
 
 
Abstract – This paper considers the problem of synthesizing 
proportional-integral-derivative (PID) controllers for which 
the closed-loop system is internally stable and the H !  norm of 
a related transfer function is less than a prescribed level for a 
given single-input single output plant. In our approach, in this 
paper, this problem is formulated by virtue of the bounded 
real lemma, as a feasibility problem involving a bilinear matrix 
inequality (BMI) and solved by means of a sequence of easier 
auxiliary quadratic optimization problems. The optimal 
controller is determined through a line search on the non 
negative real axis.  

I.   INTRODUCTION 

Today, many controller design methods are based on 
minimization of a criterion. Controllers designed in this way 
have been shown to have good general robustness 
properties. In practice, any model is an inaccurate 
representation of the true process. Robust control addresses 
this plant/model mismatch by defining a set of plants of 
which the true process is an element. This set is defined by 
an uncertainty description. Controllers are designed to be 
robust to the uncertainty, that is, to achieve a desired level 
of performance for any plant in the set. 

The PID controller has several important functions: it 
provides feedback; it has the ability to eliminate state 
offsets through integral action; it can anticipate the future 
through derivative action. PID controllers are sufficient for 
many control problems, particularly when process dynamics 
are benign and the performance requirements are modest. 
PID controllers are found in large numbers in all industries. 
Its structural simplicity and sufficient ability of solving 
many control problems have greatly contributed to this wide 
acceptance. Many formulas for optimal PID controller 
designs can be found in the literature, and [1] provides an 
excellent review. PID control is an important ingredient of a 
distributed control system. PID control is often combined 
with logic, sequential machines, selectors, and simple 
function blocks to build the complicated automation 
systems used for energy production, transportation, and 
manufacturing. The PID controller can thus be said to be the   
“bread and butter” of control engineering. It is an important 
component in every control engineer’s toolbox. PID 
controllers have survived many changes in technology 
ranging from pneumatics to microprocessors via electronic 

tubes, transistors, integrated circuits. The microprocessor 
has had a dramatic influence on the PID controller. 
Practically all PID controllers made today are based on 
microprocessors. The emergence of the fieldbus is another 
important development. The PID controller is an important 
ingredient of the fieldbus concept. 

A large cadre of instrument and process engineers is 
familiar with PID control. There is a well-established 
practice of installing, tuning and using the controllers. In 
spite of this there are substantial potentials for improving 
PID control. Evidence for this can be found in the control 
rooms of any industry. Many controllers are put in manual 
mode, and among those that are in the automatic mode, 
derivative action is frequently switched off for the simple 
reason that is difficult to tune properly. Knowledge and 
understanding are the key elements for improving 
performance of the control loop. Specific process 
knowledge is required as well as knowledge about PID 
control.  

H !  refers to the space of stable and proper transfer 
functions. We generally desire that the closed loop transfer 
functions be proper and stable, we say )(sP is in H ! . The 

basic object of interest in H !  control is a transfer function 
[2]. In fact, we will be optimizing over the space of transfer 
functions. Optimization presupposes a cost (or objective) 
function, because we want to compare different transfer 
functions and choose the best one in that space. In H !  
control, we compare transfer function according to their ! -
norm. The ! -norm of a transfer function is defined by 

)(sup wPP
w

=
!

. 

This is easy to compute graphically, it is simply the peak 
in the Bode magnitude plot of the transfer function. For 
example the multiplicative stability margin (MSM) or the 
smallest destabilizing uncertainty can be written as:  

!

=
T

MSM
1  

In H ! control, the objective is to minimize the ! -norm 
of T. Note that this will increase the robust stability margin 
of the system. 
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II. PRELIMINARIES  
It is important to review some relevant aspects of Linear 

Matrix Inequalities (LMI) and robustness criterions 
previous to formulation problem. 

A. Linear Matrix Inequalities 
A Linear Matrix Inequality (LMI) has the form: 
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Equivalently, the smallest eigenvalue of   ( )xF   is 
positive. 

Many optimization problems in control design, 
identification and signal processing can be formulated using 
linear matrix inequalities. Clearly, it only makes sense to 
cast these problems in terms of LMI’s if these inequalities 
can be solved efficiently and in a reliable way. Since the 
linear matrix inequality F(x)>0 defines a convex constraint 
on the variable x, optimization problems involving the 
minimization of a performance function: !"Cf :  with 
C: ={x/F(x)>0} belongs to the class of convex optimization 
problems. It may be apparent that the full power of convex 
optimization theory can be employed if the performance 
function f is known to be convex. 

One of the generic problems related to the study of 
linear matrix inequalities is the feasibility problem. It test 
whether or not there exist solutions x of F(x)>0. The LMI is 
called non-feasible if no solutions exist. 

A bilinear matrix inequality (BMI) is of the form 
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Where jG  and ijH are symmetric matrices of the same 

dimension as 
i
F , and ky !" . 

The bilinear terms make the set ( ){ }0,, !yxFyx  
nonconvex and no off-the-shelf software exist for solving 
optimization problems with BMI constraints. It is 
straightforward to prove that BMI optimization problems 
are NP-hard, which implies that is highly unlikely that there 
exists a polynomial-time algorithm for solving these 
problems. 

Here we use the Correa-Sales  numerical algorithm in 
order to solve the BMI problem. 

Relying upon a sequence of auxiliary quadratic problems, 
the algorithm finds, if any, a feasible point on the boundary 
of the feasible BMI constraint set. Roughly speaking, a 
problem which has an infinite number of constraints, will be 
solved via a sequence of problems, each one of these has 
one single weighted constraint. 

B. Robustness 
Robustness requires that stability must be maintained 

despite model uncertainties: structured and unstructured.  
Any process model is only an approximation of the true 

process. In robust control, the true plant P is covered by a 

set of plants  P
~

 which is represented by the nominal model 
P and a set of norm bounded disturbance .!   

For a multiplicative uncertainty 
m
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PP
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Figure 1 shows a feedback control loop in which P 
represents the nominal model of the plant, subject to model 
uncertainties and disturbances. 

 

 
 

Fig.1 Feedback control system 
 

A robust control system provides stable, consistent 
performance as specified by the designer in spite of wide 
variations of plant uncertainties and disturbances. It also 
provides highly robust response to command inputs and a 
steady-state tracking error equal to zero [4], [5]. 

Robust control emerges when the machine intelligence 
requirements are in between highly and moderate because 
of model uncertainties and disturbances are in between 
highly and moderate. 

The ultimate requirement to the compensator is that it 
works ‘well’ for the real system. These requirements can be 
subdivided into the following four categories: 

Nominal stability: the compensator must ensure internal 
stability in the controlled system, provided the model is 
correct. 

Nominal performance: the compensator must minimize 
the error e. The !H  optimal control minimizes the !H  

norm of SW , where W is a frequency dependent weight 
and S is the sensitivity function. 

Robust stability: for all models in P~  the compensator 
must ensure that the error is within a specified bound. The 
compensator K provides robust stability if and only if 

1<
!

WT where W is a fixed stable transfer function, the 

weight and T  is the complementary sensitivity function 
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Robust performance: for all models in P
~  the 

compensator must ensure that the error is within a specified 
bound.  

III. PROBLEM  FORMULATION 

 



 
 

 

The main objective of this paper is to design a robust PID 
controller using the LMI methodology in a state space 
framework.  

A.  Problem Setup 
Because of the PID controller doesn’t have a state space 

realization, Equation 5 is used to obtain Equations 6 
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The sP(s) realization is shown in Equation 7 
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The closed loop description of the system is show in 
Equation 8. 
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Applying the Bounded Real Lemma [7], we convert the 

frequency formulation to a BMI  
!"

#
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B. Synthesis of the controller 
 

In order to discriminate the unknowns from the constant 
terms, the last are included in the H and L matrices. 

++++
314323200

PHHDHPHHPHHH
TT

c

TT  

...
325413
++ PHLCHHDPHH

TT

c

T

c

T

0
523
!+

T

c

T
HCPLH  

0!" P  
 
Where P is the Lyapunov matrix, Dc and Cc are the 

variable matrices with unknown parameters Kp, Ki, Kd 
which should be searched. 

The H and L matrices are constant terms obtained from 
the BMI of Equation 9. In order to determine a solution to 
this problem, the following one is introduced 
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Note that this problem is characterized by an auxiliary 
quadratic cost and the same BMI constraint. Solutions will 
be pursued on the basis of a sequence of auxiliary quadratic 
problems subject to inequality bilinear constraints, defined 
as follows 
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Note that the infinite number of constraints in the original 
problem is replaced by a single one, since the element W is 
fixed. 

Roughly speaking, the original problem witch has an 
infinite number of constraints, will be solved via a sequence 
of problems each one of these has one single weighted 
constraint. 

Using the Lagrangian  
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The solution of the problem is obtained essentially by 
finding the root of a scalar nonlinear equation of one 
variable. 

In order to solve the BMI problem we use the following 
conceptual numerical algorithm [3]. 
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3. Solve 
2

2

2

2

2

2,,
min qcqcq

CcDcP
DDCCPP !+!+!  

subject to ( ) ;0,,, !
k

q

k

q

k

q

kk
CDPBWW  Let  

 
kkk

DCP *** ,,  be its solution. 

4. Compute ( )( )kkk

CDPB *** ,,!  where !  
Denote the greatest eigenvalue of the real symmetric 

matrix B. If it is less than or equal to !  then stop. Else 

update kk

q

kk

q
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q CCDDPP *** ,, === , set 

1: += kk , and repeat from step 2. 

IV. SIMULATION RESULTS 
The numerical algorithm to solve the BMI problem using 

the Correa-Sales methodology was implemented in a 
MATLAB program. This program tries to minimize the  

!
),(
ccrz
DCT  which, in some cases, represents the 

complementary sensitivity and in other ones the sensitivity. 
In this paper we applied the methodology on two case 

studies: a typical unstable system, a type 2 system and the 
rotational velocity of a satellite [6]. 

In addition, this paper solves two problems: robust 
stability and nominal performance. 

A. Type 2 system 

  The plant transfer function is 
2

1
)(
s

sP = . Here the 

objective is to minimize the complementary sensitivity to 
achieve robust margin stability.  

The strategy starts with a large !  handy manipulated and 
then after a few iterations we obtain the following results 
for 2.1=! .  

Ki=0.08, Kp=1.21, Kd=2.42.  
 
Figure 2 shows the Bode diagram for the closed loop 

complementary sensitivity. The peak represents   
!rz

T .  
Another numerical example of this case study is shown in 

Figure 3 in which the sensitivity is minimized and 
represents a nominal performance objective considering the 
rms value of any input The initial values of the controller 
were set randomly. These examples show the goodness of 
the algorithm, because the obtained response is in the worst 
case. 

 

 
Fig.2 Bode diagram of complementary sensitivity  

 
The result considers an input step signal. The 

minimization process is aborted up to 9.1=! with (for a 
Mp=20%): 

 
Ki=0.08, Kp=1.29, Kd=2.57. 

 
Fig.3   Step response  

 
Figures 4,5 shows  the frequency response when a 

multiplicative uncertainty is added. Figure 4 plots the 
inverse return difference before (dash) and after the 
optimization (solid); and the multiplicative uncertainty 
(dot). Figure 5 plots the same response but with zoom. 

 

 
 

Fig.4   Plots oft the inverse return difference before (dash) and after  
optimization  (solid)  and the multiplicative uncertainty (dot). 

 
 
 
 

 
 

Fig. 5   Zoom  of  figure 4 verifying robust stability. 



 
 

 

After optimization the multiplicative uncertainty doesn’t 
cut the inverse return difference plot which means that it 
guarantees robust stability which is shown in time plots of 
figures 6,7.. 

 
Fig. 6 Step response before optimization 

 
Fig. 7 Step response after  optimization 

 
Another interesting problem is when the uncertainty is a 

delay type because of it’s known that is a difficult control 
problem of non minimum phase system. 

Figure 10 shows that the original time response retains its 
dynamic characteristic (it is not degraded), but when delay 
uncertainty is added, as the above problem, the optimal 
design guarantees robust stability. In this case it’s possible 
to improve the time optimal response with a faster transient, 
changing the original design with a lower bandwidth and 
trying another optimization problem, which it is not 
important by now because we are interested in robust 
stability. The last frequency response (solid) guarantees 
robust stability. 

 

 
Fig.8   Plots oft the inverse return difference before (dash) and after  

optimization  (solid)  and the multiplicative uncertainty (dot). 

 
 

 

 
Fig. 9   Zoom  of  figure 8 verifying robust stability 

 

 
Fig. 10   Step responses with and  without  optimization. 

B. Satellite model 
The rotational velocity with respect to an incremental 

change in beam length adjustment is represented by [4]: 
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The frequency response is used in order to minimize the 
complementary sensitivity !H  norm,

!
T . This fact 

means that we are maximizing the multiplicative 
uncertainty the system can support without get unstability. 
Figure 11 shows the Bode diagram with 10=! . The PID 
parameters are: 
 

Ki=0.77, Kp=0.91, Kd=0.99 

 
Fig.11.  Complementary sensitivity 

 



 
 

 

 
Fig.12.   Original  (solid) and optimized (dash) step responses. 
 

In this model we solve the nominal performance 
optimization using an initial design with high overshoot. 
The objective is to minimize the sensitivity !H  norm,

!
S , 

which is known as a good robustness measure.  
The optimization algorithm keeps the settling time but 

improves the response. As it is known the improvement of 
the properties of a control system in one respect will bring 
deterioration in another but in this case the response is not 
degraded. This fact is shown in figure 12. 

 
 

Fig.13.   Original  (solid) and optimized (dash) responses 
 

In figure 13 we minimize the norm 
!

SW
1

. 
1

W is a first 

order filter that means the frequency range of disturbances 
the system must reject. We see the optimal controller 
improves the attenuation  of medium frequencies 
perturbations. 

V. CONCLUSIONS 
LMI approach is an efficient methodology to design 

robust controllers. A procedure for synthesis of PID H
!

 
controllers has been presented. The problem was rewritten 
into bilinear matrix inequality (BMI) form resulting in the 
unknowns P,D,C, where P is the Lyapunov matrix and D,C 
have the PID parameters Ki,Kp,Kd. Then the problem is 
solved using the Correa-Sales algorithm, relying upon a 
sequence of auxiliary quadratic problems. It is possible to 
make several and different simulation results based on 
robust stability and nominal performance requirements, 
which are depending on the user needs. Here we present 
simulation results of the BMI formulation and numerical 
results applying the Correa-Sales algorithm.  
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