Please use this identifier to cite or link to this item: http://bibdigital.epn.edu.ec/handle/15000/23370
Title: Tópicos de Variedades Diferenciables : Teorema de Sard.
Authors: Quispe Herrera, Jefferson Andrés
Keywords: VARIEDADES DIFERENCIABLES
MATEMÁTICA
MAPAS SUAVES
CONJUNTOS DE MEDIDA NULA
SUBVARIEDADES
TEOREMA DE SARD
Issue Date: Oct-2022
Publisher: Quito : EPN, 2022.
Citation: Quispe Herrera, J. A.(2022).Tópicos de Variedades Diferenciables : Teorema de Sard. 50 páginas. Quito : EPN.
Abstract: The purpose of this paper is to show the Sard's Theorem, which is an important result in the Theory of Manifolds. It tells us that every set of critical values of a smooth function has null measure. To begin with, we introduce concepts such as: smooth manifolds, smooth maps between manifolds and tangent space to a manifold at a point. Then, we introduce the concept of differentiability for a smooth map between manifolds. Furthermore, we extend the concept of sets of zero measure to the manifolds framework. Finally, we present the proof of our main result.
Description: Este trabajo tiene como fin realizar la demostración del Teorema de Sard, el cual constituye un resultado importante en la Teoría de Variedades. Éste nos dice que todo conjunto de valores críticos de una función suave tiene medida nula. Para iniciar, introducimos conceptos como: variedades diferenciables, mapas suaves entre variedades y espacio tangente a una variedad en un punto. Luego, presentamos el concepto de diferenciabilidad para un mapa definido entre variedades. Además, extendemos el concepto de conjuntos de medida nula a la Teoría de Varidades Diferenciables. Finalmente presentamos la demostración de nuestro resultado principal
URI: http://bibdigital.epn.edu.ec/handle/15000/23370
Type: bachelorThesis
Appears in Collections:TIC - Matemática

Files in This Item:
File Description SizeFormat 
CD 12785.pdf911,86 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.