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Abstract — In this paper, which consists of two parts, a new 
two-level computational algorithm is used for nonlinear 
optimal control of large-scale systems. The two-level optimizer 
uses a new coordination strategy which is based on the gradient 
of interaction errors instead of the gradient of overall 
performance function. The advantages of the new method can 
be categorized into two parts: First, the new formulation is 
applicable to a large class of problems whilst the classical model 
coordination method is not. Second, it extremely reduces the 
number of iterations required for obtaining the overall optimal 
solution. Although the computational burden of the algorithm 
in the first level increases slightly, it is shown that there is a 
great saving in computation time of the overall problem. To 
demonstrate the significance of the theoretical developments 
and the computational requirements for new algorithm, a 
numerical example is presented. 
 

I.  INTRODUCTION 
 In optimal control of large-scale systems, the control 
calculations can not be done in a centralized manner, 
because of high complexity in calculations and 
dimensionality problem of centralized controller. In these 
systems, a two- level method can be used for solving the 
optimal control problems. 
 For optimization of large-scale systems two coordination 
principles have been introduced by [1] and [2]. These two 
coordination methods are named as Interaction Prediction 
and Interaction Balance Principles. In using these principles 
a large-scale system is decomposed into several 
interconnected subsystems and the optimization problem 
redefines for each subsystem. Then, each subsystem solves 
its own problem and a coordinator uses one of these 
principles to coordinate the sub-systems in a manner that the 
optimal solution for the overall problem can be achieved. 
 As it is noted, this paper is divided into two parts; in Part 
I, the Model Coordination of large-scale systems using 
Interaction Prediction Principle is introduced and in Part II, 
the Goal Coordination based on Interaction Balance 
Principle is addressed. 
 In part I of this paper, by applying the Interaction 
Prediction Principle, the coordinator sets the prediction 
values for interaction signals, compares them by their real 
values and then provides new prediction for interaction 
signals to reduce the coordination errors to zero. 
 It should be noted that the classical Model Coordination 
method, based on Interaction Prediction Principle which is 
also called feasible method, is usually inapplicable to a large 
class of problems since it requires that the dimension of local 

inputs exceeds the number of interaction variables in each 
subsystem [3],[4]. 
 In the sequel, different sections of part I of this paper are 
briefly described. A brief description of Model Coordination 
is given in section II. In section III, the overall optimization 
problem is decomposed into several subproblems. In  section 
IV, the first-level optimizations are done for nonlinear 
dynamics using gradient method. In section V, a new 
gradient based algorithm for coordination of subsystems is 
described that solves the overall problem in a few number of 
iterations. Finally, the simulation results are shown followed 
by concluding remarks in sections VI and VII, respectively. 
 

II.  MODEL COORDINATION AND INTERACTION 
PREDICTION PRINCIPLE 

 Since the Model Coordination based on Interaction 
Prediction Principle is used in Part I of this paper, this 
principle is introduced in sequel. 
 Assume iZ  as the set for interaction signals in the i th 
subsystem and define: NZZZZ ×××= L21 . For every 

),,,( 21 nαααα L=  in Z , let define each subsystem as 
given in equation (1)  

),()( iiiii uPuP αα =  (1) 
 
where in the above equation, α  is the coordination 
parameter. Now, the i th control problem in the first level is 
to find iû  in iU  such that 
 

),(min),ˆ( iiiUuiii ugug
ii

αα
∈

=  (2) 
 
Minimization is only over iU . 

 Suppose that 1̂u , …, Nû  are the local optimal control 

inputs for all subsystems and )(1 αz , … , )(αNz  are the 

interaction signals that occur if the control 1̂u , …, Nû  is 
implemented. The overall optimum is then achieved if the 
actual interaction signals are precisely equal to the values 
predicted by the second-level coordinator (Interaction 
Prediction Principle) [1].  

iiz αα =)(  (3) 
 

If the Interaction Prediction Principle applies, the 
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supremal control action is to find α  in Z  such that 
interaction errors )(ααε iii z−=  become zero for all 
subsystems. 
 Fig. 1 shows the application of Interaction Prediction 
Principle for coordination of two subsystems. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1  Application of Interaction Prediction Principle for coordiantion of 
two subsystems 

 
 Now, we need to decompose the overall optimization 
problem into several sub-problems and then coordinate them 
in such a way that the overall solution is optimal. 
 Suppose we have a general nonlinear system described 
by the following state space equation.  

( ))(),()1( kukxfkx =+  (4) 
 
where x  is the state vector, u  is the control input vector 

and f  is a continuously double differentiable analytical 
vector function. 
 The problem is to find u  which minimizes the cost 
function given by  

( ) ( )∑
=

+ ++=
n

k
kn kukxGnxGJ

0
1 )(),()1(  (5) 

 
where Gk is a general nonlinear scalar function of its 
arguments. 
 

III.   DECOMPOSITION OF THE OVERALL 
PROBLEM 

 Let assume that the overall system is a combination of N 
interconnected subsystems and each subsystem has a state 
space equation as follows 
 

( )

ioi

iiiii

xx

kzkukxfkx

=

=+

)0(

)(),(),()1(  (6) 

where ix  is the state vector, iu  the input and iz  is the 
interaction input of the i th subsystem that is assumed to be a 
nonlinear function of the overall system's state vector.  

( ))()( kxHkz ii =  (7)  

 Suppose that overall objective function (5) can be written 
as the  summation of N  separated local objective functions, 
given by. 
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Then in each subsystem the problem, is to solve the 
following subproblems with known pz  (A prediction value 

for z ) coming from the higher level. 
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while in the second level, the problem is to update the 
coordination parameter z , such that the interaction errors 
become zero [2]. 
 

IV.   FIRST-LEVEL OPTIMIZATION 
 In the first level the problem is to solve the optimization 
problems described in (9), by assuming known constant 
values of pz  from the second level. So by adding the 

following terms  
))](),(),(()1([)( kzkukxfkxk

ipiiii
T
i −+λ  

the Lagrangian can be written as 
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(10) 

 
 To solve this problem, an algorithm based on optimality 
necessary conditions can be used as below [5]: 

1. Choose initial values for )0(iu to )(nui . 

2. Use 
i

x0  and values for )(kui  and )(kz
ip  to 

compute the values of )1(ix  to )1( +nxi , using 
state space equations of the system. 

3. Calculate )(kiλ  for k = n, n-1,…,0 backward in 
time, by using the following necessary conditions: 
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4. Calculate 
)(ku

L

i

i

∂
∂  using )(kxi  and )(kiλ . 

5. Update )(ku i  by the following relation: 

)(
)()( )()1(

ku
L

kuku
i

il
i

l
i ∂

∂
−=+ ρ  

(12) 

  where 0>ρ . 

6. If ε<
∂
∂∑

=

2

0 )(

n

k i

i

ku
L  stop the algorithm, else go to step 

(2). 
 

V.  COORDINATION USING THE GRADIENT OF 
ERRORS 

 In the second level, the goal is to update pz  in order to 

decrease the interaction errors defined as  
)()()( kzkzke

ipii −=  (13) 
 
where )(kz i  is the real value of i th subsystem interaction 

signal coming from (7) if )(kx  is local optimal value of the 
overall system's state vector obtained from first-level 
calculations based on prediction pz . 

 In the classical method of coordination, the gradient of 
overall performance function was used for coordination [4], 
[6]. In this paper, the gradient of interaction errors is used for 
coordination. This method first proposed by Sadati [7]-[9], 
has faster convergence rate than the previous ones. 
 Since the gradient of interaction error is used for 
coordination, the gradient of interaction errors related to the 
coordination parameters need to be found. 
 Let us define the following vectors for convenience: 
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 The sum-squared error is also given by:  
eeSE T

2
1

=  (14) 
 
Now, to update pZ , we need to move along the direction of 

the vector 
pZ

SE
∂
∂  in each iteration. Therefore 

p

l
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where η  is the step length and l is the iteration index. 
 Since we have 
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where I is an identity matrix with appropriate dimension. 
 Now using chain rule, Q  can be written as follows 
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Considering the interaction relation between subsystems, E  
can be computed easily from  (19a) and (19b). 
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 Since optimum local values of the i th subsystem is just 
related to the value of 

ipZ ; not 
jpZ  for ij ≠ , the matrix 

D  will be block diagonal [9]. 
)( iDdiagonalblockD =  (20) 

 
where 
 

ip

i
i Z

XD
∂
∂

=  (21) 

 Let )(kxi , )(kui  and )(kiλ  be the optimum values 

provided by the first level using kown pz . These values 

satisfy the necessary optimality conditions at the first level. 
i.e. 
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 The necessary conditions in (22) can now be written in a 
compact form, by the following equation 
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 Now, by considering of small variations in iW  and 
ipZ , 

the following equation results from (23): 
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 If 
ipZδ  and 

iWδ  become very close to zero, them 
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 On the other hand, we have 
 

[ ] iii WSWX ∆= 0I0  (27) 
Therefore, iD  can be computed from the following 
equation:  
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 Now by using the following algorithm, Optimization of 
large-scale dynamic systems using Interaction Prediction 
Principle and the new gradient-based coordination is 
possible. 

1. Start with initial values for coordination parameters. 
2. Solve the first level optimization problems with the 

known coordination parameters using gradient 
method and calculate ix , iu , iλ  and matrix iD  
using (28). 

3. Calculate the interaction errors and the gradient 
matrix by  (13) and (17) - (20), respectively 

4. Update pZ  using  (15) and (16). 

5. Calculate the sum-squared errors. If it is smaller than 
a desired value terminate the algorithm, else go to 
step (2) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 2   Two-level control using the new coordination strategy 

VI.    SIMULATION RESULTS 
 As a system for simulation, a system composed of 4 
connected water tanks is chosen [10]. This system is shown 
in Fig. 3. 
 Choosing [ ]Thh 31  as 1h  and [ ]Thh 42  as 2h , the 
discrete time state space equations for this system can be 
given as  

)()()()()1( 11111111 kzDkuBkhAkhkh +++=+  (29) 
)()()()()1( 22222222 kzDkuBkhAkhkh +++=+  (30) 

 
where the unknown parameters are listed bellow 
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Now, the overall objective function can be written as   
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Fig.  3  Connected 4 Water Tanks 
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and the initial states for each subsystem are chosen to be  

[ ] [ ]TT hh 5.16797.15.22797.2
2010 ==  

 The optimization problem for system of connected 4 
liquid tanks was solved on an IBM Pentium III 550 MHZ 
digital computer at ISL using feasible method and the 
proposed algorithm. Using the first method, convergence to 
the optimum took place in 23 iterations which required 240 
ms time to execute each iteration (Fig. 4(b) and Table II). 
But for the latter, the convergence to the optimum took place 
in 6 iterations which required 320 ms time to execute for 
each iteration (Fig. 4(a) and Table I). Therefore, the total 
computational times are 5.5 sec and 1.9 sec, respectively. It 
means up to 65% time saving is occurred. It is instructive to 

mention that the coordination error criteria are different for 
two approaches. 
 Fig. 5 shows the optimal inputs, calculated for this 
system. In Fig. 6, optimal state responses of the system are 
shown. If the centralized optimization is done, the global 
solution is found to be very close to the solution obtained 
using the proposed approach.  

Table I  Required time of execution for each iteration (new approach). 

 First-level 
optimization 

Computing 
Di 

Second level 
computations 

Computational 
time (ms) 250 60 10 

 
Table II  Required time of execution for each iteration in detail (classical 

method). 

 First-level 
optimization 

Second level 
computations 

Computational 
time (ms) 230 10 
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Fig   4.  Comparison of errors using the new and the classical coordination approaches 
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Fig.  5  Optimal inputs for each subsystem  

(a) new method (b) classical method 

 



0 1000 2000 3000 4000
2

2.1

2.2

2.3

Time (s)

h1

0 1000 2000 3000 4000
1.6

1.7

1.8

1.9

2

Time (s)

h2

0 1000 2000 3000 4000
1.8

2

2.2

2.4

2.6

Time (s)

h3

0 1000 2000 3000 4000
1.4

1.6

1.8

2

2.2

Time (s)

h4
 

Fig.   6    Optimal state responses using the new model coordination approach 

 
VII.   CONCLUSION 

 In this part of the paper, a new two-level method for 
nonlinear optimization of large-scale systems is proposed. 
This two-level algorithm is based on Interaction Prediction 
Principle. In the second level, a new coordinator based on 
the gradient of interaction errors is used. The new 
methodology makes the number of information exchange 
between two levels reduce considerably in compare to the 
classical method. The numerical simulation demonstrates 
that the computational time using the  new approach 
decreases substantially. 
 As mentioned before, the classical method is not 
applicable to a large class of problems while the proposed 
approach gives us the ability to use Interaction Prediction 
Principle for solving optimization problems in two-level 
form without imposing any additional restrictions. 
 To compare this work with the mixed method [2] which 
can be viewed as a hierarchical methodology based on 
Interaction Prediction Principle, it is perceived that the 
dimension of coordination variables is decreased using the 
new approach. On the other hand, when we are going to use 
the mixed method, two values should be chosen for the 
learning factor instead of one and it is quite evident that the 
best fitting of these parameters will need more efforts. 
 The Goal Coordination of this approach is also the 
subject of Part II of this paper. 
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