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 Abstract - In this part, similar to Part I of this paper, a new 
two-level method for nonlinear optimal control of large scale 
systems is introduced. This approach is based on Interaction 
Balance Principle for coordination of large-scale systems. In the 
first level, the optimization problems are solved for nonlinear 
dynamics using a gradient method, and in the second level, the 
coordination is done using the gradient of errors to improve the 
convergence rate in compare to the classical Goal Coordination 
method and obtain the overall optimal solution. 
 The efficacy and advantages of the new approach is shown 
in an application example. 
 

I. INTRODUCTION 

 In control of large-scale systems, two-level methods are 
very attractive, because the control problem can be solved in 
several subsystems and this leads to better distribution of 
memory storage and faster computation. In the optimal 
control problem for large-scale systems, the problem is to 
minimize a cost function subject to the systems dynamics. 
 For using a two-level method the system should be 
divided into several interconnected subsystems and the cost 
function should be divided into several cost functions for 
each subsystem. Minimization of these cost functions for 
each subsystem leads to several sub-problems. For 
coordination of these sub-problems two coordination 
principles have been proposed by Mesarovic et al. [1],[2]  
named Interaction Balance Principle and Interaction 
Prediction Principle. In using these principles for control of 
large-scale systems, these systems are decomposed into 
several subsystems with interaction inputs from each other. 
So, each subsystem solve its own optimization problem and 
a high level controller coordinate these low level optimizers 
to solve the overall problem. 
 In applying the Interaction Balance Principle, the high 
level coordinator modifies the infimal performance function 
for each subsystem; compare the optimal interaction inputs 
computed by low-level subsystems by real interactions then 
provide new modified performance function to decrease the 
coordination error to zero. 
 Classical Goal Coordination method, based on Interaction 
Balance Principle has been applied to linear and nonlinear 
problems [3]-[5]. 
 In this paper the Goal Coordination method is used for 
coordination and a new coordination algorithm based on the 
gradient of interaction errors is used to improve the 
convergence rate of the solution [6]-[8]. 

 In the sequel, a brief description of Goal Coordination 
and Interaction Balance Principle is given in section II. 
Then, decomposition of the overall problem and the first-
level optimizations are described in sections III and IV, 
respectively. In section V, a new gradient-based coordinator 
with high-speed convergence is postulated and finally, the 
simulation results are shown followed by concluding 
remarks in sections VI and VII, respectively. 
 

II.   GOAL COORDINATION AND INTERACTION 
BALANCE PRINCIPLE 

 As mentioned above, the two principles for coordination 
of large-scale systems are Interaction Balance and 
Interaction Prediction Principles. Since the Goal 
Coordination based on Interaction Balance Principle is used 
in this part of the paper,  this principle is introduced in 
continue. 
 Let B be a set such that each β in B specifies, for each 
i=0,1,..,N, a performance function VYZUG iiii →××:β  
which is a modification of the original Gi. Let the mapping 

βig  be defined on Ui × Zi in terms of Pi and Giβ, as in (1)  
 

)),(,,(),(
:

iiiiiiii

iii

zuPzuGzug
VZUg

ββ

β

=

→×          (1) 
 
 For each β in B, the infimal control problem is to find the 
pair ( )ii zu ˆ,ˆ  in Ui × Zi such that 
 

),(min)ˆ,ˆ( iiiZUiii zugzug
ii×

=β  (2) 
 
 Minimization is over both sets Ui and Zi and the 
interaction inputs are treated as free variables. 
 Let β in B be given; let )(ˆ,),(ˆ1 ββ Nzz L be the 
interaction inputs required by the infimal controllers to 
achieve the local optimum, let )(,),(1 ββ Nzz L  be the 

interaction inputs that occur if the controls  )(ˆ)(ˆ 21 ββ uu L  
are implemented. The overall optimum is achieved if the 
actual interaction inputs are precisely those obtained by the 
local optimization for each subsystem; i = 1,..,N [1], so that 
 

)()( ββ ii zz =)  (3) 
    

If the Interaction Balance Principle applies, the supremal 
control action is to find β in B such that 0)()( =−= ββε iii zz)  

0-7803-9419-4/05/$20.00 ©2005 IEEE



),( 2111 εεββ = ),( 2122 εεββ =
C0 

C1 C2 

P1 P2 

2ε1ε

- -
)(1 βz )(2 βz

)(ˆ1 βu )(ˆ2 βu

)(1̂ βz )(ˆ2 βz

for all subsystems. 
 Fig. 1 shows the application of Interaction Balance 
Principle for coordination of two sub-problems. 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Now, the remainder is to decompose the overall 
optimization problem into several sub-problems and 
coordinate sub-problems to gain the overall answer. 
 Suppose we have a general nonlinear system described by 
the following state space equation. 
 

( ))(),()1( kukxfkx =+  (4) 

where x  is the state vector, u  is the control input vector 

and f  is a continuously double differentiable analytical 
vector function. 
 The problem is to find u  which minimize the cost 
function given by 
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In this equation, Gk is a general nonlinear scalar function 

of its arguments. 
 

III.   DECOMPOSITION OF THE OVERALL PROBLEM 
 Let assume that the overall system is a combination of N 
interconnected subsystems and each subsystem has a state 
space equation as below: 
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where ix  is the state vector, iu  the input and iz  is the 
interaction input of the ith subsystem that is assumed to be a 
nonlinear function of the other subsystems state vector. 
 

( ))()( kxHkz ii =  (7a) 
  

In Goal Coordination method, it is necessary for function 

Hi  to be separable, i.e. 
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 The interaction relations, which can be shown as 

( ))()( kxHkz =  are considered to be constraints for 
optimization problem (5), so we can define the Lagrangian 
as 
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In this equation,β s are the Lagrange multipliers which 

are used as coordination parameters in Goal Coordination 
method. 
 Lagrangian (8) can be change into N separated 
Lagrangian for each subsystem. i.e. 
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 In each subsystem, the problem is to solve the following 
problem with known β  coming from the high level 
coordinator 
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and in the second level the problem is to update the 
coordination parameters,β , such that the interaction errors; 

( ))()( kxHkz ii − , become zero [1]. 

 
IV.   OPTIMIZATION OF THE FIRST LEVEL 

 In the first level the problem is to solve the optimization 
problem described in (10), by assuming constant known 
values of β  from the second level. So by adding the 
following term 
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                                                              (11) 
to the Lagrangian, the new Lagrangian can be written as 
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Fig. 1   Application of Interaction Balance Principle for 
coordination of two sub-problems 



 To solve this problem, an algorithm based on optimality 
necessary conditions can be used as below [10]: 

1. Choose initial values for )0(iu to )(nui , and 

)0(iz to )1( +nz i . 

2. Use known 0ix  and values for )(kui  and )(kz i  

to compute the values of )1(ix  to )1( +nxi , 
using system’s state space equations. 

3. Calculate )(kiλ for k=n,n-1,…,0 backward in time, 
by using the following necessary conditions: 
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4. Calculate,
)(ku

L

i

i

∂
∂  and 

)(kz
L

i

i
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∂  using )(kxi  and 

)(kiλ . 

5. Update, )(ku i  and )(kz i by relations given 
bellow: 
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else go to step (2). 
 
V. COORDINATION USING THE GRADIENT OF ERRORS 

 In the second level the goal is to update β , in order to 
decrease the interaction errors defined as 
 

( ))()()( kxHkzke iii −=  (15) 
 In old methods of coordination, gradient of overall 
performance function was used for coordination [3],[4]. In 
this paper, gradient of interaction error is used for 
coordination. This method first proposed by Sadati [6]-[8], 
has faster convergence rate than previous ones. 
 Because the gradient of interaction error is used for 
coordination, we should find the gradient of interaction error 
related to the coordination parameters. 
 Let )(kxi , )(ku i , )(kz i  and )(kiλ  be the optimum 

values provided by the first level with previous β . These 
values satisfy the necessary optimality conditions at the first 
level. i.e. 
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 Now the necessary conditions in (16), can be shown by 
the following equation 
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 Now, by consideration of small variations in w  and β , 
the following equations result from (19) 
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The interaction error vector can be defined as 
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 In these equations, 

β∂
∂z  and 
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∂w . For a detailed calculation of βwL  and wwL , one 

can refer to [8]. 
 The sum-squared error is also given by 
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 So, the coordination parameter,β , can be updated by the 
following equation 
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 In this equation, η  is the step length and l is the iteration 
index. 
 Now by using the following algorithm, optimization of 
large-scale dynamic systems using Interaction Balance 
Principle and gradient-based coordinator is possible. 

1. Start with initial values for coordination parameters. 
2. Solve the first level optimization problems with 

these known coordination parameters using gradient 
method and calculate ix , iu , iz  and iλ . 

3. Calculate the interaction errors and the gradient 
matrix by  (25a) and (23). 

4. Update β  by  (28). 
5. Calculate the sum-squared error. If it is smaller than 

a desired value terminate the algorithm, else go to 
step (2). 

 This two-level algorithm can be shown as block diagram 
in Fig. 2. 
 

VI.   SIMULATION RESULTS 
 As a system for simulation, similar to Part I, a system 
composed of 4 connected water tanks is chosen [9]. This 
system is shown in Fig. 3. 
 Choosing [ ]Thh 21  as 1h  and [ ]Thh 43  as 2h , the 
discrete time state space equations for this system can be 
given as 
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 The unknown parameters of the above equations are 
listed bellow : 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 2    Two-level Coordination based on gradient of interaction error 
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Fig. 3   Connected 4 water tanks 
 
 Now, the goal is to move the water height of all the tanks 
to 1m., so that a cost function like (30) is minimized. 
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 This problem is solved by the proposed two-level method 
using both the old and the new methods of coordination. 
 For comparison of the two coordination methods (old 
method and the new coordination method based on the 
gradient of errors), sum-squared of interaction errors is 
computed and shown in Fig. 4. As it can be seen, the new 
approach has faster convergence rate than the classical 
method. 
 Optimal inputs and states, computed by this new two-
level method, are shown in Figs. 5 and 6, which also show 
the stability of the system. 
 For showing the capability of the new two-level method, 
the problem is also solved by a centralized approach. The 
differences between the solutions are depicted in Fig. 7. The 
small values of errors show the capability and optimality of 
the new two-level method. 
 

VII.   CONCLUSION 
 In this paper, a new two-level method has been used for 
optimal control of large-scale systems. In this approach, the 
first level optimization problems are solved using an 
iterative gradient based method and in the second level, a 
coordinator uses the gradient of coordination errors to update 
the coordination parameters. As it is seen, the new approach 
has faster convergence rate than the classical Goal 
Coordination approach. 
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Fig. 5   Optimal inputs computed by the new two-level method 
Fig. 2   Coordination errors for both coordination methods (solid: 
New gradient based approach, dashed: Classical coordination method)
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