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1.- INTRODUCTION

Artificial Neural Networks (ANNSs) have been shown to
approximate non-linear mappings to any arbitrary
degree of accuracy [1, 2]. It is this particular property
of ANNs, which make them ideal candidates for
modelling non-linear systems. ANNs can be
categorised into two classes, namely feedforward
networks and recurrent networks. Most current
research in the application of neural networks to
control has been carried out using feedforward
networks. The approach used here is to formulate the
problem in discrete time and is similar to the NARMA
approach, see Narendra and Parthasarathy [3] and
Cheng and Billings [4]. This method requires as inputs
to the network a number of past values for each
physical input and output of the system, where the
number of past inputs and outputs needed are
determined by trial and error.

An alternative to the feedforward network is the
recurrent neural network first introduced by Hopfield
[5} in the context of associative memories for pattern
recognition. Recurrent neural networks have two
salient features that distinguish them from feedforward
networks. One is their node characteristics, which
involve nonlinear differential equations, while
feedforward networks have only static nonlinear node
characteristics. The other major distinction is topology,
in recurrent networks there are both feedforward and
feedback connections, in other words the metwork is
fully connected.

Along with the development of neural networks, there
has been a tremendous development in the area of non-
linear control using differential geometry [6]. Using the
geometric approach, a number of control schemes, e.g.
[71, [8] have been developed. These schemes require a
state-space model of the system being controlled. So far
most research has concentrated on using models
developed from first principles. These models in order
to retain accuracy are very complex, and not of much

use for control. A simplified model, on the other hand
is not a faithful representation of the system.

In this paper a control scheme which linearizes the
system is discussed. The idea here is to integrate
recurrent neural networks and the linearizing control
scheme proposed by Kravaris and Chung [9]. A
straightforward approach would have been to identify
the non-linear plant using a recurrent neural network,
and then synthesise the control law using this network.
However, this particular methodology is eschewed
here, for this would mean tedious calculations of the
various Lie derivatives of the network and the exact
cancellation of non-lincar terms. Rather than go
through a process of first identifying the plant and then
evaluating the various parameters for linearizing the
plant, a more interesting scheme would be one where
the network designs the linearizing laws for the system.
This means that the network provides us with the
linearizing parameters as outputs, rather than the
outputs of the system.

The paper is organised as follows : section 2 deals with
the definition of Lie derivatives and the concept of
relative degree. The section 3 discusses the linearizing
state feedback and the Globally Linearizing Control
(GLC) structure. Section 4 shows that a recurrent
neural network can improve the performance of the
GLC structure and reduce the calculations, this new
structure is called the Adaptive Globally Linearizing
Control (AGLC). Finally, section 5 presents the
simulation results for a single link manipulator
controlled with the AGLC structure.

2. - MATHEMATICAL PRELIMINARIES

Before proceeding any further, some definitions from
differential geometry and Lie algebra are required.

2.1.- Lie Derivatives

Consider a control affine single input - single output
nonlinear system
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where x € R", u,ye R h(x)isa C® scalar field on

R and f(x), g(x) are C % vector fields on R" . For this
system the Lie derivative of h(x) with respect to f(x) is
given by

n Jh(x)
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Further Lie derivatives can also be obtained, first along
the vector field f(x) and then along the vector field g(x)

é’(th(x))
ox

n
Lgl’fh(x)zigl . g,-(x)
or recursively along the vector field f(x)
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2.2.- Relative Degree

The relative degree is an invariant characteristic of
non-linear dynamic systems. It is defined as the
number of times one has to differentiate the output y(t)
with respect to time in order to have the input, u(t),
explicitly appearing. Also, it is the number of times
that the input, u(t), has to be integrated in order to
affect the output y(t).

The system (1) is said to have relative degree r if

1.-Lng}h(x) ~0forallxandallk<r-1.

=1
% - LgL'} h(x) = 0.

Thus for a system with relative degree r

k
d k
p: =Lsh(x), k=o0,..r1 (2a)
.
dy r r-1
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3.- INPUT - OUTPUT LINEARIZATION

Consider the input

a ’fh(x)+v

¥ r—1 3)
LgLf h(x)

with v an external input. Replacing (3) into (2b) yields
the linearized equation

dy
dtr

=V

The input (3) is called the linearizing state feedback or
linearizing control, because it produces a linear system
between the new input v and the system output y.

In general, if the nonlinear system (1) has relative
degree 1, then there is always a state feedback that
makes the input - output (v - y) behaviour of the closed
loop system linear. This feedback is

=
—(L}h(x) + ,Bl.er R+ o+ Bpy L ph(E) + B h() +v

U=

3
LgLr/ h(x)
()]

Replacing (4) in (2b)

dry . r-1
;‘;‘z V- ﬂ].Lf h(x)—..~F,p_yq .th(x)— B h(x)

and using (2a), the input - output (v-y) behaviour of the

closed loop system is then governed by

d ry . i r—ly Y ) s :
+ B. +..+ T+ BLy=vY

F 1 dtr—] rels g r¥ 6

Notc that in order to obtain the equation (5) the statc
feedback (4) needs to cancel exactly the nonlinear

terms erh(x) and Lger—lh(x). This is the main

drawback of the linearizing control, the exact
cancellation of nonlinear terms.

The parameters f,..., f, are based on the desired

input - output characteristic, this means that the v-y
system can have arbitrarily placed poles. After
linearizing the system (1), one can use an external PI
loop
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t
v = kp[yd - y]+ k,—({[yd - y].dt ©)

to force the output y(t) to track a desired trajectory
y«(t). This control structure was proposed by Kravars
and Chung [9] and it is called the Globally Linearizing
Control (GLC) structure, see Fig.1.

T g |Linear |¥ Lineanzng u Z | Output y
+A ) Controller| State Plaxt Map -
) Feedback
P
X
Process
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Fig.1.- Globally Linearizing Control (GLC) structure.

The design procedure using the GLC structure is
simple : compute the linearizing state feedback (4)
from the system model and then tune the Pl controller
(6).

4.- ADAPTIVE GLOBALLY LINEARIZING
CONTROL

There are two drawbacks of the globally lincarizing
control in practical implementations. Firstly, the GLC
is based on exact cancellation of nonlinear terms, if
there is any uncertainty in the plant model the
cancellation is not exact and the resulting input-output
(v-y) equation is not linear. Secondly, it is necessary to
estimate the state variables of the plant to calculate the
state feedback (4), for nonlinear systems, there 1S no
general observer theory.

In this work a Recurrent Neural Network (RNN) is
proposed to calculate adaptively the state feedback (4).
There are three advantages with this approach : (2)
there is no need to identify the plant and to calculate
the Lie derivatives for the state feedback, (b) it 1s not
necessary to obscrve the plant to estimate the state
vector and (c) the cancellation of the nonlinear terms 15
adaptive. The resulting control structure, which we call
the Adaptive Globally Linearizing Control (AGLC)
structure is depicted in Fig.2.

4.1.- Adaptive State Feedback

The state feedback (4) can be written as
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u=a + f .v N

with the coefficients,

—(L'fh(x) + ﬂl.L’f’ Vhxye..+ Br1-Lph(x)+ B ph(x)

@ = r—1

1

B =",
Lgerlh(x)

To evaluate these parameters o and 8 we need to
dctermine the Lic derivatives L¥h(x) fork=11tor
This makes the scheme very cumbersome for large
values of 1 ( or systems where the relative degree is
large). To overcome this problem, the Recurrent Neural
Network (8) is trained to provide the two lincarizing
parameters o and .

t.y=—y+Woly)+T.u

a =y, ®)
ﬁ = X2
with,

X € RA',N>n
n,y € R
(W Iyxn 1T axd

The network cquations (8) are equivalent to the set of
differential equations

T.2i = —X; +ng(uu.o—(1j)+yi.u
i=1...,N )
a=x,

B =1x

To reiterate this method has the following advantages :

(i) There is no need to identify the plant and to
calculate the Lie derivatives for the state fecdback.

(i1) It is not necessary to observe the plant to estimate
the state vector.

(iii) The cancellation of the nonlinear tcrms is
adaptive.
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Fig.2.- Adaptive Globally Linearizing Control (AGLC)
structure.

5.- SIMULATION RESULTS
The Adaptive Globally Linearizing Control (AGLC)
structurc was simulated using an integration step
1'=0.01s. The goal was to train the recurrent neural

network embedded in the AGLC structure to match the
desired global dynamics,

Ya 1

r (s+1)°

with the PI controller
k,
s

v—[kp+ }.e

where k, = 1.0 and k, = 1O

5.1.- The Plant

The nonlinear plant, shown in Fig.3, is a single link
manipulator described by

m 12 @)+ v.6(t)y+m.g lsin (1) = u(l)

where the length. mass and friction coefficients are 1=1
m m=20kgandv=10 kg m’/s, respectively [10].

The corresponding state representation is

X, = X,
x, = —98sinx, —0.5x, +0.5u
Yy=%

with x,(0) = x,(0) =0 and y = 6 (1).
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mg
Fig.3.- Non-linear plant : single link manipulator.

5.2.- Training

A recurrent neural network (8) with N = 5 neurons,
7 =10 and o(x) = tanh(x) was trained repetitively
over a fixed time interval [0, t;]. The matrices W and I
were adjusted with the chemotaxis algorithm [11] to
minimise the discrete version of the performance index
(10). The reference input was a step r = 0.5, t¢ = 20s
and the initial conditions for the neuron states were
sclected at random. All the imitial conditions of the
AGLC structure were reset to the same values at the
beginning of cach trial or training cycle.

1fe - 1
! S

The Fig.4 shows the desired output and the plant
output after training the neural nctwork, the final
performance index was J = 0.0015. The Fig.5 presents
the statc feedback coefficients o and B. The Fig6
shows the linear controller output v and the linearizing
control u.
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Fig.4.- Desired output ys and plant output y in the
AGLC structure for a step reference r = 0.5, k, = 1.0
and k, = 1.0.
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Fig.5.- Statc feedback coefficients o (bottom) and .

1

Fig.6.- Lincar controller output v (bottom) and the
linearizing statc feedback u.

5.3.- Testing

The svstem was tested using another step inputs and
adjusting the parameters of the lincar controller. The
Fig.7 shows the unit step responsc with k, = 0.5 and
k= 0.7. the performance index was J = 0.0127. The
Fig.8 presents the step response for r =n / 2 with k,=0.5
and k, = 0.5, the performance index was J=0.0210.

The Fig.9 shows the response for the step r= 0.5. when
the mass of the singlc link manipulator was changed
from 2.0 kg to 2.5 kg. The gains of the PI controller
were k,=1.0 and k, = 1.0 and the performance index
wasJ=0.0111.
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Fig.7.- Desired output y; and plant output y in the
AGLC structure for a step reference r = 1.0, k, = 0.5
andk,=0.7.
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Fig.8.- Desired output ys and plant output y in the
AGLC structure for a step referencer=mn/2 ,k,=0.5
and k,=0.5.

The Fig. 10 presents the response for the step r = 0.5,
when a disturbance of magnitude 0.1 was applicd to the
reference during the interval At = {10.0, 12.0] s. The
gains of the PI controller were k=10andk, =10 and
the performance index was J=0.0267.
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Fig.9.- Desired output ys and plant output y in the
AGLC structure for a step reference r = 0.5, k, = 1.0
and k, = 1.0. The mass of the plant was changed from
2.0kgto2.5ke.
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Fig.10.- Desired output ys and plant output vy in the
AGLC structurc for a step reference r = 0.5, k, = 1.0
and k, = 1.0. A disturbance of magnitude 0.1 was
introduced in the reference during the intcrval
At=]10.0, 12.0] s.
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6.- CONCLUSIONS

In the GLC structurc. it is necessarv to identify the
nonlinear plant to obtain the lincarizing state feedback.
The identified model is used to calculate the Lic
derivatives and observe the states of the plant
Unfortunately in practical implementations the main
drawback of the linearizing control is that it is based on
exact cancellation of nonlincar terms. if there is any
uncertainty in the identified model. the resulting input
- output cquation iﬁ not linear.

In the proposed AGLC approach the linearizing state
feedback coefficients are calculated directly by the
ncural nctwork and thc network can be trained to
improve the canccllation of the nonlinear terms and
verifv any performance index. Also. there is no need to
calculate the Lie derivatives or observe the plant.

During the training stage of the AGLC the input to the
nonlinear plant is changed repetitively to improve a
performance index over a fixed time interval. The
training algorithm does not depend on the plant
cquations or the functional form of the desired
rCSponsc.

7.- REFERENCES

| CYBENKO. G.: Approximation by superpositions of
a sigmoidal function, Technical Report. University of
[llinois Urbana-Champaign Department of Electrical
and Computer Engineering. 1988.

2 FUNAHASHL. K.1.: On the approximate realization
of continuous mappings by neural networks, Neural
Nerworks, 1989, 2, 183-192.

3 NARENDRA. K.S. and PARTHASARATHY. K.
Identification and control of dynamical systems using
neural networks. [EEE Transactions on Neural
Networks. 1990, 1. 4 - 26.

4 CHEN. S. and BILLINGS. S. A.: Neural networks
for nonlinear dynamic  syslem modelling  and
identification. Int. J. Control. 1992, 56. 319 - 346.

5 HOPFIELD. J.J.. Neurons with graded response have
collective computational properties like those of two
state neurons. Proc. Natl. Acad. Sci. USA, 1984, 81.
3088-3092.

6 ISIDORL. A.: Nonlinear Control Systems. Springer-
Verlag. 1989.

7 MARINO, R.: Feedback linearization techniques in
robotics and power systems. In FLIESS, M. and M

114

HAZEWINKEL, Editors. Algebraic and Geometric
Methods in Nonlinear Control Theory, D. Rcidel
Publishing Company, 1986, 523 - 543.

8 MARINO. R. . PERESADA, S. and VALIGI, P.
Adaptive input - output linearizing control of induction

motors. IEEE Trans. on AC. 1993, 38. 208 -221.

9 KRAVARIS. C. and CHUNG. C.B.: Nonlinear state

feedback synthesis by global input output linearization,

AICHE Journal. 1987. 33, 592-603.

10 JIN. L. NIKIFORUK. P. N. and GUPTA, M:
Direct adaptive output  tracking control  using
multilavered neural networks. 1IEE Proc. - D. 1993,
140. 393 - 398.

11 BREMERMANN. H. J. and ANDERSON. R. W
An alternative to Back Propagation : a simple rule of
svnaptic modification for neural net training and
memory. Report of the Center for Pure and Applied
Mathematics. PAM - 483. University of California.
Berkeley. 1990.

ACKNOWLEDGEMENT

The author A. Delgado would like to thank to the
Colombian Institute for the Development of Science
and Tcchnology (COLCIENCIAS) and to the National
University of Colombia for supporting his PhD studies
at the Cybernetics Department of the University of
Reading.

JIEE, Vol. 16, 1995



