

Abstract—An efficient optimization algorithm based on
reduced sequential quadratic programming (rSQP) and
automatic differentiation (AD) is presented in this paper. With
the characteristics of sparseness, relatively low degrees of
freedom and equality constraints utilized, the nonlinear
programming problem was solved by improved rSQP solver. In
the solving process, AD technology was used to obtain accurate
gradient information. The numerical results show that the
combined algorithm, which is suitable for large-scale process
optimization problems, can calculate more efficiently than
rSQP itself.

I. INTRODUCTION
ver the past 20 years, the successive quadratic
programming (SQP) algorithm has been especially
useful for a wide variety of processing applications. In

particular, the reduced space SQP (rSQP) algorithm has seen
many applications to large-scale engineering models.
Designed for large NLP problems with few degrees of
freedom, this approach has been implemented and applied to
engineering problems ranging from flowsheet optimization,
on-line process optimization, dynamic systems and even
applications with PDE models [1,2].

One difficulty with large and complex optimization
problems is the derivation. This is an essential requirement
for using an efficient optimization algorithm. Not only rSQP
but also other NLP algorithms require the calculation of the
gradient vector of the first derivatives, and (depending on the
method) perhaps the Hessian matrix of second derivatives as
well. If the derivatives are calculated incorrectly, even in only
one component, then the optimization method may either
converge slowly (perhaps too slowly for practical use) or,
more commonly, may fail to converge to a solution [3].
Hence it is essential to have accurate derivative calculations
to solve optimization problems effectively.
 The current Newton and quasi-Newton optimization
software uses finite-difference approximation for computing
the derivatives. When the model function is ill-conditioned,
these approximation can be poor, and cause the optimization
to fail. To evaluate the derivatives in rSQP algorithm

Manuscript received July 4, 2005. This work was supported by the

Changling refinery of Sinopec.
Li Jin is with the Department of Management, National University of

Defense Technology, Changsha, Hunan 410073 China (phone:
86-731-4575857; fax: 86-731-4573591; e-mail: lj_nudt@ hotmail.com).

Tan Yuejin, was with National University of Defense Technology,
Changsha, Hunan, China. He is the president of Information System &
Management College, National University of Defense Technology,
Changsha, Hunan 410073 China (e-mail: yjtan@nudt.edu.cn).

Liao Liangcai is with the Department of Management, National
University of Defense Technology, Changsha, Hunan 410073 China (e-mail:
llc_nudt@163.com).

efficiently, we use an automatic differentiation (AD)
approach, the forward mode of which was first proposed by R.
E. Wengert [4] and the reverse mode was first published by G.
M. Ostrowski [5]
 This research applies AD with rSQP and shows how the
combined algorithm can improve the quality of optimization
of large-scale nonlinear programs by computing the
derivatives reliably and more accurately.

The introductory material and algorithm of rSQP is
presented in Section 2. The description of automatic
differentiation and corresponding algorithm used in rSQP is
in Section 3, based on the introduction of four differentiation
methods. In Section 4, the numerical results and conclusions
are presented.

II. REDUCED SEQUENTIAL QUADRATIC PROGRAMMING
 The optimization algorithm developed by Schmid and
Biegler [5] is designed to solve large process optimization
problems of the form:
 min ()

nx R
f x

∈
 (1)

 . . () 0s t c x = (2)
 L Ux x x≤ ≤ (3)
where : nf R R→ and : n mc R R→ are assumed to be
smooth functions with n, ()m n m× − , and the first
derivatives of f and c are available. The successive quadratic
programming (SQP) method for solving (1)-(3) generates, at
an iterate xk, a search direction dk by solving

 1min () ()
2n

T T
k k

d R
g x d d W x d

∈
+ (4)

 . . () () 0T
k ks t c x A x d+ = (5)

 L U
kx x d x≤ + ≤ (6)

where g denotes the gradient of f, W(x) denotes the Hessian of
the Lagrangian function (,) () ()TL x f x c xλ λ= + . A denotes
the n m× matrix of constraint gradients
 1() [(),..., ()]k mA x c x c x= ∇ ∇ (7)

For brevity, we denote A(xk) as Ak, g(xk) as gk, etc. A new
iterate is then computed as
 1k k k kx x dα+ = + (8)

where kα is a steplength parameter chosen so as to reduce
the value of the merit function. A merit function is used to
balance the two goals of decreasing the objective function (1)
and satisfying the constraints (2) of the NLP.
 The quadratic programming (QP) subproblem (4)-(6) can be
reduced to solving a smaller QP in the space of the
independent variables. This is done by introducing a

A New Algorithm Based on rSQP and AD
Jin Li, Yuejin Tan, Liangcai Liao

O

0-7803-9419-4/05/$20.00 ©2005 IEEE

nonsingular matrix of order n, given by []k kY Z where
n m

kY R ×∈ and ()n n m
kZ R × −∈ , and 0T

z kA Z = . Thus, kZ is a
basis of the tangent space of the constraints. The solution to
(4)-(6), can then be expressed as
 k k Y k Zd Y p Z p= + (9)

for some vectors m
Yp R∈ and n m

Zp R −∈ . From above, the
linear constraints (5) become
 0T

k k k Yc A Y p+ = (10)

If we assume that kA has full column rank then the
nonsigularity of []k kY Z implies that the matrix T

k kA Y is

nonsingular, so that Yp is determined by
 1[]T

Y k k kp A Y c−= − (11)
 To form the basis matrices Y and Z, we induce the partition
 []() () ()TA x N x C x= (12)

where the m m× basis matrix ()C x is assumed to be
nonsingular. Z(x) and Y(x) are now defined to be

1()

() ()
I

Z x
C x N x−

 
=  − 

, 0
()Y x

I
 

=  
 

 (13)

 This choice is particularly popular and advantageous when
A(x) is large and sparse, because a sparse LU decomposition
of C(x) can be computed efficiently.
 The QP subproblem can then be expressed exclusively in
terms of the variables Zp . Substituting (9) into (4)-(6) with

k YY p determined, gives the QP:

 1min ()
2n m

Z

T T T
k k k Z Z k Z

p R
Z g w p p B p

−∈
+ + (14)

 . . L U
k k Y k Z k k Ys t x x Y p Z p x x Y p− − ≤ ≤ − − (15)

where kB approximates T
k k kZ W Z and kw approximates

T
k k k YZ W Y p . Comparing the second-order terms kB and kw

form (14) and kW from (4) shows that this decomposition
reduces the matrix sizes in the QP from n n× to
() ()n m n m− × − .
 We can now outline the sequential quadratic programming
method, but the above algorithm has been left in a very
general form. We consider the choice of basis matrices Yk and
Zk, the correction terms kw and kw , the conditions under
which BFGS updating takes place, the choice of the damping
parameter kζ , and the procedure for updating the weight kµ
in the merit function. So the detailed description of algorithm,
which is used in this research and mainly based on [1], is
given as follows.
Algorithm Ⅰ

1. Choose constants (0,1/ 2)η ∈ and , 'τ τ with
0 ' 1τ τ< < < , and positive constants Γ for conditions

1/ 2

1/ 2

if

:

otherwise

k k Y
Y

k
Y

k
k

w w p
p

w
p

w
w

Γ ≤
= 

Γ



 (16)

and fdγ for conditions
1/ 2

Y fd Zp pγ σ≤ (17)

For
if

:
otherwise

k k k Y k

k k Y
k

k k

w w p
w p

w
w

α γ
α
γ

 ≤
= 



 (18)

and 2
Y k Zp pγ≤ (19)

select a summable sequence of positive numbers { }kγ .
Set : 1k = , and choose a starting point x1, an initial value 1µ
for the penalty parameter, an () ()n m n m− × − symmetric and
positive definite starting matrix B1 and an ()n m n− × starting
matrix S1.

2. Evaluate fk, gk, ck, and Ak, and compute Yk and Zk.
3. Set findiff=false and compute pY by solving the system

 ()T
k k Y kA Y p c= − . (range space step) (20)

4. Calculate wk using Broyden's method, from
k k k Yw S Y p= and 1k k k k Yw S Y pα += and (16).
5. Choose the damping parameter kζ from

1 1
1

[2cos]T T T T
k k k k k k k k k k k k k kg Z w w B Z g w B w cζ θ ζ ρ− −+ + ≤ (21)

and
min{1, }k kζ ζ= (22)

and compute pZ from
 []T

k Z k k k kB p Z g wζ= − + . (null space step) (23)
6. If (17) is satisfied and (19) is not satisfied, set

findiff=true and recomputed wk from
 [(,) (,)]T

k k k k Y k k kw Z L x Y p L xλ λ= ∇ + − ∇ (24)
7. If findiff=true, use this new value of wk to choose the

damping parameter kζ from Equations (21) and (22), and
recomputed pZ from (23)

8. Define the search direction by k k Y k Zd Y p Z p= + and set
1kα = .

9. Test the line search condition
 () () (;)

k k kk k k k k k kx d x D x dµ µ µφ α φ ηα φ+ ≤ + (25)
10. If (25) is not satisfied, choose a new [, ']k k kα τα τ α∈ and

go to 9; otherwise set
1k k k kx x dα+ = + (26)

11. Evaluate fk+1, gk+1, ck+1, and Ak+1, and compute Yk+1 and
Zk+1.

12. Compute the Lagrange multiplier estimate
 1

1 1 1 1 1[]T T
k k k k kY A Y gλ −

+ + + + += − (27)
and update kµ so as to satisfy

 1 1if 2
3 otherwise

k k k
k

k

µ µ λ ρ
µ

λ ρ
− − ∞

∞

 ≥ +=  +
 (28)

13. Update Sk+1 using

1
() T

k k k k
k k T

k

y S s sS S
s s+

−
= + (29)

where
1 1 1[(,) (,)]T

k k k k k ky Z L x L xλ λ+ + += ∇ − ∇ (30)
and 1k k ks x x+= − (31)
If findiff=false, calculate kw by Broyden's method through
 k k k Yw S Y p= and 1k k k k Yw S Y pα += (32)
otherwise calculate kw by

1 1[(,) (,)]T
k k k k k Y k k kw Z L x Y p L xα λ λ+ += ∇ + − ∇ (33)

14. If (0)T
k ks y ≤ or if (findiff=true and (17) is not satisfied)

or if (findiff=false and (19) is not satisfied), set 1k kB B+ = .
Else, compute
 k k Zs pα= , (34)

1 1 1[(,) (,)]T
k k k k k k ky Z L x L x wλ λ+ + += ∇ − ∇ − (35)

and compute Bk+1 by the BFGS formula

1

T T
k k k k k k

k k T T
k k k k k

B s s B y yB B
s B s y s+ = − + (36)

15. Set : 1k k= + , and go to (3).
 The above algorithm is implement based on rSQP++ [7], an
objected-oriented framework for solving NLPs using SQP
method. The framework is being developed to support
primarily rSQP.

III. DIFFERENTIATION METHODS
 In this section, A variety of differentiation methods for

computing the derivatives of the function f(x) are considered.
There are four basic methods of differentiation as described
below [8].

A. Hand-Coded
Computation of derivatives by hand is difficult and time

consuming, especially when the problem becomes more
complex and/or increases in size so that the evaluation of
gradients and Hessians become expensive both in time and
storage.

B. Finite-Differencing
The derivative of function f(x) with respect to the ith

component of x at a point x0 is approximated by

0

0 0() ()() i

i x x

f x he f xf x
x h

=

+ −∂
≈

∂
 (37)

here ei is the ith Cartesian basis vector. The difficulty with
this method is that its accuracy is hard to measure and the
selection of an appropriate value for h can cause convergence
problems when high accuracy solutions are desired,
particularly on ill-conditioned problems.

C. Symbolic Differentiation
Symbolic differentiation packages such as Maple, Reduce,

and Macsyma produce exact derivatives. Consider the
function
 1 2 3 4 5 6()f x x x x x x x= (38)

we have

2 3 4 5 6

1 3 4 5 6

1 2 4 5 6

1 2 3 5 6

1 2 3 4 6

1 2 3 4 5

()

x x x x x
x x x x x
x x x x x

f x
x x x x x
x x x x x
x x x x x

 
 
 
 

∇ =  
 
 
  
 

 (39)

This is correct, but it is not a very efficient method to
compute the derivatives of the function f(x). Since there are
many common sub-expression in the different derivative
expressions, a fact not commonly taken into account by these
packages. In addition, symbolic differentiation cannot handle
functions that are evaluated using branches or loops.

D. Automatic Differentiation
 Automatic Differentiation is a method for the automatic
generation of derivatives. It provides numerical derivative
values at given arguments. It is based on the application of the
chain rule and is a useful and efficient method for evaluating
a function with a large number of derivatives. Differentiation
of a function, no matter how complex it might be in form, can
be performed automatically. Consider an algorithm A which
transform some input (a, b, c,…) into some output (u, v,…).
This can be shown as:
 a, b, c,…→ A → u, v,…
The objective of automatic differentiation is to transform the
algorithm A into an algorithm A' which is more powerful than
A in the sense that, in addition to u, v,… it can produce
derivative values:
 a, b, c,…→ A → u, v, u

a
∂
∂

,…

The transformation of A to A' could be accomplished by an
algorithm Diff:
 A → Diff → A'
Automatic differentiation can be applied, not only to function
defined by a simple expression, but also to function that are
defined in terms of other algorithms.
 Automatic differentiation is based on the fact that every
function, no matter how complicated, is executed on a
computer as a sequence of elementary operations. By
applying the chain rule
 y y x

t x t
∂ ∂ ∂

= ⋅
∂ ∂ ∂

 where ()y f x= and ()x g t=

to compositions of these elementary functions over and over
again, one can compute the derivative information for a
function f(x) exactly and efficiently.
 There are basically two different ways of applying the chain
rule. They are called forward and backward differentiation. In
forward mode the derivatives with respect to the independent
variables are maintained. The backward mode of automatic
differentiation maintains the derivatives of the final result
with respect to intermediate quantities. These values, usually
referred to as adjoints, measure the sensitivity of the final
result with respect to some intermediate quantities. The
backward method is more complicated, in that one must
propagate derivative information from the final result back to
the original independent variables, one derivative at a time.

But for computing first derivatives, the backward mode is
faster than the forward mode. In theory, backward automatic
differentiation computes function and gradient values in time
proportional to that for computing just the function. If the
evaluation of function involves N operations then that of the
gradient involves qN operations where q is at most 5.

1) Forward Differentiation Algorithm
This mode of differentiation follows the algorithm

Algorithm Ⅱ
 For i=1,…,n
 i ix e=
 For i=1 to M
 (,)n i n i j kx F x x+ +=
 (,)n i n i j kx F x x+ +∇ = ∇
 n Mf x +=
 n Mf x +∇ = ∇

2) Backward Differentiation Algorithm
This mode of differentiation follows the algorithm

Algorithm Ⅲ
 For i=1,…,n
 0ix =
 For i=1 to M
 (,)n i n i j kx F x x+ +=
 0n ix + =
 n Mf x +=
 1n Mx + =
 For i= M to 1
 n i

j j n i
j

Fx x x
x

+
+

∂
= +

∂

 n i
k k n i

k

Fx x x
x

+
+

∂
= +

∂

For i=1 to n

i if x∇ =

 where ()n M
i

i i

x f xx
x x
+∂ ∂

= =
∂ ∂

 The computational process can be represented as a
computational graph. It represents the computation of f(x) in
terms of elementary operations (like +, -, *, /) and standard
library functions. Each vertex of the computational graph is
an input variable, a constant or an intermediate variable, and
each are corresponds to an elementary partial derivatives. The
user needs only to program the automatic differentiation
software then produces a new program that calculates both
the function and gradient.
 In backward differentiation only the representation of the
original function is needed. It is faster than the forward mode
to evaluate the gradient of the function f(x), but involves the
storage of the computational graph. The large storage
requirement can possibly make this technique infeasible on
small computer systems and/or large problem.

E. AD used in rSQP
 There are already available some software package for
automatic differentiation. Among these I can name GRESS
[9], JAKEF [9], PADRE2 [9], ADIFOR[9], and ADOL-C
[10]. GRESS (Gradient Enhanced Software System) is a
precompiler that produces code that propagates first-order
partial derivatives using either the forward or reverse mode.
The GRESS package is a system that makes it possible to
perform comprehensive sensitivity analysis of Fortran
models. JAKEF is another Fortran precomplier. JAKEF is a
version of JAKE that was developed at Argonne National
Laboratory and written using Fortran 77. Input to JAKEF is a
Fortran subroutine and then JAKEF generates a Fortran
subroutine to compute the gradient or Jacobian of the
function. JAKEF uses the reverse mode to propagate a
Fortran function and then produces a modified subroutine.
This subroutine calculates the original function, its partial
derivatives, and an estimate of the rounding error generated.
PADRE2 can be used to calculate first and second partial
derivatives in either mode. I consider ADOL-C for my
research since it is a package for AD of algorithm written in
C/C++, for I use rSQP++, an object-oriented framework for
solving NLPs using SQP methods. The ADOL-C is based on
operator overloading. Using this technique, one can log for
each operation during the program execution the operator and
the variables that are involved. Hence, one obtains a new
internal representation of the function evaluation. Based on
the generated execution log ADOL-C computes the desired
derivatives.

IV. NUMERICAL RESULTS AND CONCLUSIONS
 The alkylation process optimization [11] of Bracken and
McCormick is a famous process optimization problem solved
by Westerberg et al., Berna et al., and Vasantharajan et al.
The process is illustrated schematically in Fig.1. There are 10
variables (all of them have upper and lower bounds), 3
equality constraints, and 8 inequality constraints in this
problem. Details of modeling and mathematical formulation
can be found in Berna et al.

Reactor

Fractionator

Spent acid

Alkylate product

Hydrocarbon
product

Olefin feed

Fresh acid

Isobutane
make-up

Fig. 1. Bracken and McCormick alkylation process

 Two different initial states were specified for the
optimization: one is identical with Westerberg et al., and the
other is retrieved form Berna et al. and Vasantharajan et al.
Associated with different initial states, the problem was
designated as problems 1a and 1b, respectively.

 Problem 2 is a distillation process optimization originally
developed by Shao et al [12]. The distillation model
considered in this problem describes a benzene-toluene
system in which there are 18 theoretical trays. Further details
can be found in Shao [12]. Different from the model
considered by Shao, however, the model equation in this
paper were written in an open-equation format which is
similar to the model considered in [11]. To break the internal
convergence loop for thermodynamic property computation
in the model of Shao, equations from Bailey [13] were used
for regressing phase equilibrium ratio K and enthalpy values.
The corresponding coefficients were obtained based on data
generated from PRO/Ⅱ simulation programs. All equations
were converted into equality equations with slack variables.
The resulting optimization has 290 variables, 288 equality
constraints, and upper and lower bounds for all variables.

TABLE 1 COMPARISON OF PERFORMANCE ON TEST PROBLEMS

ALGORITHM Ⅰ RSQP WITH AD PR
OBL
EM CPU TIME, S ITERATIONS CPU TIME, S ITERATIONS

1a 1.933 22 0.973 9
1b 2.693 32 2.224 18
2 655.877 14 67.017 10

 The combined algorithm is used to solve the optimization
problem 1 and 2 and the numerical results are listed in Table1.
From Table 1, it is clearly shown that the combined algorithm
requires fewer iterations than algorithm Ⅰ. Reduction of
about 30% in CPU time is also observed. These encouraging
results indicate that the combined algorithm performance is
improved significantly due to more efficient and accurate
curvature information provided by MAD. It is also shown
that, no matter how the size of optimization problems would
be, accurate derivatives are consistently beneficial to the
optimization.
 The significant enhancement in speed on two problems with
distinct difference in size (10 and 290 variables) shows that
the strategy is an approach suitable for large-scale process
optimization problems.

REFERENCES
[1] Biegler L. T., Nocedal J., Schmid C., A reduced Hessian method for

large-scale constrained optimization. SIAM Journal of Optimization,
1995, 5,314

[2] Ternet D. J., Biegler L. T., Recent improvements to a multiplier-free
reduced Hessian successive quadratic programming algorithm.
Computers and Chemical Engineering, 1998, 22(7-8): 963-978

[3] Fateh H., Automatic differentiation for large-scale nonlinear
programming problems. PhD GEORGE MASON UNIVERSITY, 1995

[4] R. E. Wengert. A Simple Automatic Derivative Evaluation Program.
Comm. ACM, 1964(7): 463-464

[5] G. M. Ostroskii, J. M. Wolin, W. W. Borisov. Uber die Berechning Von
Ableitungen. Wissenschaftliche Zeitschrift der Technischen
Hochschule fur Chemie, Leuna-Merseburg, 1971(13): 382-384

[6] Biegler L. T., Nocedal J., Schmid C., A reduced Hessian method for
large-scale constrained optimization. SIAM Journal of Optimization,
1995, 5(2): 314-347

[7] Roscoe A. Bartlett, rSQP++ An Object-Oriented Framework for
Reduced Space Successive Quadratic Programming.
http://dynopt.cheme.cmu.edu/roscoe/rSQPppOview/ rSQPppOview.ps

[8] Tolsma, J. E., Barton, P. I. (1998). On computational differentiation.
Computers and Chemical Engineering, 22, 475–490.

[9] D. W. Juedes. A Taxonomy of Automatic Differentiation Tools. SIAM,
1991:315-329

[10] Andreas Griewank, David Juedes, Hristo Mitev, Jean Utke, Olaf Vogel,
Andrea Walther, ADOL-C: A Package for the Automatic
Differentiation of Algorithms Written in C/C++, Version 1.8.2, March
1999.

[11] Zhong Weitao, Shao Zhijiang, Zhang Yuyue, Qian Jixin, Applying
Analytical Derivative and Sparse Matrix Techniques to Large-Scale
Process Optimization, Chinese Journal of Chemical Engineering, 2000,
8(3): 212-217

[12] Shao Z. J. On-line Optimization of Continuous Industrial Process. Ph.D.
Thesis. Zhejiang University, 1997. (in Chinese)

[13] Jiang Aipeng, Shao Zhijiang, Qian Jixin, Optimization of reaction
parameters based on rSQP and hybrid automatic differentiation
algorithm, Journal of Zhejiang University (Engineering Science), 2004,
38(12): 1606-1610 (in Chinese)

