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ABSTRACT

This is a continuation of a previous
paper . A brief revision of Einstein's
General Relativity 1ls carried out and some
cf its ilnconslstencies are brought to
l1ight. The concept o©f the relativistic
{invarlant) force and 1ts components 1ia
also considered. Then, the egquatlons of
the general motion in the relativistlc
euclidean 4-space (E-4D) is derived and
appllied to several types of motion. 1In
ths example relative to the rectilinear,
inverse-sguare law motion, the coulomblan
attractlon betweman two charged particles
is interpreted from the _relatlivistic
standpoint. The example of central-force
motion, worked out in some length, glves
rise to several interesting guestlons,
some f which are illuastrated on an
electric clrcuit model.

I. INTRODUCTION.

Albert Einstein fundamented his General
Theory of Relativity on the Equivalence
Principle in Minkowskl space, acceocrding to
which, "a non inertial reference system is
equivalent to a gravitational fielad ".
Minkowski space 1s characterlzed, in Ilits
turn, by a peculiar meaning glven to the
"distance™ {interval) =, which, in the
dlifferential form and with reference to an
inertial system, can be deflned by the
equatlon:

das® = c%at® - ax® - ay® - az® (1.1)
Unfortunately, both concepts, the
Equivalence Principle and Minkowski space,

generate a number of difficulties. Here
are some of them. :

A. ¥ith reference Lo the Eqguivalence
Brinciple.

Al.- Asymptotic behaviour: A "trus™
gravitatlonal field vanishes at the
infinity, whereas the one eguivalent to a
reference frame associated, for example,
with a freely falling body Indefinitely
increases or, at least, is kept constant,
this latter being the case of a freely
orblting satelite.

A2.- A gravitational field egulvalent to
a reference system disappears and the
system becomes lnertial through a sultable
coordinate transformation. On the other
hand, a "true" gravitational field can be
"inertialized"™ only in a =mall volume,
wvhere the £ield can be assumed uniform.
HBesides, even in this case, the
description of the cuter world will become
distorted as a fair campus watched from a
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merry-go—-round.

A3.- When dealing with a general non
inertial system, one does not know a
sufficient number of parameters for lts
complete description. In fact, tec describe
a non inertial system, a more general
space than that of Minkowski must be used
- for example Riemann space, characterlzed
by the {(infinitessimal) interval squared:

=z
A=t_ - A
a3 un

| ‘,‘j

.
ax’ 2

4
L.

where the "dumb" indlces i, j, run from O
to 3. The fundamental metric tensor gu is

symmetric, of rank 4, thus being defined
by 10 independent compocnents which cannot
be determined by considering only the

reference frame orientation in a 4-space.

Ad. - The last (but not the least
important} drawback of the Eguivalence
Principle is to reduce the physical laws
to purely geometrical concepts. As 1t has
been already pointed out in (11, even
admitting that an abstract, static,
Einsteln-Mlnkowski space can exist, it 1is
certainly not our space, l.e. a suitable
environment for %the dynamic universe we
live in. In particular, there is no
obiective reason wvhatsoever for identlify-
ing the components gu of the metric

tensor with the gravitational potentlals.

B. ¥ith reference to Minkowski space.-—
Einstein attempted to wunlfy the £formal
description of the euclidean and Minkowskl

spaces by introducing the imaginary
coordinate x* = 1 ct (i = ¥-1). Alternat-
ively, the unwieldlness o¢f the complex
arithmetics (and geometry) can be

alleviated by defining the
metric, pseudo-orthonormal matrix

Galilean,

1 o 0 o
o o (1.3)
e 0 0 -1 ©

o

By this artifice, the applicatlon  of the
Least Action Principle requlres to compute
the extremum of the integral

8 = - mcIds (1.4)

with ds given in (1.2). The computatilon ls
carried cut by solving the eguation

&8 = O (1.5)
and brings

along the eguation of the
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'geodesics:

=z . b] %
a " x i dx” dx _ - 1.61
ds: + rjk ds ds L i

where Fik are the well known Christoffel
J

symbols of 2™ xing {see APPENDIX A).

Unfortunately agaln, equatlion (1.6) proves
to be unbounded for a system with a speed
comparable to that of light because, when
ds approaches zero, all terms in {l1.6}
become infinite, This difficulty forced
Elnsteln to loock for an alternative
solutlion, such as the one given by the
Riemann curvature tensor, subject to the
condition that the resulting eguations
have the attributes of the Poisson
eguation; that 1is to say, use at most
second derjivatives of the "gravitational
petentials® gu. After a lot of

computations, Einsteln
famous "field Equation™:

arrived at hils

. E
R'u' LIS gu’ R » Ti.j (1.7}
where
k k

ar a7

Lo & S :J + rl"l. rl"k e e rll;n
J ax s ax? b
(1.8}

is the symmetric, (2"d order) Riemann
tenscr;
R = g'lr {(1.9)

i
i= the so called

% = a constant related to the universal
gravitational constant and

"gscalar curvature';

TU = the energy and momentum tensor (an
egually wvelrd guantity).

Bguation (1.7) is an extremely complex

entity. It amocunts to 10 non-linear 2"‘

order differential eguations and thelr
solution can only be envisaged after
linearlzation (weak gravitatlonal fields).
Furthermore, the resulting eguations do
not take 1nto account the "state” of the
system relating the density with the
——— A = e A -
pressure and any
{1.7) and Maxwvell eguatlions still remains
unproved ([31, p.87).

It is also worth " mentioning that the
Lorentz transformations which lay at the
very root of the Special Theory of
Relatlivity &o not apply in the General

[P R
SEeETwWeen

walmidanrmeind -
raiaticnmanhip

Theory. Both theorles (Specilal and
General) are therefore to some extent
unconnected. Furthermore, none cof them has
Ilmproved 1ts "status"” since their

announcement at the beginning of the
century. Naturally enough, the theorles in
guestion, hotly praised by ones, have been
bitterly criticized by others. Several
alternatives to Lorentz equations have
also been (unsuccesasfully) proposed
{41,[5]1, wvhereas the General Theory of
Relativity has been prudently left
untouched and mostly unexplored because of
i1ts intrisic "unexplorablllty™.

In 11!, another attempt has been made to
tackle with the Speclal Theory of
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" detected in

Relativity. To bypass the difficultles
Elnstein's theories, the
Lorentz eqgquations have been re-
formulated, in the referenced paper, in
the differential form and the basic
relatlonships have been "translated" Iinto
the euclidean 4-space, relabelled E-4D.
In the present contribution, the new
approach taken on in [1] 1s extended to
the motlion of particles subject to
external forces (accelerations). The
forces in gquestion can be elther of
gravitational or electromagnetic nature.
Based on the =uch a restatement of the
relativistic Dynamics (General Theory of
Relativity) some unusual results are
derived (as it may only be expected).

11, GENERALIZATION OF LORENTZ EQUATIONS.

In [1), the relativistic 4-space, BE-4D,
has been defined as an euclidean space
{61, characterized by two_ special
variables: a scalar, w = tanh “(v/c), v
being the velocity of the particle {or of
the whole system) in a glven point and
refered to a certain (inertial) system,
and ¢ the speed of light 1n the wvacuum -
and F. The latter is the arc parameter and
can be ldentjified with the relatlivistic

ng-dimenslon™ axis, x° = zx, component of
arc.

Let do = dx i + dy i + dz ¥ be the
elementary radius-vector (in the usual

notation) in the ordinary space, refered
to the orthonormal (cartesian) coordinate
system. Then, according to eq.'s (2.2c¢)
and (2.24} in (11, the following
relationshlips among de, ar, w and the
element dt of time hold:

de = ar

STnh v SEER Ll
_ar_ _ar

cosh ¥ - cC 2L E bl
In 111, Sec.1V, the 4-velocity vector

components, (ut,ul,uy,u’) have also been

introduced. Here, they will be rewritten
in a form similar to (4.6) in (11,
although allowing, for generality, the
coefficients L ry, ®, to be functions of

both, ¥ and ¥ . Thus, by definltion:

o o]

a = ut = C—Om (2.2a)
and
r (w,T)
at= 9% o xR
dat cosh
r (w,f)
z _ 4y _ >
€' =3 = © sosh v (2.2b)
° az r (v, X))
u at = © Tosh v

On the other hand, the dliscussion carried

out with respect to u® in (1] also holds
in the general casze and leads to the
relationships:

»
2(:")’ = sinh?y (2.3a)
P

125



3 (u*)* = c* (2.3b)
k=0
In what follows, an orthonormal,
coordinate system (x®, x*, x®, ™) =

= {yx,%X,¥,Z} will be used when possibI?,
although, more freguently, we =hall resort

for convenience to {orthogonal)
curvilineazx systems (cE. [x1, Sec.V}.
Thus, the distinctlon between the

contravarlant and covariant coamponents of
vectors becomes sssentlal.

With all that in mind, eq.'s (2.2} will be
summarlized by writing:

"

k _ r {(w, T} _ o

u' = ¢ oo o {(u ,u) (2.4)
r® = I, = 1; n® is a scalar and u a normal

(d3-dimensional) space wecter. The last
term in  (2.4) stands for the usual
4-vector notatien [2].

Equations (2.4) are general and, to derive
the relativistic lawv of motlion, they only
need to be differentiated, with the

result:
z
k _ c X c x __k
du “Cosh W Rt dt+—EEEF—;(Re r" tanh wldy
(2.5)
wvhere R and R are two coefficientsd te

be determined in each situation. Xt has to
be observed that, in the rel ivistic
space E-4D, the differsntlals dax (v =
= 1,2,3) are not independent of £, which
means that the unit vectors along the axes
x,¥,2Z change (in amplitude, although not
#e direction) with the speed of the system
(Yefered to another - consldered as
sfixed” - frame). Furthermore, when taking
into account that in the precedling

equations the varlables are rk, Z being
the parameter, one arrives at the
conclusion that R; mnust be computed using
covariant derivatives {51. Thus, by
calllng D{.) the lntrinslic differenclatlon

operator and because, by deflnltion, "

= T e (2.6}

2 o

@, running threough 1,2,3. The slmilarlty
of the right member in (2.6) with the left
one in (1.6}, describing a geodesics, wilill
be commented later on. It i1s possible for

¥ to vary wlth v = »(Z). In thls case,
K
| or
B =) -
v Ty (2.7
Otherwlise R; = 0.

Eguations (2.5) and (2.la) glve immediat-

ely the components of the 4-acceleration
vector:
k z
x du c [ k s X Ay
a = = —— R, +{(R_ — ¥ tanh w)
at cosh™w r W daz
{2.8)
126

.according to (2.10), there are

On the other hand, it has been found 1in
[1] {see (1], eqg. (6.3)} an expresslcn for
the force, generallized over the relatliv-

istlc space and independent of the
reference frame:
c*m dy
Pry = —— (2.9)
¢ cosh™w ar
where m stands €for the relativistic—

transformation invarliant (former mo) mass.

Comblinling (2.8) and (2.9) we Eind:

F F ()

X c X k ke
a = —————— R, + ——— (R — £ tanh w)}
cosh™w z » e
{2.10}
Let pk = m v¥ be the particlie (ox system}

momentum. Then, by the general Dynamics,

the components of a foxrce in E-4D are:

x 2 F_ ()
ap . ko _ I [=4 k 1 k__k
a ma m Rz+ (RV r tanh v}]

t oshzw m
(2.11)
System {2.11} will be regarded as the
fundament.al equations of the Relativistic
Dynamics, contrasting by their

straightforvardness and simpllicity with
Einstein €£ield egquations {L.8). In
addition, and as the most important fact,
1t has to be noticed that the =systen
t2.11) consists of 4 first order,
dlifferential egquations. And, to solve
them, no additicnal (constraint)} caon—~
ditions are reqguired.

Iin what follows, system (2.11) will be
applied to a number of specific problems.
In each case, a meaningful solution will
be found and 1t can als¢e be proved that
{(2.11) is compatible with Maxwell
eguations. Thus, the system 1in guestion
expresses the general law of motion of
both mechanical and electromagnetic
systems. However, before satarting with the
applicatlons, some more attention wlll be
devoted to the meaning of the relativistic
force F‘(tl and its components.

III. COMPONENTS QOF THE RELATIVISTIC EORCR.

For simplicity, we will consider
again a rectilinear, x-directed notign,

with r = x = Q, ¥ = sinh w and R =
14 = » L4

- ar_/at = 0, R; = Jz!/av = cosh w. Then,
two non

F 13 4-) components of the 4-acceleratlon

vector:
F_ (%} v_sinh w
a, = ——0/—— [cosh v - — ](3.1&)
F, (Z)
a, = T Twmz e sinh w (3.1b}
We also have:
2 12 c
v = c tanh w; s c[l—tanh v] = cosh w
(3.2) ~
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and, after substitution in {3.1), it

glves:
F_(Z) F
_ 1 - ix
4, ¥ @ Cosh w» m (3.3a)
F.(Z) tanh w F
a, = - 1 _— = 23X (3.3b}

where the definitlons
been used, namely

{6.11) in (1} have

()
- 2 - = —_—
F‘~ = cesh v ¢ F‘z Fl(() tanh w
(3.4)

The foregoing results are in agreement
with the concluslons of Sec. VI in [1].

According to the resultas derived in [11,
Sec. V1, force F‘(t} l1s orthogonal to the

trajectory at each polnt (event)}) in E-4L
(in our case, ¥ - X plane). Let a be the
angle between the tangent to the
trajectory -and the reference axis x, at a

point P, as depicted in Fig.1l. The
abacissa x, = ct° of P measures (divided
| =
ﬁm
\P
1
I
l
'&=EF° x

Fig.1l. Fragment of

atrajector
relativistic » - x ¥ in the

plane.

by c} the 1local time of the saystem in
motlion along the trajectoxry undex
consideratlion (cf, (i1, Sec.III). The
components of the wvelocity associated wilth
the trayectory on both axes are:

VvV, T € 8in a =c t nh w (3.%a)
=. = —C
vz C Cos & Tosh v (3.5b}

in agreement with the a - y relationships,
established in {1], Sec.II. Then, we
can represent the components of force
F (L), refered to Iin (3.4), in the Ve T ¥

=
pPlane. The constructlon is given in Fig.2,
vhere, for a more easy comprehension of
the guantities we are dealing with, other
"components" of F.(t) are also shown.

It is clear from the construction that the
ensemble of all the x-djrected (in the
normal space) traljectories lies on the
cirumference of radius ¢ (c£.[I], Sec.
IV},

Refer again to Fig.l. The length of an
infinitessimal arc is:
dv = c dt = cosh yw daf (3.6)

Because dx & df (two different meanings
assigned to the same gquantity), eg.(3.6)
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Flg.2. Components of the relativiatic
force Fﬁ({) in the plane of velaocitles.

expresses wv as a function of x. Clearly,
v is a smooth (for all material systems},
non decreasing function of x. Then, an
inverse, smooth, single wvalued function x=
= x{w) also exists and, except for very
Bpecial circumnstances which wlll be
considered elsvhere, x(w) i= of C" type

(1.e. at least twlce differentiable). In
the ordinary geometry and selecting ¢
as parameter, dzv/d!.'2 represents the

curvature of the trajectory [5] for an
observer at rest (moving uniformly along
x-axis). on the other hand, for a
traveller experimenting an acceleration,
it is the inertilal reference system that
is moving and possibly rotating, as
everybody has experimented it by himself

(or herself). Then, d'x/duz can be
interpreted as the curvature of the space”
— a cruclial concept iIn Einstein General
Theory of Relativity.

Alternatively, followina the new approach,
it is easy to find fr m (3.6 and after
the substitution of ¥ by x when needed:

ﬂx=d_[___l ]= —sinh y ay
aw” 15 cosh®y cosh®w d

sinh y dx dw

coshzw dv ar

or, using again (3.6) and the definition
of F (F):
az - F‘(El

tanh w (3.7a)

dw c m

At rest, » = 0 and the curvature of ths
space is exactly zearo! (The same is true

when F’(:) = 0, which means the absence
af any field of force). At the other
extremum, when ¥ — @ (the particle

velocity approaches the speed of light),
we have:

2 F_(T)

4x - (3.7b)

dw c'm
that is to say, the curvature is
directly proportional to F_(Z) and
inversely to the particle mass; {and
enerqy). For example, for a photon, c*m
must be replaced by hw and, with F‘(8)
due to a gravitaticnal field, the
curvature of the trajectory is €finite, the
fact already predicted by the
Schwarzschild eguation and, as it
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atands, conflrmed expezlﬁentally L2y, (31,
£71. .

lV. RECTILINEAR MOTION.

(2.11) will now be applied to
solve sone problems of rectllinear
motion. It must also be emphasized from
the very beginning that there will be no
restrictions concerning the speed of the
particle or the strength of the applied
force, which is not the case wvwith Elnsteln
field egquation (1.7}, : i1pposedly valld (?)
for low veloclties and seak forces (only).
In our case, let agailn the motion be
orlented along x-axis, the acceleration a_

Equation

being given by {(3.3a). Because

dav dv

S X R R »
2, T at cosh y df (4.1}
we have, using (3.3a) and (4.1):
dvu F‘lzi
a = Tme (4.2)

an egquation remarkable by its simplicity.

It clearly states the Newton 2™ law for a
rectilinear motlon 1ln an invariant - with
respect to the relativistic transformat-

lons = form and will be used as the
starting point for =olving our next
precbhblems.

I¥-l. Uniform motion.-
The unlform rectilinear motion is
characterlzed by the conditicn F!(tl = 0.
Then, by (4.2}, v, = V

and trivially represents
free motion of the
some detail in (11.

{conastant)

the well known
system, considered 1n

Iv-2. Unlformly accelerated motion.-—

It will be supposed

F_ 2
~—— = a (constant)
m
Using (4.2) and the £fact that, ‘by

definition, v, = dx/dt and 4t= gi cosh w ,
one readily arrives at the eguations:

—i1-2

at = ¢ "[1-M{£17"] az. (4.4a)
=z bt ¥ o
dx = M(Z} [1-M(£)7] ar (4.4b)
with
= ve
Meg) = - (z -ty v = (4.5)

=4
and co,nva the initial conditlons.

Equations {(4.4) are real 1f M({Z) = 1.
To see the meaning of this constraint
suppose §_ = v_ = 0. Then,
a < cist (4.6)

on the other hand, by direct
of the eguation

lntegration

128 -

av
—“ =
azt

0|

with the initial conditions as stated, we
arrive at:

(4.7)

a ¥
- =5 -<
v, = c

wvhere, again, the conditlon (4.6) has been

used. Because one can always bring the
initial conditions to the 2zero gstate
by conveniently choosing the (lnertial)
reference system, condition (4.7) is

general and simply states the only too
well known fact that the velocity cof
any particle or system cannot exceed the
speed of the light.

System {(4.4) is easy
after performing
alloved by (4.61):

to integrate
the change of wvarilable,

M{Z) = sin 3 : (4.8)

with the result:

t -t =S5 -p) (4.9a)
[-3 a £-3
c2
x - x = ;—(cos A, - cos 7) {4.9b)
and
"al.fz
cos 3 = [1 - v rc ] (4.10)

t° being an arblitrarily chosen origin of
time.

It is interesting to observe that in this
exanple we arrive at the classical formula
for the unlfermly accelerated motion by
letting v/c — 0. In effect, in such a
case,

cos A =1 - AL /2 ; cos @ =1 - sz

which glives, after sone

operatlons:

simple

_ a _ =
X - X_ = = (t t_ )

- + Boc(t -t ) =

L-4

= 2t -t 1Ty v (t -t
L =] (-] L)

because
¥ 2

= = S _
B, = sin f, a
Now, we shall briefly return to condition
{3.6). According to {(4.9b), the longest
distance, travelled by the oblect {before
reaching the speed of llight} 1=
) ]

b4 =
max

(4.11)

WP

Suppose a = 10g = 100 mss®. It glves:

10
x = g—%ﬁég— =9 x 10" m =

= 0.0957 light years

It is easlly verified
classical formula for
accelerated motion,

in the same conditions
that 1s to say,

that, by
the uniformly
the maximum distance

would be c'/Za,
the particle would reach
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the speed of light after travelling
exactly half the distance predicted by

the relativistic approach.

An interesting question novw arises: is
such a law of motlon possible in a long
run (v — c)? Clearly, a force independent

of the speed can only be applied
internally by an oblject, such as a rocket
or, eguivalently, with the source of force
moving with the oblect. But, according to
what has been sald in (1], Sec. VI, the.
speed of light can only be achieved by an
object after all 1ts mass {(including the
crew and the passengers inside) had been
transformed into the radlating energy .
It is not likely that anybody should £ind
such an expedltlion very attractive.

will be treated

A more reallistic

next.

case

IV-3, Metlen under the inverse sguaxe law.-—

In this example, the motion of a particle
under the inverse sguare law attraction
will be consldered. In such a case, the
attracting force 1ls conveniently described
by the term:

F (2} B .

Fo= - 2 - - __B - (4.12)
a4 cosh w xZcosh w

with B a constant. Then, by (4.2):
Nu . _B
a? mc Xa

After replacing 4 by Jdx/sinh w we find:

dv' B
sln ¢ s— = - (4.13)
dx ac =2
On the other hand,
dav
» a =) dw
= c {tanh 9) = ——w—"0v— =
dax dx cosh®y dx
which, when combined with (4.13) and

after some simple manipulation, leads to

the egquation:

For w the

real, term 1l/cosh w» 1= non
negatlve, then, 5
B
x = ne?
where the sign (=) holds for w» = © and
glves the distance at which the particle

acqulres the speed of light.

To arrive at the egquatlon
start with the 1dentity:

of metion we

1
cosh'w

1

dx .,z

=1 - tanh®w = 1 - € 35

which, when combined with
after a slight rearrangement,

(4.14b)
glves:

and

=
_ 2mc " x dx . (4.15)

2mcE x _ l]szz

2cB[ )
where the sign (-) is due to the initial
hypothesis that the particle 1s attract-
ed towards the origin and, thus, the

dlistance decreases with the time.

at

The integration
forward, giving:

of (4.15) is =straight-

e . 4]

(4.16)

B Zme®x
B

t = —~
3mc

+ Const.

The integration constant depends on the
selection of the orlgin of time, to.

Suppose, for Llnastance, that the particle
under consideration is an electron
attracted by a proton. The attracting
force wvanishes when the electzon
acgulires the speed of light with
respect to the proton, in which case the

former, converted 1into
Plus the corresponding
impinges on the former.

is the well known phenomenon of capture
of an electron by a proton creating a
neutron (the interventicn in this process
of other, "strange®" particles, such as
neutrinos to assure the momentum
conservation,

radliaticn energy
negative charge,
The net result

postulated by theoretical

d(cosi )y = B 2 d{—%—) physicists, does not impair the foregolng
had mc - reasoning). Under the previous
suppositions, wve can choose the origin of
Integrating: time ag the 1instant of the electraon
capture, that 1is, wvhen X reaches its
1 1 - _B i _ 1 minimam:
cosh w  cosh w_ oo ¢ x_ 1(4.14a) =
° x_ = ~ for t = t_ (4.17)
v, and x_  are the 1initial wvalues of L
and x, respectively. If we suppose for Then, by (4.16):
simpliclity that the particle starts at the
infinity with the initial speed zero, 28
that is, x = ™ , w = 0, eg.(4.14a) can Conat. = Ty
= b 3mc
Rl .
28 1 Zmc T x /2 mc® x
£ -t = {1";[_3—'1] [B— *1]} (4.18)
dmc
be rewrltten more simply as: Equation (4.18) can be used, for example,
1 =1 - B {(4.14b) for computing the time- of-flight of the
cosh w me= x * particle before being captured.
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In the speéific cagse of capture of an
electron, we have in IS (International
System) units

B = .—4;!'—&_0 ’ {4.19)
(q = charge of the electron =

- -

100 10

= 1.6 x 10~ Coul., & = F/m).
o
4nc
Then,
a
1 -
x“ = Tf-!_‘_ S {4.20a}
e mc
or, numerically:
x = 0.2818 x 10 "* m (4.20b)

which is, in effect, of the same order as
the (estlmated) radius of the
(approximately twice the radius of a
proton [18]1). It 1s possible to compare

eguatlion (4.20a) with the gravitational
radius (2],1(31,071,[101:

neutron

Zkm
r = (4.21a)
k| o=
where k 13 the gravitational constant.

To this end, we notice that, by calling
P' and F_ the gravitational force and

the coulomb force, respectively, in 18
units, one £inds the relationship:

F F]
Fa = 4we k P_
o z

- a

- .
Furthermore, using {4.20a) and

{(4.21a},
we get;

r 2km”® dns
. X P ———

xn qz

For the sake of comparison, let F = F
L
with the result

e’

r = 2x
hal

o (4.21b)

a4 shocking result showing that there is=
stil a connection between the o0ld theory
and the newv one.

It is also worth while to observe that, 1f
vwe denote by a_ the mean radius of the

first Bohr orbit (81:

h!

= — -10
B, = Tep g~ = ©-529 x 10 m (4.22)
- T
(n. = mass of the electron), then the
following relationship holds:
® = 2
a— = 5.327 x 10 = ay
-
with
*
1 e P |
% = 7e_ °h = 137 R

the famous fine
the atom. Alsco,
(4.23) we f£ind:

structure constant of
by combilining (4.19) and

ch
B = == a (4-24)
Evidently, the computations of this=s
subsectlion remaln valld (with only

changing the sign <¢f dx) in the inverse
process, i.e., the decay of the neutron by

exmitting a partlcle beta. Here, we
assume that the latter is endowed with
the initial wvelocity egqual {or almost

eqgual) to <. Evidently, thls 1s a gquite
new thecocry and has to be confronted wilth
the current understanding of this klnd of
nuclear reactions. More about the
behaviour of electrons 1is to be said in
what follows and elswhere.

¥. CENTRAL-FORCE MOTION,
¥-1. General statement of the problem,—

The next in order of complexlty after the
rectilinear moticn and the last to be
treated here is the orbltal motlon under
the effect of a central force. The force
in gquestion will be assumed to be
emanating from the centre 0 and actuating
on the point P (see Flg.3), corbitting wilth
the speed v along the trajectory . We
shall call & the radius wvector of P,vp and

vn will be the radial and

components, respectively, of the wveloclty
of P. In the analysis - that followvs, the
vectors (in the 3-dimensicnal eucllidean
space) will be labelled by lower-case
bold-face letters and the vector
amplitudes by the same, normal lightface,
letters. The motion we are consldering
here is sufficiently close to the
general one for some rather interesting -
and neot all of them guite
conseguences to be derived.

normal

usaal -

0

Flg.3. Components of the wveloclty of an
orbltting object, actuated upon by a
central force.

From Classical Dynamics we know that the

amplitudes of the radial and normal
veloclty components are:
- de | dn
vp = 3t vn =P g (5.1)
Some more remarks about the notation to

be used are needed novw. The angle between
the radius vector and the reference
direction has been labelled » 1n order to
spare the more common denomination ¢ for

later uses. On the other hand, wvector
components, marked with subscripts -
mostly using greek low-case letters - will
denote the metric components ([9]. The

super-scrltpyys will be glven the meaning
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of contravarfant indices of tensors (vhen
alphabetic) or of powers (when numeric}.
Repeated (dumb) alphabetic cross—indices
will (generally) obey Eilnstein's summation
rule.

Assembling all these results and afterx
eliminating F‘[E] with (2.9) we get:

=z
de - agh*

(5.7a)
ar*

- g? %; tanh ]

a*y dp Ay _ _ dn dy
o E;; + 2 ar ar - az-af»tanh » ] (5.7h)

k <
a, =3 = T =
~ lk-; cosh™w
aﬂ=pa"| - —<_
k=2 cosh™ w
Returning to the definition of the

velocity in the relativistlc (E-4D)
apace, and taking into account that vp and

v_ are mutually orthogonal, we have from
{(5.1):

(ak are the contravariant components of
the 4-acceleratlon vector). After
performing some further rearrangement, we

arrive at the result:
_ c d [ c dpo ] c” dn,=
a_ = - — ( ) (5.8a)
P cosh y a4f |cosh » a7 cosh™w
_ 1 c d = c dn
8, ° & cosh w &% ED cosh v dT ] L

v¥ = cPtann®y = (3217 + (o FPT (5.2)
It 1s also well known that the components
of an acceleration in the polarx
coordinates (p,n) are (see any standaxd
book on Mechanics and also APPENDIX A):

a_ = (5.3a)

dzp an,z
F- at at

_14a z dn
a, = s at (p” Fp? (5.3b)
It is easy to prove that eguations {(5.3)
are the special case of the general
relativistic motion eguatlons (2.5) and
(2.6). In effect, the only non zero
components of Cristcffel symbols 1in
polar coordinates are (see APPENDIX A):
r’ = - p; P 1

nn N ne I Seey

the values of the (normalized) 4-velocity

vector rk beling
% S-S = o7 - An
El = = aF £ |, = F ar (5.5}

Then, by combining (5.5) wilth the method
outlined in APPENDIX A, the following
relationships are derived [see also

(2.6)1:
P =
- d"e _ dn,z
Rt- = = (=4 (a?] (S.6a)
4
2
R? = &7 oD (5.6b)

Oon the other hand:

] n
R' = RV = 0
because nelther o nor n depend explicity

on w (as it will be proved latexr an}.
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and (5.3) follows.

v-2, Eguation of motlon.-

From the relativistic standpolint, the
classical motion conditlions:

X
ap = ——;—l, an = 0
must be replaced by
F_(£)
1 K

o = (5.9a)

=] m cosh w 2 osh &

S¢ (ce” S =0 (5.9b)

The first one iz Aue to the dAefinition of
F given in {3.4) and the second owing to

am
the fact that a“ is orthogonal to p. Thus,

the radial component of vn

derivative in (5.8) must be evaluated
assumming w constant. It also means that
{(5.3b) has to be computed in terms of the
rest time, measured vwith respect to the
reference framne assoclated with the

central system, In agreement with the 2
Kepler law.

is zero and the

After integrating {5.9b) we have:

r:pz g; = B (constant)
that 1ls,
gil = 2 — s (5.10)
p cosh w

Equations ({5.10) and (5.9a), when
combined with (5.3a), give the law of
motion (see APPENDIX B) under the
central-force conditions:

131



a*p +p = - K _cosh w [1 _ B sinh y dp ]
dnz mB= [od an

(5.11)
vl?h p = l/p.

¥-3. Approximate golution of the orbital
motion,—

Before attempting to find the exact
solution of (5.11} the last texrm in
{5:11) will be suppozed negliglble (it i=s
always true, unless w or dp/dn, or both,
are suffliciently large, which ceonditions

will be considered later onl. The
approximate eguation to be solved is
thgrefore:

53

9P , p--Kcoshy (5.12)
dnz mB

on the other hand, by replacing (B2}

€rom APPENDIX B lnto (5.2) 1t 1s found:
dp,z z c*sioh®
(a-‘%) + p* = —-———!Bz (5.13)

hffer differentlating, dividing by 2 and
some rearrangements we get:
a*p : c* dw
+ p = —— sinh w coash ¢
an® 82 dn

wvhich, vhen combined with (5.12), glves:

dp mc?
ay = - ——~ sinh ¥y (5.14)

K

e Yo = ¥|p=0o

Then, by Integrating
arrive at:

(5.14), wve easlly

_ _ X
cash yw = 7 P+ cosh LN (5.15)
me
and, from (5.12},
2 z
"5 +[1—=—K=-—;]p+ cosh w_ = 0
an m B c mB
(5.16)
which 1Is a linear differential equation,
easy to solve. To¢ do that, let
4
?‘ =1 - _K =1 - &2 .
2_2 2
m B c

By adeguately choosing the origin of
phases the solution of (5.16) can be
written as: 8

K cosh w 2 _a_2a
P = - ___—;—;—2 [ 1 - _KEEggg_; A cosi{rn)
my B @

(5.17)

which 1is, as it is well known from
Classical Mechanlca (see also [B1), the
egquation of a conic with the excenticity:

22
my’B A

K cosh [ St

- =

Constant B is easily found by applylng the
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‘with « =

angular momentum conservatlion law. Thus,
from (5.10) we find

_ B m
WY T Cosh w
and, for example 1in the case of an

electron, it amounts, according to the

1*' Pohr axiom (8], to kh/2, with k an
integer. Thence:
B~ — Kb (5.19)

2nm cosh w

The integration constant A and, frem this,
the orbit excentricity can be found by
applying the energy conservation law. In
the Relativistic Mechanics, it 1is best
wriltten in the form (cf. 11}, eqg. (6.B)}:

2 =
mv mwv

o e
== o + j; F,de

vith F_ = X/o° cosh y. The computation 1s

easlly carried out by eliminating cosh
with (5.15) and 1s o0f no ©particular
interest for the present discuasion.

Of a real importance is however the factor
¥ ¢ 1 multiplying the angle wu in (5.17).
It states that the radlus-vector p in the
case of an elliptic orblt needs to run an

angle
An = 2n (;l—, - 1) (5.20)
radians in excess ‘of Zn, before
recovering its initial value. In the
case of an electron orblt 1t leads to
the Sommerfeld correction of the Bohr
orblt [B1:

z’q:

e o]
cp

with 2Z the atomic number and p - the
angular momentum.

It 1s also to be noted that, £for the
attracting force between a proton and an

electron, and using agalin IS units, we
have:
qz
K= - == = -2.310x 107°°
4ns
Ea -
= h - -4
B = . .158 x 10

1
z
- -

= _K = =
¢ = §Bc 7= _ch s

1/137, the fine structure
constant of atoms, already encountered in

(4.23).

For planetary motions, however, the value
of » given by eq. (5.16) does not agree
either with the experimentally measured
results or those predicted by Schvarz-
schild egquation 12],031,171,[10] under
ldealized conditions of a static
central-force field wilth spherical
symnmetry. For example, for the orbit of
Mercury,. the masured lag of the
perihelion 1ls about 43'*' in a century. On
the other hand, the wvalue predicted by the
Schwarzschild equation for the same
guantity 1is = 41'', whereas the lag
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computed from (5.20) using the known
parameters of Mercury orbit accounts only
for 7.13''. The difference is guite
significant and can only be Justified by
assuming that the conditions under whilch
the perihelion lag has been computed 1n
our case are strongly oversimplifled.
Evidently, the subject needs further
investigation

¥-4, Commepits on the exact solution
the central £foxce problem: slectric
clrcuit model of orbital wotlon.-

B dp
When the term S sinh w an is no longer

small as compared with the
unity, the problem of central-force
motion becomes more complex. Somnme
advantage may be galned by resorting to
the "state-space” method [111,(121]1. To
this end, two "state-space variables"
can be defined as:

vanishingly

P, =P: D, = g%

lieading to the decomposition of eq.{(5.1il}
into the "space-state equatios":

ap
1 .
—an ~ Pe (5.21)
dpz = -p + K sinh w cosh w K cosh w
dan 1 mcB mB*

together with the "ronnecting eguation”

czslnhzw

E 2

e, + pz o7 (5.22)
System (5.21)-(5.22) can be maolved by
any standard numerical lterative

routine, provided the initial condltions
lp‘(OJ, pz(O), wi(0}] are adeguately

chosen.

Alternatively, the system in qguestlon can
be simulated by an electric clrecult,

A central nucleus of the system (enclosed
in the dotted-line box) containas two
differentiation operators, D and -D
(without and with the sign 1lnversion,
reapectively}). Thus, in the upper branch
of the nucleus, operateor -D, actuating
on  PB,s generates i according ta the

first eguation (5.21}. Likewvise, the lower
branch delivers to "node" g the
derivative of - Pgs namely - dpz/dn.

In a "normal" cperation of the system
deplicted in Filg.4, switch s is closed
simulating the (non vanishing) stabliliz-
inqg contribution of the second member in
eqg. (5.11). Then, following the ascending

paths outslde the nucleuas, both
variables, P, and P,, are squared by the
operators x=. In a, both sguares are
added and the sum is multiplied Iin b by

the factor B*/c® delivered from outside as
an external "signal". Accerding to eq.

(5.11), it creates the functlon sinh®y
which, wvhen added to the unlty in 4,
propagates downward, along the left-side

labelled

% takes the sguare root of the oncoming
signal whlch, after being multiplied in e

by -K/mB', generates the last term in the
second equation (5.21). Likewlse, it 1is
not difficult to see that the right-hand
channel delivers to¢ node £ the next to

last term in the last equatlon. Both

signals, incoming from the left-side and
right-side channels, are added to —dpajdn

branch, as coshzw. The operator

in g, generating p_.

Summing up the wvhole procedure, the system
deplcted in Fig.4, with S closed, works as

a freely oscilating nucleus {the
homogeneous part), stabilized by the
second member {(the foreclng part} of
eq.(5.11). The contribution of the

right-hand channel is usually negligible.

schematically represented by the "flow
graph" 121, [13] of Fig. 4, which However, a sudden change I1n operating
operates as follows. condltions may orlglnate a large
increase in the variable P, = dp’/dn which
B2 o - -
l:z
d i nh 2¥
1o - sinh“¥ 4{;\ - )k
b
L 4 a
r--l---=-—-—-—- - =
h [ o
1 X [
© ' 7
I Y Pz
! ho
1 =
L O
- Y N K sint¥ coshf Y
- K 1. SR, | myf'_
O - X o A x -

Fig.4. Electrilc circult model of the orbltal uotloﬁ.
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tends to neutralize the stabilizing
contribution of the left-hand channel.

complete neutralizatlion I[cancellatlon of
the =econd member in (5.11)] amounts to
the opening of the switch S and leaves
the system free to uncontrollably "run
away”", until Py sufficlently decreases and

forces the simulated circuit to become
stablilized 1n another "state™. Note that
the constants {(input wvarlables} K and B,
confer two degrees of freedom to the
device, allowing the accommcdation of a
wilde range of masses and varlables p. In
particular, the electron transitions (fox
example under the 1lmpacts of photons) or
nuclear transmutations due to sudden {(and

usually very brief) foxrces (Dirac
impulses-like functions) may be simulated
by the instantaneous opening of 8. In any

case, the circult depicted 1in Fig.4 and
the present duscussion of its operatlion
clearly shows the difficulty, 1if not the
outright impossibility, to ocoutline the
general solution of eq {5.11) because
of its dramatic dependence on the
actuating forces. This conclusion is
in agreement with the modern catastrophic
theorxry (143, concerning the system
characterized by non linear differential
eguations.

In extreme situations of wvery strong
accelerations which eventually lead to
unstabilities and tramsitions or "Junps®™
to other states, the eguations of
deternninistic mechanics ne longer hold.
Particles - or matter in general - abide
under such conditions by other laws,
possibly defined in other spaces,
presently under active investigation in
Quantum Mechanics and Group Theory.
Theae parallel branches of research on
the behaviour of the Nature are clearly
beyond the scope of the present paper.
what has to be pointed out here 1is the
fact that the proposed eguations apply to
both mechanical objects and electromagnet—
lc aystems, as it has been illustrated by
the foxregoing examples, and will be
pursued Iln more detall elsvhere.

APPENDIX A

dis)

|
rig.nl.Tzanslat

vector In curvilinear

R85

Da=da-§&

.
a+da

4

ton and dlfferiation of a

coordinates,

where Sa is the dAlfference between the

result of the
of a(s) to P(s+ds) an

a{s), as 1llustrated
deflined in {(A.2),

nintrinsic differentlal"” of a(s})

is

parallel transportation
4 the original vector

in Fig. Al. Da,

the s0

called

trol.

In a linear space 161, the lnczrement sab
due to parallel displacement
toc be speclfic) component

{contravazlant,

a-l of a can be written in the form:

sat= - r:E al

i

dxk

of the

(A.3)

r' being Christoffel symbols of 272 kina®

ik
and the sign (

~) in

been i1ntroduced for
ather hand, the relatlonship

i

i da

da = ———— dx

axk

evidently hold

3

5. T

the

hen,

(A.2) and (A.3) we get

+
]

A typical example
vector is the velocity vector [2],

pelar coordlnat

3

k
v

o
= w2
k=1 ’ v

{contravarlant

es, applying {(A4) to

k=2

L
X 2 )

of

w7

2"? member has
convenience.

On the

after combining

ax*

(A.4)

a contravariant

componeents, not
mistaken for the metric ones) we have:

[21. In

te Dba

't
DvP = (55— + TE Ve + M0 _(vPan + vap) + v dn

v
v
pv? = dn + 7 P " ”, L
¥y In ooV AP+ pn(vpdn + w'dp) + Fony an

(A.5)

Let a{s) be a vector associated with a
point £(s) on a trajectory T in arbitrary
curvilinear coordinates {(see Fig.Al),
a(s+ds) 2 the same vector displaced a
vanishing small distance ds (aleng T) teo
P{s+ds). The dlfference

da = a(s+ds) - a(s) (A.1)

has no definlte physical meaning because
both wvectorsa in the second member of
(A.l) are attached to different polints In
space (it 1s also proved (21, [r101, that
it does not ablde by the tensor
transformation law elther). To regaln a
vecteor in the usual sense we form a ney
differentlal element

Da = da - &a {A.2)
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where the indices o and n dre particular
; thus Elinstein's summation

values of f,7,k

convention does
‘known symmetric

not

helad

and +the well

propertles of Christoffel

symbols with respect to
[71, (10] have been used.

Let ¥ be a parameter
well

Then, it is
considerations

Mechanics and also

components of

coordinates are
D

- . af

_ D"
a, TPa; -

(see

the lower lndices

{(possibly the time).
known by

othex

any standard book of

[81)} that the (metric)
acceleratlon in polar
dzp _ dn.=x
d{z P(a?J
2 (A.6)
4m , , 92 dn
P az? ar ar
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Then, by substituting (A.5) into (A6) and
using the definition of the contravarlant
components of the wvelocity vector in

polar coordinates: v = do/sar, v7? =
= dn/d4r, we easily arrive at the
coenclusion that the only non zZero

components of rtk are *

P o_ n n 1
r - - r ind = A.7T
wn i o T em & i g

APPENDIX B

The proposed problem is to derive the
law of motlion for the system characterized
by the eguations:

=z
de . o¢ne X (B.1a)
dt me cosh w
an _ B
S (B.1b)
e cosh w

Following the classical method (8], it
ls easlly done by performing the change
of variable o = 1/p, with the result:

dg _de dnp , de _ _ 1 dp
at "~ dn dt * dn . p* an

By (P.1b)}:

2
da _ B
3% B cosg "] (B.2a)
Then we have
de _ _ __B__ dp
atc cosh ¥ 4dn (B.2b}
Differentlating agaln, the following
successlon of eguaticna is readlly founa:
z
aZe sinh w dw dp B a*p apn
e e cosh®y dt dn Cosh w an? dF =
_ CB sinh w dy dp _ _B"p? a%p
cosh®w az dn cosh®y an®
F {(Z) z_ 2 2
= B =inh y _ I %E _ B p ap
cosh w cm n coshzv dn'
(B.3}
Because, acceording te (5.%9a), Fu{f)/mn =

= Kp¥, then, by replacing (B.3) and (B.2a)
into (B.la} and rearranging terms, we get
(5.11).

L

1) Some awuthors I[71 e¢all —rjk affine

connections and assign different symbols
to the Christoffel "operatora"™.

JIEE, Vol. 10, 1939

=) Alternatively, (A7) can be computed
from the relatlonschip between the
componentes of the metric tensor and the
Christoffel symbols {121, [r10}. Then,

components (A6) of the acceleratlon can be
easily derlved.
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