Por favor, use este identificador para citar o enlazar este ítem: http://bibdigital.epn.edu.ec/handle/15000/464
Título : Pronóstico de la demanda de muy corto plazo utilizando inteligencia artificial
Autor : Herrera Orbea, Lorena del Pilar
Palabras clave : PLANIFICACION
SISTEMAS ELECTRICOS DE POTENCIA
Fecha de publicación : jul-2007
Editorial : QUITO/ EPN/ 2007
Resumen : Una de las actividades esenciales de los Administradores del Suministro de Energía Eléctrica, cuya responsabilidad recae en el Operador de Mercado (CENACE), es el pronóstico de la demanda. En la actualidad, el CENACE utiliza el método ARIMA para el Pronóstico de la Demanda de Corto Plazo (PDCP) y ningún método formal para el Pronóstico de la Demanda a Muy Corto Plazo (PDMCP). El PDMCP efectuará un control horario de la demanda, para el funcionamiento fiable del sistema de potencia, ya que ante desviaciones considerables de la demanda programada versus la real se debe realizar una nueva optimización del parque hidro-térmico (Redespacho por desvíos de demanda). En el presente proyecto se propone la metodología de Inteligencia Artificial Razonamiento Inductivo Fuzzy (FIR) y Algoritmos Evolutivos (SRA) para el PDMCP, la cual realiza la predicción de la demanda eléctrica en base a su comportamiento pasado (serie histórica de demanda), el tipo de día y la variable externa meteorológica - temperatura, logrando un mejor ajuste con la demanda real. Por otra parte también se describe un criterio de análisis de valores atípicos, para determinar la hora del reajuste de la demanda.
URI : http://bibdigital.epn.edu.ec/handle/15000/464
Aparece en las colecciones: Tesis Ingeniería Eléctrica (IE)

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
CD-0836.pdfTesis Completa1,06 MBAdobe PDFVisualizar/Abrir


Este ítem está protegido por copyright original



Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.