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Abstract: Saddle-node bifurcations are dynamic instabili-
ties of differentiai equation models that have been associ-
ated to voltage collapse problems in power systems. This
paper presents the conditions needed for detecting these
type of bifurcations in a dynamic model of ac/fdc sys-
tems, represented by differential equations and algebraic
constraints, using power flow squations. It is also shown
that two methods typically msed to detect saddle-node
bifurcations, namely, direct and parameterized continua-
tion methods, are namerically robust at the bifurcation
point, which makes them ideal for computer implemen-
tation.

1  Introduction

Voltage collapse problems in power systems are gener-
ally associated to saddle-node bifurcations as discussed
in several papers {1, 2, 3, 4]. These type of instabilitics
are usnally local bns voltage problems due to lack of reac-
tive power support, and can be characterized by a sudden
voltage drop with a system wide loss of stabhility.

Saddle-node bifurcations are well defined instabilities
in power system models fully represented by differeutial
equations [1, 5, 6, 7]. However, bifurcations in svstews
that are also modeled with algebraic constrainis have nol.
been thoroughly studied. This paper addresses this prob-
lem, showing the reguirements for having equivalency of
typical saddle-node bifurcation conditions betwecn differ-
ential equation models and mixed models, i.c., systems
represented by both differential equations and algebraic
constraints. Furthermore, it is also shown the condilions
for using power flow cquations, which in power systems
analysis n=ually yicld a good first approximation to sys-
tem equilibria, to detect saddle-nude bifurcations in Lhe
proposed full ac/dc dynamic system model. This suhject
has been of some concern in power systen analysis as
shown in [5. 8, 9].

Finally, the paper demonstrates, based on saddle-node
bifiircation conditions, the robustness of two methods,
i.e., direct and parameterized continnation methods, uscd
to detect these type of bifurcations. These methods have
been shown to be some of the most efficient ways for
detecting proximity to voltage collapse [10].

2 AC/DC System Moaodel

In this section, a systets model 15 bnilt {rom differ-
ent element models for generators, transmission network,
loads, and the de lines. This dynamic model corresponds
to a typical representations of ac/de power systems for
voltage and transient stability analysis {1112, 13,14, 15
16, 17, 18). Based on this model, it is shown bhelow that a
saddle-node bifurcation can be detected using power fluw
equations.
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2.1 Generators

A synchronous generator model with constant termin
voltage and reactive power limits is nsed, to.simulate t
effects of a voltage regulator [15, 17]. Generator bus
are numbered as ¢ = 1,2,...,nq, and generator ng i
the reference point for the bus voltage phasors.

b, = wg—wngy 0
. 1
Wy = —;!—y— (Pin = Pye — Dywy)
"
P, = Ge, ViV cosib, — 8;) + Bi, ViV, sin(b, — §,)
=1
n
Q, = 8(':,,-1'; V, singd, — b;) — B ViV, cas{fi — &)}
=1

Here, Gy, + 3By, is the 17 term of the bus admittance
matrix for an u bus system. V) £é, is the voltage phasor
at the gencrator terminal bus £, and Py and 4 are the
active and reactive puwers injected by the generator at its
terminals. The reactive power Qg is assuined to be be
tween limits Quae and Quun.: when this variable excecds
these lmits, €, is fixed to the correspomding valne and
the terminal voltage magnitude Vi is allowed fo change
to meet this condition. M, represents the machine in-
crtia in (scconds)?. and Py is the generator’s damping
constant in secomds. The variable w,, stands for thre gen-
erator frequency deviation from the nominal frequency in
rad/see. The mechanical power applied to the generator
shaft, /%, , i assuined constant at each load level.

2.2 Trausmission System

A Tl-eqnivalent circait model is =mploved {15]. Trans-
formers and phase shifters are inclnded as part of the
transmisston network.

P = gVl —guViVicos(he — 8] ¢ (23
b VLV, sin(6e — 8¢)

{b. + BOVE — gl VY, .ci.n(b, — &) —
bar V.oV cos(h, — b,

Qn =

Here, £, and Q.. are Lhe transmitted powers butween
buses s and +. V; 26, and V.24, are the volltage phasors
at the respective buses. The transfer admittance is rep-
resented by ¢g., — jbo.. and —jh. denotes the shunt bas
admittance at the eud of the line/transformer.

2.3 Loacs

Voltage and {requency dependent load wodels are
psed. These models are similar to the ones proposad in
[11.16,17).

Iy = =Py, AN = 7, £ AP VYV - ()
(P, + &R N (V/VP) = Dy (81 = o) = D1y Vo
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O = —(Qup + BRiN — (Qr + AQL N VI/VP) -
(@, + AQu N {(Vi/V) — Dl;Q(Sl — ) = P,V
where | = 1 + 1,2 + wegy .o nG 0L, Here 1% and

@ are the powers injected hy the load, and Vizb, is the
load phasor voltage at bus 1. P, P, P Q. Qo
and @, are constant weighting factors that define the
steady state hase load. D, Dy Dy, - and Dy, rep-
tesent the time constants of the {requency and voltage
dependent dynamic terms in seconds. Note that these
time constants can be xet 1o zero lo represent static load
models. APy, AP, AP, AQ,. AQ, . AQ,. and the
parameter A are used to sunulate the slow time scale
load change. For most studies of voltage collapse. it is as-
sumed that the pattern of load change can be represented
with one degree of freedom (A) and that Lhis evolution of
load drives the system to a saddle-node bifnreation.
Notice that differential equations (3) cau be rewritten
[ TN D I [ falb. V)

. = ere NV
as ko Vi 1 ke RTINS E where fa(d, V)
and ga(8, V) are the active and reaclive puwer mis-

matches at the load buses, respectively.

2.4 HVDC Maodel

DC Bnes are simulatod nsing -1, cirenits. and the
HVDC controllers are modeled using saturable Pl enrrent
conirollers. Althongh these control cirenits are approxi-
mations to the more complicated HVIDC contral struc-
tures, they recreate several of the main propertics of
actual svstems, vspecially when close: to the vquilibria.
Voltage Dependent Current Order Limiter (VYCOL) can
be introdnced into this madel by reprusenting the con-
troller current order as a nonlinear function of the ac
converter voltages [32, 13]. This will he represented by
assuming voltage dependence of the current order set-
tings in the converter current controllers.

Assuming ideal harmonic filtering. equations (4) be-
low can be used to simulate the behavior of the HV DO
system under balanced 3-phase operation, including the
control mode switching Jdue to satnration of the converter
current controblers [12, 13, 14, 15]. The convrntion used
throughout this paper will apply the subscripts =r” and
“* o rectifier and inverter quantitics, respoectively.

fe = (Va, — Val Lo —(Raf L)l ()
e = bk (’\'I,.[Iu,(“'l") - I'f]'y")
£ = h (I\-['[ld_ In.(\/')]-yl)
cosar = la(ar 4+ Kp [l (Ve) — L)
Vi, = (B3VZfx)e Ve cosar — (3fm) Xe L
RIS = (V,. I,,/S,,)(:;ﬁ/ﬂ']ﬂr ¥ 14
P o= (Vada/Sa)Va, L
Q. = JHE-PF
cosy, = 2 (f- + Wl — T (Ve )])
Vi, = (3V2/x)u; Vi cos 1 — (3/7)Xe, Ha
S = (ValufSa)3VE/maiVily
P, = —(VadafSuWWa, la
Q: = ST~ 17

the hase quae s vde Cen. 1~ thel -0
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Per unit nore: dization i- emyd sed vk, and Vi, as

power for the ac side. Vy, and Vi, are the per unit dc
terminal voltages at the rectifier and inverter ends. X,
and X, are the per unit commutation reactance, and Hq
and Lg are the per unit dc line parameters. The prod-
ncts a, Vo and a; Vi are the per unit ac bus voltages at the
secondary ac side of the translormers. S. and S; are the
magunitudes of the H V(! complex powers at the ac side,
and P, F:, @, , and i are the active and reactive powers
absorbed by the dc svstem. Ny Ko A, and A'p, are
1he Pl controller gains for each converter, respectively.
The variables g and g, arc feedback measurements used
to enforee firiup and extinction angle limits in the cur-
rent controllers to avert saturation problems during, the
pmmeric integration process; g, ¥ = r.{t + A1) and
g = xi{t + Al

The controllers are designed sa that their actions typ-
ically do not overlap, i.e., cither the inverter or rectifier
contruls the de current, but normally not both. For large:
de transient currents produced by voltage changes at the
converter buses, awd under normal operating, conditions
the rectifier side controls the current while the inverter
current controller is saturated at is minimum value 5., -
When the transient current is siall the upposite applies.
However, during recovery [rom abnormal! operating cou-
ditions one can expect to have hath converters cont rolling
the ~urrent Tor small periods. Under fanit conelitions the
enrrent. controllers can also be forced to their maximum
lmits sy, and 7., This behavior is approximited
here by the lanit funcrtions L (<) and 1ao(-), which are tle-
fined as lollows:

Lir.g) = o gin T4 = e
UUCrOL  utherwise
T A K P
2{s) = r H o < 4 < o
danea P2 T

At an equilibrinm and in a region sufficiently close to it
the de system operates in a a derermined contrl mode
i.e., withor the rectilier or the tnyerter entreat controllers
control the carrent. Heuee, the limit functiops hi b and
Lo(-) are well defined at the equilibrin, and sooarn 1 he
corresponding derivatives.

2.5 Vector Field Equations

The equations above can he sewritten in vector difler-
ential equation form to simplify the notation and anaky
sis. Fations (1) (2). (3), and (1) can then be arranged
into vector dillerential cquations (5) bhelow for an o bus
acfde system (n=wnei+np+ 20 where ., 1= the nim
ber ol de links in the system). The referemee wenerator
is assamed to be an infinitc bus so that all ~v<tean - aqui-
libiria are gu:trnnl(-od Lo have we = [ e, =1, = 0L
otherwise the transfor condietanc losses may produce a
slight shift in gencriation frequeney at the cqnifibrin tor
the proposed =sy=tem model. This condition s not ne
essary when all wenerator damiping constani= arc st 1o

LZura.
6:’; = “ g ‘5)

Moie; = b V)—Deawe

by fr (8. V)

D . = ]

8] = [
xn o= lhaAVau X ¥ael}
i} G oAV oYyl
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Vector x.- stands for all the state variables {or the sys-
tem dc links operating at a fixed control mode, as defined
by vector field ha.(-), so that the dc limit functions are
well defined. On the other hand, y.. represents the dc
variables implicitly defined by the corresponding alge-
braic constraints in G(-). V and & depict all the voltage
phasors at generator (Vg i8s), load (Vo 26.) and dc
(Vac£64.) buses. Vector functions f;(-) and f.(-) stand
for the active power mismatches at the generator and the
load buses, respectively, and gr(-) corresponds to the re-
active power mismatches at the load buses. Notice that
the algebraic constraints represented by the vector field
G(:), correspond to the dc link constrains, the active
and/or reactive power mismatches at dc and static load
buses, and the reactive power equations at all generator
buses. Finally, matrices Me, D¢, and Dy are all non-
singular diagonal or block-diagonal matrices representing
the generators’ inertia and damping. and the loads’ time
constants, respectively.

Defining x = [x7 x2]7 as some of the state variables
associated to the system differential equations, and y
as the system. variables associated to the algebra‘c con-
strains, equations (5) can be rewritten as

X, = wg (6)
Mg O wey _ Fi,(x,y) ~ Druwg
a D X2 = F2,(x,¥)
K Fa(we, X,¥)
0 = Gix,y)

where D is a nonsingular matrix that contains the dy-
namic load time constant.

An equilibrium point for equations (6) can be ob-
tained setting the left hand sitde to zero. Ordinary ac/dc
power flow equations correspond to steady state equa-
tions F1(0,x,¥) = Fi(x.¥y) = 0 and Gi(x.¥) = 0,
when the load is inodeled as constant PQ. Different static
load models could be implemented in the power flow
equations, so that these equations can be used to directly
determine equilibria of the dynamic model.

For the proposed dynamic system, nonsingularity of
the Jacobian [24,G(-) along system trajcctories of interest.
guarantees a well posed system [19]. [f matrix 7, G(-) be-
comes singnular, then the model represented by {6) breaks
down, and singular perturbation techniques or dynamic
load models shonld be used for this system represen-
tation. For example, a singular 2,Gjlo at a particular
equilibrium peint (0,%a,¥0, Ag) of a simple power sys
tem model consisting of one generalor, a trausmission
line and a load, constitutes an impasse point that di-
vides two stable equilibria in a system with no unstable
equilibriuin points; this type of behavior is non- phys-
ical in a real power network. The same phencmenon
was observed in larger ac/dc systems, where two xtable
equilibria coalesce at a singular Jacobian. In this case,
assuming a dynamnic voltage dependence of some of the
load buses removed the itmpasse point forcing one of the
stable equilibris to become unstable, so that saddle-node
theory can be applied to explain the bifurcation. When
the algebraic constraints G(-) have an invertible Jacobian
DyG(-), variables y = ha(y) can be eliminated {Implicit
Fuaction Theorem [20]), and equations (6) are reduced
to

X1 o= we (7)
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K [ wa ] = Fi(we,x, ha(x))
Xz

which can be rewritten as Mz =

Tng—1 0 L1}

z2 [ler wl x;"]", and M 2 1] M O

1] (1] D

3 Equivalency of Saddle-Node Bifurcation
Conditions

A bifurcation, or structural instability, for Mz = s,(z}
occurs when the Jacobian £2:s(-) becomes singular at the
equilibrinm (zo., Ao). Several types of bifurcation are pos-
sible in this sitnation, but of these only the saddle-node
occurs generically. Moreover, the following conditions
apply at the saddle-node (2o, Ao} [6]:

2N 9 : ’

1. D.slo = D:8r,(20) has a simple and unique zero
eigenvalue, with norinakzed right eigenvector v and
left eigenvector w, i.e.,

Dslov=0 and wT D,s|p =07 (8)

2. wT gﬂn £0. (9)
3. wT [D§s|o v] v #£ 0. (10}

Couditions 1 throngh 3 guarantee the generie quadratic
behavior near the bifurcation point, and also prevent
singular augmented Jacoblans of the Newton- Raphson
based methods used to determine bifurcation points as
shown below.

lise of the vector field si{z) in bifurcation analysis
of power systems presents several problems, such as the
difficulty of finding the explicit function y = ha(z). Typ-
ically, function h{-) cannot be expressed in closed form,
though its derivatives are available. While ultimately
ouly the derivatives of h{-) are needed for computa-
tion of the saddle-nude bifurcation point, use of the re-
dnced equations sacrifices sparsity, significantly increas-
ing the computational costs. Therefore, it is useful to
relate known methods for detecting hifurcations based
on saddle-node conditions for the reduced system (7) to
conditions expressed in terms of the complete set of sys-
tem equations (G).

An important computational issue in bifurcation stud-
ies for power systems is the relationship between eigen-
values of the Jacobian of the power flow eguations!',
Jpr. and those of the Jacobian of the system dynamic
equations linearized at the equilibrium point, denoted
by Jrs = MVl[);Slo. This subject has been studied
for a number of ac only system models in [5, & 9].
Here it is shown that, for the proposed system model.
the power flow equations can be used to directly delect
a saddle-node bifurcation of system dynamic equations
(7), under the generic assumption of “invertible” alge-
braic constraints G(-}; moreover, these equations yield
information regarding right and lelt eigenvectors for the
lincarized equations of the reduce dynamic system (7).
These: ideas have been briefly discnssed in [21], for a
general dynamic ac system model with no algebraic con-
straints.

'The “power flow” equations in this paper differ slightly from
the typical ses of ~quations in the power system literid ure, sinee

static load models nsed in the simulation are not nnly constam
PQ models
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Thus, the power flow Jacobian at the equilibrium Now, it follows from =T w::] Dz Fle = 07 that
(0,%0, Yo, Ao} can be represented by

wl = —wl DyFloD, G5! (14)
Dz Filo DayFilo | DyFile T (D Flo — D,FloD, G|y D:Glo) = 07
Ipr = D, Fz2lo D:,Falo | D,Fale A .
D, Glo D..Glo | PyGlo For prop_erly s_-cale(l eigeuvectors, from (13) and (14): and
since w is unique by definition, one has a unique eigen-
) . . t. _ T _T17T ith — T TI1T. H
Hence, the determinant of J pp can be calculated using vector @ = [w] @y |7, with @, = [wJl, wz,1". ence,
i D(:.4)Flo has a nnique and simple zero eigenvalue at the
det Jpp = det (DyGlo) det D:,File D, Filo | _ bifurcation point. Furthermore,
D« Fale  D2yFalo r Os T e IF aG
D.Filo .\ w —ajl = [wo, wz.l (—B_A - I)yF|ODyG[;‘ I )
u DyGI [ D2, Glo D2,Gle | o o
DyF2lo
. - =T 28| _ =T, Flon,GlI5t 22
= det {(2,Glo) det (F) = = TA o x o tdyla]s D
On the other hand, linearizing (7) at the equilibrium = =7
yields a block Jacobian structure satisfying A
MIps = (11) D
Xy tarey X .
Xy a Ton:— [+] Theorem 2 Let ,Glo he nonsingular at the saddle-
) ) node bifurcation point (0,X0,.¥o0, Ao} € RNMTY satisfying
Meowa Dy Filo+ D Dy, Fifo+ transversality conditions (8}, (9) and (10). Let F(.), w,
. DyFiloDr hilo DyFiloDa, hlo and o be defined as in theorern 1. Then, for properly nor-
D3 Dz, Falo+ o DxaFalot malized right ei vectors v € R™ dov e Y —rat?
i Dy FaloDa hio DyFiloDz o talized right eigenvcclors LS :
H corresponding to simple and unique zero eigenvalues of
i Thus, using standard block determinant formulas D:.slo and D, 4y Flo. respectively, ie.. D.slov = 0, and
‘and since D hjs = — D, G| D.Glo. det (D.slo) = e yyFlov = 0, it follows that
f(—l)kdethp/del (12,Gla), where k is a positive intcger. - 2 - 2
"This equation shows that a singular linearized dynamic w [[)=SI’JV} S [D(Jv.y)flﬂ"] k (15)
;eqnal:i.ons J.acohiau i:E)p}ies having a singular power flow Pronf: Following similar argumeunts to the ones eni-
: Jacobian. since G{-) is bounded above. Moreaver, theo- ployed in the proof of theorem 1, one has that for
‘rems 1 and 2 below prove that all saddle-node bifurca- v = [Vzl vl V.?.:,]T and v = [,,T T]"'_ Ve, = 1,

‘tion conditions. represented by (8), {4¥) and (10), have an
i analogous representation in the power fiow equations. In
order to siinplify the notation, the vector fields F(-) and
G(-}, which represent the power flow equations of the

— sy
vy = —,G|5 DeGlora, and 1, [V,,l VU]T—VI,

Furtherimmore, the product of the tensor n{;‘.,)fto ancd
the vector ©, yields the matrix

2 .

proposed ac/dc system model, are grouped in the vector Dig iy Flow =

field (-} 2 [FT(-) GT)]. 2Flpvs + D2, Flou, D; Flove + DiFlary
DEGlpu. + X2, Glgv., D2 . Glova + D, Gloey

Theoremr 1 Let D, Glo be nonsingular at the saddic- — [ DiFlove — D3, Flaly Glo-ll).rGlovx

node bifurcation point (0,Xo,¥o,Ae) € RVN¥ (N = D2G|gre — D? Gl D, G5 DiGlova

311.:‘,- + 21np + Ynac — 3} satisfying fmnsuer;nhty con- D2, Flov, — [)SFIOI)yGIQ_ D, Glone

ditions (x), (9) and (10). Let ¥ : RN+l 1)31G|0“r’[’?;Glof)yGln—l[)xGlo":

R — RY7u+! be as defined above. Henee, for

Hence, it can be shown that
properly normalized left eigenwectors w € R (mn = ree. © showr '

o N e b1 =T[r2 Floule = [103)
number of state variables in (7)) and @ & R’ T RN Rl L (1)
corresponding to zero cigenvalues of Daslo and D, _,,.F|n, [ =l | —=wID,Flo DGy "1 [ch w1 F lo?]
[ reapectively, it follows that [ "
- 5T, Glov ]
wT s — =T aF (12) D,Glg " L low.,
EXY DA |y = = o7 [DIFjlor: — D3, FloDyGlg " D2 Glovs—
2 -1 2 —1
} Furthermorc, uniquencss and simplicity of the zero cigen- 15 Flova Dy G5 P Glo + Iy Flo Dy Gl D2 Glov.
value of D.8|l¢ gunaruntecs having o unique and simple D,GIT ' D2Gla — DN FlaN,Glg ' DIGaw, +
zero eigenvalue for matrie X 1 Flo- D Flal1, Gl 12, Gl D,Gla D Glom. +

DyFlaDyGlg ' D2, Glor  D,GIFT DGl —

Proof: Since ,Glo is nousingular at the cquilib-

) . —1 gy —1
rinm, there exists a smooth local funciion Ii{-) aroun DuFlol,Glg D,GlelDyGla DaGlova
{0,x0,¥0. Ao) such that ¥y = ha(x) (Implicit Function D-:th_lD.rGlo] o
Theorem [20]). and 8hi/PAlo = — D Glg ' dG/IA|o. On ) k . .
the otiler hand bas(d on the definitions of si(z) and On the other hand, since in a neighborhood of the bifur-
w [w wT }7 then w D.sle = oT Jlies cation point the Implicit Function theorem immplies that
= x wes o ULLES Slo = implies ¥ = h(x}. it follows that
from (111 that
(1]

~ = 1n ' i - . ;.

S Wers 13) ! (v ! D F kAl vt |
: W W 2. F v G Glo D Fadwe - ()
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Then
[D2slov]v = (17

0

(DZF|ov. + DI, Flov, D hjo + DI FloD:hlov.+
DiFloD:liovs Diblo + D, FloDaplo)v.

where pa(x) 2 Deha(x)ve. Now, since 0 =
DzGa(x, ha(x)) + D,Ga(x, hi(x)) P ha(x) and, hence,
Dehlo = ~DyG|;' 2.Glq, it can be shown that
0 = DIGA(ha(X))Vs + D2, Galx. ha(x))vs Doha(x) +
D2, Ga(x. ha(x))pa(x) + DG A(x, ha(x))pa(x)
Daeha(x) + D,G(x, L (x)} D21 (x)
= szlo =
—DyGlg! [DEGlove + D2, Glove Dehlot
DI, GloDzh|gv; + DIGleDablov. Dohio)
And from equations (17) and {18). it follows that
w[DEs]ov]v =
(wZ, WLl [DIFlovs ~ D2,Flo0,GI5' D Glove—

wey

(18)

D3, Flov:DyG|3 ' D.Glo + DIF D, G D Glov.
DyGIT ' D2Glo — DyFio Dy GIT I Glovs +
DyFleDyGlg ' D2, ,GloD, Gl 1:Glovs +
DyFloDnG7 ' D}, Glove 0, GIT D, Glo -
DyFloDyGIT ' D2G |02, GIT Dy Glovs
D,G|;‘[)_,G|°] va
Therefore, from (18),
w” [Dzsh}v] v=mw {D?,Iy,flgv] 't

J

4 Nousingularity Conditions

There are several well known techniques for detocting
bifurcations in dynamic systems [7]. However, in power
system analysis two methods, namely, direct (Point of
Collapse or Po(C’) and continuation methods, have heen
used to detect saddle- node bifurcations in a variety of
network models [22, 23, 24, 25, 26, 27, 28, 29]. One of the
main conrcerns when applying these methods ix the sin-
gularity of the corresponding equations” Jacobians at the
bifurcation point, which conld canse¢ numerical problems
when a Newton-Raphson solution algorithm is used. In
this section, ithe formai proofs of nonsingularity of Lthe Ja-
cobians at a saddle-node bifurcation point for both meth-
ods are presented.

4.1 Direct Methods
Using F(-) and = as defined above, and defining

A 1 . . .
x =T ¥7]7. the left eigenveclor Po(! equations can
be written as

D FilxY T = o (19)
Faly) = o0
AFT

w = k

(733
Where & is any scalar different from zero.
Jacobian for (19} at the bifurcation point is

Hence, the

DiFiw  DFIT D FITw
, DE
R Dy Flo 0 ) 771;'0 (20)
r 4 dF T 9°F
@ DuaFlo Gy ) ol
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In spite of the individual block Dy Flo being singul
conditions (9) and (10) guarantee that T poc is nonsi
gular, as shown in theorem 3 [30].

node bifurcation satisfying trausversality conditions {8
(9) and (10) at the equilibrium (0, xq, A0), and ma
DyGlo is nonsingular, then matric Jpoc- 13 also nonsi
gular.
1

Proof: In order to prove Jpac is nonsingular, one:
has to prove that the only vector that satisfies equa-4
tion Jp.e[p” q7 1T = 0 is the zero vector, ie.,
P=q=0¢€R""7"* andr =0¢R. Thus. from
{20} one has that

. aF
D\-.Flop—'}—mur_o i
dF
= p7 9F r= —pT[)-\,.IFlup ¥pe RN uH
A o :

In partienlar, if o = . then =T GF [N er =
—=" D, Flop = 0. Bence, from (9) and (12) it follows
that r =0, and p=ke. L Z 0 R. or P=0. Il p=4ky
then from (20}

MDFlswlo 4+ D Flig =0

= kwr[l)i.fhrr]p = —qTD\.'F'Iop ¥pe RVt

Ifp = o then k@7 [DEFlav)e = —q" D, Flor = 0. B
from {10) and {15), this is a contradiction; thercfore. p =
0 and 2, F|Tq = 0. Hence. =k L#O0E R, orq=
0. I q = kw. from (20) it follows that kc’)f/-'h\lf:c =1
which is also a countradiction. Hence, q = p = 0 and
r==u

The same arguments can be used to formally pruve
nonsingularity of the Jacobians corresponding to the al-
ternate PoC® eyuations (21) shown below. "These -
tions have proven to be computatioually more eilicicnt
than (19) [27].

D, F (yjv=0 D .Fix)ew =0
Fiy)=10 Falx)=n tn
Felf, =1 M=t =1

4.2 Continuation Methods

Clontinnation methods have been used since the 6%
in a variety of engineering fields [7]. The method pre- |
sented here uses parameterization and perpendicular in-
tersection techniques, to trace the branch of equilibria
associaled Lo saddle-node bifarcations in ac/dec networks
27, 28, 29].

The parameterized continuation method consists of a
three step approach to tracing the equilibrivin points as
one parameter in the systemn changes, i.e., find the so
Iutions to the steady state equations sx(z) = 0, for a
given sct of parameter values. Typically, the loading fac-
tor A is the varying parameter; however, as the system
gets closer to bifurcation, the Jacohian I}.5]0 becomes
ill- conditioned. Thus, a change of parameter, such as
switching from A to a state variable z; € z, makes the
lacobian nonsingular.

For the power system dynamic model used through-
out this paper, where the power fiow equations are rep-
resented by the vector field F(-). and for a nonusingu-
lar Jacobian D,Gla. there is a one to vne COrrespon-
dence hetween the equilibria of 8(-} and the sclntions of
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{x} = 0. Furthermore, based on theoremns 1 and 2, a
dle-node bifurcation in the vector field =(-} can be de-
using F{-). Therefore, one can trace a bifurcation
anch utilizing the power flow eynations.

The continuation method algorithm can then be sum-
ized in the following Lhree steps:

A} Predictor: From Fi(xy) = F.(i) = 0, where ini-
tially y = x and p = A, it follows that

e A% aF N
Dxf(x;.m)ﬁ = — (22)

where p, and 3, come from a previous itcration.
Henee, the direction Ay to move in state space
can be found by swolving equation (22), so that
Fagy = Apdi/dp, where the parameter increment Ap
can be defined as a fTunction of a scaling constant &
to vary the speed at which the equilibrinm branch
is traced, i.e., Ap 2 | di/dp |~ . As the process
approachces the bifurcation. p is likely to change to
one of the ac bus voltages. according to step iii. with
the loading factor A becoming part of .

Clorrector: Find the itntersection between the per-
pendicalar hyperplane to the tangent vector and the
equilibrinm branch, i.e., solve equations

F(i,p)=0 (23)
Ap(p—m —Ap)+ AR — 1, — Ay =0

Paramecterization: Check the relative change in all
the system variables, and trade p with the variable
that presents the largest change. In other words,

p — max {|AU |A"‘}

By changing the parameter p from A to a state variable

yi € v. one guarantees that the Jacobian of equations

{22} i~ nunsingular at the bifurcation point. Furthermore,

Cusing techniques similar to the ones used in the proof of

thewrem 3, it can be shown that the Jacobian of equations

.21 s also wonsingular at the bifurcation point, even for
# = A {singular powur flow Jacobian 2, Flp).

Bin
\n

,\2
X2

Theoreom 4 Let F(-), n. and X be defined as tn theorem
3. At the bifurcation point (0,7 . Ao}, satisfying transver-
gality conditions (8), (9) and (10), Ict the paraineter pg €
R and the vector Yo € RNt g defined as pg = L P
Jor loagf = |eid V & # M, v = [ "'N—n,,,.+1]T, and
. A

Ko = [xos - You_0 Ao Nopry, oo '\UN—NG+I]T' Then,
Fpo(ig) = 0. and D{Flo i2 nonsingulur if vectors
OF [OAo = SF fIxXar|o. and @F fdvarto = OF foplo n

RN+ qpe not colflinear.

Proof: From theorem I, matrix [ Flo has a simiple
and unigue zcro eigenvalue at the saddle-node bifurca-
tion {0, \ . Ao). with a unique right eigenvector 1. Then,
equation fJ), Flot» = 0 can be rewritten as

Nanc,+1L N 1

_ o F
o At

aF
2L

= €y

o 1=t M

7

N,

=

where all «; = v foar are unigque. and was ¥ (0 by defini-
tion. Therefore. replacing colnmn Af in 12,.F|o by veclor
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2F f3Alo makes matrix ), F|o nonsingular at the saddle-
node bifurcation point, since this vector is not collinear
with 9F f8x arlo by assumption.

The assumption of lack of collinearity between vectors
AF [IAle and #F [ryat]o is generic, since it is likely that
for some index 3. 1 < 3 < N —nue; 4+ 1, 8F, /Ao # 0
while &F, /Ayarlo = 0.

At the saddle-node hifurcation (0, v, Ao} satisfying
the traasversality conditions (8}, (3) aud (10), predic-
tor equations (22) can be rewritten, for ¥ = v and p = A,
as D\ Floty = —aF fdAjotr, where [t.: t;\]T 1s the tan-
gent vector to the manifold Fa(x) =0 in RV me+! x 1t
at the bilurcation point. Then, from transversality con-
dition (12) it follows that

T AF|
ax |,
=c D Flgtr =0

w D Fot, = —w

= f)xflul’,,( c#0€R

Therefore, at the bifurcation, the tangent vector of the
corrector step is collinear with the right eigenvector .
This implies, from theorem 4, that a proper parameter-
ization should make the Jacobian of predictor equations
(22) generically nonsingular along the bifarcation branch,
since singularity points represented by saddle-nodes can
be parameterized to avoid nnmerical problems.

Theorem 5 Let F(-), v and X he defined as in the-
orem 3. Let Fhre bifurcation branch of equilibria be
represented by the smoolh moanifold Fiiy) = O in
RY-"a+l o R (limits are not considered as in previ-
onus thenrcma), in a neighbortiood of the aaddlc-node bs-
Surcation (0, xq,Aa) satisfying transiccesality conditions
(5)., (9). and (10). Furthermaore . Il the tangent vere-
tor &, = dyfdX be defined by the predictor coguation
INFa(x,) by = —8F[OA., where Fi (y,) = 0. As-
sume that t, i3 nonperpendicular to the properly nor-
malized unigque right eigenvector v defined in thcorern 2.
Then, the Jacobiun of the corrector equations (23), t.e

D Flo %% .

Jo = -
Ay AA

(24}

is nonsingular at the saddle-node bifurcation point. Here,

AZ2¢ 16, i7", Ax 2 A ty, and the scalar b 0 e It
is clrosen so that the saddle-node bifurcation (8, v,. Ay) is
the solution to predictor equations (337).

Proof: Once again, to prove that J.- i= nousingular.
one has to prove that vector a € Y "%+ a5d scalar
b € R are identical to zero in Jc[a”8]T = 0. Thus, from
{24}, 1L follows that

UF
P = — — 2
D, Flona ) nb (25}
- AF
= p" D Flea = —p" == b Vpe RVYraH
72
If p = ==, then cquation {25) implies & : 0. Thercfore.

Aa must be either e {¢ £ 0 € R}). ur 0. Howewvur, il
a = cu, it follows from {24) that Ay 7o = AX tz‘v = 0.
whirh contradicts the assumption of vectors £, and

being nonperpendicutar. Consequentls o= 8 aud b == 1}
The assumption of vectors & and o betnge nonper-
pendienlar can be Justiflicd based an 6t = ee o ’

0 & RY at the bifurcation. as <hown albs
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smoothness of the bifurcation branch of equilibria. The
branch of equilibria near a saddle-node bifurcation can
be proved smooth using the Lyapunov-Schmidt reduc-
tion [31]. Hence, generically, one can expect to fulfill this
assumption in a neighborhood of the bifurcation point.

5 Conclusions

This paper presents the conditions needed for detect-
ing saddle-node bifurcations using power flow equations,
for a particular differential equation and algebraic con-
straint model of an ac/dc power system. It is shown that,
if the algebraic equations’ Jacobian is nonsingular along
system trajectories of interest, a necessary condition for
having a well posed dynamic systemn, at a saddle-node bi-
furcation point the power flow equations meet the same
conditions as the reduced differential equations, which
are formed by eliminating the algebraic constraints in
the model. Also, the paper demonstrates that one only
needs to include a more complete static load model in
the power flow equations, sc that bifurcation points of
the proposed system model can be detected using these
reduced static equations. The equivalency of saddle-node
bifurcation conditions between the differential equations
model and the power flow equations, are then used to
prove that direct and parameterized continuation meth-
ods have nonsigular Jacobians at saddle-node bifurcation
points, which makes these techniques powerful computa-
tional tools for measuring proximity to points of collapse.

Notice that, although a variety of operational limits
are included in the model, it has been assumed through-
out this paper that the equations do not change, i.e., the
equations and their derivatives are well defined, in the
vicinity of a saddle-node bifurcation. Although the con-
dition of an invertible Jacobian associated to the system
algebraic constraints is generic, one can always change
the models at certain load buses or eluninate Q-limits at
some generator buses to guarantee this condition.
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