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Abstract– In this paper, a nonlinear predictive 

controller (NMPC) to control a unicycle-like mobile 

robot for trajectory tracking has been developed. A 

dynamic model of a PIONNER 3-DX mobile robot is 

used, where external forces and wheels sliding have 

been considered. Restrictions on control actions and 

system states are also considered. Simulations results 

at both tracking and regulation (positioning) are 

shown, these results show the good performance of 

the developed controller. Finally, this paper shows 

that the controller can be implemented in real-time 

by using an analysis of the calculating times of the 

NMPC algorithm. 
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I. INTRODUCTION
 

 

The trajectory tracking control for mobile robots is a 

fundamental problem, which has been exhaustively 

investigated by the scientific community. Several papers 

deal with the design of control laws for mobile robots 

considering their dynamic model, for instance in 

trajectory tracking (De la Cruz et al., 2006; Dong et al., 
2005; Albagul et al., 2004; Yang et al., 1999; Zhang et 
al., 1998). One of the first investigation results for this 

problem was dealt in Kanayama et al. (1990), where the 

author uses the Lyapunov theory to design the tracking 

controller. Nevertheless, this and other controllers do not 

take into account the restrictions in the control signals 

because it is a hard task to implement. 
 

Nonlinear predictive control (NMPC) is a most 

frequently used control-optimization technique in the 

industry. This methodology has been designed to deal 

with optimization problems considering restrictions. 

NMPC is an online optimization algorithm that predicts   

the system output based on the current states and the 

system model, it also finds a control feature in open loop 

by using numeric optimization and applies the first 

control signal of this optimized feature to the system. 
 

In model based predictive control, due to the use of 

the receding horizon, the stability analysis is one of the 

main problems (Peña, 2002). Previous papers have 

demonstrated that a finite receding horizon can 

guarantee NMPC stability even for nonlinear systems 

(Camacho et al., 1998; Peña, 2002), although this 

strategy is considered heavy due to its computational 

effort in practice. The NMPC stability analysis with 

finite receding horizon has been studied in Mayne et al. 
(2000) and Fontes (2001). Recently, the qualities of 

predictive control have been explored and applied to 

robotics, papers like Dongbing et al. (2006), Hedjar et 
al. (2005), Künhe et al. (2005) and Ramírez et al. (1999) 

show different approaches and strategies in MPC with 

good results for tracking control and regulation. This 

paper applies NMPC to a dynamic model of a mobile 

robot and makes an analysis of the calculating times 

used by the optimization algorithm so that it can 

implement the controller in real-time. 
 

The paper is organized as follows: Section II describes 

the NMPC algorithm and the programming schemes 

used. Section III shows the dynamic model of a mobile 

robot. Section IV shows the simulation results. 

Conclusions and future work are detailed in the last 

Section. 
 

II. PREDICTIVE NONLINEAR CONTROL  
 

A general deterministic nonlinear model at discrete 

time for a system can be expressed as, 
 

 ( ) ( ) ( )( )1 ,k k k+ =x f x v  (1) 

 ( ) ( )( )k k=y h x  (2) 

 

where x(k), v(k) and y(k) are the state vector, the control 

signal and the output system, respectively. 
 

Most of the MPC methods are based on a common 

scheme (Ramírez et al., 1999). A cost functional J is 

defined, which is often a quadratic function with the 

sum of the norms of future trajectory tracking errors, 
 

 ( ) ( ) ( )| | dk i k k i k k i+ = + − +e y y  (3) 

 

predicted over a prediction horizon N plus the sum of the 

norms of predicted increments in the control action, over 

a control horizon Nu, 
 

 ( ) ( )
2 2

1 1

1
uNN

i i
i i

k i k k i k
= =

= + + ∆ + −∑ ∑
Q R

J e vδ λ  (4) 

( ) ( ) ( )1k i k k i k k i k∆ + = + − + −v v v  



where, δi and λi are penalty sequences usually chosen as 

constants, yd(k+i) is the desired output and the notation 

y(k+i|k) means that y(k+i) is computed with known 

information at instant k. The future system outputs 

y(k+i|k) for i = 1, …, N, are predicted by using a process 

model from the inputs and outputs previous to the time 

instant k, and from the predicted future control actions 

v(k+i|k) for i = 0, …, Nu-1, which will be calculated. In 

addition, 
2

Q
x  is defined as 2 T=

Q
x x Qx  with 0>Q . 

 

In this way, J can be expressed as a function that only 

depends on the future control actions. The objective of 

predictive control is to obtain a sequence of future 

control actions [v(k), v(k+1|k), …, v(k+Nu-1|k)], so that 

the predicted outputs y(k+i|k), using the system model, 

are near to the reference yd(k+i|k) as possible, along the 

prediction horizon. This is obtained by means of 

minimization of J with respect to the control variables. 

After obtaining this sequence, a receding horizon 

strategy is used, which applies only the first control 

action v(k) computed. This process is repeated every 

sampling time.    
 

When nonlinear models are used, MPC depends on 

finding a solution for a nonlinear programming problem 

in every sampling step. To solve this problem it is 

necessary to do the optimization and to solve the system 

model. Both problems can be implemented by two 

different ways: sequential or simultaneously (Peña, 

2002). 
 

A. Sequential optimization algorithm 
 

In the sequential implementation, a solution at each 

iteration for the optimization routine is found. The 

controls are the decision variables, which are processed 

by the algorithm computing the model solution. Then, 

this solution is used to evaluate the objective function 

and the computed value is given to the optimization 

program. The optimization variable is, 
 

 ( ) ( ) ( )1 1
T

uk k k k N k = + + − z v v v⋯  (5) 

 

First, the functional must solve the system model 

using the vector values z and the current state x(k) 

applied N times to (1). In this way, the vector sequence 

( ) ( ) ( )1 2k k k k k N k + + + x x x⋯  is obtained, 

whereas with (2) the sequence output values 

( ) ( ) ( )1 2k k k k k N k + + + y y y⋯  are obtained. Then, 

the cost functional (4) is evaluated with these values. 
 

The cost functional J depends on the predicted 

outputs, which are based on the state vector and this 

vector is function of the control actions (optimization 

variables). Therefore, the outputs must be derived with 

respect to the control actions from k to (k+Nu-1) to 

obtain the functional gradient. This is complicated and 

not always has solution. Therefore, the sequential 

resolution has no gradient information and it must be 

obtained by using numeric differentiation, which is 

computationally negative, because this generates greater 

calculus cost and convergence problems.  
 

B. Simultaneous optimization algorithm 
 

Unlike the sequential solution, the simultaneous 

solution and optimization include the states and the 

controls of the model like decision variables. The model 

equations are added to the optimization problem like 

restriction equations. Then, the optimization variable 

results,  
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In other words, the states and control actions are 

considered like optimization variables. The dimension of 

this vector is (eN + pNu), which is bigger than the 

sequential approach dimension (pNu), where e and p are 

sizes of the state vector and control input, respectively. 

This requires a considerable increase in the optimization 

variable size in relation to the sequential approach.  
 

The model equations appear like equality restrictions 

as follows in (6), 
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In this approach, the gradient obtained by the analytic 

way is simpler, so that, the optimization algorithm can 

be incorporated in an explicit way. By using the 

functional in (4) and (7). The equality restrictions 

gradient is a disperse matrix (8). 
 

 

( )( ) ( )

( )( ) ( )

( )( ) ( )

( ) ( )
( ) ( )

( )

1

2

1

2

1 2

2 3

2 1 1

2 2 2

2

2 2 1

2 1 2 2

2 1

k

k

k N

u

T
d

T
d

T
N d

N u

k k k

k k k

k N k k N

k k

k k

k N

+

+

+

  + − +  
  + − +  
 
 
  + − +∇ =   
 ∆ − ∆ +
 

∆ + − ∆ + 
 
 
 ∆ + − 

x

x

x

G Q h x y

G Q h x y

G Q h x yJ

R v R v

R v R v

R v

⋮

⋮

δ

δ

δ

λ λ

λ λ

λ

 (7) 

 

 

( )

( )

( )
( )

( )

1 0 0

0 0 0

0 0 1

0 0 0

0 0 0

0 1 0 0

0 0 0 1

e e e e e e

e e e e e e e e

e e e e e e

e e e e e e e e

e e e e e e

e e e e e e

e e e e e e u

k

k N

k

k

k N

× × ×

× × × ×

× × ×

× × × ×

× × ×

× × ×

× × ×

 − + 
 
 
 
 

− + − 
 ∇ =
 
− 
 − + 
 
 

− + − 

I Fx

I

I Fx

R I

Fv

Fv

Fv

⋯

⋯

⋮ ⋮ ⋱ ⋮ ⋮

⋯

⋯

⋯

⋯

⋮ ⋮ ⋱ ⋮ ⋮

⋯

 (8) 



where ( ) ( )( )
( )

,

i

T

k i

k k

k
=

∂
=

∂
x

h x v
G

x
, ( ) ( )( )

( )

,

k i

k i

k k

k+

=

∂
=

∂
x

f x v
F

x
, 

( ) ( )( )
( )

,

k i

k i

k k

k+

=

∂
=

∂
v

f x v
F

v
, Iexe is the identity matrix with e 

dimension and  0pxe is a null matrix with pxe dimension.  
 

In small problems with few states and a short 

prediction horizon, a sequential approach is probably 

more effective (Peña, 2002). Generally, in big problems, 

a simultaneous approach is more robust, because it is 

less probable that it fails. In a sequential approach, the 

addition of restrictions to the states or outputs is more 

complicated. Besides such model restrictions, control 

actions restrictions, steady state restrictions, etc, can be 

added. 
 

III. DYNAMIC MODEL OF MOBILE ROBOT 
 

A system model is necessary to use an MPC strategy. 

This model will be used to predict the future position 

and orientation of the controlled system. 

 

 
Figure 1: Mobile robot PIONNER 3-DX 

 

A unicycle-like mobile robot experimentally validated 

by using PIONNER 3-DX robots in De la Cruz et al. 

(2006) will be used. A brief model is shown in Fig. 2 

and it is presented in (9). The model with more details 

can be seen in De la Cruz et al. (2006).  
 

 
 

Figure 2: Mobile robot unicycle-like model and its parameters 
 

The robot position is defined by [ , ]Th x y= , this point is 

located at a distance a from the rear axis centre of the 

robot, u and ū are the longitudinal and side speeds of the 

mass centre, ω is the angular speed and ψ is the 

orientation angle of the robot, G is the gravity  centre, B 

is the base line centre of the wheels, E is the  work tool 

placing point and C is the castor wheel placing point. 
 

From the model described in Fig. 2, the dynamic 

model of mobile robot is obtained as (De la Cruz et al., 
2006), 
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where the mobile robot parameters were validated in De 

la Cruz et al. (2006), these parameters are, 
 

1 2 3

4 5 6

0.24089        0.2424        0.00093603

0.99629        0.0037256        1.0915

θ = θ = θ = −

θ = θ = − θ =
 

 

Equation (9) can be wrote in a compact way as 

follows, 
 

 ( ) ( )( ) ( )( )t t t= +x f x g vɺ  (10) 

 

where ( ) [ ]ψ ω
T

t x y u=x  is the state vector of the 

system and ( ) [ ]ω
T

c ct u=v  is the control vector. 

 

The dynamic model of the mobile robot can be 

discretized by using any numeric approximation 

approach, for example Euler, in other words, 
 

 ( ) ( )1 0k k k kT+ = + +  x x f x g v  (11) 

 

where T0 is the sampling time and the vector of initial 

conditions is ( ) [ ]0 0 0 0 0 0ψ ω
T

t x y u=x . 
 

Equation (12) is the system output, 
 

 ( ) ( )( ) ( )k k k= =y h x Cx  (12) 

 

where C is a matrix of oe dimension (o is the state 

vector size). In this paper, the output equation is given 

by, 
 

 ( ) ( ) ( ) ( )ψ
T

k x k y k k=   y  (13) 

 

IV. SIMULATION AND RESULTS 
 

The maximal absolute values of linear and angular 

speeds of the mobile robot used in the simulations are 

0.5[m/s] and 0.745[rad/s], respectively.  
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A sampling time T0 = 0.1[s] was used for all 

trajectories and the prediction horizon used was N = Nu 

= 7. Furthermore, we set Q = diag[1, 1, 0.05], R = I 

(identity matrix) and δ = 28 and λ = 0.8. Linear 

reference speed was 0.25[m/s] for both reference 

trajectories. 
 

The reference values used for the state ψ, were 

computed by using (14), 
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The first reference trajectory applied to the system 

was an eight-shaped curve defined by, 
 

( )sin ,     dx t k= ( )cosdy t k=  

 

where k +∈ ℜ  and in this case k = 10. The initial 

condition vector was ( ) [ ]0 0.5 0 0 0 0
T

t =x .  
 

The trajectory made by the mobile robot to follow the 

first reference is shown in Fig. 3, where the maximum 

error in this case was 3[mm]. 
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Figure 3: Eight-shaped trajectory for mobile robot   

 

Figure 4 shows the x-y mobile robot position and the 

quadratic error, which tends to zero. 
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Figure 4: x-y mobile robot states (a) and quadratic error (b) 

Figure 5 shows the control actions of the system 

compared with the real linear and angular speeds of the 

mobile robot.  
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Figure 5: Control actions (a) uc and (b) ωc 

 

Figure 6 shows the execution time of the optimization 

algorithm for each sampling time in the simulations.  
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Figure 6: Algorithm execution time during simulation                 

(a) sequential (97% < T0), (b) simultaneous (72% < T0) 
 

The sequential algorithm is shown in Fig. 6(a), where 

97% of the execution times are smaller than T0, whereas 

the simultaneous algorithm is shown in Fig. 6(b), where 

72% of the execution times are smaller than T0. 
 

The second trajectory was applied to check the 

positioning control of the system,  
 

( )2 cos 4 ,
   

2,

r

d

r t
x

r

ω π +
= 

−

( )sin 2 4 ,     0 5

,                              5

r
d

r t t
y

r t

ω π π

π

 + ≤ <
= 

− ≥

 

 

where r +∈ℜ . In this case r = 0.4[m] and ωr = 0.1[rad/s], 

with initial conditions: ( ) [ ]0 1.4 0.9 7 6 0 0
T

t π=x . 

 

The trajectory described by the mobile robot for the 

first tracking of a path and the next positioning in a 

specific place is shown in Fig. 7. 
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Figure 7: Positioning trajectory for mobile robot 

 

Figure 8 shows the x-y position of the mobile robot 

and the quadratic error, which tends to zero. 
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Figure 8: x-y mobile robot states (a) and quadratic error (b) 

 
Figure 9 shows the control actions of the system 

compared with the real linear and angular speeds of the 

mobile robot. We remark that when the mobile robot 

arrives to the desired position, it stays with null speed. 
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Figure 9: Control actions (a) uc and (b) ωc 

 

Figure 10 shows the execution time of the 

optimization algorithm for each sampling time in the 

simulations.  
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Figure 10: Algorithm execution time during the simulation                 

(a) sequential  (93% < T0), (b) simultaneous  (81% < T0) 
 

The sequential algorithm is shown in Fig. 10(a), where 

93% of the execution times are smaller than T0, whereas 

the simultaneous algorithm is shown in Fig. 10(b), 

where 81% of the execution times are smaller than T0. 
 

V. CONCLUSIONS 
 

The problem of leading a mobile robot through 

previous computed trajectories has been solved by using 

NMPC strategy like navigation algorithm. A dynamic 

holonomic model of a unicycle-like mobile robot has 

been used.  
 

A good performance of the control system, by means 

of NMPC, has been achieved for both positioning and 

trajectory tracking. The results were obtained by using 

the NMPC sequential approach, by using it, the 

calculating times were better than the NMPC 

simultaneous one, as it is observed in the simulations. 
 

The proposed controller can be implemented in real-

time as it was shown in the obtained results analysis. By 

using a suboptimal scheme, good results have been 

achieved; this proves that by using specific software for 

this problem, it is possible to reach better results. 
 

Simulations show that most of NMPC calculating 

times are below the ranges accepted by the mobile robot 

(T0 = 0.1[s]). Furthermore, preliminary calculating times 

are higher due to the fact that the algorithm starts from 

distant initial conditions to the problem optimum. 
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