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Abstract:  this work presents a control engineering perspective of ethanol production from 
biomass. The bacterium Zymomonas mobilis represents an important microorganism used for 
this purpose but it makes the fermentation process presents high nonlinearities. Last years this 
continuous fermentation process has been studied and several state estimation and linear and 
nonlinear control tools have been developed. 
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1. INTRODUCTION 

World energy consumption is increasing due to a 
burgeoning growth of human population and increase in 
prosperity, especially in the less developed countries. In 
recent years, the use of renewable sources as 
hydropower, geothermal energy, energy from biomass, 
wind energy (waves energy) and solar energy; for 
energy production has gained great attention due to 
limited reserves of traditional non-renewable energy 
sources, well know as fossil fuels. Growing attention 
has been devoted to the conversion of biomass into fuel 
ethanol considered the cleanest liquid fuel alternative to 
fossil fuels. Significant advances have been made 
towards the technology of ethanol fermentation. 
Biomass is seen as an interesting energy source for 
several reasons. It is mainly because bioenergy could 
contribute in search of a sustainable living. Resources 
are often locally available, and the conversion into 
secondary energy carriers is feasible without high 
capital investments. One of the most immediate and 
important applications of biomass energy systems could 
take place in the fermentation of ethanol from several 
kinds of substrates. Lignocellulose products are part of 
the set of the most important renewable energy 
resources and their consumption have been increasing 
in recent years because of the development of new 
technologies designed and implemented for the use of 
vegetal and agroindustry residues for energy production 
(ethanol or biodiesel). So far, the main biological 
processes that could be used for production of liquid 
energy carriers are fermentations for production of 
ethanol, and a mixture of acetone, butanol and ethanol 
(ABE). Moreover, biomass energy can play an 
important role in reducing greenhouse gas emissions 
since CO2 that arises from biomass wastes would 

originally have been absorbed from the air; however, 
the use of biomass for energy offsets fossil fuel 
greenhouse gas emissions. Furthermore, since energy 
plantations (taking into account the fact of preserving 
the environment at first and keeping the energy source 
too) may also create new employment opportunities in 
rural areas, and allowing that it also contributes to the 
social aspect of sustainability. In addition, application of 
agro-industrial residues in bioprocesses not only 
provides alternative substrates but also helps to solve 
their disposal problem. With the advent of 
biotechnological innovations, mainly in the area of 
enzyme and fermentation technology, many new 
avenues have opened for their utilization. (Karakashev 
et al, 2007) Nearly all fuel ethanol is produced by 
fermentation of corn glucose in the US or sucrose in 
Brazil, but any country with a significant agronomic-
based economy can use current technology for fuel 
ethanol fermentation (Karashev et al, 2007). This is 
possible because, during the last two decades, 
technology for ethanol production from nonfood-plant 
sources has been developed to such an extent that 
large-scale production will be a reality in the next few 
years. Therefore, agronomic residues such as corn 
stover (corn cobs and stalks), sugarcane waste, wheat 
or rice straw, forestry, and paper mill discards, as well 
as the paper portion of municipal waste and dedicated 
energy crops—collectively termed “biomass”—can be 
converted into fuel ethanol. Many proposals are mooted 
to generate ethanol from lignocellulosic biomass, but 
they are not yet at full scale applications.  

Respect to microbiology, the desired traits in a 
microorganism for commercial ethanol production are 
broad substrate utilization (ability to use both hexoses 
and pentoses for fermentation), high ethanol yields and 



productivity, tolerance to inhibitors presented in the 
hydrolysates and high ethanol tolerance, cellulolytic 
activity and ability for sugar fermentation preferably at 
high temperatures (for less contamination and 
decreased cost for ethanol recovery through 
distillation). Traditional microorganisms used in 
fermentation are the Saccharomyces cerevisiae and 
some bacteria like Thermoanaerobacter, and others 
genetically modified through recombinant DNA 
technology. A promising ethanol producer is the 
bacterium, Zymomonas mobilis, which reaches ethanol 
yields close to the stoichiometrical value of 0.51 g 
ethanol/g glucose (Lynd et al. 1996). These yields are 
the highest yields reported in the literature. 
Furthermore, Z. mobilis has a higher optimal 
temperature than S. cerevisiae which reduces the cost 
of cooling during fermentation (Claasen et al. 1999). 
The main disadvantage of the native strains of S. 
cerevisiae and Z. mobilis is their inability to utilize 
pentoses (xylose, arabinose). These microorganisms 
have the advantage of tolerate the high temperatures 
for the fermentation. The advantages of ethanol 
fermentation at elevated temperatures include high 
productivities and substrate conversions, low risk of 
contamination, facilitated product recovery, 
high¬reactor efficiency and utilization of a wide range of 
substrates.  

The paper is organized as follows: Section 2 presents 
the importance of the ethanol production from 
fermentation. In Section 3 the fermentation process 
from Zymomonas mobilis bacteria is presented.  Next, 
in Section 4 a control engineering perspective is 
developed, whereas Section 5 the conclusions are 
stated. 

 
2. ETHANOL FROM FERMENTATION IMPORTANCE 

 
Although procedures for the energy saving will be 
introduced in the near future; it goes without saying that 
the global demand for energy is expected to increase. 
From an environmental point of view, the best solution 
to meet the increased energy demand is the utilization 
of renewable sources such as biomass. High oil prices, 
increasing focus on renewable carbohydrate-based 
feedstocks for fuels and chemicals, and the recent 
publication of its genome sequence, have provided 
continuing stimulus for studies on Zymomonas mobilis. 
However, despite its apparent advantages of higher 
yields and faster specific rates when compared to 
yeasts, no commercial scale fermentations currently 
exist which use Z. mobilis for the manufacture of fuel 
ethanol. This may change with the recent 
announcement of a Dupont/Broin partnership to develop 
a process for conversion of lignocellulosic residues, 
such as corn stover, to fuel ethanol using recombinant 
strains of Z. mobilis. A review of (Rogers et al, 2007) 
addresses opportunities offered by Z. mobilis for higher 
value products through its metabolic engineering 
modifications and use of specific high activity enzymes. 

Previous works (Echeverry et al, 2003, 2004)(Quintero 
et al, 2004, 2005, 2007, 2008a, 2008b, 2008c, 2008d) 
about Z. mobilis microorganism allow us to take another 
look at review the dynamic behavior of the bacteria to 
establish the features to use it as ethanol producer, 
taking advantage of the natural properties and with the 
aim to reach the optimum point of productivity.  
 
From estimation and control perspective the knowledge 
of this microorganism is a challenge, and in future, it will 
carry us to analyze the possibility to use Z. mobilis in 
medium and large scale fermentations. Many reports of 
oscillatory behavior in continuous fermentation may be 
found in the pertinent literature (Chi et al. 1974, Chi e 
Howell 1976; Borzani 1977; Jöbses et al. 1986, 
Ghommidh et al. 1989; Daugulis et al. 1997; McLellan 
et al. 1999; Beuse et al. 1999; Menzel et al., 2000, 
Pinheiro, 2001; Andersen et al., 2001). Most of the 
oscillatory phenomenon is associated with 
Saccharomyces cerevisiae and Zymomonas mobilis. 
The oscillation occurrence may favour to the ethanol 
production rate in creasing or disfavour the possible 
control strategies with appropiated results to the 
fermentative processes. In such conditions the 
microorganism may be under stress and produces a 
secondary metabolite or inhibit the formation of a 
primary metabolite. The most developed mathematical 
model was proposed by Li et al. (1995). The author’s 
studies revealed that the Zymomonas growth is 
influenced by the ethanol concentration rate history 
instead of cell concentration history. An interesting 
feature of Zymomonas mobilis is that its specific growth 
rate is negative affected by the ethanol concentration 
and in at least one of these fermentations, ethanol 
concentration is higher when a higher glucose 
concentration feed is used. Ethanol concentration 
remains constant during the feeding period no matter 
what Substrate feeding value is when Doubling time 
(defined as interval after which the inlet flow rate is 
duplicated in fedbatch fermentations) is 0.5 hours. 
Respect to the reaction of Z. mobilis against substrate, 
inhibition effect due to the glucose concentration is not 
as important as that due to the ethanol concentration. 
As soon as this concentration differs from zero, the 
specific growth rate reduces and for values close to 
Ethanol maximum (34.67 g/l) the bacteria grow at very 
low specific rates. The glucose yield to biomass and to 
ethanol is negatively affected by glucose accumulation. 
Thus, the productivity of Z. mobilis fed-batch 
fermentation depends on the feeding strategy.  The 
experiments (Bravo et al, 2000) have also shown that 
ethanol synthesis is growing rate associated. Because 
of this a feeding strategy designed to keep the culture 
growing at constant high rate could improve the ethanol 
productivity. To design feeding strategies and dynamic 
actions to improve the Z. mobilis performance, some 
authors have been developed models to explain the 
dynamic behavior of Z. mobilis (Daugulis et al, 1999) 
(Bravo et al, 2000) (Echeverry et al, 2004) (Rogers et 
al, 2007), fixed some model parameters (Raposo et al, 



2005) and estimated some biotechnological variables 
(Quintero et al, 2004, 2005, 2007). It means that Z. 
mobilis has been an important research topic, looking 
for its possible implementation in large scale ethanol 
production.  
 

3. FERMENTATION PROCESS FROM Z. mobilis 

 
As outlined in the earlier reviews, wild-type strains of Z. 
mobilis (and their mutants) can convert simple sugars to 
ethanol at faster rates and higher yields compared to 
yeasts. However, the ethanol industry has traditionally 
used yeasts, and in spite of the apparent advantages of 
Z. mobilis, there appears to be little incentive for change 
with sugar and starch-based raw materials. Some of the 
reasons lie in the concerns that Z. mobilis may be less 
robust than yeast and more susceptible to 
contamination in large-scale processes, as well as the 
lack of ethanol industry experience with large-scale 
bacterial fermentations. In addition, an established feed 
market exists for the high protein yeast by-product (as 
dried distiller’s grains) and any new market for a high 
protein by product from a Zymomonas process would 
need to be established. The key issues and alternative 
capabilities are presented as follows. Experience with 
large-scale recombinant bacterial fermentation could 
provide a future platform well for an increased range of 
higher value products generated via the metabolic 
engineering of micro-organisms such as Z. mobilis 
which are capable of both rapid and highly efficient 
sugar metabolism. Some important features of the 
bacteria are the following:  
 
• Considerably faster specific rates of sugar uptake 

and ethanol production (specific rates 2–3 times 
faster than yeasts).  

• Higher ethanol and lower biomass yields compared 
to yeasts due to different carbohydrate metabolism 
(Entner–Doudoroff vs. glycolytic pathway).   

• Higher reported productivities (120–200 gL–1h–1) in 
continuous processes with cell recycle (maximum 
reported values for yeasts are 30–40 gL–1 h–1).  

• Simpler growth conditions. Z. mobilis grows 
anaerobically (not strict anaerobe) and does not 
require the controlled addition of oxygen to maintain 
cell viability at high ethanol concentrations.  

• Ethanol tolerance comparable is not better than 
yeasts. 

• Ethanol concentrations of 85 gL–1(11% v/v) reported 
for continuous culture and up to 127 g L–1 (16% v/v) 
in batch culture.  

• Laboratory scale studies with strains of Z. mobilis 
over many years in controlled fermentations (pH = 
5.0, T = 30 ◦C) have not revealed any significant 
contamination or bacteriophage infection problems.  

 
The wide range of techniques developed for the genetic 
manipulation of bacteria (such as Escherichia coli) can 
be applied to developing recombinant strains of Z. 
mobilis and/or their metabolic engineering. Integrant 

recombinant strains of Z. mobilis available for efficient 
ethanol production from glucose, xylose and arabinose. 
Ethanol concentrations above 60 g L–1 in 48 h reported 
for medium containing 65 gL–1 glucose, 65 gL–1 
xylose. Sequencing of ZM4 genome now provides 
information for its metabolic engineering for additional 
higher value products (e.g., succinic acid). Potential for 
use of its enzymes for fine chemical biotransformations. 
The greatest difficulty for the commercial production of 
such enzymes is the low cell yield of Z. mobilis which is 
typically 0.02–0.03 g g–1 substrate sugar, compared to 
cell yields close to 0.5 g g–1 for many aerobically grown 
microorganisms. 
 

4. CONTROL ENGINEERING PERSPECTIVE 

 
4.1 Process:  
 
Fermentation process can be carried in batch, fed batch 
and continuous process (see Fig. 1). The purpose of 
fed batch cultures is control the nutrient concentration 
and to extend the productive phase of the batch 
process. Fed batch production of the desired metabolite 
is generally characterized by the relationship between 
cell growth and nutrient consumption, the dependence 
of the desired metabolite synthesis dynamics on the 
feeding nutrient concentration, and the increase in the 
culture volume. For the production of growth associated 
products, the synthesis rate is a function of the specific 
growth rate. In this case the interest is to feed the 
fermentor in such a way that the specific growth rate 
remains constant. An example of this is the production 
of hepatitis-B surface antigen by Saccharomyces 
cerevisiae. For example, in the case of Z. mobilis CP4 
fed batch fermentations carried out using flow rates 
higher than 0.11 l/h. In fed batch fermentations 
substrate concentration will increase if its addition rate 
is higher than its uptake rate (Bravo et al, 2000).  
 

 
Figure. 1 Continuous fermentation process scheme 
 
The main disadvantage of the native strains of S. 
cerevisiae and Z. mobilis is their inability to utilize 
pentoses (xylose, arabinose). One of the possible 
disadvantages of Z. mobilis is that it has a limited 
carbon substrate range, as it can only use the simple 
C6 sugars glucose, fructose and sucrose. As a result 
early studies on its genetic manipulation focused on 
extending its substrate range for ethanol production.  
 



Zymomonas mobilis that reaches ethanol yields close to 
the stoichiometrical value of 0.51 g ethanol/g glucose 
(Lynd et al. 1996). These yields are the highest yields 
reported in the literature. Furthermore, Z. mobilis has a 
higher optimal temperature than S. cerevisiae which 
reduces the cost of cooling during fermentation 
(Claasen et al. 1999). On the other hand, the 
continuous alcoholic fermentation process of Z. mobilis 
can provide high ethanol performance, but it has an 
oscillatory behavior on the state variables of the 
process. From the control perspective, it represents a 
challenge due to the difficulties to measure some of 
these states with the aim to be used as feedback 
signals. A model of the process (Oliveira 2005; 
Daugulis et al. 1997; Tano et al. 2000) is represented 
by the following differential and algebraic equations: the 
change in biomass concentration can be obtained from 
(Daugulis et al. 1997), by a set of algebraic 
considerations and working with the defined flows in 
(Echeverry et al.  2003), the biomass term will be 
expressed as function of D, which is the total dilution 
rate. The total dilution rate is Ds + Dr, where Dr is the 
dilution rate associated to biomass recycle R and 
substrate dilution rate Ds.  
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where µ  is the specific speed growth. The change in 
substrate concentration is given by, 
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where Yp/s is the substract/product performance 
coefficient, Qp is the specific ethanol production rate, D 
is the total dilution rate, and Sin is the substrate 
concentration on the input flow.  The change in product 
concentration is given by 

p
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The weighted average of the ethanol concentration rate 
is, 
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                      (4) 
where β  is a weighted historic parameter for the 
ethanol concentration rate and I is an intermediate 
variable auxiliary for the inhibition effect determination: 
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For further information about the physical meaning of 
inhibition variables see (Daugulis et al. 1997) 
(Echeverry et al, 2003). The dynamic effect of the 
ethanol concentration rate on the biomass growth is 
given by, 
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where δ  and λ  are the parameters associated with the 
inhibition factor of the ethanol concentration rate. 

The biomass growth rate is given by, 

 
( )

max 1 1
a b

ob

ma mb ob

i
s

i i

P PP
S

P P P
e

S S S
K S

K S

µ

µ

      −
   − −      −      =

−
+ +

−

         (7) 

where maxµ is the maximum value of the specific growth 
speed, Pma and Pob are factors of the ethanol inhibition 
for the specific growth rate expressed in (g/L), Pmb is 
the factor related to the maximum ethanol inhibition for 
the cells growth expressed in (g/L), a and b are 
inhibition exponents for the ethanol production rate, Ks 
is the substrate saturation coefficient, and Ki is a 
substrate inhibition. The following conditions are 
considered: 
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The dynamic growth speed is defined by:  

 *f eµ µ µ=                                                 (9) 
And finally, the specific rate to the ethanol production is 
given by: 
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For this process, it is very important to reach an 
accurate estimation of the non-measurable system 
states with the purpose of using them for control. 
Differences between reported and estimated parameter 
values in the mathematical model would be due to the 
different Z. mobilis strain and he culture conditions (pH 
and temperature) used in fermentation runs. Reported 
parameters set are in the work of (Daugulies et al, 
1997)(McLellan et al, 1999)(Bravo et al, 
2000)(Echeverry et al, 2003)(Raposso et al, 2005). 
Model can be used to define those feeding strategies 
that improve the system productivity. From the kinetics 
proposed, in which the specific growth rate is negatively 
affected by the ethanol concentration that increases 
during the process, a constant glucose concentration in 
the culture would not result in a constant specific growth 
rate. 
 
4.2 Information availability 
 
Into the bio process field, there is a lack of real 
information of chemical and biological variables such 
as: biomass concentration, specific bacterial activity, 
intermediate products concentration among others. 
Frequently, these variables constitute the states of the 
bio process and they are very important for its 
monitoring and control. The observer or a state 
estimator choice depends inherently on the particular 
problem specifications. In practice, this choice is mainly 
influenced by the availability of a sufficiently 
representative model of the process, and the reliability 
of experimental data. When an adequate model is 



available, an Extended Kalman Filter (EFK), High Gain 
observers or several estimators that use the model of 
the process (generally based on first principles) to do 
the estimation of variables can be used. On the 
contrary, if a model is not representative enough, 
asymptotic observers can be developed, whose 
dependency of the model is not too strict, but their 
convergence depend on the operation conditions. 
Besides, observers based on artificial intelligence, for 
example neural networks and fuzzy logic can be 
implemented. These observers are built as black box 
models. In general, when the priori knowledge about the 
plant or the model is incomplete, different techniques of 
approximation may be used, looking for the state 
estimation from the data information input/output. In the 
literature, several proposes for the state estimation on 
bio process can be founded, the most representative 
ones are: the work of (Dochain, 2002), (Dochain,  
2003), (Boillereaux and Flaus, 2000), (Leal, 2001), 
(Adilson and Rubens, 2002) and finally ref  (Rallo et al, 
2002). 
 
The Zymomonas mobilis micro-organisms show a 
highly non linear and oscillatory kinetic behaviour; 
besides, some states of the process are difficult or 
impossible to measure, they are: biomass concentration 
and intermediate variables that represent the rate of 
ethanol production and to determine the inhibition 
effect. In (Quintero et al, 2004) and (Quintero et al, 
2005), the possibility of to use the Kalman filter and the 
extended Kalman filter, to do the estimation of the 
biomass concentration into this fermentation was 
explored. As a result, the estimations obtained were not 
satisfactory due to the strong non linearity present in all 
the process states. In general, the optimum filtering 
techniques are used to do the estimation of the states of 
a dynamic system whose inputs and outputs are 
observed by measurements disturbed by noise. 
“System states” is defined as the minimum 
requirements of information in time that in conjunction to 
the inputs value defined in all time from t≥t0; allow 
determining the behavior of the system to any time t≥t0.  
The measurements are in general uncertain, because of 
that, they are called “measurements noise” and, even if 
the real states of the system are known, the 
measurements are not a deterministic function of the 
states mentioned, and they have a random component.  
In this context, the time evolution of the states is 
modeled through a dynamic system perturbed by a 
stochastic process (state noise), by using a stochastic 
differential equation. The noise or states disturbance is 
incorporated into the model to represent the 
uncertainties of the dynamic system, and it can be not 
only from random nature, but also signals or dynamics 
not considered in the model. In accordance with the 
Bayesian paradigm, the solution of the optimal filtering 
problem in time consists in to obtain the conditional 
probability distribution of the states, respect to the 
observations available information until time. 
Specifically in this work, variations of a bayesian 

recursive filter SIR (Sampling Importance Resampling) 
are developed, and different resampling schemes were 
applied to reduce the effect of the “sampling 
Impoverishment” 15, (Doucet et al, 2001), (Doucet et al, 
2006), (de Freitas, 2001) . 
 
The application of this technique over the bio process is 
justifiable due to the high non linear features of the 
fermentation, its non Gaussian statistical features and 
as previously mentioned, other estimation techniques 
applied did not give us satisfactory results. In addition, 
the random nature of biochemical reaction at the 
molecular scale has been mentioned and studied by 
many authors, see (Gillespie, 2000). At a macroscopic 
scale, (Kutz, 1987) modeled the overall effect of these 
individual reactions on the global concentrations, by an 
additive noise term of variance proportional to the 
reaction kinetics. In this context, the state (Biomass, 
Substrate, Product and also the inhibition variables) is 
then a Markov process satisfying the Langevin chemical 
equation (Johannides et al, 2005). All the previously 
mentioned features make the bio process an attractive 
application to the use of non linear filtering tools for the 
state observer design. 
 
In previous works, some techniques for state estimation 
in Z.m have been explored. The work of Quintero et al. 
(2004) presented a control scheme in closed loop with a 
virtual sensor based on a fuzzy model. The estimator 
performs well in simulation, in spite of that, it is not 
reliable, and its performance depends on the data used 
for training. After that, Quintero et al. (2005) used the 
Kalman Filter and Extended Kalman Filter for the same 
purpose. These results are less representative than 
those presented in Quintero et al. (2007), Quintero et al. 
(2008a), Quintero et al. (2008d); even if they are 
obtained in simulation, by the use of models developed 
and validated with real data by (Raposso et al. 2005). 
Those works present a state estimator for a continuous 
bioprocess. To this aim, the Non Linear Filtering theory 
based on the recursive application of Bayes rule and 
Monte Carlo techniques was used. Recursive Bayesian 
Filters of Sampling Importance Resampling (SIR) had 
been employed, including different kinds of resampling. 
An important remark is that the filter follows the model 
properly, and as approach to the real problem, the 
performance to online implementation was tested. The 
modeled dynamics were according to the real behavior 
and the robustness against disturbances of modeling 
and uncertainties was shown in simulation. It was 
necessary to apply the SMC Particle Filtering 
methodology to the assumption of a sampled data 
model for the SDE´s; this way, the set of equations are 
posed as a new and improved model that includes 
uncertainties and disturbances. SIR Filters are 
satisfactory, but even if this is a novel application of the 
SMC, it may require a more advanced SMC method to 
the real data problem solution (Briers et al. 2004, 2005; 
Briers 2006). Figures 2 and 3 show the particle filter 



performance obtained with real sampled data, complete 
results to be published. 
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Figure 2. Estimator Performance: The dotted line 
describes the estimated biomass concentration [g/L] by 
the SIR filter and the solid line describes the value from 
real data [g/L] interpolation. The second test was 
performed with deviation of the mean in diffusions 
terms. 
 
4.3 Control Strategy 
 
Biochemical engineering is concerned with the industrial 
production of biologically based products such as foods 
and beverages, pharmaceuticals, commodity, and 
especially agricultural chemicals. The biochemical 
manufacturing industry is rapidly growing due to 
dramatic advancements in biotechnology and the high 
value of biochemical products such as pharmaceuticals 
(Lee, 1992). Process control has played a rather limited 
role in the biochemical industry as the economic 
incentive for improved process operation is often 
dwarfed by costs associated with research and 
development. This situation is likely to change with the 
expiration of key patents and the continuing 
development of global competition. Another obstruction 
to process control has been the lack of on-line sensors 
for critical process variables. While this will remain an 
important issue for the foreseeable future, recent 
advancements in biochemical measurement technology 
make the development of advanced process control 
systems a realistic goal. These trends suggest that 
biochemical processes will emerge as an important 
application area for control engineers (Daoutidis, and 
Henson., 2002).  
 
In the literature, the use of benchmark of a continuous 
fermentation process by the use of models with 2 state 
variables has been registered. The state variables like 
Biomass and Substrate, in conjugation with growth 
rates equations that couple theses variables, make the 
models mentioned presents high non linearities. 
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Figure 3. Filter estimation performance. The dotted 
lines represent the dynamics of Inhibition variables Z 
and I estimated by the SIR filter while the solid lines are 
the modelled dynamics of the system, considered as 
real for estimation purposes. 
 
Also, the complex dynamics of bio reactors have been 
researched, for the design of different non linear 
stabilizant control techniques. These have been applied 
to relatively simple continuous fermentation process, 
using to reach this aim, the linear as reference to non 
linear methods. Bio reactors control has been studied 
by many researchers, including the schemes based on 
adaptive control (Aguilar, R. et al, 2001), optimum 
control and Neural Networks control (Onder et al, 1998). 
Nevertheless, the investigations in this field remain in a 
latent stage and it seems that its needed long time to 
find a control scheme well developed to be 
implemented into practical bio reactors with high 
performance. The present work fronts the challenge to 
control a continuous fermentation process in which a 
micro organism with high kinetic complexities is used. It 
makes that, as the modelled system presents highly 
non linear dynamics, the process become very hard to 
control. Continuous bio reactors are critical unit 
operations in a wide variety of biotechnological 
processes. While they can be viewed as chemical 
reactors, bio reactors offer unique modelling and control 
challenges due to the complexity of the underlying 
biochemical reactions and the distributed properties of 
the cell population. Most of the chemical processes are 
non-linear in nature. The dynamic behaviour of 
continuous bio reactors can be strongly affected by 



variations between individual cells that are captured 
only with cell population models (Wang et al, 2005).  
From control perspective, for effective control and 
operation of nonlinear process, low dimensional linear 
models are highly desirable. It is not always possible to 
represent a non-linear process by a single linear model. 
Consequently, a multiple model approach has attracted 
increased attention in recent years applied to a variety 
of areas (Murray-Smith and Johansen, 1997). In the 
conventional multiple model approach, a complex, non-
linear model is reduced to a set of localized, linear sub-
models. The overall model is the weighted combination 
of the local models (Shorten et al, 1999); these results 
can be too much conservative (Bartholomaus, 2001). 
The previously mentioned approximations to the control 
problem solution are all valid, but we are looking for a 
more simple, understandable, feasible and easy to 
generalise solution into bio process field. 
 
Consequently, we proposed to use numerical methods, 
not only to simulate the evolution of fermentation 
process, but also to find the control actions that allow 
state variables to go from current state to the desired 
next one. The result is that controllers for Substrate and 
Product concentration are obtained; later a Biomass 
controller is developed. In (Quintero et al, 2008b), 
(Quintero et al, 2008e), two controller based on 
Numerical Methods were built for their application on a 
continuous alcoholic fermentation process from 
Zymomonas mobilis bacteria.  The control structures 
can be designed and implemented without great 
difficulty, because standard algebraic-numerical 
techniques are used. Simulation results of the 
developed controller designed for a Z.m continuous 
fermentation have been also addressed. Through the 
analysis of these experiments, it can be concluded that 
the trajectory error between the desired and the real 
trajectory of the fermentation is very small. We conclude 
that the proposed methodology is quite simple for 
selecting the parameters of the controller in order to 
achieve a good performance of the system. This 
methodology for the controller design can be applied to 
other types of systems. The required precision of the 
proposed numerical method for the system 
approximation is smaller than the one needed to 
simulate the behavior of the system. Thus, the 
approach is used to find the best way to go from one 
state to the next one, according to the availability of the 
system model. Real data trajectories showed that the 
controller is feasible and can be easily implemented 
with control actions bounded to the needed 
specifications of the real process. The term of recycle 
(R) added in this controller represents the likelihood to 
use biomass recycle as a control variable for continuous 
fermentation, and improves the dynamic behavior. 
Figures 4, 5 and 6 show the controller behavior. 
 
The first contribution of those works is that complex 
calculations to get the control signal are not necessary; 
it makes this solution an easily implementable answer 

to the control challenge (Scaglia, 2006), (Scaglia et al, 
2006), (Scaglia et al, 2007). Finally, in Quintero et al, 
2008c, a close loop with a recursive Bayesian State 
Estimator and a controller based on Numerical Methods 
was built, for a Zymomonas mobilis continuous 
alcoholic fermentation process.  The set point was 
selected according to the real behavior of bacteria and 
by following the purpose of maximizing its productivity. 
Another important remark is that the initial conditions 
used to simulate the Z.m oscillatory open loop behavior, 
correspond to real data. To test the controller 
performance against disturbances, a scenario 
composed by a set of extreme additive disturbances in 
input flows was generated. In the literature it is cited 
that a frequent source of disturbance in this kind of 
systems is an augmenting or decreasing of input flow 
(or in Batch systems, constants parameters with 
variations decreasing Batch to Batch). 
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Fig. 4 Simple Controller performance by the use of Real 
data based trajectory. Against disturbances in times 30 
and 90 hours. Recycle fixed at 10%. a. Glucose 
concentration. 
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Fig. 5 Simple Controller performance by the use of Real 
data based trajectory. Against disturbances in times 30 
and 90 hours. Recycle fixed at 10%. a. Substrate and 
Product time evolution. b. Ethanol concentration. 
In order to be close to the real behavior of a controller 
implemented on line, an experimental trajectory was 
selected (Raposso et al, 2005), and as study case, 
these experimental data were interpolated to obtain a 
continuous reference trajectory for Substrate and 
Product. The controller followed the pre defined 
trajectory very well, and corrects the inherent 
oscillations of the real fermentation. It was observed 
that, the application of the use of particle filtering as 
Biomass, and Inhibition variables estimator is 
acceptable, feasible and of viable implementation. The 
use of the estimation tool allows solving the problem of 
the lack of on line biomass estimation, and other 
important variables into a continuous process, due to its 
reliability and admissible computational cost to the real 
problem sample times. Its performance was satisfactory 
into the control loop. 
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Figure 6 Complex controller performance by the use of 
Real data trajectory. 
 

5. CONCLUSIONS 
 

Control engineering plays an important role in the 
biochemical industry. The nonlinearities presented in 
many biological and biochemical reactions allows to 
develop and improve several strategies of information 
availability and control such as state estimators and non 
linear controls. 
Fermentation process for ethanol production involves 
many of these nonlinearities and represents a current 
topic of study for many researches that look for the 
biofuels industry development.  
State estimation tools based in nonlinear filtering and 
nonlinear control based on numerical methods 
approach are an example of the contributions in this 
topic. 
Consequently, the control engineering approach 
presented represents an advance for bioprocess and 
biofuels industry development in global community. 
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