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Abstract—This paper develops a formal and general model
for an induction motor with periodic variations of the rotor slot;
this induction motor with induced saliencies is commonly used
in sensorless control applications. In order to obtain the model,
first the analysis of the stator and rotor inductances modified
by induced saliencies is carried out; second, the electromagnetic
and electomechanical equations in ABC frame are developed
and third, the model is represented in the natural orthogonal
a-b frames. The obtained model is suitable for control design
and compatible with the classical ab model for induction motors
without saliencies.

Index Terms - Induction motor, induced saliencies, sensorless
control.

NOMENCLATURE
Variables
i : electrical current
Ψ, ψ : magnetic flux
F : magnetomotive force
B : flux densities
α, θr : rotor angle, (α = νθr)
Tl : mechanical load torque
Te : electrical torque
Parameters
ν : number of pole-pairs
R : electrical resistence
L : electrical inductance
M : inertial mass
f : friction coefficient
µ0 : the air magnetic permeability
l : the axial length of the machine
r : mean radius at the air gap of the machine
Superscripts :
ABC : conventional three-axis systems
abh : orthogonal three-axis systems
ab : orthogonal by-axis systems
Subscripts :
s : refer to the stator frame
r : refer to the rotor frame
(̇·) : differentiation with respect to time
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I. INTRODUCTION

In the past and present decade, the control for Induction
Motors (IM ) without mechanical shaft sensors has led to
researchers and manufacturers to include sensorless vector
drives.

The main problem in the sensorless control of induction
motors is around zero speed or zero excitation frequency.
In order to solve the problem, several works have been
developed for modelling the phenomena in the stator and
rotor slots; other ones more complexes, include a detailed
tensor model of the IM; however, these approaches are
something complex for control.

The design of high performance sensorless drives of
induction motors include an observer for the rotor/stator
flux and one estimation function for the mechanical speed;
some problems have been reported and can be summarized
as: loss of observability around zero excitation frequency,
incorrect flux/torque estimation induced by errors in the
estator and rotor resistances, steady-state inestability at low
speed, particularly under regeneration. About solving the loss
of observability at zero excitation frequency, one possible
alternative solution is the Induction Motor with Induced
SalienciesIMIS .

The saliencies of theIM used for sensorless control
have been classified as: slot harmonics, designed asymetry
(induced saliencies), saturation and dynamic eccentricity.
The induced saliencies can be described as changes in the
rotor slots geometry.

The sensorless control of theIMIS , for position tracking
and speed control including both saliencies and input high
frequency signals, has been reported by Holtz [1], [2],
Degner[3] and Jansen [4] with promising results; Quan[5]
has reported the high performance near to zero speed.

In this paper only changes in the rotor slots width are
considered, then for obtain the model, the flux variations
induced by the saliencies must be took into account; other
important assumptions are: a) the variation of the rotor slots
width can be represented for a periodical (with a pole pitch)
and sinusoidal permeance; b) the squirrel-cage motor is
approximated by an equivalent polyphase wound rotor with
the same pole number and equivalents turns Nr and resistance
Rr; c) the stator and rotor windings may be approximated
as sinusoidal distributed windings; d) the stator and rotor
steel have a high permeability; and e) the air gap is assumed
uniform and the Carter factor is modified to approach the
saliencies phenomena.
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Fig. 1. IM stator and rotor scheme

II. A IR GAP CORRECTION

In Fig. 1. the slot rotor pitch (td) and the air-gap (δ) are
constants; in a) the rotor slot widthb is constant and in b)
the rotor slot width is position dependentb(x). Although the
permeability of the gap region is constant, it is bounded on
either side by iron surface which far from being smooth, is
indented with slots in the circumferential direction, introduc-
ing variations in the air gap permeance[6]. It is possible to
suppose that the actual slotted surface can be replaced by an
equivalent unslotted surface having the same cross-section
but with modified “equivalent” air gapδKc, whereKc the
so called Carter factor, is the relation between the equivalent
air gap permeance and the actual air gap permeance.

Fig. 2. IMIS stator and rotor scheme.

For the IMIS , the periodical variation of the rotor slot
width, superpose a new space variation on the air gap flux
density (Fig. 2). It is possible to consider a new correction
factor for the sinusoidal modulation of the slot wide rotor,
called “Corrected Carter Factor” and it is denoted here as
Ks.

Ks =
1

α1 − α2 cos(2νθr)
(1)

where,α1 andα2 are constants associated with a maximal
and minimal air gap equivalent (Fig. 3). The equivalent air
gap is:

δs = δKs = δ 1
α1−α2 cos(2νθr)

= 1
δ1−δ2 cos(2νθr)

(2)

δ1 = α1/δ and δ2 = α2/δ.
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Fig. 3. Scheme of the Induction Motor

Remark: In absence of the rotor slot modulation,δ2 =
α2/δ = 0, thenδs = δKs, so,Ks = Kc and δs = δc.

III. W INDING INDUCTANCES

A. Stator Inductances

The currents in balanced and steady state conditions are

iA =
√

2Is cos(wat+ φs(0))
iB =

√
2Is cos(wat− 2π/3 + φs(0))

iC =
√

2Is cos(wat+ 2π/3 + φs(0))
(3)

Then the magnetomotive forces by the stator windings are
respectively:

FA = iANs cos(νφs)
FB = iBNs cos(νφs − 2π/3)
FC = iCNs cos(νφs + 2π/3)

(4)

Using the Amper’s Law and the new air gap factor, the
phase air gap flux densities are:

BA(νφs, θr) = µ0
FA

δs(φs,θr) = µ0Ns

δs(φs,θr) iA cos(νφs)

BB(νφs, θr) = µ0Ns

δs(φs,θr) iB cos(νφs − 2π/3)

BC(νφs, θr) = µ0Ns

δs(φs,θr)
iC cos(νφs + 2π/3)

(5)



The phase flux and flux linkages are:

ψsx(νφs, θr) =
∫ φs+2π/2ν

φs
Bx(νξ, θr)rldξ (6)

Ψsx(νφs, θr) = ν
∫
Nx(φs)ψsx(νφs, θr)dφs

= ν
∫
Nx(φs)

∫ φs+2π/2ν

φs
Bx(νξ, θr)

·rldξdφs
(7)

where the sub index “x” is for theA, B or C windings;
“ l” and “r” are respectively, the axial length and the mean
radius at the air gap of the machine, “ξ” is the integration
variable andNx(φs) represents the sinusoidal distributed
winding.

So, to the phase A,

ΨsA = ν
∫
NA(φs)

∫ φs+π/ν

φs
BA(νξ, θr)rldξdφs

= −N2
sµ0νiArl

∫ 2π/ν

π/ν
sin(νφs)·∫ φs+π/ν

φs
cos(νξ)

·{δ1 − δ2cos2ν(φs − θr)}dξdφs

(8)

The total phase flux linkages are:

ΨA = LσsiA + ΨsA

ΨB = LσsiB + ΨsB

ΨC = LσsiC + ΨsC

(9)

Neglecting the phase leakage inductance (Lσs), the stator
inductances are:

LAA = N2
s

ν πµ0rl{δ1 − δ2
2 cos(2νθr)}

LBB = N2
s

ν πµ0rl{δ1 − δ2
2 cos(2νθr − 2π

3 )}
LCC = N2

s

ν πµ0rl{δ1 − δ2
2 cos(2νθr + 2π

3 )}
(10)

The mutual inductances are calculated following the same
procedure; the mutual flux linkages are:

ΨA |iB = −ν
∫ 2π/ν

π/ν
Ns sin(νφs)·∫ φs+π/ν

φs
µ0NsiB cos(νξ − 2π

3 )rl
·{δ1 − δ2 cos 2ν(ξ − θr)}dξdφs

Therefore, the mutual inductances for stator windings are:

LAB = −N2
s

2ν πµ0rlδ1 − N2
s

2ν πµ0rlδ2 cos(2νθr − 2π
3 )

LAC = −N2
s

2ν πµ0rlδ1 − N2
s

2ν πµ0rlδ2 cos(2νθr + 2π
3 )

LBC = −N2
s

2ν πµ0rlδ1 − N2
s

2ν πµ0rlδ2 cos(2νθr)

andLBA = LAB , LCA = LAC , LCB = LBC .

If,

Ls = N2
s

ν πµ0rlδ1 ; ∆Ls = N2
s

2ν πµ0rlδ2

then,

LAA = N2
s

ν
πµ0rlδ1 − N2

s

2ν
πµ0rlδ2 cos(2νθr)

= Ls − ∆Ls cos(2νθr)

So, for the others inductances in the stator

LBB = Ls − ∆Ls cos(2νθr − 2π/3)
LCC = Ls − ∆Ls cos(2νθr + 2π/3)
LAB = −Ls

2
− ∆Ls cos(2νθr − 2π/3)

LAC = −Ls

2
− ∆Ls cos(2νθr + 2π/3)

LBC = −Ls

2 − ∆Ls cos(2νθr)
LCA = LAC
LCB = LBC

finally:

Łss =



LAA LAB LAC
LBA LBB LBC
LCA LCB LCC




B. Rotor Inductances

Assuming wound symmetrical currents in the rotor:

ia =
√

2Ir cos(wrt+ φr(0))
ib =

√
2Ir cos(wrt− 2π/3 + φr(0))

ic =
√

2Ir cos(wrt+ 2π/3 + φr(0))
(11)

Wherewr is the angular speed in the rotor.

The direct and quadrature axis components of the “a”
phase rotoric current are:

iad = ia cos(νθr) ; iaq = −ia sin(νθr)

θr is the angle between the “A” stator phase axis and “a”
rotor phase axis.

The flux linkage, created by a direct (iad) and quadrature
(iaq) components are respectively:

ψrd = iadLad ; ψrq = iaqLaq

Assuming non saturation, the total flux linkage for a rotor
phase ”a” is the addition of the flux linkagesψrd y ψrq ,

ψra = Laaia = ψrd cos(νθr) − ψrq sin(νθr)

and,

Laa = ψr
d cos(νθr)−ψr

q sin(νθr)

ia

= iadLad cos(νθr)−iaqLaq sin(νθr)
ia

= ia cos(νθr)Lad cos(νθr)+ia sin(νθr)Laq sin(νθr)
ia

= Ladcos
2(νθr) + Laqsen

2(νθr)
= Lra −4Lracos(2νθr)

with

Lra = 1
2 (Lad + Laq) ; 4Lra = 1

2(Laq − Lad)

Similarly, to the other phases,

Lbb = Lr −4Lr cos(2νθr + 2π/3)
Lcc = Lr −4Lr cos(2νθr + 4π/3)



The mutual inductancesLab, Lac, andLbc are calculated
in the same way,

Lba =
ψba
ia

= −Lr
2

−4Lr cos(2νθr + 4π/3)

Lca =
ψca
ia

= −Lr
2

−4Lr cos(2νθr + 2π/3)

Lbc =
ψbc
ia

= −Lr
2

−4Lr cos(2νθr)

and

Łrr =



Laa Lab Lac
Lba Lbb Lbc
Lca Lcb Lcc




C. Stator-Rotor Mutual Inductance

In phase “a” the magnetomotive force in the equivalent
winding is:

Fa = Nriacos(νφr)

Considering the new factorKs and the initial condition
φs(0) = 0, the phase “a” flux density distribution is:

Ba(νφr, θr) = µ0
Fa

δs(φs,θr) = µ0
δs(φs,θr)Nriacos(νφr) (12)

The mutual flux between stator phase “A” and rotor phase
“a” is then:

ψAa(νφr, θr) =
∫ φs+2π/2ν

φs
Ba(νξ, θr)rldξ (13)

Assuming that the windings have a sinusoidal distribution,
the total mutual flux linkage is,

ΨAa(νφr, θr) = −ν
∫ 2π/ν

π/ν
Ns sin(νφs)

·
∫ φs+π/ν

φs

µ0
δs(φs,θr)Nria cos(νφr)

·rldξdφs
= NsNr

ν µ0πiarl
(
δ1 + δ2

2

)
cos(νθr)

(14)

and,

LAa = ΨAa

ia
= Lsr cos(νθr)

where,

Lsr =
NsNr
ν

µ0πrl

(
δ1 +

δ2
2

)

The other mutual inductances are obtained following the
same procedure for calculatingLAa.

Łsr = Lsr




cos(α) cos(α + 2π/3) cos(α − 2π/3)
cos(α − 2π/3) cos(α) cos(α + 2π/3)
cos(α + 2π/3) cos(α − 2π/3) cos(α)




α = νθr

IV. ELECTROMAGNETIC CIRCUITS EQUATIONS

The three-phase induction motor model with distributed
windings, in the estator frame, is

V ABCs = Rsi
ABC
s + Ψ̇ABC

s (15)

V ABCr = Rri
ABC
r + Ψ̇ABC

r (16)

Rs and Rr are diagonal matrices inR3, V ABCs and
V ABCr are column vectors describing the stator and rotor
voltages respectively.

The flux linkage equations are:

ΨABC
s = Łssi

ABC
s + Łsri

ABC
r (17)

ΨABC
r = (Łsr)T iABCs + Łrri

ABC
r (18)

The rotor expressions are referred to the stator frame,
using the appropriated transformation.

V. ELECTROMECHANICAL EQUATIONS

The electromechanical equations are:

Mẇr = −fw + Te − Tl
θ̇r = wr

(19)

The electrical torqueTe is:

Te = +1
2 (iABCs )T ∂Łss

∂θr
iABCs

+(iABCs )T ∂Łsr

∂θr
iABCr + 1

2
(iABCr )T ∂Łrr

∂θr
iABCr

(20)

VI. ORTHOGONAL FRAME EQUATIONS

Due to the polyphasic model complexity, is normal to
make simplifications using methods of transformation [8].;
the basic Concordia transformation replaces the symmetrical
three-phase variables1 into symmetrical bi-phase equivalent
variables. It is denominated the ortoghonal or “ab” model2.

xabh = Tcx
ABC =

√
2/3




1 −1/2 −1/2
0

√
3/2 −

√
3/2

1/
√

2 1/
√

2 1/
√

2


xABC

where:

xABC → three-phase variables; and
xabh → orthogonal bi-phase variables.

So, the variables transformations can be expressed accord-
ing to the relationships in Table I.
Consequently, the mathematical expressions of stator and
rotor voltages and flux linkages are:

V abs = Rsi
ab
s + Ψ̇ab

s (21)

0 = Rri
ab
r + Ψ̇ab

r (22)

Ψab
s = Lss(2νθr)iabs + LsrT (νθr)iabr (23)

Ψab
r = Lsr(νθr)iabs + Lrr(2νθr)iabr (24)

1Defined as a set of equal amplitud sisusoidal which are displaced by
120 degress.

2Also referenced as “dqo”, we use the “abh” to distinguish of others
references frames



TABLE I

TRANSFORMATION RELATIONSHIPS

Stator Rotor
iabh
s = TciABC

s iabh
r = TciABC

r

vabh
s = TcvABC

s vabh
r = TcvABC

r

Ψabh
s = TcΨABC

s Ψabh
r = TcΨABC

r

iABC
s = Tc

−1iabh
s iABC

r = Tc
−1iabh

r

vABC
s = Tc

−1vabh
s vABC

r = Tc
−1vabh

r

ΨABC
s = Tc

−1Ψabh
s ΨABC

r = Tc
−1Ψabh

r

where

Rs = RsI ∈ <2

Rr = RrI ∈ <2

Lss(2νθr) = TcŁssTc
−1

= LsI− ∆LsUT(2νθr)I−

Lrr(2νθr) = TcŁrrTc
−1

= LrI− ∆LrUT(2νθr)I−

Lsr(νθr) = LsrU(νθr)
LsrT (νθr) = LsrUT(νθr)

The electromechanical equation is given by (19), and the
transformed torque equation is:

Te =
1
2
(iabhs )T

∂Lss

∂θr
iabhs

+(iabhs )T
∂Lsr

∂θr
iabhr +

1
2
(iabhr )T

∂Lrr

∂θr
iabhr

with

∂

∂θr
(TcŁssTc

−1) =
∂Lss

∂θr
= 2ν∆LsUT(2νθr)I−J

∂

∂θr
(TcŁrrTc

−1) =
∂Lrr
∂θr

= 2ν∆LrUT(2νθr)I−J

∂

∂θr
(TcŁsrTc

−1) =
∂Lsr

∂θr
= νLsrUT(νθr)J

Te = νc∆Ls(iabs )TUT (2νθr)I−Jiabs
+νcLsr(iabs )TUT(νθr)Jiabr
+νc∆Lr(iabr )TUT (2νθr)I−Jiabr

(25)

A. State Space Model

Considering the stator currentiabs and the rotor fluxΨab
r

as state variables, the model in the natural reference frame
is calculated. From (24),

iabr = Lrr−1(2νθr)
{
Ψab
r − LsrU(νθr)iabs

}
(26)

Replacing (26) in (22)

Ψ̇ab
r = RrLrr−1(2νθr)[LsrU(νθr)iabs − Ψab

r ] (27)

To obtain i̇abs , replacing (26) in (24) and calculating

i̇abs = −Pσ(θr , w)iabs −Qσ(θr , w)Ψab
r + Uabs (28)

where:

Pσ(θr , w) = P(θr , w)/Detσ
Qσ(θr , w) = Q(θr, w)/Detσ

Uabs = σ−1(νθr)V abs

Again, the electromechanical equation is given by (19),
and the transformed torque equation is:

Te = −νc1Lsr(iabs )TJI−U(2νθr)·
[2∆LrU(2νθr) + ∆LsI]iabs
−ν∆Lrc1Lsr−1(Ψab

r )TJI−U(2νθr)Ψab
r

+νc1(iabs )T ·{
LrUT(νθr)J + 2∆LrJI−U(3νθr)

}
Ψab
r

+νc1∆Lr(Ψab
r )TJI−U(3νθr)iabs

(29)

B. Equivalence among models

If it is considered the case of the “clasical”IM , i.e,
without “induced saliencies”, the parameters∆Ls and∆Lr
are adjusted to zero; in this particular situation it is possible
to probe that theIMIS converge to theIM model doing the
factors∆i in the IMIS equal to zero.

i̇abs |∆Ls=∆Lr=0 = −γiabs + η{aI− νwJ}UT(νθr)Ψab
r

+
V abs
σJLs

Ψ̇ab
r |∆Ls=∆Lr=0 = −aΨab

r + bU(νθr)iabs
Te |∆Ls=∆Lr=0 = ν Lsr

Lr
(iabs )TUT(νθr)JΨab

r

θ̇r = w

Which is the classicalab model found in the induction
motors literature[8].

VII. CONCLUSIONS

A new general model to theIMIS was developed which
is computed in natural orthogonal components. The model is
suitable for control design and compatible with the classical
ab model for induction motors without saliencies. A similar
model for control by signals injection at high frequencies
was reported by Jansen et al.[4], but the model for theIMIS
presented here is more general.

It is observed a complexity in the components of the
currents by the presence of the∆i variations and their
implicit dependence with the rotor positionθr . Note
that the rotor position dependence in the model can not
be avoided by rotor variables transformations (α−β model).

Current work is to research the stability and observability
properties of this model, analyze the induced harmonics in
the torque and currents, among others.
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APPENDIX

Definitions and properties

U(·) =
[
cos(·) sin(·)
−sin(·) cos(·)

]

I =
[
1 0
0 1

]
; I− =

[
1 0
0 −1

]
; J =

[
0 −1
1 0

]

UT(·) = U(−(·))

I−I− = I ; JJ = I− ; I− = I−−1

JI− = −I−J = I−JT =
[
0 1
1 0

]

To the IM ,

σJ
.= 1 − L2

sr

LsLr
a

.= Rr/Lr

γ
.=

Rs
LsσJ

+
Rr
L2
r

L2
sr

LsσJ

η
.=

Lsr
LsLrσJ

b = aLsr

To the IMIS ,

Lr ≡ Lrd+Lrq

2

∆Lr ≡ Lrq−Lrd

2
Lrd ≡ Lr − ∆Lr
Lrq ≡ Lr + ∆Lr
Ls ≡ Lsd+Lsq

2

∆Ls ≡ Lsq−Lsd

2
Lsd ≡ Ls − ∆Ls
Lsq ≡ Ls + ∆Ls
LrdLrq = L2

r − L2
rq

LsdLsq = L2
s − L2

sq

c1 = Lsr/(LrdLrq)
LL = Ls − c1LsrLr

LL = Ls − c1LsrLr = Ls −
Lsr

LrdLrq
LsrLr

P (θr, w) = {Rs + c21(L2
r + ∆L2

r)Rr}I
+2Lr∆LrUT (4νθr)I−

−2νw(∆LsI + 2c1Lsr∆LrUT (2νθr))
·UT (2νθr)JI−

Q(θr , w) = −Rrc21(L−1
sr )(L2

r + ∆L2
r)U

T(νθr)
−2Rrc21(Lsr)

−1
Lr∆LrUT(3νθr)I−

+νw[c1LrUT(νθr)J
+3c1∆LrUT(3νθr)JI−]

σ−1(νθr) =
1

Detσ

{
LLI + ∆LsUT(2νθr)I−

+c1Lsr∆LrUT(4νθr)I−
}

Detσ = (LL)2 − ∆L2
s − c21L

2
sr∆L

2
r

−2c1Lsr∆Ls∆Lrcos(2νθr)

Lrr−1(2νθr) =
1

LrdLrq
(LrI + ∆LrUT(2νθr)I−)


