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ABSTRACT

This article is a brief overview of some of the research
work in the past few years on Transient Stability assessment

of Power Systems by the so-called second method of.

Lyapunov. The paper concentrates specifically on the
structure preserving models, which have been the basis for
further improvements on system stability analysis using
Lyapunov Functions—also known as Transient Energy
Functions (TEF }—to obtain reasonable estimates of the
region of attraction for the post-fault stable equilibrium
point. The most significant achievements are briefly
discussed and a small five-bus Power System is used as an
example for the application of these techniques. A critique
of this approach and some research ideas are presented.

1.- Introduction

The Transient Stability analysis of Power Systems has
been usually performed by solving a set of nonlinear
differential equations using diverse numerical integration
techniques, e.g. the trapezoidal rule. The main problem
with this approach is that due to the complexity and size of
these systems, it takes rather large amounts of CPU time (o
simulate the equations and the different faults that could
occur in the circuit. This is a major drawback for on-line
stability assessment and the main reason why direct
Lyapunov analysis is so appealing to the Power System
Engineers.

The classical stability analysis has considered the loads
to be constant impedances, allowing their inclusion in the
admittance matrix to speed up the computation of the
solution trajectories. Some other load models—that have
proved more accurate in predicting the stability of the real
system—have also been used during the years [1], allowing
most of them the reduction of the system to generator buses.
Although the structure of the system is lost in the process,
there is a significant reduction in CPU time.

Initially, constant impedance load models were used to
analyze the stability of the system by direct Lyapunov
methods [2], but in order to apply classical Lyapunov
stability theory the system had to be assumed lossless to
avoid having path dependent integrals in the TEF. From the
point of view of the transmission lines and generators this is
a reasonable assumption; however, this is unjustifiable for
the loads due to their large resistance. Several researchers
have continued using these reduced system models for direct
Transient Stability assessment 3], avoiding approximations
by numerically calculating the path dependent integrals. The
problem with most of these techniques is the lack of formal
theoretical justification, using only engineering criteria to
validate the procedure, i.e. how good the predictions of
clearing times are as compared to time simulations.

Bergen and Hill in [4] and [5] present a new approach
for modelling the load, making possible a thorough
Lyapunov stability analysis. Although this model is by no
means complete, because does not consider the reactive part
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of the load that accounts for voltage variations, it facilitates
the theoretical analysis of the power system.
Narasimhamurthi and Musavi [6] introduce the reactive part
of the load into the system model by considering the reactive
power flow equations as a set of nonlinear constraints for the
state space differential equations. Tsolas et. al. [7] improve
the technique by presenting a new TEF to account for the
field variations of generators during transients.

The nonlinear constraints raise the problem of having to
deal with an ill-posed or degenerate system, as described by
DeMarco in [8], due to the singularity of the Jacobian of the
power flow equations close to voltage collapse. DeMarco in
his work applies singular perturbation techniques to
overcome this difficulty.

This paper describes in detail the basic principles used
in direct Transient Stability assessment with structure
preserving models, and proves the main theorems behind the
Bergen-Hill model.

2.- General Procedure

The Transient Stability analysis in Power Systems
consist in solving three sets of differential equations: pre-
fault, fault, and post-fault. The pre-fault study is usually
done by phasor analysis, i.e. obtain a reasonable stable
solution for the nonlinear power flow equations, since under
certain approximations the system can be considered to be in
quasi-steady state. This solution is then used as the initial
condition of the system state variables xg (0) for the fault
simulation.

The fault analysis, which accounts for the behavior of
the system before the fault is cleared by switching operation,
is performed by solving a set of nonlinear differential
equations that neglect the fast transients in the transmission
lines treating them as constant impedances—lumped
parameters. The state variables xg (t) in this case come
from the generators and loads, depending on how the system
is modelled. The duration of this simulation does not take
long due to the usually fast response of the system breakers,
and its is definitely a completely unstable condition for the
system, assuming that the fault being analyzed is considered
"large", e.g. a three phase fault in an important transmission
line. This simulation produces a set of trajectories for
xp (t) and, depending on the clearing time t , yields the
new state of the system xp (t) used as initial condition
for the final analysis.

The post-fault study is where the classical and direct
methods differ. The classical Transient Stability consists on
solving a new set of nonlinear differential equations
corresponding to the new structure of the system, which was
changed due to switching. By looking at the trajectories, we
can conclude whether the system is asympiotically stable
over a sufficiently long time interval, or not. On the other
hand, the direct methods try to answer whether the initial
state of the new system xp (t.) is inside the stability
region of the stable equilibrium point xg. The latter can be
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‘osolved using Lyapunov's theory, which basically consists
iy the following:

4) Find the stable equilibrium point (s.e.p.) x5 of the
post-fault system by solving a set of nonlinear power
flow equations. This equilibrium point is not always
unique, but we are only interested in the high voltage

solution.
“p
ot Pault
Trajectory
el "
Stability
xtex* Region for x,

Figure 1: Region of attraction of the s.e.p. x,.

b) Find the unstable equilibrium points (u.e.p.), and
consider that a set of u.e.p.'s lic on the boundary of the
stability region A (xg) for xg, namely JdA (xg). This
assumption is regarded by some authors as a "folk
theorem" [9], but it seems to be reasonable if one
thinks of the stability region as an energy valley with
the s.e.p. in the lowest point, and the contour as formed
by the u.e.p.'s or energy peaks surrounding it (figure 1).
To find all the u.e.p.'s one could solve several times the
power flow equations, an enormous task specially in
large systems due to the vast number of unstable
solutions [17]. Because of this problem the u.e.p.'s are
usually approximated, based on the observation that
transient instability occurs when a single generator
accelerates or separates from the rest of the system. In
the infinite bus-generator model this approximation can
be expressed as

5" =n-5,""""" Vie Generators
For large systems this is inaccurate; other techniques
have been devised for this case.

¢) Define a locally positive definite energy function 9 (x)
in A (xg), with a locally negative definite derivative of
time ¥ (x). This function is used to evaluate the
energy of the u.e.p. x* closest to xg, ie.

Vg = O(x*)

This is a conservative estimate of the stability region,
as it can be seen in figure 1. Some authors have
suggested a different technique that consists on
estimating the point—the controlling u.e.p.—where the
fault trajectory leaves the region of attraction A (x,).
In this paper we are just going to present the Bergen-
Hill technique to approximate 9¢, which avoids having
to caiculate the u.e.p.'s.

3.- State Space Model

The state space description of the model is based on the
following assumptions:

- Generators (m) : Constant voltage source (1p.u.) behind
the transient reactance. This reactance is treated as part
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of the Transmission System. The mechanical system is
simulated by Newton's equation (1).

Mg 85 + Dg 8 - Py’ (1)

+ Transmission System (i+m): Pure reactance (lossless)
as shown in (2). Contains the m generator reactances
and the | original transmission lines.

Prs = brg sin(d, - &) (2)

« Loads (no): Frequency dependent active load (3), with
no voltage dependance. The system is assumed t0 have
loads on every bus.

P, = PL° + Dy §; (3)

The total number of buses of the system is n=m+n,
and the last bus angle is used as a reference (§,=0). In [4]
the buses are numbered so that the generators are first
(i=1,2,..,m)and then the loads (i=m+1,m+2, .., n),
while in [5] the loads are listed first (i=1, 2, . ., n-m) and
then the generators (i=n-m+1, n-m+2,..,n). This
change of reference is of no significant effect for the
theorems proven later.

Consequently, the post-fault system model for
i=1,2,...,n is:

oo .

M151+D18i+z bij sin(51-5j)= Puio-Poio = Pio {4)

1u)

where: M; = 0 i € Lloads
My >0 i € Generators
Dy > 0 Vi
PMio =0 i € Loads
Ppi®= 0 i € Generators

Considering that §; =w;, and adding (4) for all i we
obtain

n n
Y X bijj sin(8;~-84) = 0 (lossless)

¥R

n * n

IMw; + YDj@; = i p;° (5)
i=1 i=1 i=1

Depending on the fault and clearing strategies,
sometimes the power balanced is lost, making the post-fauit
equilibrium point of (5) different from zero. In order to force
this equilibrium to zero, i.e. ®'®=0, the following
transformation has to be carried out, based on the original
equilibrium point:

n n
w = 3eo/ %o
i=1 i=1
= 0;':=0;-0° Pi':=P;-D;w°
Hereafter, the prime superscripts are dropped to simplify the
notation.
Equations (4) can be transformed into the classical state
space representation by defining the internodal angles a; :
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5

O=T8=[I, 1| ~@n-1}] Sn-1

8,

Notice that T has full row rank. Now choose a partition of
T so that the augmented system bus angles are divided in
generator (m) and load (ny=n-m) angles,

ai:=81—8n =

a=[Tq[TLl{ — [(14]) a=[Ty,|Tql| == | (151
L 5:;

o =T, o + Tq g (6)
The vector of line angle differences ¢ (1+m) can be
define in terms of o by means of the Bus incidence matrix A
[11], and also in terms of the tree branch angles 6 (n-1) of a
system cutset by using the Basic Cutset incidence matrix Q
[11], as shown in (7). These two matrices are full row rank
by definition.
AT o
QT 6
The line angles 6 are identical to the branch angles 84, if

the line i is contained in the cutset Cg, i.6. 63=6; Vi€ C,.
Equation (4) in matrix form is
Dq 0

cei[B) sy 18 [ e @
:

Where Mg, Dg, and Dy, are obviously positive definite
matrices, and £ (o) represents the power flow equations.
PMO

Pp0

f(a) = vector {bin sin(oy)+ 2b1k51“(a1‘ak)} (9)
i=1..n-1 k=

kwi

(7a)
(7b)

[
c =

po =

Using (6), equation (8) can be transformed into the state
space representation of the system (10).

(10a)
(10b)

a=Tqwg-T D 'TLT £ (o) -PO)

©g=-MyDgwg =My T T (£ () ~BO]

Notice that the equilibrium points (0, a®) are the
solutions to the power flow problem, i.e.

£(a) = PO
4.- Stable and Unstable Equilibrium
(Linear Model)

To determine the stable and unstable equilibrium points,
and the regions where they lie, one can linearize the system
and either find the eigenvalues of the state matrix or define
an energy function to apply standard Lyapunov stability
theory [10].
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Bergen and Hill utilize the energy function to prove
asymptotic stability and complete instability. Their studies
rigorously prove, as shown below, that the §,6.p.'s of the
simplified power system lie in the polytope

Q={ae &1 | o=ATa, lckl<§ Vk=1,..,1},
and the g.e.p.'s are contained in the polytope

A={ae®""1 | c-LTa,’;« 16y 1<32’5 VYkeCsl,

where C; is a set of lines that form part of a fundamental
cutset of the augmented system.

Linearizing the state space equations (10) around the
equilibrium point (0, a®), ie. Aa=a-a®, Aw,=
Wyg—0g =0y, we obtain

Aa=T 0g-T DL 1T TR (0) Aa {l1la)

Og=-M;"1D,05-M; 1T, TP (@°)A@  (11b)

Where F(a€) is the symmetric Jacobian of the the power
flow equations evaluated at the equilibrium point a®,

af;
F(a = a
(e [30‘3‘( ) (n-1)x(n-1)

n-1

bipcos(ai) + Y, bixcos(o;-ay) i=j
N ke
aaj ’

-bj jco8 (0; -05) i#j
This is equivalent to
F(a) = A G(ATa) AT = A G(o) AT

G(o) = diag{by cos(0Oy)}
k=1..1

= diag{gg{ox)}
k=1,.1

= diag{g{0o)1}

Notice that, as long as ckea%\/k, the matrix F(a®) is full
rank, since it is diagonal dominant and none of the rows is
identically zero (b >0, cos (0,%) #0)

If a® e Q, the matrix G (6€) is positive definite,
because all terms in the diagonal are positive (b, >0,
co8 (6x®) >0). On the other hand, AT is full column rank;
therefore, F(a®) is positive definite.

y'F (0®) y=yTAG (6°) ATy= (ATy) TG (0°) ATy=vTG (0%) v>0

For a® € A, the matrix G (0°) is negative definite for a
proper choice of a® (0,,°=0 Vke&Cg, 6,°#0 Vke C,), since
all terms in the diagonal are negative or zero (b, >0,

cos (0x€) <0). Hence, F(a®) is negative definite for this
choice of a®.

yTF (0®) y=yTAG (6°) ATy= (ATy) TG (6°) ATy=vTG (0°) v<0

Based on these observations we can now state and prove
the following theorems:
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Theorem 1.- If a®e€ Q, the equilibrium point (0, a®)

is asymptotically stable.
Proof: Define the Lyapunov function;

1
B (0g, Axt) ;=8 (Ax) = ;—ngnqwg + T AdTF(@®) Aa (12)

Clearly this function is positive definite, since Mg, >0 Vi
and r(a®) positive definite Vo© € Q. On the other hand,

—| Ax

ém LAy = \.‘)(Ax) =
g 0Ax

= AaTF(a®) Ty - AaTF(a®) T D, TIT.TF (a®) Ao
T - Tm T e
Wy Dg®; - O Ty F (0f) A
= - AdTF(a®) Tp 7 TR (@) Aa - ©fTDgay
= - (7R @®) Aa) "D, 7IT TR (a®) Aa - w05TD 0y

- - zTDL‘lz - (DqTquq

Observe that D; >0 Vi; therefore, D;,”! and Dg are positive
definite. Then,

—i‘)(mq,Aa) >0 V Ao, g

Furthermore, 9 (@g, Aa) =0 and (:)q=0 imply wy=0 and

T.TF (0®) Aa=0

T e =
T,F (0°) Act=0 T'F(0®)Aa=0

= Aa=0 (T, F(a®) full rank)

Hence, by LaSalle's theorem [10] the equilibrium point is
asymptotically stable. ]
Theorem 2.- If @®e€ A, the equilibrium point (0, a®)
is completely unstable.

Proof: Choose the Lyapunov function to be:

B @, Ay = - T @My - T AaTF(a®) A

Since F(a®) is negative definite for proper values of the sate
variables arbitrarily close to the equilibrium, i.e. (0, £), the
cnergy function O' (w4, Aa) takes positive values. On the
other hand,
oy t0g, Aa) = (T,TF(a®) Aa) TD, 71T TR (0®) Aa
> @Dy
= 2oz + @yTDj,

Where D;,"* and D, are positive definite. Then,

D' (0, A0) 2 0 VvV Aa, ®
g g

T, TF (a®) Aa=0

- T ey Ag=
T,7F (0°) Aq=0 T T (0%)Aa=0

= Aa=0 (TT, F(a®) full rank)
Therefore, by the first instability theorem [10] the
cquilibrium point is completely unstable. ]
24

5.- A General

The state space representation of the augmented system
can be rewritten in the multivariable Luré form shown in
equation (13). The transfer function for the linear portion is
shown in (14).

Lyapunov Function

x = Ax - Bo(y) (13)
y = CTx
G{(s) = CT(sT - A)"1B (14)
Lineas
A A e
™5, > Y
*K
Benlinsaz

Figure 2: Multivariable Luré Form

Rewriting (10) in matrix form we have that
og| [ M50y 0 To -lp, T
q{ My""Dg ]: q]_ My T g o0 -2
& Ty ol a T D; ‘T, "
®
a = [0 I,-1] [ q]
o

Which give us
- ‘1D 0 _lT T 0
h[ My~'Dg ] sl T C{ ]
T, O b 39 Thatt I._.
¢(a) = £(a) - P°
Then it follows from (14) that
SI, +M, D 0 -1Tf;-:‘
G(s)= (0 I,,) [ M P ] " .
"Tg SIn_l TLDL_:T;‘

= -1p ) -ly. -lp T “1p T
G(s)=7[Tg(sIn+Mg™'Dg) "'Mg 'TgT+T D i T ] (15)

Now we can use Anderson's theorem {12], which is a
multivariable version of the Kalman-Yacubovitch lemma
stated in [10]. This theorem starts by defining the transfer
function

Z(s) := (p+qgs)G(s),

where p20, g>0, and s=-p/qisnotapole of G(s). If
(A, B, C) is a minimal state space representation of G (s) ,
and 2 (s) is positive real, there exist real matrices P, Q, and
W, with P positive definite symmetric, such that

PA + ATP = - Q@T (l6a)
PB = pC + qATC - QWT (16b)
WW = q(c™B + BTC) (16c)

From (15),
Z(s)= PL:E- [Tg(sIn+Mg D) "My~ to T+ D717 T)
Where Z (3) positive real if Re{2 (j®) } >0. A sufficient
condition for a positive real Z (s) is then:
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q2p i
Dgi
Hence, p=0 and q>0 guarantees Re{Z () } >0.
With this assumption, and replacing A, B, and C in
(16), it can be shown that the following matrix equations
hold:

_{:Pl PZT] {Qn le] : {Wl]
P= Q W

P, P3 Q1 Q22 W)
Q2:=0 Q,=0

PoM; 1D =P3T

PiMg " Dg+D Mg Ry -, T Ty T TP, -0110:1 7401 ,0; 5T

vV i=1,2,..,m

(lea)=
(17)

(16c)= WyTw+W,TWy=2qT;D; 1T, T
= W1=42qDL'1/2TLT, W,=0
[quQlIDL—l/erT:I

0

= QW = (18)
Equations (16b) and (18) yield

P.M I +R, D i TeqT T~ Y2901, 7/ 21T (19)

PoMy ity + PyTTD T IT T = 0

From (17) and (19), and with T full rank, it can be
proved that P,=0 and P3=0, and

P:M; 1Dy +DoMy 1P 1=01101174Q1,0Q; 57 (20a)
ylng—qu%q'qu—\J 2qQiD" Y21 T (20D)

Now, replacing T, and T, by their original form in

(20b) we have
Im-1 o Im-1
"‘m‘l-r ] - [ '.n-mT '.:—1T ]

- V2qQ;;D,71/2 [ Innlo ]

0

T
“@n-nm

p-M;! [

Which is equivalent to
0 ¢}
PiMy7! [ e T ] =q [-.n—mT ] -V2qQ;1D 712

n-m
1[ In-: ] q[ In-1 ]
P - =
M -.m—lT '.m-lT

One possible solution for (21) is

P; = gMg + HMglnnM,
Where b is a scalar constant. This m by m symmetric
matrix is positive definite if | is chosen so that P, is
diagonal dominant, i.e.

0 2 u > uo = -L

ﬁ Mgi
i=1

Finally, the Lyapunov function for system (13) is a
multivariable version of the one used in Popov's criterion
[10], i.e.

(21)

(22)
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0EYTAE (23

1 y=cTx
9(x) = = xTpx + g
2 0
With the following time derivative

d(x) = g—g] x = xTPx + gqpTCTx

1
= - g(xTQ-q’TwT) (QTx-wo) -pxTCd (24)

From equations (23) and (24), and assuming that ¢ (y)
lies in the sector (0, %) and ¢ (0) =0 and Z (s) positive
real, the equilibrium point of (13) is asymptotically stable.
This comes directly from the observations that 9 (x) is

positive definite, 9 (x) <0, and 9 (x) =0 and x=0 iff x=0,
under the previous assumptions.

For the specific case of the the power system, the
energy function (23) becomes:

B lwg, a)= % R T *% O e

o
+ qJ [£(E)-PO]TaE

o

(25)

If this TEF is evaluated at the point where the fault has
been cleared, and it lies inside the stability region, i.e.
9 (0g_(te),a, (tc)) <y, the system is asymptotically

stable. Hence, a good estimate of the region of attraction is
a requirement to adequately assess the post-fault stability of
the system.
6.- Stability Region Estimate

One of the key ideas in direct transient stability
assessment of power systems is to find a good estimate of
the region of attraction for the post-fault s.e.p. Bergen and
Hill [4] devised a technique that avoids having to calculate
the post-fault u.e.p.’s in order to find the minimum 9, of
the TEF. They use an special case of the Lyapunov
function (25), with g=1 and p=0.

1 a

V(0,0 = S 0gTM0; + JEE) - POTag
a

B(0g, @) = = 0g™Mu0g + Wl @) (26)

Where W{(a, aS) can be evaluated in close form by
assuming symmetry of the power flow Jacobian F (),
which guarantees ra};:oath independent integral.
[+

W(a, os) = [£(8) -PO)Tag
Y as
("o
= (£(§)-£ (%) 1 TaE

Y as
(o
= (g (ATE) ~g (ATaS) ] TATQE

Y as
(o
= (g(u)-g(0%)1Tdu

O.S
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! c
= ¥ by J ¥ [sin(u)-sin(0y®) l1du

1
Y bx h(0y,0k%)
k=1

= h (O, 05) =cos (G, 5) ~cos (Gy) + (0, 5-Oy) 51n (6 )

Figure 3 shows different plots of h (o, 0x*) foro €

rﬂ(cs)=(aex}|cke(ck',ck“),ak'-—n-cks,ck“-x-ck‘,Vk-l,..,H

Observe that the energy function (12) used to prove the
stability or instability of the equilibrium points in the
linearize model, is just a "linear” version of (26).

h(oi,af)
2
+ + > Oy
% oy %
[a}
h(s.0")
s + 5 O
5] v' -“ 7 “x
[+ A o O,
x
1 1 (b] X
h(oy.")
n " Y
H : + > o,
Ok 5 o
[cl

Figure 3: h (o, 0yx5) for [a] 0y 3=0, [b] -n/2<0y 5<0,
and {c] 0>0 5>/ 2

Now we can prove that I'2 (o) is the stability region
of the post-fault stable equilibrium point (0, a®).

Theorem 3.- The equilibrium point (0, a%) is

asymptotically stable in the polytope
I'? (ATas). Furthermore, all the u.e.p.'s
lie on the closure 3¢ (ATas)

Proof: This is based on LaSalle's theorem [10]. Observe
that (26) is positive definite in T# (ATa*), since M, is
positive definite and every h (G, 6x®) is positive definite
in the polytope I'? (6%). On the other hand,
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2. 2] @9
dug Ja .

a
=~y TDy0g- [£ 1) -1 TP Dy 71T T (£ (o) -0 <0

dlag o = [

L
Moreover, ¥ (g, a.) =0 implies
(1) @g=0
(ii) T TiE@ -P%1=0; @y = 0
= T T (£(x)-P%)=0 from (10)

= TT(f(a)-P°]=0 TT full col.rank
= f(a)=P° = a=0°

Finally, in figure 3 we can see that h (G, 6°) has
unstable equilibrium points lying on o' and oY, i.e.
maximum potential energy. Thus, all the system u.e.p.'s
are in the closure aT'¢ (ATas) . ]

Based on the Lyapunov function (26), Bergen and Hill
propose a method to estimate the value of the energy
function of the closest u.e.p. (0, a*),ie.

Vg = W(a*, %) = minimum{W{a,a®)},
Yoagunst
without having to calculate the u.e.p.'s (0, aunst),

For a system where P%=0, there are one s.e.p. (0, 0)
and several u.e.p.'s (0, a""s*=[0,+n}). One can define a
series of cutsets {C,} that include some of the saturated
lines with angles o;=+=, and for each one of this cutsets we
can evaluate the energy function

9 (0, gunsty = W{ounst oSy = 2

2 by
xel;
Obviously, the value of ¢ can be estimated from the most
vulnerable cutset, 1.e.

3 by

keC,y

¥ = minimum <2
vi

This idea can be extended to the general condition P9#0.
In this case associated to every cutset C; we define a
direction; the lines with angles ¢; positively oriented with
respect to the direction of C, form the subset C; *, while the
rest conform C;~. Then, the following cutset vulnerability
indices are defined:

2 b, h{G,0,5) + Z b h(G !, 05

viti=
keCy* keCy~

viTi= 2 by h(ck',cks) + 2 by h (oY, 0,5)
keCy* KEC|™

Hence, the estimate for 93 becomes

¥¢ = minimum {min(vi“,vi‘) }
vi
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7.- Reactive Power and Flux Decay

In order to have an appropriate representation of the
system, it is important to consider the reactive part of the
load as well as the flux decay in the generators, to account
for voltage variation during the transient analysis—a
significant characteristic of power systems during fault
conditions. This can be accomplished by using the
following models for each one of the elements in the
system: :

- Generators (m): Neglecting the effect of saliency, we
can represent the generator by the following equations:

VqVi Y
Pgr = fr sin (8g-8¢)

= bgcVgVesin (8g=8¢) (27a)
Vg? VgV
Qgt = xdv - xdl COS(Sg‘&t)
= =bggVg?=bgt VgVt cos (§5-8;) (27b)

. 1 Xg=Xq"
Vg = -'ITdo—'{ Eg-Vg- T [Vg-Vecos (85-8;) ] }

o (MY o
Tdo' g

“EgVgtVg?  Vg? VgV

{ Xa=-Xq' Y Xq' Xq'

Xq-Xg4"
=._(—%—)¢g-l [qg(Vg) + Qgtl (27¢)

Mg 8; + Dg 85 - Py° (27d)
Where V4384 is the internal g-axis voltage of the
generator, V¢ Z8¢ is the terminal voltage, and X4 and
Xq' are the d-axis synchronous and transient reactances,
respectively.

» Transmission System (1+m): Neglecting the resistance
in the transmission lines, the active and reactive flow in
every transmission line can be represented by equations
(28). Notice that equations (27a-b) have the form of
(28); hence, the transient reactance of the generator can
be included in the transmission system.

Prs = brsvrvssin (8:'83)
Qrs =-brVy?-brsVrVscos (5.-8s)

(28a)
(28b)

- Loads (no): Assuming frequency dependence and
voltage dependence of the reactive power, the loads can
be modelled by equations (29).

Py = P 04Dy &y (29a)

QLO+QLIVL+. . . +Q1 PV

(Vy) = \j
qL{Vy ‘ QLO (VLLO-

{expan.)
(29b)

(const. reac.)

In all these models the active power flow equations and
the differential equations for (g and § have not significantly
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changed; therefore, the state space representation of these
variables remains the same, although the bus voltages have
to be considered as variables. The inclusion of generator
flux decay in the system modelling yields additional state
space differential equations, while the reactive power flow
can be treated as a set of nonlinear constraints. Thus, the
state space equations for the power system become

a=Tgwg-T Dy 1T, T (£ (&, V) -PO) (30a)
Wg=-Mg~ DGy Mg 1T T[£(, V) -PO]  (30b)
Vg=-Dyhqg (O, V) (30c)
hy (a, V) =0 (30d)
Where, assuming a,=0,
D, = diag {Er_"c{;_}
k=1..m Tdoy

n
£(a,V) = vector 12, bikvivksin(ai-ak)}
i=1l,.n-1 k=1

diag
i=n-m+l..n

hg(arv) - (_Vi-l)

vector {q‘,i (Vi) —2 byxViVycos (u,-ak)}
o

i=n-m+l, k=1
= Vgl [qg(Vg) + Qgla, V)]
hp(a,V) = diag (v;°!}

i=1l..n-m

vector {qu (Vi)-ﬁ byxViVycos (ai-ak)}
i=1..n-m k=1

= (VL1°! [@p(Vy) + Qui(a, V)]

Notice that the diagonal matrices [(Vg] and [V ] are
positive definite due to strictly positive bus voltages.

A proper Lyapunov function or TEF for this state space
representation is defined in (8] as follows:

d(wg,a,V) = -;- 0 TMg0g- POT [a-as) (31)

n n
> X bixViVkcos (0 -0y )
im] k=1

(ST

N =

n n
Z X bijkVi®Viscos (@3- ®)
i=1 k=1
v
n
+ 3 .

s
k=1 Ve

L‘:u) du

. In[15}, DeMarco and Overbye show that the state space
equations (30) can be rewritten as

g

a

Vg
0

Where K is a constant matrix. They also indicate that

= K V3 (g, a,V) (32)
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3 (0g, @, V)= %Vﬂ"(mg,u,w (R+XN) VB (o0g, @, V) (33)

Where (K+KT) is a diagonal negative semi-definite matrix,

which makes O (wg, &, V) 0. Furthermore, form (32) it
is obvious that the linearization of the system about an
equilibrium point is stable if the symmetric Hessian
V29 (wg, a, V) is positive definite, which implies that the
TEF itself is locally positive definite about the s.e.p. From
these observations we can conclude that the proposed TEF is
a Lyapunov function, and that the s.e.p. for (30) is
asymptotically stable.

From equation (31) we can calculate 99 by finding all
the u.e.p.'s of the state space equations at the equilibrium
point using the technique described in [16,17], i.e.

Y¥¢ = minimum{9 (0, a¥eP, VUeP) }
Yuep

Estimating the u.e.p.'s is a more difficult task in this case
due to the voltage dependence of the state space equations.
In [6], Narasimhamurthi and Musavi minimize an
approximate potential energy function to find an estimate of
the u.e.p.'s. DeMarco and Overbye are presently working in
developing a technique to find the closest u.e.p. by
minimizing a constrained energy function, without having
to solve the power flow equations.

DeMarco demonstrates in [8] that the set of differential
equations with algebraic constraints (30), present potential
shortcomings in direct Lyapunov stability analysis, due to
the ill-conditioning of the power flow Jacobian close to
voltage collapse. To avoid this problem he uses singular
perturbation techniques to remove the constraints resulting
from static load models. By singularly perturbing the
algebraic constraints with a small positive number &,
equation (30d) becomes

EV= ~ hy(a,V)

This transforms the nonlinear constraints into additional
differential equations of the state space model, allowing the
use of standard Lyapunov theorems to find the region of
attraction for the post-fault s.e.p. Notice that the s.e.p. of
the perturbed system is exactly the same as in the original
system (30). TEF (31) can also be used as an energy
function for this new set of equations, since (32) and (33)
and the observation about the Hessian of the TEF still hold
for the singularly perturbed system.

These differential equations yield a stiff system difficult
to solve by numerical integration, due to the small value of
¢; furthermore, they do not significantly alter the values of
the load bus voltages. The advantages of the singular
perturbed system are that (i) a complete Lyapunov analysis
can be performed for ill-conditioned power systems, and (ii)
that an expected exit time from the region of attraction can
be calculated and used as a security measure to assess
vulnerability to voltage collapse [8,13,15).

8.- Example

In order to show some of the applications of the direct
transient analysis described above, a five-bus system [14]
depicted in figure 4 was used as an example. All the
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simulations and calculations were done with the help of
SOLVER-Q [18], a general purpose equation handler for the
IBM-PC. The simulated event is a balanced three phase
fault at bus 2, which is assumed to clear completely at time
tc. The post-fault s.e.p. is then the same as the

equilibrium point prior to the fault.
A
D=t 501
o :
X8
T "8

8023401k

Dul 00
Asde
e
Tt 810
L
810054018002
Figure 4: Five-bus system extracted from [14]
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wd, w5
T

° 22 04 0.6 [} ) 1 12 14

0.2}
30 02 04 M o8 1 12 1.4
ths (sec)
Figure 5: Constant impedance load model. Stable case:
tc=0.2s
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Figure 6: Constant impedance load model. Unstable case:
t=0.21s

8.1.- Time simulation

Figures 5 and 6 depict the trajectories for the stable and
unstable conditions of the sample power system, with the
loads simulated as constant impedances. These plots were
obtained by the trapezoidal rule of integration for two
different clearing times. Observe that the critical clearing
time for this load model is t ..=0.205s.

The Bergen-Hill state space model yields the trajectories
depicted in figures 7 (stable) and 8 (unstable). The critical
clearing time for the frequency dependent load model
(tcc=0.21758) is larger that the one obtained with
constant impedance loads, which is a reasonable result
considering that the voltage variations are not taken into
account in the Bergen-Hill model.

When reactive power of the load is considered—figures
9 (stable) and 10 (unstable)—the critical clearing time is
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Figure 7: Frequency dependent load model with no reactive
power. Stable case: t.=0.215s

reduced considerably (t..=0.0495s). These changes in
critical clearing time regarding the kind of load mode] used
in time simulations have been widely studied, and the
interested reader is referred to [1] for a complete discussion
concerning this matter. We are more interested in the effect
this phenomenon has in the region of attraction of the post-
fault s.e.p., which we expect to shrunk considerably when
the reactive power is taken into consi ion.

In figures 7 thru 10 we have plotted the TEF for
different load models and clearing times. Observe that the
energy function decreases asymptotically toward zero for the
stable cases, while in the unstable cases the TEF rapidly
becomes negative. Although the energy function passes
thru zero in the unstable conditions, this does not mean that
the system becomes stable, since the state variables time
derivatives are not zero—a requirement of LaSalle's theorem
for asympiotic stability [10}.
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calculated by finding all the 37 u.e.p.'s for the sample
system, and corresponds to the case where the second
generator separates form the rest of the system, i.e. line 5 is
saturated. The exact u.e.p.’s were calculated by the Newton-
Raphson method with optimal multiplier described in [16],
using as initial guesses the angles o Stn.

Table 2 shows the calculated Bergen-Hill cutset
vulnerability indices for all possible cutsets in the system.
Notice that the value of 9¢ found previously is exactly the
same as the minimum index in table 2, which corresponds
to the cutset with line 5 saturated.

Using 99 as the estimate of the stability region for the
post-fault s.e.p , one can calculate the critical clearing time
by evaluating the TEF along the fault trajectory. From
figures 7 or 8 tcc'=0.1225s, which is clearly a
conservative estimation of the actual value calculated by
time simulation, as it was mentioned before.

o’ o* Vg
o; | -0.20314 | -0.20314
a, | -0.25545 | -0.25545
(o X -0.34476 -0.34476 3.8274
oy 0.04924 2.58145
233 0. 0

Table 1: Stable and closest unstable equilibrium points for
the Bergen-Hill model

Energy Change (pu)

02 04 0.6 08 1 12 1.4

time (sec)

Figure 8: Frequency dependent load model with no reactive
power. Unstable case: t.=0.22s

It is also interesting to highlight in figures 9 and 10 the
large dip in the voltages after the fault is applied—specially
in bus 3—due to the lack of reactive power support in the
system. This suggests that the system is operating close to
voltage collapse. For this reason the reactive part of the
load was simulated as a constant reactor to avoid problems
with the nonlinear constraints in the state space model, since
this kind of load model reduces the reactive power demands
on the system. Obviously a constant reactive power load
model would yield an ill-posed system when the fault is
applied under these operating conditions.

8.2.- Energy analysis

Table 1 shows the value of the bus angles a and 8¢ at
the stable equilibrium point and closest unstable equilibrium
point for the Bergen-Hill system model. This u.e.p. was
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Cy {1} {5} {2,3) | (3,4} | (2,4}

vi*] 14.12 | 3.827 | 29.28 28.62 34.34

vi'] 26.68 10.11 41 .84 31.76 50.05

Table 2: Bergen-Hill cutset vulnerability indices for sample
system

The complete state space model (30) give us just two
equilibrium points, as shown in table 3. Notice the rather
small value of the TEF at the only u.e.p. for the sample
system; this tell us that the system is relatively close to
voltage collapse [15]. Furthermore, the small region of
attraction of the s.e.p. give us complete instability for a
fault at bus 2, since the value of the energy function during
the fault trajectory—figures 9 and 10—is much higher than
V.

as a* Vg
(231 -0.16726 -0.23336
[+ P -0.21802 -0.30652
a3 -0.30653 -0.43434
[+ 7} 0.00342 -0.00595
os 0. 0. 0.00523
\'21 1.05000 0.87770
V2 1.05000 0.88000
Vi 0.97406 0.80881
\ 1.30083 1.15148
Vs 1.14414 0.98539
Table 3: Stable and unstable equilibrium points for
complete system model
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DeMarco and Overbye describe in {15] a method to
assess vulnerability to voltage collapse based on the
behavior of the energy function observed in our sample
system, i.e. the closer to voltage collapse the smaller the
value of the energy function at the corresponding u.e.p.
This also ratifies the fact already observed that increments in
power demand reduce the stability region.

Finally, another interesting fact—also mentioned in
[17]—is that the number of u.e.p.'s increases when power
demand is reduced. Moreover, these u.e.p.'s appear to come
and go in pairs as the load is changed in the system, a
phenomenon also noticed by DeMarco and Overbye. Table
4 shows all the u.e.p.'s and TEF values calculated for the
sample system when there is only an active power demand
of 0.01 p.u. at bus 2. Notice that the equilibrium
points for state equations (30) could have negative voltage
solutions for the fictitious internal generator buses, due to
the characteristics of the field equation (27c); these
equilibrium points are ruled out of the analysis.

s oYy al, oYy

a, | -0.00021 | -0.00209 | -0.01930 | -0.02340
a, | -0.00039 | -0.00508 | -0.12583 | -0.31382
o; | -0.00029 | -0.00322 | -1.62827 | -1.65652
oy 0.00220 2.18614 0.20841 1.13900
as 0. 0. 0. 0.

vy 1.00000 0.27973 0.06678 0.05796
2 1.00000 0.21671 0.04790 0.02049
V3 1.00528 0.25346 0.00000 0.00000
V4 0.92848 0.01361 0.15274 0.11794
Vs 0.97179 0.34155 0.15521 0.14749
9 0. 0.54870 0.63327 0.63650

Table 4: Stable and unstable equilibrium points for sample
system with reduced load (P;,=0.01 p.u.)

9.- Comments and Conclusions

Bergen and Hill rigorously prove some of the intuitive
ideas that have been used in the direct assessment of
transient stability in power systems. They also present a
interesting and different idea on how to obtain an estimate of
the stability region for the post-fault stable equilibrium
point. Although in their work they do not consider the
direction of the trajectories of the faulted system to obtain a
better estimate of the closure of the stability region, as a
first approximation the vulnerability indices are useful to
detect the most sensible parts of the system.

The Bergen-Hill structure preserving model definitely
presents advantages over previous models used for direct
stability assessment, but it is still a rough approximation of
the actual power system. System models developed later,
have successfully incorporated reactive flow and the flux
variations in the generator to account for voltage reductions
during Transient Stability studies.

None of the models herein are adequate for representing
purely resistive loads and its voltage dependance. Some
research is been carried out to try to incorporate this kind of
load models into the structure preserving model. For the
reduced system models this problem has been resolved by
finding the path dependent integrals in the energy function
using trapezoidal integration, but this approach does not
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allow for a thoroughly theoretical justification by classical
Lyapunov analysis.

One important system component that should be taken
into consideration is the generator's voltage control loop, or
Automatic Voltage Regulator, which has been shown to
reduce the stability region due to its fast response.
However, some mathematical tricks can be played to
approximate the voltage control phenomena at generator
buses by defining additional differential equations for these
voltages.

It would be also interesting to include in the direct
stability assessment HVDC systems, due to todays widely
spread use of DC links as an integrated part of the power
network.

Finally, more research has to be done in developing
efficient ways to calculate or estimate the u.e.p.’ for the
structure preserving model, specifically when reactive power
and generator flux decay is taken into consideration. A
complete enumeration of the u.e.p.’s is inadequate for large
power systems.
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