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Abstract— This paper presents a sliding mode control us-
ing only output information. The robustness conditions come
from a linear matrix inequality (LMI). This LMI permits
to use output feedback to stabilize the system with matched
and unmatched disturbances and uncertainties. The controller
synthetized consists of two components. One component of
linear output feedback regulates the system and rejects the
unmatched disturbance. Other components of nonlinear output
function provide robustness to the overall system. Robustness
conditions are given. Simulations results using Simulink Matlab
to simulate several nonlinear systems are presented.

Index Terms—Linear Matrix Inequality, Sliding Mode Con-
trol, robustness control.

I. I NTRODUCTION

Sliding mode control is one the most important
approaches to control nonlinear systems with uncertainties
and disturbances. The power and electromechanical systems,
and systems with high number of states and nonlinearities
like friction, backlash, etc, are appropriate to apply this
technique. This approach could give robustness to the
system [1]. Robustness could decrease if only some states
of the system are used to feedback. The answer of the
question: can a linear system be controlled using only
output feedback?. is very important the answer can be given
in terms of feasibility of a LMI [2]. A linear system with
linear output feedback can be posed how a LMI [3]. If this
LMI is feasible the output feedback gain can be find and
the system can be controlled.

There are several algoritms and software to solve feasi-
bility problems of some LMIs (i.e. Matlab LMI toolbox and
LMI tool from SCILAB) [4], [5]. These programs are used
to calculate the linear output feedback controller gain and
to obtain a positive defined matrix that permit to prove the
robustness of the controlled system. Some nonlinear systems
with uncertainties and disturbances can be written as the
addition of a known linear system and an unknown function
of disturbances and uncertainties [6]. Some information
about this function is required (i.e. highest value and its limits
). This function can be divided in two parts: one matched
and one unmatched. The matched one can be rejected easily.
On these systems sliding mode and linear output feedback
controllers can be designed. Sliding mode controller permits
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to provide robustness to the system, rejecting the matched
disturbances. The linear output feedback controller can re-
ject, sometimes, the unmatched disturbances and permits to
regulate the system.

II. PROBLEM STATEMENT

Consider the nonlinear system described by:

Ẋ(t) = Ax(t) +BU (t) + Ψ(t,X, U )
Y (t) = CX(t)

(1)

X(t) ∈ Rn is the state vector
U (t) ∈ Rm is the input vector
Y (t) ∈ Rp is the output vector
A ∈ Rn∗n, B ∈ Rn∗m, C ∈ Rp∗n are know matrices with
m ≤ p < n; B andC are full rank.

Ψ(t,X, U ) =
[

Ψ1(t,X)
Ψ2(t,X, U )

]
(2)

Ψ2(t,X, U ) =
[
φ1(t,X)
φ2(t,X, U )

]
(3)

About this functions only know:

‖ Ψ1(t,X) ‖≤ Ψ10 ‖ X(t) ‖ (4)

‖ φ1(t,X) ‖≤ φ10 ‖ X(t) ‖ (5)

‖ ψ2(t,X, U ) ‖≤ γ0 ‖ U (t) ‖ +α(t, Y ) ‖ (6)

Whereφ1(t,X) ∈ Rn−m; φ2(t,X, U ) ∈ Rm, Ψ10, φ10,
0 ≤ γ0 < 1 are known positives constants andα0(t, Y ) is
know positive function.

The system is in regular form [6] with:

B =
[

0
B2

]

B2 =
[

0
D2

] (7)

WhereB2 ∈ Rp∗m, D2 ∈ Rm∗m andD2 is non singular.
And

C = [C1 C2] (8)

WhereC1 ∈ Rp∗(n−p), C2 ∈ Rp∗p

If this is not the case, the system can be written in this
form using linear transformations.
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The system is transformed into a new state:

W (t) =
[
X1(t)
Y (t)

]
= TX(t)

(9)

WhereX1(t) ∈ Rn−p, Y (t) ∈ Rp, with

T =
[

I 0
C1 C2

]

T−1 =
[

I 0
−C−1

2 C1 C−1
2

]

The new system is:

Ẇ (t) = AW (t) +BU (t) + Ω(t,W,U ) (10)

With

A = T−1 AT =
[
A11 A12

A21 A22

]

A11 = A11 −A12C
−1
2 C1

A12 = A12C
−1
2

A21 = C1A11 + C2A21 −C1A12C
−1
2 C1 − C2A22C

−1
2 C1

A22 = C1A12C
−1
2 + C2A22C

−1
2

(11)
The below LMI must be feasible:

A
T

11Γ1 + Γ1A11 < 0; Γ1 = ΓT
1 > 0 (12)

This property is key a for robustness. Many systems carry
out it (power systems and electromechanical systems):

B =
[

0
B2

]
;B2 = C2B2 ∈ Rp−m (13)

Ω(t,W,U ) =
[

Ψ1(t,W )
C1Ψ1(t,W ) + C2Ψ2(t,W,U )

]
(14)

Ψ2(t,W,U ) = B2ζ2(t,W,U ) (15)

whereζ2(t,W,U ) is a matched disturbance.

‖ ζ2(t,W,U ) ‖= γ1 ‖ U (t) ‖ +α(t.Y ) (16)

Where therank(B2) = m, 0 ≤ γ1 < 1 is a positive
constant,α(t.y) is a known nonnegative function.

The new system can be written as:

Ẋ1(t) = A11X1t +A12Y (t) + Ψ1(t,W )
Ẏ (t) = A21X1(t) + A22Y (t) +BU (t) + C1Ψ1(t,W )

+C2B2ζ2(t, Y, U )
(17)

The sliding mode control problem can be established as:

” To design a sliding Mode Controller that only uses
output feedback to stabilize the system described by
(17) and provides it robustness”.

The controller comprises a linear output feedback to
regulate the system and overcome unmatched disturbances (it
is possible), and a nonlinear controller to reject the matched
disturbance.

III. SLIDING MODEL SURFACE

The sliding mode surface chosen was:

z(t) = ZY (t) = 0
Z = [0 Z2]

(18)

Z2 ∈ Rm∗m nonsingular, Z must be chosen as
ZC2B2 = Λ ∈ Rm∗m nonsingular diagonal matrix.

The sliding surface dynamic is:

ż(t) = ZY (t) = ZA21X1(t) + ZA22Y (t)
+ΛU (t) + ZC1Ψ1(t,X) + Λζ2(t,X) (19)

IV. CONTROLLER DESIGN

The proposed controller is:

U (t) = Ul(t) + Un(t)
Ul(t) = −KY (t)
Un(t) = −ρ(t, Y )Λ−1 z(t)

‖z(t)‖

(20)

Wherez(t) 6= 0, K ∈ Rm∗p Feedback gain.

ρ(t, Y ) = δ0 + δ1 ‖ Y (t) ‖ +δ2α(t, Y ) (21)

δ0 ≥ η
1−γ1

; η positive constant.

δ1 ≥ ‖ΛZA22−ΛK‖+Ψ10‖ZC1‖+γ1‖Λ‖‖K‖
1−γ1

δ2 ≥ ‖Λ‖
1−γ1

V. ROBUSTNESSANALYSIS

The nonlinear control component comes from the below
sliding condition [6]:

V̇ (z) ≤ −η ‖ z(t) ‖ (22)

V (z) = zT (t)z(t)
2 is a Lyapunov function. TheK gain of

linear control component satisfies the LMI:

(A− BKC)TP + P (A−BKC) + 2ε0P < 0 (23)

P = P T > 0 positive define.

P =
[
P11 0
0 P22

]
; P11 = P T

11 > 0; P22 = P T
22 (24)

ε0 =
Ψ10 ‖ T−1 ‖

(
‖ P11 ‖ + ‖ P22C1 ‖

)

λmin(P )
(25)

If m < p, P22 must satisfy:

p22 =
[
P2211 P2212

P2221 P2222

]
(26)

With P2212 = −P2211h12 = P T
2221 ∈ R(p−m)∗m, P2222 >

hT
12P2211h12.

Γ22 = P2222 − hT
12P2211h12 (27)



It is necesary that:
λmin

(
Γ22

)

λmax

(
Γ22

) > γ1.

From (23):

(
A22 − B2K

)T
P22 + P22

(
A22 − B2K

)
< 0 (28)

A22Lc = A22 −B2K

A22Lc Can be chosen with all its eigenvalues with
negative real part.

It must satisfyrank
([
A22 − A22Lc B2

])
= m.

VI. EXAMPLES

A. Example 1
Consider the system:

ẋ1(t) = x2(t)
ẋ2(t) = −4x1(t) − 3x2(t) + x3(t)
ẋ3(t) = 2x3(t) + 3cos(x1(t))u1(t) + x3(t)sin(x4(t))
ẋ4(t) = x1(t) − 3x2(t) + 3x4(t) − 2.5cos(x2(t))u2(t)

+x4(t)cos(x1(t))
(29)

y1(t) = x3(t)
y2(t) = x4(t)

(30)

This example corresponds to a system nonlinears with
matched uncertainties. There is the restriction:

−π
3
≤ x1 ≤ π

3
; −π

3
≤ x2 ≤ π

3

Identifying the basic structure described by (1) the values
aren = 4; m = 2; p = 2 and:

X = [x1 x2 x3 x4]
T ∈ R4

Y = [x3 x4]
T ∈ R2

U = [u1 u2]
T ∈ R2

(31)

A =




0 1 0 0
−4 −3 1 0

0 0 2 0
1 −3 0 3


 ∈ R4∗4 (32)

B =




0 0
0 0
3 0
0 −2.5


 ∈ R4∗2 (33)

C =
[

0 0 1 0
0 0 0 1

]
∈ R2∗4 (34)

The rank condition is fullfiled:rank(B) = 2; rank(C) = 2.

A11 =
[

0 1
−4 −3

]
∈ R2∗2

A12 =
[

0 0
1 0

]
∈ R2∗2

A21 =
[

0 0
1 −3

]
∈ R2∗2

A22 =
[

2 0
0 3

]
∈ R2∗2

(35)

B2 =
[

3 0
−2 −5

]
∈ R2∗2 (36)

C1 =
[

0 0
0 −0

]
∈ R2∗2

C2 =
[

1 0
0 1

]
∈ R2∗2

(37)

In accordance with above:T = I4∗4; A = A; B =
B; C = C

The LMI (12) is satisfied:

Ψ1(t,X) = 0

Ψ2(t, x, U ) =
[

(cosx1 − 1)u1(t) + x3sinx4/3
(cosx2 − 1)u2(t) − x4cosx1/2.5

]

(38)

Ψ2(t,X, U ) = δ(X) + ζ(X,U )
ζ(X,U ) = ζ2(X)U (t)

δ(X) =
[

x3sin(x4)/3
x4sin(x1)/2.5

]

ζ2(X) =
[
cos(x1) − 1 0

0 cos(x2) − 1

] (39)

‖ δ(X) ‖≤ α(Y ) = |x3|/3 + |x4|/2.5
‖ ζ(X,U ) ‖≤ ζ20 ‖ U (t) ‖
ζ20 = max{|1− cos(x1)|, |1− cos(x2)|}

(40)

With the restriction onx1, x2:

γ1 = 0, 5
ζ20 ≤ 0.5 (41)

The parameters are:

K =
[

1.33 0
0 −3.2

]

ρ(Y ) = 3 + 8 ‖ Y (t) ‖ +3α(Y )
(42)

The system was simulated in Simulink/Matlab and the
results are shown below in the figures 1 to 6.

B. Example 2
Consider the system:

ẋ1(t) = x2(t)
ẋ2(t) = −x1(t) − 2x2(t) + x3(t)

(
1 + 0.5sin(10x1)

)

ẋ3(t) = −x1(t) + 3x2(t)
(
1 + x3(t)sin(x2)

)
+(

3 + 1.2sin(x2x3)
)
u(t)

(43)



0 1 2 3 4 5 6
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

t (s)

X
1

Fig. 1. State X1 as a function of time
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y1(t) = x2(t)
y2(t) = x3(t)

(44)

Heren = 3, m = 1, p = 2 and:

X = [x1 x2 x3 ]T ∈ R3

Y = [x2 x3]
T ∈ R2

U = [u] ∈ R

(45)

A =




0 1 0
−1 −2 1
−1 3 0


 ∈ R3∗3 (46)

B =




0
0
3


 ∈ R3 (47)

C =
[

0 1 0
0 0 1

]
∈ R2∗3 (48)

The rank condition is fulfilled:rank(B) = 1; rank(C) = 2.
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A11 =
[

0 1
−1 −2

]
∈ R2∗2;

A12 =
[

0
1

]
∈ R2∗1

A21 =
[
−1 3

]
∈ R1∗2;

A22 = 0 ∈ R

(49)

B2 =
[

0
3

]
∈ R2∗1 (50)

C1 =
[

0
0

]
∈ R2∗1;

C2 =
[

1 0
0 1

]
∈ R2∗2

(51)

C211 = 1; C212 = C221 = 0; C222 = 1.

In accordance with above:

T = I3∗3; A = A; B = B; C = C

The LMI (12) is satisfied.
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Ψ1(t,X) = 0

Ψ2(t,X, u) =
[

0.5x3sin(10x1)
3x2x3sinx2 + 1.2sin(x2x3)u(t)

]

(52)

Ψ2(t,X, u) = δ(X) + ζ(X,u)
ζ(X,u) = ζ2(X)u(t) (53)

δ(X) =
[

0.17x3sin(10x1)
x2x3sinx2

]
(54)

‖ δ(X) ‖≤ 0.17|x3| + |x2| ∗ |x3|
ζ2(X) =

[
0

0.4sin(x2x3)

]

With α(Y ) = 0.17|x3|+ |x2| ∗ |x3|, γ1 = 0.5, ζ20 ≤ 0.5.

The parameters are:

K =
[

1.33 1
]

ρ(Y ) = 2 + 15 ‖ Y (t) ‖ +5α(Y ) (55)

The system was simulated in Simulink/Matlab and the results
are shown below in the figures 7 to 10.
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VII. C ONCLUSIONS

In this paper a sliding mode controller with output
feedback only was shown and the conditions for overall
robustness of the system were given.

It is important to annotate that only some systems fulfill
the required conditions introduced here. But several practical
systems can fit in this category.

Systems with the propiertym = p ( square systems) are
easier to control than systems withm < p.

If the conditions given here are not satisfied, local
stability can be guaranteed and the controller wi1l stabilize
the system into a part of state space.
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