Por favor, use este identificador para citar o enlazar este ítem: http://bibdigital.epn.edu.ec/handle/15000/9732
Título : Control adaptive of nonlinear systems using a recurrent neural network
Autor : Delgado Rivera, Jesús Alberto
Palabras clave : REDES NEURALES
SISTEMAS DE CONTROL NO LINEAL
Fecha de publicación : nov-1995
Resumen : In this paper a control scheme wich linearizes the system is discussed. The idea here is to integrate recurrent neural networks and the linearizing control scheme proposed by Kravaris and Chung. A straightforward approach would have been to identify the non-linear plant using a recurrent neural network, and then synthesize the control law using this network. However, this particular methodology is eschewed here, for this would mean tedious calculations of the varios Lie derivatives of the network and the exact cancellation of non-linear terms. Rather than go through a process of first identifying the plant an then evaluating the various parameters for linearizing the plant, a more interesting scheme would be one where the network designs the linearizing laws for the system. This means that the network provides us with the linearizing parameters as outputs, rather than the outputs of the system.
URI : http://bibdigital.epn.edu.ec/handle/15000/9732
Aparece en las colecciones: Jornadas de Ingeniería Eléctrica y Electrónica (FIEE)

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
1995ajieec_16.djvu197,41 kBUnknownVisualizar/Abrir


Este ítem está protegido por copyright original



Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.