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Abstract

A new robust algorithm for locating the R wave
peaks in computer-based ECG analysis using the
properties of the Hilbert transform is presented in this
paper. The method developed for QRS complex
detection allows the differentiation of R waves from
large. peaked T and P waves with a high degree of
accuracy and minimizes the problems associated with
baseline drifts. motion artifacts and muscular noise.
The performance of the algorithm was tested using
standard noise free and noise contaminated ECG
waveform records from the MIT-BIH Arrhythmia
Database. A detection error rate of less than 0.5 %
was achieved in every studied case. The reliability of
the proposed detector is also compared with
published results for other QRS detectors. The noise
tolerance of the new proposed QRS detector was also
tested using standard records from the MIT-BIH
Noise Stress Test Database. The sensitivity of the
detector remains about 90% even for SNR's as low as
6dB.

1. Introduction

Accurate determination of the QRS complex, in
particular, accurate detection of the R wave peak. is
essential in computer-based ECG analysis. However,
this is often difficult to achieve, since noise
contamination due to baseline drifts, motion artifacts
and muscular noise. is frequently encountered [1].
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Morphological differences in the ECG waveform also
increase the complexity of the QRS detection
process, due to the high degree of heterogeneity in
the QRS waveform and the difficulty in
differentiating the QRS complex from tall peaked P
or T waves [2]. Different approaches have been used
to improve the accuracy of QRS detection, including
the use of the Hilbert transform.

The use of the Hilbert transform in ECG analysis was
first introduced by Bolton and Westphal [3]-{6]. In
general, the method they proposed uses two-
dimensional graphical representations like
vectorcardiographs and polarcardiographs to examine
the concept of pre-envelope and envelope of a real
waveform given by the Hilbert transform. They
developed a prototype two stage QRS detector based
on the determination of a zero crossing in the Hilbert
transformed data of the original ECG waveform
coincident with a large magnitude in its envelope.

A new approach to QRS detection using other
properties of the Hilbert transform is presented in this
paper. The algorithm uses the first differential of the
ECG signal and its Hilbert transformed data to find
regions of high probability and to locate the R peaks
in the ECG waveform. Similar to the Bolton and
Westphal's method, a second stage detection
algorithm uses these initial estimations to locate the
real R peaks in the ECG wave. This has a number of
advantages over previously described techniques.
The unwanted effects of large peaked T and P waves
are minimized and the new algorithm performs
excellently in the presence of significant noise
contamination. Moreover, in contrast to Bolton and
Westphal's method, determination of the envelope
and pre-envelope of the given data is not required.
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2. The Hilbert Transform

Given a real time function x(r), its Hilbert transform
[7]-18] is defined as:

. 17 ]
x(1)y=H[x(1)]=— Ix(r)—dr 0}
T [—r

It can be seen from (1) that the independent variable

is not changed as result of this transformation, so the
output X(f) is also a time dependent function.
Furthermore, X() is a linear function of x/1). It is

obtained from x(7) applying convolution with (nt)' as
shown in the following relationship:

i(’)zi*x(t) (2)
1

Rewriting Equation (2) and applying the Fourier
transform. we have:

Frint =Ly, @)
T !
Since,
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The Fourier transform of the Hilbert transform of xr1/
given by Equation (3) may be re-expressed as:

FU(R)} = —isgn fF{x(1)! (5)

In the frequency domain, the result is then obtained
by multiplying the spectrum of the v(1) by j (+90°)
for negative frequencies and — (-90°) for positive
frequencies. The time domain result can be obtained
performing an inverse Fourier transform. Therefore,
the Hilbert transform of the original tunction v/

represents its harmonic conjugate [8]. The concept of

analytic signal or pre-envelope of a real signal x(1)
[9]. is described by the expression:

V()= x(1)+ jx(r) (6)

The envelope Byt) of y(t) is defined by:

B(1)=/x () +x(1) (7)

and its instantaneous phase angle in the complex
plane can be defined by:

P(1) = arctan[i“(’)j (8)
x(1)
v
Brr)
X(7)
P
AN/

Figure 1 Complex representation of the envelope.

As shown in Figure 1. Bry and x(1y have common
tangents and the same values at the points where
X(1) =0. i.e. the envelope determined using Equation
(7) will have the same slope and magnitude of the
original signal v/ at or near its local maxima.
Similarly. from Equation (7) it can be seen that 1) is
always a positive function. Hence. the maximum
contribution to Bt at points where v/1)=0) is given by
the Hilbert transform. This can be casily scen in
Figure 2 where the maximum contribution to the
envelope of the first differential of the ECG Brdadr
ECG) is given by its  Hilbert  transformat
H[d/diECG) ] at points where /i (ECG) =),

3. The new Approach to QRS detection using the
Hilbert transform

One of the properties of the Hilbert transform is that
it is an odd function. That is to say that it will cross
zero on the x-axis every time that there is an inflexion
point in the original waveform (Figure 2). Similarly a
crossing of the zero between consecutive positiye and
negative inflexion points in the original waycform
will be represented as a peak in its Hilbert
transformed conjugate.



4R ¥V ARARA VR

AAGSREERT WET AR v AR S A8 AT A R

acon m

‘ N o o
L ! g I
}. 5

|

chal N ‘ﬁ |
O NP UPENT |§ SNUV4 GHSNCRRURIZ W | PN e |
o i i i
o N fy h

i i i |

‘ [ B ‘

z NN B ,\,N__, V\,J k L A s e e A J[ \AN S J \ ,
FIGURE 2 ECG Contributions to the envelopé
Bld/dt(ECG)], where d/dt(ECG) is the first
differential of the ECG waveform and

H(d/dt(ECG) is its Hilbert transform.

This interesting property can be used to develop an
elegant and much easier way to find the peak of the
QRS complex in the ECG waveform corresponding
to a zero crossing in its first differential waveform
d/di(ECG). The block diagram of the proposed
approach is shown in Figure 3.
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Figure 3 Block diagram of the QRS detector.

As with most QRS detector algorithms, the first stage
of the proposed algorithm is formed by a filtering
section [10]. We used a band pass FIR filter
windowed using a Kaiser-Bessel window. The band
stop frequencies were set at 8 and 20 Hz in order to
remove muscular noise and maximize the QRS
complex respectively. Then, the first differential of
the resulting filtered sequence was performed in order
to remove motion artifacts and base line drifts. The
rising slope of the R wave is represented as a
maximum and the falling slope will be represented as
a minimum in the first differential sequence. The
peak of the R wave will be equivalent to the zero
crossing between these two positive and negative
peaks (see Figure 2).
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So given the filtered ECG waveform sequence x(n),

its first differential (y()=d/dt(ECG)) in discrete
domain can be obtained by:
y(n) = ,[x<n+1> x(n=1)] (9)

for n=0,12, .. m-1

where: m is the total number of samples
At is the sampling frequency

The initial condition is specified by x(-/) when n =0,
and the final condition x(m) when n = m-1.
These conditions minimize the error
boundaries.

at the

The Hilbert transform A(n) of the sequence y(n) that
represents the first differential of the ECG waveform
is then obtained using the following methodology

1. Obtain the Fourier transform F(n) of the input
sequence y(n)

2. Set the DC component to zero

3. Multiply the positive and negative harmonics by
—j and j respectively

4, Perform the inverse Fourier transform of this

resulting sequence.

Since this algorithm for Hilbert transformation works
well with short sequences, a moving 1024 points
window is used to subdivide the input sequence y(11)
before obtaining its Hilbert transform. To optimise
accuracy, the starting point of the next window
should mach the last R point located in the previous
ECG subset.

The peaks in the Hilbert transformed sequence /in)
represent regions of high probability of finding a real
QRS peak. In practice, these peaks often differ from
the true R wave peak position by a few milliseconds.
In order to guarantee accurate detection of the R
peaks, a second stage detector is required. Because
the P and T waves are minimized in relation to the
relative peak corresponding to QRS complex in the
Hilbert sequence, a simple threshold detection is used
to locate the peaks in the h(n) sequence.

The second stage detector uses the information
provided by the first approximation. A pre-defined
window width subset (i.e. £10 samples form the
location of the peak found in the corresponding /(1)
sequence) is selected in the original ECG waveform
to locate the real R peak. Once again a simple



maximum peak locator in the values of this subset
sequence is used.

4. Methods

The detector was tested using entire records from the
MIT-BIH Arrhythmia database [11]. From this
database, a set of noiseless and noisy ECG
waveforms was chosen to test the performance of the
new algorithm. These signals were recorded using the
modified limb lead 1l (MLI) ECG electrode
configuration, and contain mechanical and electrical
artifacts. Beat by beat comparison was performed
according to the recommendation of the American
National Standard for ambulatory ECG analysers
(ANSI/AAMI EC38-1994) [12]. A false negative
(FN) occurs when the algorithm fails to detect a true
beat (actual QRS) quoted in the corresponding
annotation file of the MIT-BIH record and a false
positive (FP) represents a false beat detection.
Sensitivity (Se) [12], positive prediction (+P) [12],
and detection error rate (DER) [13] were calculated
using equation 12 to 14 respectively:

TP
Sensitivity (%) = ——% 12
YOO =N 7 12
Positive predictivity (%) = —11—% (13)
TP + FP
P+FN
DER (%) = EP+F % (14

Total #of QRS complex

e~

Where: TP (true positives) is the total number of

QRS correctly located by the detector.

The chosen records for the analysis and their
respective characteristics are described in Table 1.

MIT-BIH Record Characteristics
100 Normal sinus rhythm

105 High noise and artifacts
111 Noise + baseline wander
113 Baseline wander
114 Baseline artifacts
118 Moderate noise
119 Moderate noise

Table 1 MIT-BIH Records Selected for the
Analysis.

1

The noise effects in the detector were quantified by
the noise stress test recommended by the
ANSI/AAMI EC38-1994 standard using the records
from the MIT-BIH Noise Stress Test Database [11].
This database contains 12 sample records
contaminated with electrode motion artifact, usually
as the result of intermittent mechanical forces acting
on the electrodes, and significant amount of baseline
wander and muscular noise. The signal-to-noise
ratios (SNR) of the noisy files of this database arc
summarized in Table 2.

Record SNR (dB) Record SNR (dBU
118¢24 24 119¢24 24
118¢18 18 119¢18 18
118e12 12 119¢12 2
118¢06 6 119¢06 6
118e00 0 119¢00 0
118¢ 6 -6 119¢ 6 -6

Table 2 Records of the MIT-BIH Noise Stress Test
Database.

5. Results and discussion

The detector shows outstanding performance for
noisy signals even in the presence of pronounced
muscular noise and baseline artifacts. The results
obtained for the testing records are shown in Table 3.
In the case of the noise tolerance test, the
performance of the proposed QRS detector remains
high for SNR’s as low as 6 dB with high sensitivity
values (about 90%) and with equally high positive
predictions (above 88%). The results obtained are
presented in Table 4.

The sensitivity of the detector falls under 90% for
SNR’s lower than 6dB. The reliability of the
proposed detector compares very favourably with
published resulfs for other QRS detectors especially
for the difficult’to analyse noisy MIT-BIH record
105. The predominant features of this record are high
grade of noise and artifacts [11]. Comparative results
are shown in the Table 5.

5. Conclusion

The usefulness of the properties of the Hilbert
transform for QRS detection has been studied in this
paper and a new QRS complex detector has been
proposed. Using the MIT-BIH arrhythmia database.
the algorithm developed performed highly effectively
with accurate QRS peak detection, even in the
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presence of significant noise contamination. This
robust noise rejection of the algorithm proposed is
emphasized with the results obtained for the noise
stress test. where high sensitivity and positive
prediction rates were obtained for even high noise
contaminated signals.

MIT-BIH Actual number FP FN | Failed detection Detection Se (%) | +P (%)
record of beats in record (FP+FN) error rate %

100 2273 o | o 0 0.00 100 100
105 2572 7 | 3 10 0.39 99.88 | 99.73
i 2124 R 2 0.09 99.95 | 99.95
3 1795 o | o 0 0.00 100 100
114 1879 I 0 1 0.05 100 99.95
18 2278 o | o 0 0.00 100 100
19 1987 0o | o 0 0.00 100 100

TABLE 3. QRS Detection Performance using the MIT-BIH Database.

MIT-BIH Noise Stress | Actual number FP | FN | Failed detection Detection Se (%) | +P (%)
Test record of beats in record (FP+FN) error rate %

11824 2278 0 0 0 0.00 100 100
11818 2278 4 I 5 0.22 99.96 | 99.82
118e12 2278 63 | 27 90 3.95 08.81 | 97.28
[18e06 2278 210 | 121 331 14.53 94.69 | 91.13
11800 2278 402 | 361 763 33.49 84.15 | 82.66
118¢ 6 2278 529 | 491 1020 44.78 7845 | 77.16
119e24 1987 I 0 1 0.05 100 99.95
119¢18 1987 4 1 5 0.25 99.95 | 99.80
11912 1987 01 | 17 18 5.94 99.14 | 95.12
119¢06 1987 239 | 82 321 16.16 95.87 | 88.85
119200 1987 409 | 204 613 30.85 89.73 | 8134
1196 1987 561 | 376 937 47.16 81.08 | 74.17

TABLE 4. Noise Tolerance of the proposed QRS Detector Using the MIT-BIH Noise Stress Test Database.
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Method FP FN Failed Detection Se% | +P % | Reference
detection error rate %

Proposed detector 7 3 10 0.39 99.88 | 99.73
Neural-based adaptive filtering 10 4 14 0.54 99.84 | 99.61 [13]
Wavelet transforms 15 13 28 1.09 99.50 | 99.42 [14]
Topological mapping 41 4 45 1.75 99.84 | 98.43 [15]
Optimised filtering and dual edge 35 21 56 2.18 99.19 | 98.66 [16]
thresholding

Linear adaptive filtering 40 22 62 241 99.15 | 98.47 [13]
Bandpass filtering and search-back 53 22 75 291 99.15 | 97.98 [10]
Bandpass filtering 67 22 89 3.46 99.15 | 9746 [17]
Filter banks* 53 16 69 3.22 99.26 | 97.58 [18]

* This result reporter over 2139 beats only.

TABLE 5. Performance Comparison with other Detectors for the noisy MIT-BIH record 105 containing
2572 QRS complex.
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