
DYNAMIC NONLINEAR MODEL BASED

PREDICTIVE CONTROL FOR MOBILE ROBOTS

Andrés Rosales Acosta
†

†
 Área de Investigación y Desarrollo

Centro Nacional de Control de Energía – CENACE
Panamericana Sur Km 17½, Santa Rosa. Quito, Ecuador

e-mail: arosales@cenace.org.ec

Abstract– In this paper, a nonlinear predictive

controller (NMPC) to control a unicycle-like mobile

robot for trajectory tracking has been developed. A

dynamic model of a PIONNER 3-DX mobile robot is

used, where external forces and wheels sliding have

been considered. Restrictions on control actions and

system states are also considered. Simulations results

at both tracking and regulation (positioning) are

shown, these results show the good performance of

the developed controller. Finally, this paper shows

that the controller can be implemented in real-time

by using an analysis of the calculating times of the

NMPC algorithm.

Key words– mobile robot, predictive nonlinear

control (NMPC), trajectory tracking, dynamic model

I. INTRODUCTION

The trajectory tracking control for mobile robots is a

fundamental problem, which has been exhaustively

investigated by the scientific community. Several papers

deal with the design of control laws for mobile robots

considering their dynamic model, for instance in

trajectory tracking (De la Cruz et al., 2006; Dong et al.,
2005; Albagul et al., 2004; Yang et al., 1999; Zhang et
al., 1998). One of the first investigation results for this

problem was dealt in Kanayama et al. (1990), where the

author uses the Lyapunov theory to design the tracking

controller. Nevertheless, this and other controllers do not

take into account the restrictions in the control signals

because it is a hard task to implement.

Nonlinear predictive control (NMPC) is a most

frequently used control-optimization technique in the

industry. This methodology has been designed to deal

with optimization problems considering restrictions.

NMPC is an online optimization algorithm that predicts

the system output based on the current states and the

system model, it also finds a control feature in open loop

by using numeric optimization and applies the first

control signal of this optimized feature to the system.

In model based predictive control, due to the use of

the receding horizon, the stability analysis is one of the

main problems (Peña, 2002). Previous papers have

demonstrated that a finite receding horizon can

guarantee NMPC stability even for nonlinear systems

(Camacho et al., 1998; Peña, 2002), although this

strategy is considered heavy due to its computational

effort in practice. The NMPC stability analysis with

finite receding horizon has been studied in Mayne et al.
(2000) and Fontes (2001). Recently, the qualities of

predictive control have been explored and applied to

robotics, papers like Dongbing et al. (2006), Hedjar et
al. (2005), Künhe et al. (2005) and Ramírez et al. (1999)

show different approaches and strategies in MPC with

good results for tracking control and regulation. This

paper applies NMPC to a dynamic model of a mobile

robot and makes an analysis of the calculating times

used by the optimization algorithm so that it can

implement the controller in real-time.

The paper is organized as follows: Section II describes

the NMPC algorithm and the programming schemes

used. Section III shows the dynamic model of a mobile

robot. Section IV shows the simulation results.

Conclusions and future work are detailed in the last

Section.

II. PREDICTIVE NONLINEAR CONTROL

A general deterministic nonlinear model at discrete

time for a system can be expressed as,

 () () ()()1 ,k k k+ =x f x v (1)

 () ()()k k=y h x (2)

where x(k), v(k) and y(k) are the state vector, the control

signal and the output system, respectively.

Most of the MPC methods are based on a common

scheme (Ramírez et al., 1999). A cost functional J is

defined, which is often a quadratic function with the

sum of the norms of future trajectory tracking errors,

 () () ()| | dk i k k i k k i+ = + − +e y y (3)

predicted over a prediction horizon N plus the sum of the

norms of predicted increments in the control action, over

a control horizon Nu,

 () ()
2 2

1 1

1
uNN

i i
i i

k i k k i k
= =

= + + ∆ + −∑ ∑
Q R

J e vδ λ (4)

() () ()1k i k k i k k i k∆ + = + − + −v v v

where, δi and λi are penalty sequences usually chosen as

constants, yd(k+i) is the desired output and the notation

y(k+i|k) means that y(k+i) is computed with known

information at instant k. The future system outputs

y(k+i|k) for i = 1, …, N, are predicted by using a process

model from the inputs and outputs previous to the time

instant k, and from the predicted future control actions

v(k+i|k) for i = 0, …, Nu-1, which will be calculated. In

addition,
2

Q
x is defined as 2 T=

Q
x x Qx with 0>Q .

In this way, J can be expressed as a function that only

depends on the future control actions. The objective of

predictive control is to obtain a sequence of future

control actions [v(k), v(k+1|k), …, v(k+Nu-1|k)], so that

the predicted outputs y(k+i|k), using the system model,

are near to the reference yd(k+i|k) as possible, along the

prediction horizon. This is obtained by means of

minimization of J with respect to the control variables.

After obtaining this sequence, a receding horizon

strategy is used, which applies only the first control

action v(k) computed. This process is repeated every

sampling time.

When nonlinear models are used, MPC depends on

finding a solution for a nonlinear programming problem

in every sampling step. To solve this problem it is

necessary to do the optimization and to solve the system

model. Both problems can be implemented by two

different ways: sequential or simultaneously (Peña,

2002).

A. Sequential optimization algorithm

In the sequential implementation, a solution at each

iteration for the optimization routine is found. The

controls are the decision variables, which are processed

by the algorithm computing the model solution. Then,

this solution is used to evaluate the objective function

and the computed value is given to the optimization

program. The optimization variable is,

 () () ()1 1
T

uk k k k N k = + + − z v v v⋯ (5)

First, the functional must solve the system model

using the vector values z and the current state x(k)

applied N times to (1). In this way, the vector sequence

() () ()1 2k k k k k N k + + + x x x⋯ is obtained,

whereas with (2) the sequence output values

() () ()1 2k k k k k N k + + + y y y⋯ are obtained. Then,

the cost functional (4) is evaluated with these values.

The cost functional J depends on the predicted

outputs, which are based on the state vector and this

vector is function of the control actions (optimization

variables). Therefore, the outputs must be derived with

respect to the control actions from k to (k+Nu-1) to

obtain the functional gradient. This is complicated and

not always has solution. Therefore, the sequential

resolution has no gradient information and it must be

obtained by using numeric differentiation, which is

computationally negative, because this generates greater

calculus cost and convergence problems.

B. Simultaneous optimization algorithm

Unlike the sequential solution, the simultaneous

solution and optimization include the states and the

controls of the model like decision variables. The model

equations are added to the optimization problem like

restriction equations. Then, the optimization variable

results,

() () ()

() () ()

1 1

 1 1
T

u

k k k k N k

k k k k N k

= + + +

+ + −

z x x x

v v v

⋯

⋯

 (6)

In other words, the states and control actions are

considered like optimization variables. The dimension of

this vector is (eN + pNu), which is bigger than the

sequential approach dimension (pNu), where e and p are

sizes of the state vector and control input, respectively.

This requires a considerable increase in the optimization

variable size in relation to the sequential approach.

The model equations appear like equality restrictions

as follows in (6),

() () ()()

() () ()()

() () ()()

1 ,

2 1 , 1

1 , u

k k k k

k k k k

k N k k N k N

 + =

 + = + +

=

+ = + − +

x f x v

x f x v
R

x f x v

⋮

 (6)

In this approach, the gradient obtained by the analytic

way is simpler, so that, the optimization algorithm can

be incorporated in an explicit way. By using the

functional in (4) and (7). The equality restrictions

gradient is a disperse matrix (8).

()() ()

()() ()

()() ()

() ()
() ()

()

1

2

1

2

1 2

2 3

2 1 1

2 2 2

2

2 2 1

2 1 2 2

2 1

k

k

k N

u

T
d

T
d

T
N d

N u

k k k

k k k

k N k k N

k k

k k

k N

+

+

+

 + − +
 + − +

 + − +∇ =
 ∆ − ∆ +

∆ + − ∆ +

 ∆ + −

x

x

x

G Q h x y

G Q h x y

G Q h x yJ

R v R v

R v R v

R v

⋮

⋮

δ

δ

δ

λ λ

λ λ

λ

 (7)

()

()

()
()

()

1 0 0

0 0 0

0 0 1

0 0 0

0 0 0

0 1 0 0

0 0 0 1

e e e e e e

e e e e e e e e

e e e e e e

e e e e e e e e

e e e e e e

e e e e e e

e e e e e e u

k

k N

k

k

k N

× × ×

× × × ×

× × ×

× × × ×

× × ×

× × ×

× × ×

 − +

− + −
 ∇ =

−
 − +

− + −

I Fx

I

I Fx

R I

Fv

Fv

Fv

⋯

⋯

⋮ ⋮ ⋱ ⋮ ⋮

⋯

⋯

⋯

⋯

⋮ ⋮ ⋱ ⋮ ⋮

⋯

 (8)

where () ()()
()

,

i

T

k i

k k

k
=

∂
=

∂
x

h x v
G

x
, () ()()

()

,

k i

k i

k k

k+

=

∂
=

∂
x

f x v
F

x
,

() ()()
()

,

k i

k i

k k

k+

=

∂
=

∂
v

f x v
F

v
, Iexe is the identity matrix with e

dimension and 0pxe is a null matrix with pxe dimension.

In small problems with few states and a short

prediction horizon, a sequential approach is probably

more effective (Peña, 2002). Generally, in big problems,

a simultaneous approach is more robust, because it is

less probable that it fails. In a sequential approach, the

addition of restrictions to the states or outputs is more

complicated. Besides such model restrictions, control

actions restrictions, steady state restrictions, etc, can be

added.

III. DYNAMIC MODEL OF MOBILE ROBOT

A system model is necessary to use an MPC strategy.

This model will be used to predict the future position

and orientation of the controlled system.

Figure 1: Mobile robot PIONNER 3-DX

A unicycle-like mobile robot experimentally validated

by using PIONNER 3-DX robots in De la Cruz et al.

(2006) will be used. A brief model is shown in Fig. 2

and it is presented in (9). The model with more details

can be seen in De la Cruz et al. (2006).

Figure 2: Mobile robot unicycle-like model and its parameters

The robot position is defined by [,]Th x y= , this point is

located at a distance a from the rear axis centre of the

robot, u and ū are the longitudinal and side speeds of the

mass centre, ω is the angular speed and ψ is the

orientation angle of the robot, G is the gravity centre, B

is the base line centre of the wheels, E is the work tool

placing point and C is the castor wheel placing point.

From the model described in Fig. 2, the dynamic

model of mobile robot is obtained as (De la Cruz et al.,
2006),

23 4

1 1 1

5 6

2 2 2

cos sin 0 0

sin cos 0 0

0 0

1
0

1
0

c

c

u a

x u a

y
u

u
u

u

ψ − ω ψ

 ψ + ω ψ
 ω
 = +ψ θ θ ω − ω θ θ θ
 ω θ θ − ω − ω θ θ θ

ɺ

ɺ

ɺ

ɺ

ɺ

 (9)

where the mobile robot parameters were validated in De

la Cruz et al. (2006), these parameters are,

1 2 3

4 5 6

0.24089 0.2424 0.00093603

0.99629 0.0037256 1.0915

θ = θ = θ = −

θ = θ = − θ =

Equation (9) can be wrote in a compact way as

follows,

 () ()() ()()t t t= +x f x g vɺ (10)

where () []ψ ω
T

t x y u=x is the state vector of the

system and () []ω
T

c ct u=v is the control vector.

The dynamic model of the mobile robot can be

discretized by using any numeric approximation

approach, for example Euler, in other words,

 () ()1 0k k k kT+ = + + x x f x g v (11)

where T0 is the sampling time and the vector of initial

conditions is () []0 0 0 0 0 0ψ ω
T

t x y u=x .

Equation (12) is the system output,

 () ()() ()k k k= =y h x Cx (12)

where C is a matrix of oe dimension (o is the state

vector size). In this paper, the output equation is given

by,

 () () () ()ψ
T

k x k y k k= y (13)

IV. SIMULATION AND RESULTS

The maximal absolute values of linear and angular

speeds of the mobile robot used in the simulations are

0.5[m/s] and 0.745[rad/s], respectively.

y
x

ū

ω

ψ

u

G

a

E

C

B

()x , y

b

e

c

d

τe

A sampling time T0 = 0.1[s] was used for all

trajectories and the prediction horizon used was N = Nu

= 7. Furthermore, we set Q = diag[1, 1, 0.05], R = I

(identity matrix) and δ = 28 and λ = 0.8. Linear

reference speed was 0.25[m/s] for both reference

trajectories.

The reference values used for the state ψ, were

computed by using (14),

d

=atan d

d

y

x

ψ

ɺ

ɺ

 (14)

The first reference trajectory applied to the system

was an eight-shaped curve defined by,

()sin , dx t k= ()cosdy t k=

where k +∈ ℜ and in this case k = 10. The initial

condition vector was () []0 0.5 0 0 0 0
T

t =x .

The trajectory made by the mobile robot to follow the

first reference is shown in Fig. 3, where the maximum

error in this case was 3[mm].

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

X [m]

Y [m]

initial

final

reference

real

Figure 3: Eight-shaped trajectory for mobile robot

Figure 4 shows the x-y mobile robot position and the

quadratic error, which tends to zero.

0 5 10 15 20 25 30 35 40 45 50
-1

-0.5

0

0.5

1
X [m], Y [m] a

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

Time [s]

Error X [m], Error Y [m b

x
d

y
d

x

y

err x

err y

Figure 4: x-y mobile robot states (a) and quadratic error (b)

Figure 5 shows the control actions of the system

compared with the real linear and angular speeds of the

mobile robot.

0 10 20 30 40 50 60
-0.5

0

0.5

1
Linear Speed [m/s] a

0 10 20 30 40 50 60
-0.4

-0.2

0

0.2

0.4

0.6

Time [s]

Angular Speed [rad/s] b

u
c

u
real

w
c

w
real

Figure 5: Control actions (a) uc and (b) ωc

Figure 6 shows the execution time of the optimization

algorithm for each sampling time in the simulations.

0 200 400 600 800 1000 1200
0

0.05

0.1

0.15

0.2

0.25
Algorithm Time [s] a

0 200 400 600 800 1000 1200
0

0.05

0.1

0.15

0.2

Algorithm Time [s] b

Sampling Time [nTo]

Figure 6: Algorithm execution time during simulation

(a) sequential (97% < T0), (b) simultaneous (72% < T0)

The sequential algorithm is shown in Fig. 6(a), where

97% of the execution times are smaller than T0, whereas

the simultaneous algorithm is shown in Fig. 6(b), where

72% of the execution times are smaller than T0.

The second trajectory was applied to check the

positioning control of the system,

()2 cos 4 ,

2,

r

d

r t
x

r

ω π +
=

−

()sin 2 4 , 0 5

, 5

r
d

r t t
y

r t

ω π π

π

 + ≤ <
=

− ≥

where r +∈ℜ . In this case r = 0.4[m] and ωr = 0.1[rad/s],

with initial conditions: () []0 1.4 0.9 7 6 0 0
T

t π=x .

The trajectory described by the mobile robot for the

first tracking of a path and the next positioning in a

specific place is shown in Fig. 7.

-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4
-0.5

0

0.5

1

X [m]

Y [m]

initial

final

reference

real

Figure 7: Positioning trajectory for mobile robot

Figure 8 shows the x-y position of the mobile robot

and the quadratic error, which tends to zero.

0 5 10 15 20 25 30
-1

-0.5

0

0.5

1

1.5
X [m], Y [m] a

0 5 10 15 20 25 30
0

0.5

1

Time [s]

Error X [m], Error Y [m] b

x
d

y
d

x

y

err x

err y

Figure 8: x-y mobile robot states (a) and quadratic error (b)

Figure 9 shows the control actions of the system

compared with the real linear and angular speeds of the

mobile robot. We remark that when the mobile robot

arrives to the desired position, it stays with null speed.

0 5 10 15 20 25 30
-0.2

0

0.2

0.4

0.6

0.8
Linear Speed [m/s] a

0 5 10 15 20 25 30
-0.2

-0.1

0

0.1

0.2

Time [s]

Angular Speed [rad/s] b

u
c

u
real

w
c

w
real

Figure 9: Control actions (a) uc and (b) ωc

Figure 10 shows the execution time of the

optimization algorithm for each sampling time in the

simulations.

0 50 100 150 200 250 300 350
0

0.1

0.2

0.3

0.4
Algorithm Time [s] a

0 100 200 300 400 500 600 700
0

0.1

0.2

0.3

0.4

Sampling Time [nTo]

Algorithm Time [s] b

Figure 10: Algorithm execution time during the simulation

(a) sequential (93% < T0), (b) simultaneous (81% < T0)

The sequential algorithm is shown in Fig. 10(a), where

93% of the execution times are smaller than T0, whereas

the simultaneous algorithm is shown in Fig. 10(b),

where 81% of the execution times are smaller than T0.

V. CONCLUSIONS

The problem of leading a mobile robot through

previous computed trajectories has been solved by using

NMPC strategy like navigation algorithm. A dynamic

holonomic model of a unicycle-like mobile robot has

been used.

A good performance of the control system, by means

of NMPC, has been achieved for both positioning and

trajectory tracking. The results were obtained by using

the NMPC sequential approach, by using it, the

calculating times were better than the NMPC

simultaneous one, as it is observed in the simulations.

The proposed controller can be implemented in real-

time as it was shown in the obtained results analysis. By

using a suboptimal scheme, good results have been

achieved; this proves that by using specific software for

this problem, it is possible to reach better results.

Simulations show that most of NMPC calculating

times are below the ranges accepted by the mobile robot

(T0 = 0.1[s]). Furthermore, preliminary calculating times

are higher due to the fact that the algorithm starts from

distant initial conditions to the problem optimum.

ACKNOWLEDGEMENTS

This work was partially funded by the German

Academic Exchange Service (DAAD – Deutscher

Akademischer Austausch Dienst).

REFERENCES

Albagul A. y Wahyudi, “Dynamic Modeling and

Adaptive Traction Control for Mobile Robots”,

Annual Conference IEEE IES, pp. 614-620, (2004).

Camacho E. y Bordons C., Model Predictive Control in
the Process Industry, Springer-Verlag, (1998).

De la Cruz C. y Carelli R., “Linealización con

Realimentación del Modelo Dinámico de un Robot

Móvil y Control de Seguimiento de Trayectoria”,

AADECA, (2006).

Dong W. y Kuhnert K., “Robust Adaptive Control of

Nonholonomic Mobile Robot with Parameter and

Nonparameter Uncertainties“, IEEE Transactions
on Robotics, pp. 261-266, (2005).

Dongbing G. y Huosheng H., “Receding Horizon

Tracking Control of Wheeled mobile Robots”,

Control Systems Technology, vol. 14, pp. 743-749,

(2006).

F.A.C.C. Fontes, “A General Framework to Design

Stabilizing Nonlinear Model Predictive

Controllers”, Sist. Control Lett., pp. 127-143,

(2001).

Hedjar R., Toumi R., Boucher P. y Dumur D., “Finite

Horizon Nonlinear Predictive Control by the Taylor

Approximation: Application to Robot Tracking

Trajectory”, Int. J. Appl. Math. Comp. Sci., vol. 15,

pp. 527-540, (2005).

Kanayama Y., Kimura Y., Miyazaki F. y Noguchi T.,

“A Stable Tracking Control Method for an

Autonomous Mobile Robot”, Proc. IEEE ICRA, pp.

384-389, (1990).

Künhe F., Gomes J. y Fetter W., “Mobile Robot

Trajectory Tracking using Model Predictive

Control”, II IEEE LARS, (2005).

Mayne D., Rawlings J., Rao C. y Scokaert P.,

“Constrained Model Predictive Control: Stability

and Optimality”, Automatica, pp. 789-814, (2000).

Peña M., Control basado en Modelos Borrosos, Tesis de

Doctorado – INAUT – UNSJ, (2002).

Ramírez D., Limón-Marruedo D., Gómez-Ortega J. y E.

Camacho, “Aplicación del Control Predictivo

basado en Modelo No Lineal a la Navegación de un

Robot Móvil utilizando Algoritmos Genéticos”,

Métodos Numéricos en Ingeniería, (1999).

Secchi H., Control de Vehículos Autoguiados con
Realimentación Sensorial, Tesis de Maestría –

INAUT – UNSJ, (1998).

Yang J. y Kim H., “Sliding Mode Control for

Trayectory Tracking of Nonholonomic Wheeled

Mobile Robots”, IEEE Transactions on Robotics
and Automation, pp. 578-587, (1999).

Zhang Y., Hong D., Chung J. y Velinsky S., “Dynamic

Model Based Robust Tracking Control of a

Differentially Steered Wheeled Mobile Robot”,

Proceedings of the American Control Conference,

pp. 850-855, (1998).

