Please use this identifier to cite or link to this item: http://bibdigital.epn.edu.ec/handle/15000/22552
Title: Evaluación y aplicación de algoritmos de inteligencia artificial explicada para apoyar la toma decisiones médicas en la salud fetal .
Authors: Ortuño Barrera, Bryan David
Keywords: SISTEMAS DE INFORMACIÓN
ALGORITMO
TOMA DE DECISIONES
TECNOLOGÍA
SALUD FETAL
Issue Date: Feb-2022
Publisher: Quito : EPN, 2022
Citation: Ortuño Barrera, B. D. (2022).Evaluación y aplicación de algoritmos de inteligencia artificial explicada para apoyar la toma decisiones médicas en la salud fetal . 67 hojas. Quito : EPN.
Abstract: In recent decades, medicine has found in artificial intelligence (AI) a driver in the search for solutions. Thus, through machine learning algorithms, tasks as specific as patient diagnosis are favored by their ability to predict based on data. However, AI is presented as a "black box" that hides the learning process for the generation of results. In this research presented as a curricular degree work, the application of the Explained Artificial Intelligence (XAI) SHAP algorithm is carried out as an explanatory method for the evaluation of fetal health. For which the cardiotocography data obtained from the UCI Machine Learning repository is used for the application of AI in the area of obstetrics. To apply the XAI method, a selection of an AI algorithm was first made, for which 3 very popular machine learning methods were evaluated, such as Support Vector Machine, Random Forest and an Artificial Neural Network, which through the implementation and evaluation of A Systematic Literature Review was able to determine its wide use in the application of XAI. Random Forest was the algorithm that obtained the best results in the classification of fetal health, being the one selected for the application of XAI. The results have been evaluated with a specialist in the area of obstetrics who has validated the explanatory capacity of the SHAP algorithm and has found in this method a help to interpret the outputs of an AI algorithm, which is considered favorable for its implementation in medicine. specifically in the area of obstetrics.
Description: En las últimas décadas, la medicina ha encontrado en la inteligencia artificial (AI, por sus siglas en inglés) un propulsor en la búsqueda de soluciones. Así, mediante algoritmos de aprendizaje automático, tareas tan específicas como el diagnóstico de pacientes se ven favorecidas por su capacidad de predicción basada en los datos. Sin embargo La AI se presenta como una “caja negra” que esconde el proceso de aprendizaje para la generación de resultados. En esta investigación presentada como trabajo de titulación curricular se realiza la aplicación del algoritmo de Inteligencia Artificial Explicada (XAI, por sus siglas en ingles) SHAP como método explicativo para la evaluación de la salud fetal. Para lo cual se utiliza los datos de cardiotocografías obtenidos del repositorio UCI Machine Learning para la aplicación de AI en el área de obstetricia. Para aplicar el método de XAI primero se realizó una selección de un algoritmo de AI para la cual se evaluaron 3 métodos de aprendizaje automático muy populares como son Suport Vector Machine, Random Forest y una Red Neuronal Artificial, los cuales mediante la implementación y evaluación de una Revisión Sistemática de Literatura se pudo determinar su amplio uso en la aplicación de XAI. Random Forest fue el algoritmo que obtuvo los mejores resultados en la clasificación de la salud fetal, siendo el seleccionado para la aplicación de XAI.
URI: http://bibdigital.epn.edu.ec/handle/15000/22552
Appears in Collections:TIC - Software

Files in This Item:
File Description SizeFormat 
CD 12029.pdf3,82 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.