
Abstract--The following article presents a
segmentation method of range images. This method is
based on edge map detection by calculations of depth
gradients and orientation gradients and a genetic
algorithm. The objective is to delimit the planar
patches contained in images to facilitate the labelling
of each region. The genetic algorithm is guided by
depth gradients and orientation gradients in order to
find the edge map of the image.

I. INTRODUCTION
The problem of computational reconstruction from

range data has been receiving much attention in
computer vision over the last decade. The interest arises
from the multiple applications of three-dimensional
vision, such as motion analysis, manufacturing systems,
navigational robotics, geographic information systems,
model construction, etc. To perform the reconstruction
task, the computer vision system must be able to identify
real world objects from sensed environmental data in
digital form. Due to the large amount of data, direct
interpretation of a range image is extremely costly in
terms of both storage and computer time. Therefore, a
segmentation step is usually carried out to group the
range data with particular properties in regions suitable
for the subsequent image analysis and interpretation. The
segmentation task should preserve the object shapes and
edge locations. However, processing digital images to
segment a number of objects in different positions and
with different sizes and shapes is often perturbed by
noise and other sensor errors.

The segmentation algorithms known in the literature
can be classified into two categories: edge-based and
region-based segmentation. Region-based approaches,
group pixels into connected regions based on similarity
between data points. On the other hand, edge-based
methods locate boundaries between regions. Both
techniques have their strengths and drawbacks. Edge
detection techniques often produce no connected
boundaries, false edge points, and thick edges. Despite
the guarantee of closed regions, region-based techniques,
such as region growing and clustering, have several
critical design issues to be dealt with. The performance
of most region-growing approaches crucially depends on
the selection of initial regions. In clustering-based
methods it is difficult to adaptively determine the actual
number of clusters in range images. Often, an over

segmentation is achieved and a subsequent merge step is
needed to provide the final segmentation. Also, the
region boundaries are generally not well-defined. [5].

 Performance of segmentation methods can be
evaluated using Hoover’s methodology. This
methodology compares machine generated segmentation
against a manually specified ground truth. Comparison is
based on five metrics: over-segmentation or multiple
detections of a single surface, under-segmentation; or
insufficient separation of multiple surfaces, missed,
noise, and correct detection. In [3], [6], and [8], the
results of some popular segmentation methods are
presented and evaluated using Hoover’s methodology
[3]. The results illustrate that the range image
segmentation cannot be regarded as solved, even for
simple surfaces. Most segmentation methods perform
poorly when the required tolerance is 80% or higher.

In this article we propose a segmentation method of
planar surfaces based on edge detection. This method
uses a genetic algorithm to find the edge map that
delimits the objects in the image. Then regions in the
image are labelled. The task performed for the genetic
algorithm is the elimination of false edges and the
enclosure of non–continuous edges from an initial edge
map obtained from the calculation of direction gradients
and depth gradients of the image.

II. RELATED WORK
A variety of methods is available for range image

segmentation. Most methods can be classified into
region–based or edge detection categories. Hoover [3]
presents some range segmentations. The USF range
segmentation algorithm works by computing a planar fit
for each pixel and then growing regions whose pixels
have similar plane equations. The WSU range
segmentation algorithm traces its origin to the
dissertation work of Hoffman, but contains many
enhancements incorporated by Flyn. This method uses a
squared error clustering algorithm called CLUSTER to
partition the feature space into clusters. The UB range
segmentation algorithm considers the segmentation of
range images into planar regions by growing regions.
This segmenter is based on the fact that the points on the
scan line that belong to a planar surface form a straight
3−D line segment. Therefore, the method divides each
scan line into straight line segments and subsequently
performs a region growing process using the set of lines.

A Genetic Algorithm to Segment Range Image by Edge Detection

I. DIAZ1, J. BRANCH2, and P. BOULANGER3

1Fac. de Ingeniería. Universidad de Medellín,
Medellín, Colombia

email : idiaz@udem.edu.co
2 Escuela de Sistemas. Universidad Nacional de Colombia Sede Medellín, Medellín Colombia, email:

jwbranch@unalmed.edu.co
3 Department of Computing Science. University of Alberta, Edmonton, Alberta, Canada,, email:

pierreb@cs.ualberta.ca

0-7803-9419-4/05/$20.00 ©2005 IEEE

The University of Edinburgh (UE) range segmentation
algorithm calculates a Gaussian mean curvature at each
pixel to label it as belonging to a particular surface and
then a region growing procedure is applied through an
iterative expand, refit, contract cycle, grouping pixels
with similar labels.

Another approach to range image segmentation is
Segmentation Through Variable-Order Surface Fitting by
Besl and Jain [1]. This algorithm segments a large class
of images into regions of arbitrary shape and
approximates image data with bivariate functions so that
it is possible to compute a complete, noiseless image
reconstruction based on extracted functions and regions.
Surface curvature sign labelling provides an initial coarse
image segmentation, which is refined by an iterative
region growing method based on variable-order surface
fitting.

The segmentation algorithm proposed by Sappa [13]
and the segmentation algorithm proposed by Silva [10],
can be classified into edge detection categories. Sappa’s
technique is based on scan line processing. It consists of
two stages. First, a binary edge map is generated by
means of a scan line approximation technique. Then, the
points of that map are linked, generating the boundaries
that enclosed each region. Silva’s algorithm does edge
detection by locating depth and orientation gradients in
the image. Then a region growing method is applied to
segment the image. The main problem with this last
approach is that the locating gradients cannot guarantee
closed boundaries, because some edge points are not
correctly detected.

III. PROPOSED SEGMENTATION METHOD

The proposed segmentation method is based on edge

detection. The purpose is to find a well-defined edge map
to lead the image segmentation. The segmentation
method considers three stages. First, the depth gradients
and orientation gradients are calculated. Then, in the
second stage a genetic algorithm is used to find an edge
map from the obtained gradients. Finally, a fast labelling
is carried out in the third stage. A brief introduction of
each stage is presented.

In the first stage, to extract depth and orientation
gradients, we use the procedure propose in [9]. The depth
gradients are equivalent to significant changes between
the values of depth of the pixels in the image. The
changes are identified by thresholding the maximum
variation in z between the central pixel and each one of
the other pixels in an N x M neighborhood. If the largest
z-deviation is equal or greater than a threshold, the pixel
is considered as a depth gradient. On the other hand, the
orientation gradients are equivalent to significant change
between the orientations of two surfaces. A two-step
process is used to compute the orientation gradients.
First, surface normals are estimated at each range pixel
bounded by a K x K window. Second, the center pixel in
an S x S window is considered an orientation gradient if a
significant change between the normal’s pixel and other
normals in the window is within a threshold.

In the second stage, an edge map is obtained by a
genetic algorithm. The task performed by the genetic
algorithm is to select gradients to form correct,
continuous, and thin edges. This procedure works with a
population of individuals conformed by two-dimensional
binary arrays where a value of one (1) represents an edge
pixel while a zero (0) represents a non-edge pixel. The
individuals are transformed with a traditional single point
crossover operator and a particular mutation operator in
each generation. The mutation operator has the task of
selecting gradient points to conform to the edges of the
image. This operator selects a starting point which is
united with other pixels to form an edge. The selected
pixel can be an isolated endpoint edge pixel, or a non-
isolated endpoint edge pixel, or an orientation gradient.
The selected pixel is united with other pixels until the
conformed edge is closed.

The fitness function to evaluate each possible
solution is based on three criteria to increase the number
of edge pixels located correctly in the image, and to
reduce the number of small regions and the number of
endpoint edge pixels in the image.

Finally, in the third stage, a fast labelling is carried
out assigning the same label to the pixels bounded with
the same edges.

A. Calculation of gradients

Our segmentation method extracts an edge map from
an initial approximation of edges obtained by calculating
orientation and depth gradients. Due to noise present in
the worked range image, a 9 x 9 median filter is applied
to clean the image. Then the following procedures are
performed as in [9].

Depth gradients. For each pixel in the image the
respective coordinates (x, y, z) are obtained, using:

[] () []()
[] () []()
[] []() scaljirjiz

foffsetscaljircijiy

foffsetscaljirjjix

k

k

/,255,
//,*/255,

//,*255,

−=

+−=

+−=
 (1)

where scal, offset fk and c, are parameters obtained
through a calibration camera and depends on the used
image. In this work we used the 40 ABW range images
of the USF [11].

For each coordinate (x, y, z) in the image, a depth
difference is calculated by:

() WwjiD jip −= ,max, (2)

where jiw , is the z value of the point (i, j) in the image

and W represents the z value of each neighbour in a 3 x
3 neighbourhood.

The point i, j is considered a depth gradient if the
respective),(jiDp value is upon a threshold.

Figure1. Proposed segmentation method

 Orientation gradients. To calculate the orientation
gradients in a two-step process:

First, one normal is calculated for each point in the
image. A 5 x 5 window is adjusted on each pixel and
four points are taken in the north, south, west, and east
directions in the window to obtain four vectors (Figure
2).

The normal for each point in the image is calculated
by:

⎭
⎬
⎫

⎩
⎨
⎧

=

⊗
= ∑→

)(),(
),(),(

4
,

WWestEEast
SSouthNNorth

D

VV
N nextDD

ji
(3)

where nextDD VV ⊗ is the cross product between the
vector in direction D and the next vector in a clockwise
direction (North−East, East−South, South−West,
West−North).

The four direction vectors to calculate the respective
normal must not be interrupted by a depth edge. If one of
the four vectors is interrupted by a depth gradient, it is
discarded in this procedure and the normal is calculated
with the remaining vectors.

Figure 2. Direction vectors

Second, we calculate angular differences. Once a

normal is calculated for each point in the image, then an

angular difference is obtained for each normal. This
procedure is performed with the following equations:

)max(),(,lko jiD θ= (4)

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

•
=

lkji

lkji
kl NN

NN
arc

,,

,, .
rr

rr

θ (5)

where lkN , represents the normals within a 15 x 15

window around a (i, j) pixel. If the),(jiDθ value is
greater or equal to a threshold, then the (i, j) pixel is
considered an orientation gradient.

c. Edge map

The gradients calculated define thin and fragmented
edges and many false edge points. This can be seen in
Figure 3.

Figure 3. Orientation and depth gradients

The white pixels around the objects are the depth

gradients and, the dark pixels are the orientation
gradients. In Figure 3, one can see that the depth edges in
the image are well-defined by the depth gradients.
Therefore we use the depth gradients to obtain the first
edges of our map. Hilditch’s method [2] is used to thin
out the depth gradients and to obtain the depth edges,
however the depth edges obtained are not closed. A
genetic algorithm is implemented to complete them and
the orientation edges are generated from the orientation
gradients.

B. Implemented genetic algorithm

In this work we use a genetic algorithm to find an
edge map that delimits the surfaces of the range image to
facilitate the segmentation.

In order, to implement a genetic algorithm the
programmer must define: a representation scheme for
each individual, the genetic operators, the fitness
function, and a set of parameters necessary to control the
algorithm. We have defined the initial population too.
The implemented genetic algorithm is detailed below.

Representation scheme. Each individual in the population
represents an edge map of 512 x 512 pixels, same size of

the used images [11]. The edge maps in the population
are two–dimensional binary arrays, where the value 1
represents an edge pixel and 0 a non–edge. Consequently
our search space is too large. In our representation,

5125122 x combinations of 0 and 1 can occur.

Initial population. In order to reduce the amount of
possible combinations, the genetic algorithm uses the
obtained gradients to create an initial configuration of the
edges for each individual of the population. In this stage
of the genetic algorithm, we copy the depth gradient in
each individual of the initial population after thinning
them. Once the copy is made the mutation operator is
applied to generate orientation edges or to complete a
fragmented depth edge, so that the configuration of each
individual is different.

The genetic operators. Our genetic algorithm uses the
traditional crossover in which one point of a cut is
selected at random in two individuals which are also
taken at random, and the genetic information of both
individuals is exchanged.

The mutation operator is very important in our
genetic algorithm because the mutation constructs new
edges in the configuration of each individual. The
procedure made by the mutation operator selects random
points in the image which are united with other points
forming a closed edge. The selected point can be an
orientation gradient or an end point of a fragmented
depth edge. This procedure can be divided into the
following steps:
First, the operator selects a starting point to be extended.
The starting point must satisfy one of the following
conditions:

• It is an end point in a fragmented edge;
• It is an isolated depth edge point;
• It is an orientation gradient that has not been

selected before and without near edge points.

The following figure illustrates the three conditions.

 (a) (b) (c)

Figure 4. Possible starting point to mutate: (a) end point

in fragmented edges; (b) isolated point; (c) gradients

 Second, an objective point near the starting point is
chosen to be united through a line segment. The
objective point is chosen in a 13 x 13 window around the
starting point in the following preference order:

• A near edge point;
• An orientation gradient in the same direction of

a line segment already traced;

• A random orientation gradient in the windows
not necessarily in the same direction of a line
segment already traced;

• The point with the greatest angular difference
without a direction gradient in the window.

Third, once the first line segment is traced, the

objective point is taken as the starting point, and a new
objective point is located according to the second step.
This procedure is repeated in each mutation until the
objective point is an edge point previously established.

Fitness function. The fitness function evaluates each
individual in the population to measure how much it
contributes to the solution of the problem. In our genetic
algorithm, the fitness function is based on three criteria:
number of edge pixels correctly located, number of small
regions, and number of end points in fragmented edges.

In order to decide if an edge pixel is correctly located,
a 5 x 5 window is placed around the pixel. If within the
windows, the edge pixel separates two regions with
different normals, the pixel is a correctly located edge.
The procedure locates some points in the extreme of the
window with its respective point opposite. If the angular
difference between the normal’s point is greater than a
threshold, then the edge pixel is located between two
different regions.
On the other hand, a region defined by the found edges is
considered small if its size in pixels is smaller than a
threshold.

The fitness function counts the occurrence of the
three mentioned criteria and assigns the fitness of each
individual i in the population by:

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

spoNend
WF

regionNsmall
WPR

pixeledgeTotal
pixeledgeNcorrectWCif

int_
1

_
1

__
__)(

(6)

where,

• Ncorrect_edge_pixel, is the number of pixels
correctly located.

• Total_edge_pixel, is the number of edge pixels
located by the genetic algorithm (all edge pixels
except the edge pixels defined by the depth
gradients).

• NSmall_region, is the number of small regions
formed by the located edges.

• Nend_points, is the number of end points in the
fragmented edges.

• WC, WPR and WF are weight assigned to each
one of the mentioned criteria.

Our optimization problem is a multi-objective
problem. We look for an edge map with closed edges,
well located edges, and few small regions that could be
noise. In order to solve the problem, we use the weighted
sum approach for multi-objective optimization problems.
This approach consists of adding all the objective
functions together using different weighting coefficients
for each. The multi-objective problem is transformed into
a scalar optimization problem [14]. Other multi–
objective optimization methods are more efficient than
the weighted sum approach [15], however we used this
approach because the computational time required by our
segmentation method is very high and other multi-
objective methods also require high computational time.

D. Labelling

 The result of the explained genetic algorithm is a thin
edge map without fragmentation. The obtained edges are
labelled with the value zero. From the edge map we
extract a segmentation of the range image by setting the
same labels to connected pixels. First the labelling
procedure locates a pixel not labelled in the image and
assigns it a label (an integer value). Then the neighbours
of the located pixel are also labelled with the same
integer value and the neighbours of their neighbours until
an edge pixel is found. Finally, the procedure locates
another pixel without the label and assigns it a different
label, and then labels the connected pixels. This
continues until there are no pixels without a label in the
image.

IV. EXPERIMENTAL RESULTS

 The proposed segmentation method was implemented
on an Athlon 1.5 with 512 megabyte of memory. We
used the genetic algorithm Library GALib for the
implementation of the genetic algorithm. First a training
procedure was carried out to assign values to the
parameter of the segmentation algorithm (thresholds,
parameter of the genetic algorithm and weight of the
objective function), on 10 range images obtained from
ABW database of the University of South Florida.

A.. Determination of algorithm parameters

 Different values of thresholds to select depth gradients
and orientation gradients were tried until the found
values allowed obtaining satisfactory initial edge map
(many true gradients, but little noise). The values finally
established to the thresholds were: 15 units of range and
1 radian for the depth gradient threshold and orientation
gradient threshold respectively.

Similarly, the genetic algorithm parameters were
established manually, different values for each parameter
were tried, and the following values were chosen.

Population Size 30 individuals
Number of Generations 50
Crossover rate 0.1
Mutation rate 0.4

Table 1. Values for the genetic algorithm parameters

The values for the weights of the objective function were
assigned by the following procedure:

First, a value is assigned to WC (weight associated with
the number of edge points correctly located in the edge
map). For this parameter of the objective function, values
between (0.4, 0.8) had more probability of being
selected. Then, a value is uniformly selected between (0,
1-WC) to assign it to WF parameter (weight associated
with the number of endpoint edges in the edge map).
Finally, the result of (1 – (WC+WF)) is assigned to WPR
parameter (number of small regions conformed by the
located edge in the edge map). The value assigned to WC
has more probability to be a value greater than the other
parameters, because, if the edges are well located then
few small regions must appear. Furthermore, a closed
edge can also be a false edge.

This procedure was executed 20 times. A fitness average
of the genetic algorithm was calculated from the fitness
of each best edge map obtained for each training image
(10). This fitness average was used to determine if a set
of values is better than others. The set of values that
generated a higher fitness average was selected for the
weights as follow:

 WC 0.5
WF 0.3
WFPR 0.2

Table 2. Values of WC, WF and WFPR

B. Segmentation of ABW images to test

 After the segmentation algorithm parameters were
established by the training procedure. We used the
algorithm to segment 30 range images to test. The 30
images were also obtained from the ABW database of
University of South Florida. Table 3 shows the fitness of
each edge map obtained for each image and the fitness
average.

Image Fitness Image Fitness

0 0.521 15 0.950

1 0.724 16 0.851

2 0.880 17 0.930

3 0.967 18 0.744

4 0.804 19 0.908

5 0.630 20 0.869

6 0.906 21 0.788

7 0.937 22 0.909

8 0.796 23 0.877

9 0.859 24 0.905

10 0.909 25 0.901

11 0.956 26 0.955

12 0.924 27 0.909

13 0.937 28 0.820

14 0.867 29 0.814

Average 0,85823333

Table 3. Fitness obtained for 30 range images to test

The maximum value for the fitness function in our
algorithm is 1. Most of the fitness are near to the
maximum value and the fitness average is high. This
means that our algorithm finds edge maps with few false
and fragmented edges. Figure 5 shows some edge maps
obtained by our algorithm.

Figura 5. Obtained edge maps

The labelling procedure in Section 3.3 was made on the
edge maps. We obtained segmented images of regions
delimited by the edges. These segmentations were
compared with other segmentation results generated with
other segmentation methods. A visual comparison of
results can be seen in figure 6 at the end of the article.

C. Evaluation of results

 We evaluated the results of our segmentation algorithm
using the methodology of evaluation proposed by
Hoover [3]. The 30 range images to test are provided
with their respective ground truth segmentation for this
evaluation.

The compared segmenters have also been visually
evaluated with the metrics proposed by Hoover. This
information is available, so the evaluation comparison
with other new methods is possible. In this section, we
present the results of evaluation comparison of our
segmentation method and the other four segmenters.

The perfect segmentation means the correct detection of
all regions in the ground truth images with a tolerance
under 100%. However all the segmentation methods until
now perform poorly performance when the tolerance is
greater than 80%. Table 4 at the end of this paper shows
the evaluation results at a tolerance of 80%.

The resulting evaluation in the table indicates that our
segmentation method is no better than other segmenters.
However, the results are not very far from the others.

V. CONCLUSIONS AND FUTURE WORK

 In this article a segmentation method was presented.
The method is based on three stages: first, the depth

gradients and orientation gradients are calculated. In the
second stage a genetic algorithm is used to find an edge
map from the obtained gradients. Finally, a fast labelling
is carried out.

The main difficulty in our method was the noise present
in the processed range image. The noise in the images
made the gradient calculation difficult and, consequently,
the edge extraction.

The genetic algorithm implemented in the method found
thin and closed edges, and considerably reduced the false
edges detected by gradients. However the edge map does
no describe very well the limit between the surfaces in
the image. Perhaps this is the reason our segmenter’s
performance is no better than others.

Another approach like one based on scan line to extract
edge map in range images could be tried to obtain an
initial edge map with less noise than the procedure used
in this work. We also thought about investigating other
pre-processing procedures to reduce the high noise
present in the range image of the ABW database.

Figure 6. Visual comparison between different algorithm

VI. REFERENCES

[1] P. Besl, J. R. Jain. Segmentation through Variable-Order Surface
Fitting, IEEE Transactions on PAMI, Vol. 10, Number 2, 1988.

[2] R. González. Tratamiento Digital de Imágenes, Addison-Wesley,
1996.

[3] A. Hoover, Jean-Baptiste, Goldgof, Bowyer. A Methodology for
Evaluating Range Image Segmentation Techniques, IEEE Workshop on
Applications of Computer Vision, pp. 264−271, Sarasota, FL,
December 1994.

[4] Jiang, Bunke. Fast segmentation of range images into planar regions
by scan line grouping, Technical report IAM 92−006, Institute for
Computer Science, University of Bern, Switzerland, April 1992.

[5] Jiang, Bunke. Edge Detection in Range Images Based on Scan Line
Approximation, Computer Vision and Image Understanding, Vol. 73,
No. 2, February, pp. 183–199, 1999.

[6] Jiagn, Bowyer, Morioka, Hiura, Sato, Inokuchi, Bock, Guerra, Loke,
Dubuf. Some Further Results of Experimental Comparison of Range
Image Segmentation Algorithms, 15th Int. Conference on Pattern
Recognition, Spain, Sept. 2000.

[7] Heitkoetter, Beasley, The Hitch-Hiker's Guide, FAQ for
comp.ai.genetic, 1993–2001, Available on internet:
http://www.faqs.org/faqs/ai-faq/genetic/

[8] M. Powell, Comparing curved-surface range image segmenters,
Master's thesis, Department of Computer Science and Engineering,
University of Southern Florida, Apr. 1997.

[9] L. Silva, Estudo Sobre Deteção de Bordas em Imágenes de
Profundidade, Departamento de Informática UFPR, 2000.

[10] L. Silva, O. Pereira, Segmentação de Imagens de Profundidade por
Deteção de bordas, Proceedings of the 21st Brazilian Computer Society
Congress, Thesis/Dissertations Contest⎯2nd Place
Fortaleza/CE⎯Brazil, 2001.

[11] Range Image Database [online]. The Computer Vision / Image
Analysis Research Laboratory at the University of South Florida.
Available on internet: < http://marathon.csee.usf.edu/ >

[12] M. Wall, A. Galib. C++ Library of Genetic Algorithm Components
[online]. Massachusetts Institute of Technology, 12 December 1999.
Available on internet: <URL: http://lancet.mit.edu/ga/ >.

[13] A. Sappa, M. Devy, Fast Range Image Segmentation by an Edge
Detection Strategy, IEEE, 2001 (complete).

[14] C. Coello, A. Christiansen, An Approach to Multiobjective
Optimization Using Genetic Algorithms, In Dagli, C. H., Akay, M.
Chen, C. L. P., Fernández, B. R., and Ghosh, J. (editors),
Intelligent Engineering Systems Through Artificial Neural
Networks, Volume 5, Fuzzy Logic and Evolutionary Programming,
pp. 411⎯416, ASME Press, St. Louis, Missouri, USA, november 1995

[15] E. Zitzler, Evolutionary algorithms for multiobjective
optimization: Methods and Applications”, Ph.D. thesis, Swiss Federal
Institute of Technology (ETH) Zurich, Switzerland.

Meth
ods

GT
Regions

Correctly
detected

Over-
Segmentation

Under-
Segmentation

Missed Noise

USF 15.2 12.7 0.2 0.1 2.1 1.2
WSU 15.2 9.7 0.5 0.2 4.5 2.2
UB 15.2 12.8 0.5 0.1 1.7 2.1
UE 15.2 13.4 0.4 0.2 1.1 0.8

OUR 15.2 10.8 0.8 2.4 5.2 2†.6

Table 4. Evaluation results of segmeters on the ABW database

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

