
Abstract--The following article presents a 
segmentation method of range images. This method is 
based on edge map detection by calculations of depth 
gradients and orientation gradients and a genetic 
algorithm. The objective is to delimit the planar 
patches contained in images to facilitate the labelling 
of each region. The genetic algorithm is guided by 
depth gradients and orientation gradients in order to 
find the edge map of the image.  
 

I.  INTRODUCTION 
The problem of computational reconstruction from 

range data has been receiving much attention in 
computer vision over the last decade. The interest arises 
from the multiple applications of three-dimensional 
vision, such as motion analysis, manufacturing systems, 
navigational robotics, geographic information systems, 
model construction, etc. To perform the reconstruction 
task, the computer vision system must be able to identify 
real world objects from sensed environmental data in 
digital form. Due to the large amount of data, direct 
interpretation of a range image is extremely costly in 
terms of both storage and computer time. Therefore, a 
segmentation step is usually carried out to group the 
range data with particular properties in regions suitable 
for the subsequent image analysis and interpretation. The 
segmentation task should preserve the object shapes and 
edge locations. However, processing digital images to 
segment a number of objects in different positions and 
with different sizes and shapes is often perturbed by 
noise and other sensor errors. 

The segmentation algorithms known in the literature 
can be classified into two categories: edge-based and 
region-based segmentation. Region-based approaches, 
group pixels into connected regions based on similarity 
between data points. On the other hand, edge-based 
methods locate boundaries between regions. Both 
techniques have their strengths and drawbacks.  Edge 
detection techniques often produce no connected 
boundaries, false edge points, and thick edges. Despite 
the guarantee of closed regions, region-based techniques, 
such as region growing and clustering, have several 
critical design issues to be dealt with. The performance 
of most region-growing approaches crucially depends on 
the selection of initial regions. In clustering-based 
methods it is difficult to adaptively determine the actual 
number of clusters in range images. Often, an over 

segmentation is achieved and a subsequent merge step is 
needed to provide the final segmentation. Also, the 
region boundaries  are generally not well-defined. [5]. 

 Performance of segmentation methods can be 
evaluated using Hoover’s methodology. This 
methodology compares machine generated segmentation 
against a manually specified ground truth. Comparison is 
based on five metrics: over-segmentation or multiple 
detections of a single surface, under-segmentation; or 
insufficient separation of multiple surfaces, missed, 
noise, and correct detection.  In [3], [6], and [8], the 
results of some popular segmentation methods are 
presented and evaluated using Hoover’s methodology 
[3]. The results illustrate that the range image 
segmentation cannot be regarded as solved, even for 
simple surfaces. Most segmentation methods perform 
poorly when the required tolerance is 80% or higher.   

In this article we propose a segmentation method of 
planar surfaces based on edge detection. This method 
uses a genetic algorithm to find the edge map that 
delimits the objects in the image. Then regions in the 
image are labelled. The task performed for the genetic 
algorithm is the elimination of false edges and the 
enclosure of non–continuous edges from an initial edge 
map obtained from the calculation of direction gradients 
and depth gradients of the image. 
 

II. RELATED WORK 
A variety of methods is available for range image 

segmentation. Most methods can be classified into 
region–based or edge detection categories. Hoover [3] 
presents some range segmentations. The USF range 
segmentation algorithm works by computing a planar fit 
for each pixel and then growing regions whose pixels 
have similar plane equations. The WSU range 
segmentation algorithm traces its origin to the 
dissertation work of Hoffman, but contains many 
enhancements incorporated by Flyn. This method uses a 
squared error clustering algorithm called CLUSTER to 
partition the feature space into clusters. The UB range 
segmentation algorithm considers the segmentation of 
range images into planar regions by growing regions. 
This segmenter is based on the fact that the points on the 
scan line that belong to a planar surface form a straight 
3−D line segment. Therefore, the method divides each 
scan line into straight line segments and subsequently 
performs a region growing process using the set of lines. 
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The University of Edinburgh (UE) range segmentation 
algorithm calculates a Gaussian mean curvature at each 
pixel to label it as belonging to a particular surface and 
then  a region growing procedure is applied through an 
iterative expand, refit, contract cycle, grouping  pixels 
with similar labels. 

Another approach to range image segmentation is 
Segmentation Through Variable-Order Surface Fitting by 
Besl and Jain [1]. This algorithm segments a large class 
of images into regions of arbitrary shape and 
approximates image data with bivariate functions so that 
it is possible to compute a complete, noiseless image 
reconstruction based on extracted functions and regions. 
Surface curvature sign labelling provides an initial coarse 
image segmentation, which is refined by an iterative 
region growing method based on variable-order surface 
fitting. 

The segmentation algorithm proposed by Sappa [13] 
and the segmentation algorithm proposed by Silva [10], 
can be classified into edge detection categories.  Sappa’s 
technique is based on scan line processing. It consists of 
two stages. First, a binary edge map is generated by 
means of a scan line approximation technique. Then, the 
points of that map are linked, generating the boundaries 
that enclosed each region. Silva’s algorithm does edge 
detection by locating depth and orientation gradients in 
the image. Then a region growing method is applied to 
segment the image. The main problem with this last 
approach is that the locating gradients cannot guarantee 
closed boundaries, because some edge points are not 
correctly detected. 

 
III. PROPOSED SEGMENTATION METHOD 

 
The proposed segmentation method is based on edge 

detection. The purpose is to find a well-defined edge map 
to lead the image segmentation.  The segmentation 
method considers three stages. First, the depth gradients 
and orientation gradients are calculated. Then, in the 
second stage a genetic algorithm is used to find an edge 
map from the obtained gradients. Finally, a fast labelling 
is carried out in the third stage. A brief introduction of 
each stage is presented. 

In the first stage, to extract depth and orientation 
gradients, we use the procedure propose in [9]. The depth 
gradients are equivalent to significant changes between 
the values of depth of the pixels in the image. The 
changes are identified by thresholding the maximum 
variation in z between the central pixel and each one of 
the other pixels in an N x M neighborhood. If the largest 
z-deviation is equal or greater than a threshold, the pixel 
is considered as a depth gradient. On the other hand, the 
orientation gradients are equivalent to significant change 
between the orientations of two surfaces. A two-step 
process is used to compute the orientation gradients. 
First, surface normals are estimated at each range pixel 
bounded by a K x K window. Second, the center pixel in 
an S x S window is considered an orientation gradient if a 
significant change between the normal’s pixel   and other 
normals in the window is within a threshold. 

In the second stage, an edge map is obtained by a 
genetic algorithm. The task performed by the genetic 
algorithm is to select gradients to form correct, 
continuous, and thin edges. This procedure works with a 
population of individuals conformed by two-dimensional 
binary arrays where a value of one (1) represents an edge 
pixel while a zero (0) represents a non-edge pixel.  The 
individuals are transformed with a traditional single point 
crossover operator and a particular mutation operator in 
each generation. The mutation operator has the task of 
selecting gradient points to conform to the edges of the 
image. This operator selects a starting point which is 
united with other pixels to form an edge. The selected 
pixel can be an isolated endpoint edge pixel, or a non-
isolated endpoint edge pixel, or an orientation gradient. 
The selected pixel is united with other pixels until the 
conformed edge is closed. 

The fitness function to evaluate each possible 
solution is based on three criteria to increase the number 
of edge pixels located correctly in the image, and to 
reduce the number of small regions and the number of 
endpoint edge pixels in the image.   

Finally, in the third stage, a fast labelling is carried 
out assigning the same label to the pixels bounded with 
the same edges. 

 
A. Calculation of gradients 
 

Our segmentation method extracts an edge map from 
an initial approximation of edges obtained by calculating 
orientation and depth gradients. Due to noise present in 
the worked range image, a 9 x 9 median filter is applied 
to clean the image. Then the following procedures are 
performed as in [9]. 
 
Depth gradients. For each pixel in the image the 
respective coordinates (x, y, z) are obtained, using: 
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where scal, offset fk and c, are parameters obtained 
through a calibration camera and depends on the used 
image. In this work we used the 40 ABW range images 
of the USF [11]. 

For each coordinate (x, y, z) in the image, a depth 
difference is calculated by: 

 
( ) WwjiD jip −= ,max,   (2) 

 
where jiw ,  is the z value of the point (i, j) in the image 

and W represents the z value of each neighbour  in a 3 x 
3 neighbourhood. 

The point i, j is considered a depth gradient if the 
respective ),( jiDp  value is upon a threshold. 



 

 
 

Figure1. Proposed segmentation method 
 
 Orientation gradients. To calculate the orientation 
gradients in a two-step process:  

First, one normal is calculated for each point in the 
image. A 5 x 5 window is adjusted on each pixel and 
four points are taken in the north, south, west, and east 
directions in the window to obtain four vectors (Figure 
2). 

The normal for each point in the image is calculated 
by: 
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where nextDD VV ⊗  is the cross product between the 
vector in direction D and the next vector in a clockwise 
direction (North−East, East−South, South−West, 
West−North). 

The four direction vectors to calculate the respective 
normal must not be interrupted by a depth edge. If one of 
the four vectors is interrupted by a depth gradient, it is 
discarded in this procedure and the normal is calculated 
with the remaining vectors. 

 

 
Figure 2. Direction vectors 

 
Second, we calculate angular differences. Once a 

normal is calculated for each point in the image, then an 

angular difference is obtained for each normal. This 
procedure is performed with the following equations: 

)max(),( ,lko jiD θ= (4) 
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where lkN , represents the normals within a 15 x 15 

window around a (i, j) pixel. If the ),( jiDθ value is 
greater or equal to a threshold, then the (i, j)  pixel is 
considered an orientation gradient. 
 
c. Edge map 
 

The gradients calculated define thin and fragmented 
edges and many false edge points. This can be seen in 
Figure 3. 

 

 
 

Figure 3. Orientation and depth gradients 
 
The white pixels around the objects are the depth 

gradients and, the dark pixels are the orientation 
gradients. In Figure 3, one can see that the depth edges in 
the image are well-defined by the depth gradients. 
Therefore we use the depth gradients to obtain the first 
edges of our map. Hilditch’s method [2] is used to thin 
out the depth gradients and to obtain the depth edges, 
however the depth edges obtained are not closed. A 
genetic algorithm is implemented to complete them and 
the orientation edges are generated from the orientation 
gradients. 
 
B. Implemented genetic algorithm 
 

In this work we use a genetic algorithm to find an 
edge map that delimits the surfaces of the range image to 
facilitate the segmentation.  

In order, to implement a genetic algorithm the 
programmer must define: a representation scheme for 
each individual, the genetic operators, the fitness 
function, and a set of parameters necessary to control the 
algorithm. We have defined the initial population too. 
The implemented genetic algorithm is detailed below.  
 
Representation scheme. Each individual in the population 
represents an edge map of 512 x 512 pixels, same size of 



the used images [11]. The edge maps in the population 
are two–dimensional binary arrays, where the value 1 
represents an edge pixel and 0 a non–edge. Consequently 
our search space is too large. In our representation, 

5125122 x  combinations of 0 and 1 can occur. 
 
Initial population. In order to reduce the amount of 
possible combinations, the genetic algorithm uses the 
obtained gradients to create an initial configuration of the 
edges for each individual of the population. In this stage 
of the genetic algorithm, we copy the depth gradient in 
each individual of the initial population after thinning 
them. Once the copy is made the mutation operator is 
applied to generate orientation edges or to complete a 
fragmented depth edge, so that the configuration of each 
individual is different.  
 
The genetic operators. Our genetic algorithm uses the 
traditional crossover in which one point of a cut is 
selected at random in two individuals which are also 
taken at random, and the genetic information of both 
individuals is exchanged.   

The mutation operator is very important in our 
genetic algorithm because the mutation constructs new 
edges in the configuration of each individual. The 
procedure made by the mutation operator selects random 
points in the image which are united with other points 
forming a closed edge. The selected point can be an 
orientation gradient or an end point of a fragmented 
depth edge. This procedure can be divided into the 
following steps: 
First, the operator selects a starting point to be extended. 
The starting point must satisfy one of the following 
conditions: 
 

• It is an end point in a fragmented edge; 
• It is an isolated depth edge point; 
• It is an orientation gradient that has not been 

selected before and without near edge points. 
 

The following figure illustrates the three conditions. 
 
 

 
       (a)     (b)                (c) 

 
Figure 4.  Possible starting point to mutate: (a) end point 

in fragmented edges; (b) isolated point; (c) gradients  
 

 Second, an objective point near the starting point is 
chosen to be united through a line segment. The 
objective point is chosen in a 13 x 13 window around the 
starting point in the following preference order: 
 

• A near edge point; 
• An orientation gradient in the same direction of 

a line segment already traced; 

• A random orientation gradient in the windows 
not necessarily in the same direction of a line 
segment already traced; 

• The point with the greatest angular difference 
without a direction gradient in the window. 

 
Third, once the first line segment is traced, the 

objective point is taken as the starting point, and a new 
objective point is located according to the second step. 
This procedure is repeated in each mutation until the 
objective point is an edge point previously established. 
 
Fitness function. The fitness function evaluates each 
individual in the population to measure how much it 
contributes to the solution of the problem. In our genetic 
algorithm, the fitness function is based on three criteria: 
number of edge pixels correctly located, number of small 
regions, and number of end points in fragmented edges.    

In order to decide if an edge pixel is correctly located, 
a 5 x 5 window is placed around the pixel. If within the 
windows, the edge pixel separates two regions with 
different normals, the pixel is a correctly located edge. 
The procedure locates some points in the extreme of the 
window with its respective point opposite. If the angular 
difference between the normal’s point is greater than a 
threshold, then the edge pixel is located between two 
different regions. 
On the other hand, a region defined by the found edges is 
considered small if its size in pixels is smaller than a 
threshold.  

The fitness function counts the occurrence of the 
three mentioned criteria and assigns the fitness of each 
individual i in the population by:  
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where,  
 

• Ncorrect_edge_pixel, is the number of pixels 
correctly located. 

• Total_edge_pixel, is the number of edge pixels 
located by the genetic algorithm (all edge pixels 
except the edge pixels defined by the depth 
gradients). 

• NSmall_region, is the number of small regions 
formed by the located edges. 

• Nend_points, is the number of end points in the 
fragmented edges. 

• WC, WPR and WF are weight assigned to each 
one of the mentioned criteria. 

 



Our optimization problem is a multi-objective 
problem. We look for an edge map with closed edges, 
well located edges, and few small regions that could be 
noise. In order to solve the problem, we use the weighted 
sum approach for multi-objective optimization problems. 
This approach consists of adding all the objective 
functions together using different weighting coefficients 
for each. The multi-objective problem is transformed into 
a scalar optimization problem [14].  Other multi–
objective optimization methods are more efficient than 
the weighted sum approach [15], however we used this 
approach because the computational time required by our 
segmentation method is very high and other multi-
objective methods also require high computational time. 

 
D. Labelling  

 The result of the explained genetic algorithm is a thin 
edge map without fragmentation. The obtained edges are 
labelled with the value zero. From the edge map we 
extract a segmentation of the range image by setting the 
same labels to connected pixels. First the labelling 
procedure locates a pixel not labelled in the image and 
assigns it a label (an integer value). Then the neighbours 
of the located pixel are also labelled with the same 
integer value and the neighbours of their neighbours until 
an edge pixel is found. Finally, the procedure locates 
another pixel without the label and assigns it a different 
label, and then labels the connected pixels. This 
continues until there are no pixels without a label in the 
image. 

 
IV. EXPERIMENTAL RESULTS 

 
   The proposed segmentation method was implemented 
on an Athlon 1.5 with 512 megabyte of memory. We 
used the genetic algorithm Library GALib for the 
implementation of the genetic algorithm. First a training 
procedure was carried out to assign values to the 
parameter of the segmentation algorithm (thresholds, 
parameter of the genetic algorithm and weight of the 
objective function), on 10 range images obtained from 
ABW database of the University of South Florida. 
 
A.. Determination of algorithm parameters 
 
   Different values of thresholds to select depth gradients 
and orientation gradients were tried until the found 
values allowed obtaining satisfactory initial edge map 
(many true gradients, but little noise). The values finally 
established to the thresholds were: 15 units of range and 
1 radian for the depth gradient threshold and orientation 
gradient threshold respectively. 
 
Similarly, the genetic algorithm parameters were 
established manually, different values for each parameter 
were tried, and the following values were chosen. 
 

Population Size 30 individuals 
Number of Generations 50 
Crossover rate 0.1 
Mutation rate 0.4 

 
Table 1. Values for the genetic algorithm parameters 
 
The values for the weights of the objective function were 
assigned by the following procedure: 
 
First, a value is assigned to WC (weight associated with 
the number of edge points correctly located in the edge 
map). For this parameter of the objective function, values 
between (0.4, 0.8) had more probability of being 
selected. Then, a value is uniformly selected between (0, 
1-WC) to assign it to WF parameter (weight associated 
with the number of endpoint edges in the edge map). 
Finally, the result of (1 – (WC+WF)) is assigned to WPR 
parameter (number of small regions conformed by the 
located edge in the edge map). The value assigned to WC 
has more probability to be a value greater than the other 
parameters, because, if the edges are well located then 
few small regions must appear. Furthermore, a closed 
edge can also be a false edge.   
 
This procedure was executed 20 times. A fitness average 
of the genetic algorithm was calculated from the fitness 
of each best edge map obtained for each training image 
(10). This fitness average was used to determine if a set 
of values is better than others. The set of values that 
generated a higher fitness average was selected for the 
weights as follow: 
 

 WC 0.5 
WF 0.3 
WFPR 0.2 

 
Table 2. Values of WC, WF and WFPR 

 
B. Segmentation of ABW images to test 
 
   After the segmentation algorithm parameters were 
established by the training procedure. We used the 
algorithm to segment 30 range images to test. The 30 
images were also obtained from the ABW database of 
University of South Florida. Table 3 shows the fitness of 
each edge map obtained for each image and the fitness 
average. 
 

Image Fitness Image Fitness 

0 0.521 15 0.950 

1 0.724 16 0.851 

2 0.880 17 0.930 

3 0.967 18 0.744 

4 0.804 19 0.908 

5 0.630 20 0.869 

6 0.906 21 0.788 

7 0.937 22 0.909 

8 0.796 23 0.877 

9 0.859 24 0.905 

10 0.909 25 0.901 



11 0.956 26 0.955 

12 0.924 27 0.909 

13 0.937 28 0.820 

14 0.867 29 0.814 

Average  0,85823333 

Table 3. Fitness obtained for 30 range images to test 
 
The maximum value for the fitness function in our 
algorithm is 1. Most of the fitness are near to the 
maximum value and the fitness average is high. This 
means that our algorithm finds edge maps with few false 
and fragmented edges. Figure 5 shows some edge maps 
obtained by our algorithm. 
 

 
Figura 5. Obtained edge maps  
 
The labelling procedure in Section 3.3 was made on the 
edge maps. We obtained segmented images of regions 
delimited by the edges. These segmentations were 
compared with other segmentation results generated with 
other segmentation methods. A visual comparison of 
results can be seen in figure 6 at the end of the article. 
 
C. Evaluation of results 
 
   We evaluated the results of our segmentation algorithm 
using the methodology of evaluation proposed by 
Hoover [3]. The 30 range images to test are provided 
with their respective ground truth segmentation for this 
evaluation. 
 
The compared segmenters have also been visually 
evaluated with the metrics proposed by Hoover. This 
information is available, so the evaluation comparison 
with other new methods is possible. In this section, we 
present the results of evaluation comparison of our 
segmentation method and the other four segmenters. 
 
The perfect segmentation means the correct detection of 
all regions in the ground truth images with a tolerance 
under 100%. However all the segmentation methods until 
now perform poorly performance when the tolerance is 
greater than 80%. Table 4 at the end of this paper shows 
the evaluation results at a tolerance of 80%. 
 
The resulting evaluation in the table indicates that our 
segmentation method is no better than other segmenters. 
However, the results are not very far from the others.  

 
V. CONCLUSIONS AND FUTURE WORK 

   In this article a segmentation method was presented. 
The method is based on three stages: first, the depth 

gradients and orientation gradients are calculated. In the 
second stage a genetic algorithm is used to find an edge 
map from the obtained gradients. Finally, a fast labelling 
is carried out. 
 
The main difficulty in our method was the noise present 
in the processed range image. The noise in the images 
made the gradient calculation difficult and, consequently, 
the edge extraction.   
 
The genetic algorithm implemented in the method found 
thin and closed edges, and considerably reduced the false 
edges detected by gradients. However the edge map does 
no describe very well the limit between the surfaces in 
the image. Perhaps this is the reason our segmenter’s 
performance is no better than others. 
 
Another approach like one based on scan line to extract 
edge map in range images could be tried to obtain an 
initial edge map with less noise than the procedure used 
in this work. We also thought about investigating other 
pre-processing procedures to reduce the high noise 
present in the range image of the ABW database.  

 
Figure 6. Visual comparison between different algorithm 
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Meth
ods 

GT 
Regions 

Correctly 
detected 

Over-
Segmentation 

Under- 
Segmentation 

Missed Noise 

USF 15.2 12.7 0.2 0.1 2.1 1.2 
WSU 15.2 9.7 0.5 0.2 4.5 2.2 
UB 15.2 12.8 0.5 0.1 1.7 2.1 
UE 15.2 13.4 0.4 0.2 1.1 0.8 

OUR 15.2 10.8 0.8 2.4 5.2 2†.6 
 

Table 4. Evaluation results of segmeters on the ABW database 
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