − + .      (null space step)                 (23) 
6. If (17) is satisfied and (19) is not satisfied, set 

findiff=true and recomputed wk from  
    [ ( , ) ( , )]T

k k k k Y k k kw Z L x Y p L xλ λ= ∇ + − ∇                        (24) 
7. If findiff=true, use this new value of wk to choose the 

damping parameter kζ  from Equations (21) and (22), and 
recomputed pZ from (23) 

8. Define the search direction by k k Y k Zd Y p Z p= +  and set 
1kα = . 

9. Test the line search condition 
    ( ) ( ) ( ; )

k k kk k k k k k kx d x D x dµ µ µφ α φ ηα φ+ ≤ +                (25) 
10. If (25) is not satisfied, choose a new [ , ' ]k k kα τα τ α∈  and 

go to 9; otherwise set 
1k k k kx x dα+ = +                                                        (26) 

11. Evaluate fk+1, gk+1, ck+1, and Ak+1, and compute Yk+1 and 
Zk+1. 

12. Compute the Lagrange multiplier estimate 
    1

1 1 1 1 1[ ]T T
k k k k kY A Y gλ −

+ + + + += −                                           (27) 
and update kµ  so as to satisfy 

    1 1if 2
3 otherwise

k k k
k

k

µ µ λ ρ
µ

λ ρ
− − ∞

∞

 ≥ +=  +
                      (28) 

13. Update Sk+1 using 



 
 

 

1
( ) T

k k k k
k k T

k

y S s sS S
s s+

−
= +                                          (29) 

where 
1 1 1[ ( , ) ( , )]T

k k k k k ky Z L x L xλ λ+ + += ∇ − ∇                         (30) 
and 1k k ks x x+= −                                                              (31) 
If findiff=false, calculate kw  by Broyden's method through 
    k k k Yw S Y p=  and 1k k k k Yw S Y pα +=                               (32) 
otherwise calculate kw  by 

1 1[ ( , ) ( , )]T
k k k k k Y k k kw Z L x Y p L xα λ λ+ += ∇ + − ∇             (33) 

14. If ( 0)T
k ks y ≤  or if (findiff=true and (17) is not satisfied) 

or if (findiff=false and (19) is not satisfied), set 1k kB B+ = . 
Else, compute 
    k k Zs pα= ,                                                                   (34) 

1 1 1[ ( , ) ( , )]T
k k k k k k ky Z L x L x wλ λ+ + += ∇ − ∇ −                  (35) 

and compute Bk+1 by the BFGS formula 

    
1

T T
k k k k k k

k k T T
k k k k k

B s s B y yB B
s B s y s+ = − +                                       (36) 

15. Set : 1k k= + , and go to (3). 
  The above algorithm is implement based on rSQP++ [7], an 
objected-oriented framework for solving NLPs using SQP 
method. The framework is being developed to support 
primarily rSQP.  

III. DIFFERENTIATION METHODS 
  In this section, A variety of differentiation methods for 

computing the derivatives of the function f(x) are considered. 
There are four basic methods of differentiation as described 
below [8]. 

A. Hand-Coded 
Computation of derivatives by hand is difficult and time 

consuming, especially when the problem becomes more 
complex and/or increases in size so that the evaluation of 
gradients and Hessians become expensive both in time and 
storage. 

B. Finite-Differencing 
The derivative of function f(x) with respect to the ith 

component of x at a point x0 is approximated by 

    
0

0 0( ) ( )( ) i

i x x

f x he f xf x
x h

=

+ −∂
≈

∂
                                  (37) 

here ei is the ith Cartesian basis vector. The difficulty with 
this method is that its accuracy is hard to measure and the 
selection of an appropriate value for h can cause convergence 
problems when high accuracy solutions are desired, 
particularly on ill-conditioned problems. 

C. Symbolic Differentiation 
Symbolic differentiation packages such as Maple, Reduce, 

and Macsyma produce exact derivatives. Consider the 
function 
    1 2 3 4 5 6( )f x x x x x x x=                                                        (38) 

we have 

2 3 4 5 6

1 3 4 5 6

1 2 4 5 6

1 2 3 5 6

1 2 3 4 6

1 2 3 4 5

( )

x x x x x
x x x x x
x x x x x

f x
x x x x x
x x x x x
x x x x x

 
 
 
 

∇ =  
 
 
  
 

                                       (39) 

This is correct, but it is not a very efficient method to 
compute the derivatives of the function f(x). Since there are 
many common sub-expression in the different derivative 
expressions, a fact not commonly taken into account by these 
packages. In addition, symbolic differentiation cannot handle 
functions that are evaluated using branches or loops. 

D. Automatic Differentiation 
  Automatic Differentiation is a method for the automatic 
generation of derivatives. It provides numerical derivative 
values at given arguments. It is based on the application of the 
chain rule and is a useful and efficient method for evaluating 
a function with a large number of derivatives. Differentiation 
of a function, no matter how complex it might be in form, can 
be performed automatically. Consider an algorithm A which 
transform some input (a, b, c,…) into some output (u, v,…). 
This can be shown as: 
    a, b, c,…→ A → u, v,… 
The objective of automatic differentiation is to transform the 
algorithm A into an algorithm A' which is more powerful than 
A in the sense that, in addition to u, v,… it can produce 
derivative values: 
    a, b, c,…→ A → u, v, u

a
∂
∂

,… 

The transformation of A to A' could be accomplished by an 
algorithm Diff: 
    A → Diff → A' 
Automatic differentiation can be applied, not only to function 
defined by a simple expression, but also to function that are 
defined in terms of other algorithms. 
  Automatic differentiation is based on the fact that every 
function, no matter how complicated, is executed on a 
computer as a sequence of elementary operations. By 
applying the chain rule 
    y y x

t x t
∂ ∂ ∂

= ⋅
∂ ∂ ∂

 where ( )y f x=  and ( )x g t=  

to compositions of these elementary functions over and over 
again, one can compute the derivative information for a 
function f(x) exactly and efficiently. 
  There are basically two different ways of applying the chain 
rule. They are called forward and backward differentiation. In 
forward mode the derivatives with respect to the independent 
variables are maintained. The backward mode of automatic 
differentiation maintains the derivatives of the final result 
with respect to intermediate quantities. These values, usually 
referred to as adjoints, measure the sensitivity of the final 
result with respect to some intermediate quantities. The 
backward method is more complicated, in that one must 
propagate derivative information from the final result back to 
the original independent variables, one derivative at a time. 



 
 

 

But for computing first derivatives, the backward mode is 
faster than the forward mode. In theory, backward automatic 
differentiation computes function and gradient values in time 
proportional to that for computing just the function. If the 
evaluation of function involves N operations then that of the 
gradient involves qN operations where q is at most 5. 

1) Forward Differentiation Algorithm 
This mode of differentiation follows the algorithm 

Algorithm Ⅱ 
  For i=1,…,n 
      i ix e=  
  For i=1 to M 
      ( , )n i n i j kx F x x+ +=  
      ( , )n i n i j kx F x x+ +∇ = ∇  
      n Mf x +=  
      n Mf x +∇ = ∇  

2) Backward Differentiation Algorithm 
This mode of differentiation follows the algorithm 

Algorithm Ⅲ 
  For i=1,…,n 
      0ix =  
  For i=1 to M 
      ( , )n i n i j kx F x x+ +=  
      0n ix + =  
    n Mf x +=  
    1n Mx + =  
  For i= M to 1 
      n i

j j n i
j

Fx x x
x

+
+

∂
= +

∂
 

      n i
k k n i

k

Fx x x
x

+
+

∂
= +

∂
 

For i=1 to n 
      

i if x∇ =  

  where ( )n M
i

i i

x f xx
x x
+∂ ∂

= =
∂ ∂

 

  The computational process can be represented as a 
computational graph. It represents the computation of f(x) in 
terms of elementary operations (like +, -, *, /) and standard 
library functions. Each vertex of the computational graph is 
an input variable, a constant or an intermediate variable, and 
each are corresponds to an elementary partial derivatives. The 
user needs only to program the automatic differentiation 
software then produces a new program that calculates both 
the function and gradient. 
  In backward differentiation only the representation of the 
original function is needed. It is faster than the forward mode 
to evaluate the gradient of the function f(x), but involves the 
storage of the computational graph. The large storage 
requirement can possibly make this technique infeasible on 
small computer systems and/or large problem. 

E. AD used in rSQP 
  There are already available some software package for 
automatic differentiation. Among these I can name GRESS 
[9], JAKEF [9], PADRE2 [9], ADIFOR[9], and ADOL-C 
[10]. GRESS (Gradient Enhanced Software System) is a 
precompiler that produces code that propagates first-order 
partial derivatives using either the forward or reverse mode. 
The GRESS package is a system that makes it possible to 
perform comprehensive sensitivity analysis of Fortran 
models. JAKEF is another Fortran precomplier. JAKEF is a 
version of JAKE that was developed at Argonne National 
Laboratory and written using Fortran 77. Input to JAKEF is a 
Fortran subroutine and then JAKEF generates a Fortran 
subroutine to compute the gradient or Jacobian of the 
function. JAKEF uses the reverse mode to propagate a 
Fortran function and then produces a modified subroutine. 
This subroutine calculates the original function, its partial 
derivatives, and an estimate of the rounding error generated. 
PADRE2 can be used to calculate first and second partial 
derivatives in either mode. I consider ADOL-C for my 
research since it is a package for AD of algorithm written in 
C/C++, for I use rSQP++, an object-oriented framework for 
solving NLPs using SQP methods. The ADOL-C is based on 
operator overloading. Using this technique, one can log for 
each operation during the program execution the operator and 
the variables that are involved. Hence, one obtains a new 
internal representation of the function evaluation. Based on 
the generated execution log ADOL-C computes the desired 
derivatives. 

IV.  NUMERICAL RESULTS AND CONCLUSIONS 
  The alkylation process optimization [11] of Bracken and 
McCormick is a famous process optimization problem solved 
by Westerberg et al., Berna et al., and Vasantharajan et al. 
The process is illustrated schematically in Fig.1. There are 10 
variables (all of them have upper and lower bounds), 3 
equality constraints, and 8 inequality constraints in this 
problem. Details of modeling and mathematical formulation 
can be found in Berna et al.  
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Hydrocarbon
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Fig. 1. Bracken and McCormick alkylation process 

 

  Two different initial states were specified for the 
optimization: one is identical with Westerberg et al., and the 
other is retrieved form Berna et al. and Vasantharajan et al. 
Associated with different initial states, the problem was 
designated as problems 1a and 1b, respectively.  



 
 

 

  Problem 2 is a distillation process optimization originally 
developed by Shao et al [12]. The distillation model 
considered in this problem describes a benzene-toluene 
system in which there are 18 theoretical trays. Further details 
can be found in Shao [12]. Different from the model 
considered by Shao, however, the model equation in this 
paper were written in an open-equation format which is 
similar to the model considered in [11]. To break the internal 
convergence loop for thermodynamic property computation 
in the model of Shao, equations from Bailey [13] were used 
for regressing phase equilibrium ratio K and enthalpy values. 
The corresponding coefficients were obtained based on data 
generated from PRO/Ⅱ simulation programs. All equations 
were converted into equality equations with slack variables. 
The resulting optimization has 290 variables, 288 equality 
constraints, and upper and lower bounds for all variables. 
 

TABLE 1 COMPARISON OF PERFORMANCE ON TEST PROBLEMS 

ALGORITHM Ⅰ RSQP WITH AD PR
OBL
EM CPU TIME, S ITERATIONS CPU TIME, S ITERATIONS 

1a 1.933 22 0.973 9 
1b 2.693 32 2.224 18 
2 655.877 14 67.017 10 

 
  The combined algorithm is used to solve the optimization 
problem 1 and 2 and the numerical results are listed in Table1. 
From Table 1, it is clearly shown that the combined algorithm 
requires fewer iterations than algorithm Ⅰ. Reduction of 
about 30% in CPU time is also observed. These encouraging 
results indicate that the combined algorithm performance is 
improved significantly due to more efficient and accurate 
curvature information provided by MAD. It is also shown 
that, no matter how the size of optimization problems would 
be, accurate derivatives are consistently beneficial to the 
optimization. 
  The significant enhancement in speed on two problems with 
distinct difference in size (10 and 290 variables) shows that 
the strategy is an approach suitable for large-scale process 
optimization problems. 
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