Por favor, use este identificador para citar o enlazar este ítem: http://bibdigital.epn.edu.ec/handle/15000/8930
Título : Método de Newton para la simulación numérica del Modelo de Houska.
Autor : Núñez Salgado, Javier Alejandro
Palabras clave : Análisis numérico
Mecánica de fluidos
Dinámica de fluidos
Aproximación por elementos finitos
Fecha de publicación : 10-dic-2014
Editorial : Quito : 2014.
Resumen : Resumen .- El objetivo principal de este trabajo es desarrollar un algoritmo eficiente que permita aproximar numéricamente el flujo de un fluido de Houska laminar no estacionario en la sección transversal de una tubería cuadrada debido a un cambio de presión. Empezaremos planteando la forma diferencial de las ecuaciones que gobiernan el flujo del fluido de Houska, para luego, plantear su forma variacional a partir de estas. Luego, discretizaremos el problema variacional mediante el método de elementos finitos y encontraremos su solución aplicando el método de Euler Implícito para la discretización del tiempo, lo que nos llevará a resolver un sistema de ecuaciones no lineales. Para solventar este particular, introduciremos una regularización del tipo Bercovier-Engelman e implementaremos el método Newton Clásico para encontrar las raíces en cada iteración del tiempo. Finalmente presentaremos algunos experimentos numéricos obtenidos de la aplicación de los algoritmos desarrollados. Abstract: The main purpose of this work is to develop an efficient algorithm for the numerical approximation of the non-stationary laminar flow of a Houska fluid over a cross-section of a square pipe due to pressure change. We first consider the differential form of the equations governing Houska fluid flow and get the variational form from these. Then, we discretize the variational problem by the Finite Element Method and try to find its solution by applying the Implicit Euler method for the time discretization, leading us to solve a system of nonlinear equations. To solve this situation, first, we introduce a Bercovier-Engelman type regularization and second we implement the Classical Newton method to find the roots in each iteration of time. Finally, we present some numerical experiments obtained from the application of the developed algorithms.
Descripción : 87 hojas : ilustraciones, 29 x 21 cm + CD-ROM 5977
URI : http://bibdigital.epn.edu.ec/handle/15000/8930
Aparece en las colecciones: Tesis Matemáticas (MAT)

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
CD-5977.pdf2,15 MBAdobe PDFVisualizar/Abrir


Este ítem está protegido por copyright original



Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.